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A Wiener Filter Approach to Microphone Leakage
Reduction in Close-Microphone Applications
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Abstract—Microphone leakage is one of the most prevalent
problems in audio applications involving multiple instruments
and multiple microphones. Currently, sound engineers have lim-
ited solutions available to them. In this paper, the applicability of
two widely used signal enhancement methods to this problem is
discussed, namely blind source separation and noise suppression.
By extending previous work, it is shown that the noise suppres-
sion framework is a valid choice and can effectively address the
problem of microphone leakage. Here, an extended form of the
single channel Wiener filter is used which takes into account the
individual audio sources to derive a multichannel noise term.
A novel power spectral density (PSD) estimation method is also
proposed based on the identification of dominant frequency bins
by examining the microphone and output signal PSDs. The per-
formance of the method is examined for simulated environments
with various source—microphone setups and it is shown that the
proposed approach efficiently suppresses leakage.

Index Terms—Microphone leakage, multichannel audio en-
hancement, noise suppression, power spectral density (PSD)
estimation, source separation, Wiener filter.

I. INTRODUCTION

HE production of modern music often involves a number

of musicians performing together inside the same room
with a number of microphones set to capture the sound emitted
by their instruments. Ideally, each microphone should pick up
only the sound of the intended instrument, but due to the interac-
tion between the various instruments and room acoustics, each
microphone picks up not only the sound of interest but also a
mixture of all other instruments. This is known as microphone
leakage and is an undesirable effect, common in most multiple
microphone multiple instrument applications (see Fig. 1). The
close-microphone technique, in which the microphone is placed
in close proximity to the source of interest, is typically used in
order to enable the microphone to capture as much of the sound
of interest as possible (i.e., increase the signal to noise ratio)
[1] and reduce the effect of microphone leakage. It is also used
to minimize the effect of room acoustics on the received signal
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Fig. 1. Illustration of the microphone leakage effect for close microphone ap-
plications. The leakage for only one microphone is shown, for the case of three
sources and three microphones.

(i.e., increase the direct to reverberant ratio) [2] in cases where
the room acoustic properties are poor or where the sound engi-
neer would like to later add artificial reverberation.

Even with the close-microphone technique, microphone
leakage is difficult to eliminate, especially in live sound ap-
plications where the acoustic environment and the placement
of instruments and microphones are far less controlled than
in a recording studio. It is therefore reasonable to consider
the introduction of advanced signal processing frameworks to
address this problem.

One possible approach would be the use of the blind source
separation (BSS) framework. BSS methods are attractive for
audio applications since they treat the mixing process as a
“black box” and do not require access to the original source
signals [3]. However, a number of problems arise when con-
sidering the application of BSS methods to audio. First, some
of the most common assumptions in BSS methods, such as
statistical independence [4] do not always hold [5]. A more
significant problem is reverberation [6] since in many audio
applications and especially live sound, reverberation times
around or even over 1 second are not uncommon. Combined
with the high sampling rates (44.1 kHz or higher) required for
preserving audio quality, the room impulse responses (RIRs)
describing the mixing system are given by FIR filters with
tens of thousands of coefficients. Therefore, BSS methods are
required to estimate a set of comparably long filters [7], [8] that
will invert the mixing process and produce separated signals.
However, such long filters will slow down convergence and
increase computational cost [9], [10]. Finally, the output signals
of such methods are typically scaled and reordered versions of
the original source signals. While the permutation problem can

1558-7916/$26.00 © 2011 IEEE



768 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 3, MARCH 2012

be easily addressed in the case of close-microphone applica-
tions, the problem of scaling, especially in live sound, may lead
to significant problems in the audio gain structure resulting in
feedback [11] and/or distortion.

For all the above reasons, the alternative noise suppression
framework seems a more plausible approach. This is because in
practice the microphone signal consists of a signal of interest
corrupted by additive noise, which in this case is the sound
from all other audio sources. Furthermore noise suppression
does not usually require any information or assumptions about
room acoustics, although such knowledge could prove benefi-
cial in some applications. The Wiener filter is one of the most
common methods employed within this framework [12], [13].
The main issue here is the estimation of the noise signal proper-
ties and several approaches have been proposed to accomplish
this [14]-[17]. More recently, multichannel Wiener filters have
been proposed [18], [19] that assume the use of microphone ar-
rays and exploit the spatial properties of noise. However, apart
from the use of arrays with specific geometries, such methods
assume a single source inside a noise field, rather than several
sources corrupted by noise that consists of the interference be-
tween them.

The concept of using Wiener filters for microphone leakage
reduction was considered in previous work [1], where it was
shown that this approach can effectively address the problem
in close-microphone recordings in real environments with two
sources/microphones. Here, this concept is extended for an ar-
bitrary number of sources and microphones. An extension of the
single channel Wiener filter is derived, leading to a multichannel
Wiener filter in the sense that the noise term depends on several
interfering signals. A time—frequency domain implementation
is used, where the power spectral densities (PSDs) involved are
estimated from the microphone and output signals based on the
identification of dominant frequency bins and an iterative pro-
cedure controlled by an energy-adaptive forgetting factor. The
results presented show that the proposed method achieves satis-
factory performance, effectively reducing microphone leakage
even at long source—microphone distances, while being robust
with respect to the number of sources and reverberation time.

The rest of the paper is organized as follows. In Section II,
a straightforward extension of the single-channel Wiener filter
is given while in Section III the PSD estimation method is de-
scribed. In Section IV, simulation results are presented for two
different source—microphone setups and various parameters and
finally in Section V some conclusions are drawn from the anal-
ysis of the results.

II. PROBLEM FORMULATION AND FILTER DERIVATION

Consider N sources s, (k) located inside a reverberant en-
closed space and M microphones producing the signals z,,, (k).
Let f,, (k) be the FIR filter that models the response of the
acoustic path (namely the RIR) between the nth source and the
rnth microphone, including microphone properties. Each micro-
phone signal is given by

N

Tu(k) = D [ps(bmi)si(k)]  [pe(Omi) (k)] (1)

i=1

form = 1,2,..., M. f,,; is the angle between the ¢th source
and mth microphone, p,(8) is the directivity function of the
source and p.(#) is the directivity function of the micro-
phone. These functions add a further degree of freedom in
source-source and source—microphone interaction and can even
prove beneficial in some settings when the angles are suitably
chosen by the sound engineer. In this work however, both
sources and microphones will be considered omnidirectional,
i.e., ps(0) = p.(8) = 1 for all §. Also the number of micro-
phones is assumed equal to the number of sources (N = M).

Since the use of the close-microphone technique is assumed
here, then each microphone picks up primarily the sound of the
source of interest and to a lesser extent the sound of all other
sources. Therefore,

M
-'I',m(k) = Sm(k) * hmm(k) + Z Ql(k) * hlni(k) (2)

itm

form =1,2,..., M. Now define the direct source as

Sm(k) = sm (k) * hm (k) 3)
and the leakage source as

Sim (k) = $i(k) * hi (k) (4)

with ¢ # m. The term source may refer to the anechoic source
signal s,,(k), the direct source §,,(k) or the leakage source
5i.m (k). Also note that all of the following equations hold for
m = 1,2,..., M and ¢ # m. Microphone leakage can be ex-
pressed as

M

U (k) = > 5im (k) (5)

i=1
itm

and the microphone signal can be written as
T (k) = 8m(k) + um (k) (6)

Equation (6) now describes microphone leakage as a signal in
additive noise problem, where a filter must be calculated that
will provide an estimate of the signal of interest. For a fixed
m a single-channel Wiener filter can be applied, provided an
adequate estimation of the noise term can be obtained.

For the following derivation of the extended Wiener filter,
the original sources s,,, (k) are assumed to be uncorrelated with
each other and to be wide-sense stationary (WSS) processes.
While the assumption of uncorrelated sources holds for the case
of audio signals [20], the WSS assumption does not hold in
practice and will be addressed later in the text [see (15), (16)].
Also note, that due to the linearity of the convolution opera-
tion, the uncorrelated sources assumption holds for the direct
and leakage sources as well, i.e.,

B (B)E(k+1)) =0 (7

for —oco < 7 < 0, m,n = 1,2,..., M,and m # n. The *

superscript denotes complex conjugation. However since all the
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signals considered in this work are real, the conjugation can be
dropped.

Let wy, (k) be a filter that suppresses the interference and pro-
vides an estimate of the source in the mean squared error (MSE)
sense. Then, the estimated source is given by

o0

Z W (D (k= 1). ®)

l=—o0

8m(k) =

The infinite sum in (8) implies that w,, (k) is an infinite impulse
response (IIR) filter. The error signal between the actual source
and the estimated one is

e'rn(k) = §’fﬂ(k) - §,m(]€). (9)

The optimum filter in the MSE sense can be obtained by
minimizing

OE {lewm ()}

D7) =0 Vr. (10)
Equation (10) after necessary computations becomes
E {5, (k)xmk—1)}—
i W (DNE{Zm(k = Dap(k—7)} =0. (11)
I=—oc

It is easy to see that (11) involves auto- and cross-correlation
functions and can be written as

[o e}

Z Wi (D7 (T =1 =15, 2. (1) V7.

l=—0cc

(12)

By invoking the assumption of uncorrelated sources the corre-
lation functions above can be expressed as

(13)

(14)

M
T (T) = 75,5, (T) + T8 mBim (7)-
i

Substituting (13) and (14) to (12) and applying the Fourier trans-
form, we obtain

P; 5, (w)
Wm,(w) = i . (15)
Py 5, (W) + 20 = Ps, 5. (W)

The derived filter W,,(w) is non-causal since the Fourier
transform was applied to infinitely long correlation sequences
[21]. Furthermore, recall that the sources have been assumed
wide-sense stationary, which is not the case for audio sources.
Hence, for practical applications involving non-stationary
signals, W,,,(w) is approximated [12] as

Pf”m,é - (h:, Wb)

Pi s () + 2000 Pa s ()

Wm,(’%; Cdb) =

(16)

where P; 5 (k,wy) and Ps, 5, (x,ws) are the short-time
PSDs of 3,,(k) and §; ,,,(k), respectively, which are obtained
through the short-time Fourier transform (STFT) of the source

signals. The index x = 1,2,..., K describes the STFT frame
index with K the total number of frames and w, = 1,2,.... B
is the discrete frequency bin index with B the total number of
frequency bins.

Assuming the signals are stationary for the duration of the
STFT frame, a Wiener filter can be calculated for each micro-
phone signal which will provide an estimate of the respective
direct source, i.e.,

You (6, wp) = /Wm(n,wb)Xm(f@,wb) 17)
where Yy, (r,wp) and X, (%, wp) are the STFT of the mth
output signal and microphone signal, respectively.

The main problem now is how to estimate the PSDs of the
direct and leakage sources. For this purpose, a novel method
is introduced and described in detail in Section III, while the
overall proposed method can be described by the block diagram
of Fig. 2.

III. POWER SPECTRAL DENSITY ESTIMATIONS

A. Estimation of the Direct PSD

A fairly straightforward estimation method for the PSD of
the direct source will be employed here, based on the assump-
tion of the close-microphone technique and hence the assump-
tion that the source of interest s,,, (k) is dominant in the micro-
phone signal x,, (k) which will form the basis of the estimation
method. At first approximation, the microphone signal PSD can
be used, that is

P;

Sm. Sm

(/{'vah) ~ mewm("ivwb) (18)
However, due to the presence of interference, the actual micro-
phone PSD is a sum of the direct source and the interference
PSD. Hence, an error term ¢ is introduced

Py, (Kywp) = Ps

Sm Sm

(1, w) + €. (19)

Clearly, the amount of interference present in the microphone
signal controls the accuracy of the PSD estimation and conse-
quently the performance of the resulting Wiener filter. It was
shown in previous work [1] that for close-microphone record-
ings of a setup with two sources and two microphones inside
real reverberant environments, this crude approximation results
in an effective Wiener filter that successfully suppresses micro-
phone leakage.

Here, this concept will be extended and a more robust method
will be introduced based on the following observations. By ex-
amining Fig. 3 it can be seen that the PSD of the microphone
signal, apart from the source, contains a large amount of en-
ergy in frequencies higher than 2.5 kHz that are due to the in-
terference reaching the microphone. However, by looking at the
PSD of the output signal, this energy has been attenuated by the
Wiener filter and thus a better estimation of the desired PSD
can be obtained. What is more important to note is that there
exist PSD regions that are almost the same between the original
source, the microphone and the output signal and that they are
almost unaffected by interference. Hence, if these regions can
be effectively identified, then they can be utilized in order to
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Fig. 2. Block diagram describing the proposed method. The PSD estimation process is detailed in Section III. The energy-adaptive forgetting factor is discussed
in Section III-A and the solo detection and weighting coefficient estimation method is detailed in Section III-C. The dashed lines denote multichannel information.
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Fig. 3. PSD of the direct source, the microphone signal and the output, along with the PSD-WE (see Section III-D) for a setup with six sources, a source—micro-
phone distance of 20 cm, and a reverberation time of 1.2 s. The gray shaded areas denote regions which are the same between the original source, the microphone
and the output signal. The dots denote dominant frequency bins. All PSDs have been scaled for illustration purposes.

form a more accurate PSD estimation, since they most probably
belong to the original source PSD.

In order to identify these regions, the set of “active” frequency
bins are first identified in the microphone and output PSDs.
These are defined as those frequency bins having an amplitude
larger than the root mean squared (rms) amplitude of the PSD. In
other words, let {25 be the set of all frequency bins and define
24, (k) as the set of active frequency bins at the microphone
PSD for the «th frame:

Qa (&) ={w € Qp: Py o, (5,wp) > E,, }

R

(20)

where E,,_ is the rms amplitude of P, .. (k,ws). Similarly,
the active frequency bins of the output signal y,,, (k) are defined
as

Qy

Sy

(k) ={w, €Qp: Py, . (k—Luw)>E, } (21

where E, = is the rms amplitude of the previous frame of the
output PSD P, (k — 1, wy).

Since as is observed in Fig. 3, the regions that should be iden-
tified are common to both microphone and output PSDs, the
“dominant” frequency bins are chosen as those frequency bins

being active in both signals:

Qp(k) = Qa, (k) NQ4, (). (22)
The characteristic function of the set Qp (k) is
, 1wy e Qp(k)

XQD(FL7WZ)) B {O Wy € QD(FL) ’ (23)

The characteristic function of the complement set €25, (), which
contains the “residual” bins, is defined as

xas, (5,ws) =1 — Xap, (K, wp). (24)
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The “dominant” PSD component is based on the dominant
frequency bins and essentially provides a weighted version of
the microphone PSD

Prg("ﬂ‘? wb) = 6DXQD (K‘a wb)Pw,,,,wr,,,, (H‘a wb)' (25)
The reasoning behind using the dominant PSD components of
the microphone and not the output signal is the fact that the pro-
cessed output signal may be distorted with respect to the micro-
phone signal and using it for the PSD estimation process may
introduce further distortions.

The rest of the PSD estimation can be formed from the
“residual” part of microphone and input PSDs, as

Pk, w1) = xoz (5, w1) (6r, Pe, e, (5. w3)
+p, Py,y. (6 — Lwy)) . (26)

The parameters 6p,6r,,0r, are introduced in (25) and (26)
to enable fine-tuning of the PSD estimation, by controlling the
relative importance of the microphone and output PSD com-
ponents with respect to the dominant component of the micro-
phone PSD. They take values in [0, 1] and their sum should
equal to unity (i.e., 6p + ér, +6r, = 1).

The final PSD estimation is achieved via an iterative proce-
dure, controlled by an energy-adaptive forgetting factor

Ps 5, (K, wp) = Ym(K) P55, (F — 1,wy)

+ (1 — v (k) [P,Q(H,, wy) + P2k, wb)] .27
The forgetting factor ~,,(x) controls the “memory” of the esti-
mation or equivalently its sensitivity to sudden changes. The
one-pole smoothing procedure of (27) is commonly used in
cases where a PSD estimation is affected by noise or interfer-
ence and smooths out abrupt fluctuations that may result from a
high energy interfering signal.

For each microphone signal the respective value of the for-
getting factor should follow the signal’s energy changes, while
taking into account the energy of all other signals. When the
energy of the microphone signal is low compared to all other
microphone signals, implying that the microphone receives a
significant amount of interference and hence the current PSD es-
timation may not be reliable, the forgetting factor should have a
high value in order to steer the iterative procedure towards pre-
vious values. On the other hand, when the energy of the micro-
phone signal is quite larger compared to all other microphones,
indicating that the interfering energy at the microphone will be
low and hence the current PSD estimation adequate, the for-
getting factor should take a low value in order for the iterative
process to take into account mostly the current and to a lesser
degree the previous estimations. This can be accomplished em-
ploying a time-varying forgetting factor for each microphone
signal

E[xm x|
S Elxi ]

itm

(28)

’Vm(ﬁ) =exp | —

s - T T — .
BOf4d b R T = ]
= Do Coh i oo A
%, oF ;‘ i iy | i | R A i
o 1} w'." ) W :',‘ aon [ ‘,“\' i
= 200 F1 1] I ’ IV : ’ l i‘ \
; ‘ |
S -40“ | ‘ Mt DY 1
) i i ! !
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Fig. 4. Energy ratio of a source and the respective microphone energy ratio in
low (ratio 1) and high (ratio 2) interference settings. The frames during which
the source has low energy or is silent are marked by dashed rectangles.

which is based on the energy ratio between the microphone sig-
nals. £[] is the energy operator defined as

Ly—1

1
El%m.n] = o > o (5Ly + D)
=0

(29)

with x,,, , being the xth block of the ynth microphone signal
of length L;. The use of the exponential function bounds the
values of 7, () to (0,1], thus making the forgetting factor
adequately robust with respect to amplitude differences due
to varying source—microphone distance and/or source—micro-
phone settings.

The energy of the microphone signal calculated by (29) does
not correspond to the true energy of the respective source due
the presence of leakage at the microphone. However, the energy
ratio of the microphone signals will closely follow the energy
ratio of the sources, since interference is a relatively constant
factor for a given setup. This is illustrated in Fig. 4 where the en-
ergy ratio of a source is shown, along with the respective micro-
phone energy ratio for low and high interference settings. The
energy ratios are almost identical for all frames, except those for
which the source has really low energy, where the microphone
ratios have increased values due to the presence of interference.

B. Estimation of the Leakage PSD

The previous section provided an estimation method for the
direct PSD Ps, ;. (k,ws). However, the estimation of leakage

SmSm

PSDs P, .5, . (#,wy) is even more critical as they constitute
the noise term to be suppressed.
Ignoring interference for the moment, the problem is to

estimate

Ps, s (5 wy) o | F {si(k) « hona(R)}? - (30)
when the direct PSD
Py, (K, wp) o |F {si(k) g (k) (31)

is known, where F is the Fourier transform operator. It
can be seen that the relation between P; ;5 (%,wp) and
P;, 5., (k.wy) boils down to the relation between £;; (k) and

humi(k). It has been shown in previous work [1], [2] that the
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close-microphone response h;;(k) is almost ideal and can be
reduced to a simple gain and delay
h”(k) ~ f]z‘ié(k — dii) (32)
where g;; is the amplitude of the contribution of the direct sound
in the RIR and d;; is the delay in samples that represents the
distance between the ith source and its respective microphone.
It was also shown [ 1] that leakage responses may involve only
a few or even a single significant reflection, especially in large
rooms where reflective surfaces are far away from the sources
and microphones. Hence, the leakage response is decomposed
as
Poni (k) = Gnid(k — dpi) + o () (33)
where the term ¢,,;6(k — d,,;) describes the direct part of the
impulse response which consists of a gain and a delay, both de-
pending on the distance between the ith source and the mth
microphone and r,,;(k) describes the rest of the impulse re-
sponse. If only the direct part is taken into account, then a set of
“weighting coefficients” can be calculated as

2
_ Gmi
Q. = _[]—
i1

and using these coefficients, the leakage PSD can be written as

(34

(FG,UJ(,) = O‘rniPEiEi(K'vwh)' (35)

Si,m5i,m
The estimation of leakage PSDs is now directly linked to the ac-
curacy of the direct PSD estimation. In effect, the weighting co-
efficients are a scalar gain that accounts for the energy reduction
of sound propagation. When setting cv,,,; = 1, the multichannel
noise term of (16) is overestimated since the interference con-
tributed by each source is equally considered regardless of its
proximity to the microphone. This will in turn result to the in-
troduction of distortion and processing artifacts. Of course in
practice the energy reduction due to distance is not the same
for all frequencies; however, since leakage RIRs include only
a few prominent reflections, the approximation of a scalar gain
generally holds. The coefficients of (34) can be also seen as the
multichannel equivalent of the noise weighting term introduced
in the generalized Wiener filter [12], [22] as a means to balance
the amount of suppression applied versus the amount of distor-
tion introduced. Furthermore, setting the weighting coefficients
to zero for sources that have very small contribution to leakage
and may be perceptually unobtrusive reduces the amount of fre-
quency domain processing by the Wiener filter and preserves
signal quality.

The problem now relates to the estimation of those coeffi-
cients in a blind way, since in general there is no knowledge of
the room impulse responses. In Section III-C, a method for es-
timation of the weighting coefficients will be presented.

C. Estimation of the Weighting Coefficients

In music performances there are often time intervals of
varying duration during which only one instrument is active.

For such a “solo interval,” when only source s, (k) is active, all
microphone signals can be expressed as

T (k) = s;(k) * by (k) (36)
form = 1...., M. Note that here it can be m = ¢. Modeling
humi(k) as in (33) and assuming that g,.; > >, |7 (k)| and
since the delay does not affect the energy then the energy of each
microphone signal is

9 Ly—1

5[Xm,ﬂ] = gIrl_': Z 5i(kLy + l)|2 (37)
=0

Taking the ratio of each microphone signal x,, , with respect
to x; ,, during a solo interval and provided that the assumptions
about the RIR decomposition hold, the weighting coefficients

of (34) are estimated:
2
_ ( Gmi ) _
- = Qmy
Jii

for i # m. The authors have previously proposed a method to
detect “solo intervals” [23] based on the energy ratio which was
discussed in Section III-A. Using a sigmoid bounding function

g [X'm,n]
£ [Xi,fc]

(3%)

2
sle)y = ————1 39
the energy ratio for solo detection is
5[Xrn n}
ERm.k)=f; | ——— (40)
e S Efxi )

itm

Following the same reasoning as for the energy-adaptive for-
getting factor and under the close-microphone assumption the
bounded energy ratio of (40) will take values equal to unity for
the microphone that corresponds to a solo source and quite low
values for all other microphones, while it will generally have
low values for all microphones when all sources are active si-
multaneously. Hence, by examining the values of £ R(m, «) for
all microphones at each frame, solo intervals can be detected.
The process is described by the flowchart of Fig. 5. Parameter
£ of (39) controls the sensitivity of the detection process.

It is clear that the performance of this method depends heavily
on the close microphone assumption. Using the solo detection
ratio (that is the number of correctly identified solo frames to
the total number of solo frames) to assess the detection perfor-
mance it can be seen from Fig. 6, that it depends significantly on
source—microphone distance and reverberation time. For short
distances, below 10 cm, the method performs well with a detec-
tion ratio over 60% for all reverberation times examined. For
longer distances and reverberation times the performances de-
creases quite fast. However, as it is shown in Section IV-B the
overestimation effect is more evident in shorter distances and
there the estimation of the weighting coefficients is more crit-
ical. Hence, the performance of the method is adequate for the
purpose considered in this work.
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Fig. 5. Flowchart describing the process of detecting solo frames.
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Fig. 6. Performance of the solo detection method for variable source—micro-
phone distance and various reverberation times (3 = 8).

D. Power Spectral Density Weighting Envelope (PSD-WE)

While the method presented in Section III-A can produce a
fairly accurate estimation of the source PSD, in highly inter-
fering environments and longer source—microphone distances
the residual component of the PSD may contain significant en-
ergy which will bias the calculated Wiener filter and result in
distorted output signals or even reduced leakage suppression.

By observing again Fig. 3 it can be argued that regions of
significant interference tend to be at the extremes of the spec-
trum or in between the dominant bins. A power spectral density
weighting envelope (PSD-WE) is introduced here, which is es-
sentially a weighting function that attempts to attenuate compo-
nents belonging to interfering sources and forces the PSD esti-
mation to more closely follow the overall trend and shape of the
actual PSD. An example of such an envelope is shown in Fig. 3.

Let {wp ;{#)} be the tuple that corresponds to 2 () when
the elements of the set are given in ascending order, with Sp ()

being the number of elements in {2p(x). Define the “global
shaping” function as

Cou M wD, ifw, < wp (k)
Jo(k,w) = < Cuw, ifwp (k) € wp < wp g, (K)
Cwe MU ifwy > WD gp () (K)

1)
where 0 < ¢,, < 1 controls the overall amplitude while Az,
Ap control the steepness and shape of the rising and decaying
slopes of the function. Furthermore, let us define the “dominant
shaping” functions as

filwy) = { 0.5 [1 — o8 (27rg—?>} for |wp j(r) — B;| < wy
‘ 0 else
with

Pw,,,,:}:,,,,’ (h’,, WD,;;’(H,))

max [Py .. (K, WD-,J’(”))]
3

Brax (43)

j =

Equation (42) describes a Hanning window centered around the
7th dominant bin with a size (bandwidth) relative to the ratio
of the jth dominant bin PSD magnitude to the maximum PSD
magnitude of all dominant bins and a maximum bandwidth of
BIIlaX .

Finally, the PSD-WE is defined as

0

b, (k,wp) = folk,wp) + Z fils, wp).

Jj=1

(44)

By applying (44) to (27) the PSD estimation process becomes

Py, 5, (Fowp) = Y (6) Ps,, 5, (K, wp)

(1= 4 (1)) B (1 00) [P (s, 0) + PE(r,00)] . (45)

The global function fo(#,ws) is an overall window applied
to the PSD estimation that smooths out extremely low and high
frequencies where the estimation is less definite. The steepness
parameters Az, Ay control the amount of smoothing and atten-
uation applied to spectrum extrema, as well as the bandwidth
of this process. The dominant shaping functions f;(x,w;) are
narrow windows that are overlayed on fo (%, wy,) and attempt to
preserve the information around dominant frequency bins and
suppress possible interference in between.

IV. TESTS AND RESULTS

In order to investigate the performance of the proposed
method, two different source—microphone settings were studied
via simulations inside a room with dimensions 12 x 8 x 4.5 m
and variable reverberation time, employing an image source
method [24] (Fig. 7). For the first setup (A), the sources are
separated by a fair distance, which suggests that the interference
between them is less pronounced, a setting that is often used
with acoustic instrument sources. The sources for the second
setup (B) are placed closer together, in a positioning similar
to the one used for rock/pop bands sound reinforcement. The
microphones are assumed to be placed directly in front of the
respective sources at a source—microphone distance d equal
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Fig. 7. Diagram of the source—microphone positions used in the simulations.
Setup A (circles) consists of source—microphone positions with a distance typ-
ical for acoustic sources, while setup B (squares) describes an arrangement
of sources closer together, similar to those used in sound reinforcement for
rock/pop bands. Note that only the area around the “stage” is shown.

TABLE I
DETAILS OF THE TYPE OF SOURCES USED IN EACH SETTING

Source Number Setting A Setting B
1 Male Speaker Female Vocals
2 Cello El Bass
3 Classic Guitar El. Guitar
4 Female Speaker  Acoustic Guitar
5 Trumpet Snare Drum
6 Cornet -

for all source/microphone pairs (as shown in Fig. 7). The
specific sources used for each setting are described in Table I.
Given these source/microphone setups, the performance of the
proposed method was investigated for a variety of acoustic
environments, interference levels and source spectral profiles.

The performance assessment of audio signal enhancement
algorithms such as source separation and noise suppression, is
not a straightforward task, especially when the outputs of these
methods are to be assessed and presented to human listeners
[25]-[27]. In this work, the set of objective performance mea-
sures (signal-to-interference ratio—SIR; signal-to-distortion
ratio—SDR) proposed in [28] and [29] for the evaluation of
source separation algorithms. The reason for using these met-
rics to assess the performance of the proposed method, which
is derived from a noise suppression framework, is that “noise”
here is a mixture of audio signals which have different proper-
ties to typical noise interference. Furthermore, the segmental
signal-to-noise ratio (segmental SNR) is also used together with
the perceptual evaluation of audio quality (PEAQ) measure
[30], [31], which provides a perceptually relevant assessment
of the method’s performance as it indicates improvement with
respect to the MOS (mean opinion score) scale, to complement
the above metrics.

For the results presented an STFT frame of L; = 2048 sam-
ples was used with 50% overlap and a Hanning window. The
values of all the parameters are summarized in Table II. For the
estimation of the weighting coefficients, it is assumed that in the
beginning of each source set, each source is assigned a solo in-
terval of 300 ms during which solo frames are detected using
the method of Section III-C to provide the estimated weighting
coefficients.

TABLE 11
PARAMETER VALUES
Parameter  Value

oD 0.6
OR, 0.25
5Ry 0.15
Cw 1
Ay 0.1
AL 0.001
Bmax 50

A. Effect of Number of Sources

The number of simultaneously active sources in a given set-
ting is a parameter that significantly affects the amount interfer-
ence while it further increases the excitation of room acoustics
contributing to increased leakage in the microphone signals. In
Fig. 8, the performance of the proposed method is shown for
variable number of sources for a reverberation time of R150 =
0.8 s and source-microphone distances of 10 cm and 20 cm.

For the case when a,,,; = 1 (“no weights”) there is a sig-
nificant SIR improvement for both 10 cm and 20 cm which re-
sults partly from the suppression of leakage but also from the
suppression of components from the source of interest due to
the overestimation of the multichannel noise term. In turn, all
other measures indicate a relative degradation. Especially for
a small number of sources, this degradation is more prominent
since there is a lesser amount of interference present and the
overestimation is more severe. On the other hand, when the
estimated weighting coefficients are used, less SIR improve-
ment is achieved, while there is a significant improvement for
all other measures. The method seems to perform well for any
number of sources examined here. The improvement provided
by the method increases for an increasing number of sources
in terms of SIR, SDR, and segmental SNR while PEAQ fol-
lows the opposite trend. This indicates that for low interfer-
ence cases, the method provides sufficient suppression while
preserving the output signal quality, but when interference in-
creases, while there is more suppression, the perceptual quality
decreases.

B. Effect of Source—Microphone Distance

The most important factor that determines the performance
of the proposed method is clearly the distance between the
sources and the microphones, which also determines how valid
is the close-microphone assumption and the related approxima-
tions. Here, the performance of the method will be examined
for increasing source—microphone distances starting from 4 cm
(where the close-microphone assumption is valid) and for a
maximum of 60 cm (where the close-microphone assumption
marginally holds). Furthermore two different sets of sources in
two different setups (see Fig. 7) will be examined, in order to
look at how sources with different spectra interact. The results
are summarized in Fig. 9 for setup A (six sources) and Fig. 10
for setup B (five sources), both for T59 = 0.5 s.

When the overestimation effect is not taken into account, the
method provides increased leakage suppression (indicated by
the SIR measure) at the cost of increased distortion as shown
mainly by SDR and PEAQ. On the other hand, when the ideal
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Fig. 8. Average performance for setup (A) with ET5, = 0.8 s and variable
number of sources for source-microphone distances of 10 cm and 20 cm. Per-
formance is shown for case with no and estimated weighting coefficients.

values of the weighting coefficients are used, derived from the
ratio of the RIRs maxima, the performance in terms of SIR is
somewhat compromised but the overall quality of the processed
signal is improved, as the appropriate amount of leakage is sup-
pressed. Note however, that there is a minimum of 5-dB im-
provement in SIR for all cases. What is more interesting is that
the estimated coefficients provide almost the same performance
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Fig. 9. Average performance for setup A for variable source—microphone dis-
tance for RTso = 0.5 s and six sources. The case where no weighting coeffi-
cients (ar,,; = 1) are used is presented, along with the case of ideal weighting
coefficients derived from the RIRs and the estimated ones via the method of
Section ITI-C.

with the ideal ones, limited only by the solo detection method
performance with respect to source—microphone distance. An-
other interesting point to note is that as the source—-microphone
distance increases, the effect of the weighting coefficients is less
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Fig. 10. Average performance for setup (B) for variable source—microphone
distance for RTso = 0.5 s and six sources. The case where no weighting coef-
ficients (v, = 1) are used is presented, along with the case of ideal weighting
coefficients derived from the RIRs and the estimated ones via the method of
Section III-C.

prominent mainly in terms of segmental SNR and PEAQ, be-
coming negligible for long distances. Hence, the limitation of
the solo detection method does not significantly hinder the per-
formance, since it works quite well for short distances where the
overestimation effect is most evident.

Overall, the performance for both setups is similar and fol-
lows the same trends; however, the performance for setup (B)
is a bit lower. This is probably due to the presence of the elec-
tric guitar, which is heavily distorted and has a strong spectral
fingerprint that biases PSD estimations and hence the calculated
Wiener filter.

C. Effect of Reverberation Time

The effect of reverberation time on the performance of the
proposed method is assessed here (Figs. 11 and 12). In general,
the performance is not significantly affected and the trends re-
main the same. When the estimated weighting coefficients are
used, the performance is even more insensitive to reverberation
time changes. Note however that the performance of the solo
detection method drops rapidly for R75y = 1.2 s and hence
provides estimations of the weighting coefficients up to 16 cm.

The results presented here further support the argument
that source interference for close-microphone applications is
strongly dependent on room size and the proximity of reflective
surfaces to the sources and microphones [1]. While in [1] the
performance decreased for shorter reverberation times, here
the performance is consistent for the reverberation times exam-
ined. The difference between previous and current setups is that
here reverberation time changes for a constant room size and
geometry while in the real recordings of previous work shorter
reverberation times resulted from smaller room sizes. Hence,
in order to fully assess the effect of room acoustics on source
interaction for close-microphone applications as well as the
performance of leakage suppression and separation methods,
more acoustic parameters should be examined, besides rever-
beration time.

D. Effect of PSD-WE

Fig. 13 shows the performance of the proposed method with
and without the PSD-WE for setup B with five sources and
RTsy = 1.2 s. The weighting coefficients are not used here
since the PSD-WE is mainly employed for longer source—mi-
crophone distances where the PSD estimations are more sus-
ceptible to interference. The results indicate a performance im-
provement for longer distances and support the reasoning be-
hind the use of PSD-WE. It should also be noted that for short
distances PSD-WE does not affect performance while SDR and
PEAQ suggest that the distortion introduced by PSD-WE is
minimal.

E. Effect of STFT Frame Length

An important part of the PSD estimation method as presented
in Section III-D is the identification of active frequency bins.
It is then reasonable to assume that a better frequency resolu-
tion might produce more accurate PSD estimations. The per-
formance of the proposed method was examined for different
STFT frame lengths and the results are summarized in Fig. 14,
where it is shown that the effect of the frame length on perfor-
mance is minimal.

F. Performance Comparison With BSS Methods

Despite the limitations mentioned in Section I, it is useful
to examine whether BSS methods may provide some im-
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Fig. 11. Average performance for setup (A) for variable source—microphone
distance, increasing reverberation times and six sources. The case where no
weighting coefficients are used is presented (black lines), along with the case
of estimated weighting coefficients (gray lines).

provement, especially for longer source—microphone distances,
where the close-microphone assumption is less valid. The
performance of (a) the proposed method, (b) a BSS method
based on non-stationarity (PS) [32], and (c) one based on mul-
tichannel blind deconvolution (ZC) [33] are shown in Fig. 15,
with respect to typical BSS performance measures.
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Fig. 12. Average performance for setup (B) for variable source—microphone
distance, increasing reverberation times and six sources. The case where no
weighting coefficients are used is presented (black lines), along with the case
of estimated weighting coefficients (gray lines).

In terms of SIR, both BSS methods perform similarly pro-
viding increasing separation for increasing source—microphone
distances, although the proposed method achieves significantly
higher improvement. For SDR, method ZC has the same or
slightly lower performance as the proposed method without
weighting coefficients, while PS is a bit better even for short
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Fig. 14. Average performance for different frame lengths for setup (A),
RTso = 0.5 s and six sources. The estimated weighting coefficients are used.

distances. However, the proposed method still outperforms
these two when the estimated coefficients are used. Overall,
the proposed method is quite effective for short distances com-
bining adequate suppression and output signal quality while
the BSS methods seem to perform better for longer distances,
however without achieving the same amount of suppression.

V. CONCLUSION

Here a method for the suppression of microphone leakage in
close-microphone applications was proposed based on an ex-
tended Wiener filter, that takes into account a multichannel noise
term. A PSD estimation method is introduced based on the iden-
tification of dominant frequency bins, i.e., regions of the micro-
phone and output PSDs that are approximately the same with
that of the original source signal. A simple way to estimate the
leakage PSDs was also presented, based on a set of weighting
coefficients which are estimated during time intervals where
only one source is active. The results presented in Section IV
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Fig. 15. Comparison between the proposed and BSS methods, using setup (A)
with six sources and FTso = 0.8 s.

justify the suitability of the noise suppression framework for the
problem of microphone leakage.

From the results presented, the proposed method exhibits a
consistent performance for various number of sources, different
source spectral properties and source—microphone distances,
while it was also shown that changes in reverberation time
without respective changes in room geometry do not affect
performance. Taking into account the overestimation effect
enables the method to adequately suppress leakage while
retaining output signal quality. The lower performance pro-
vided for setup (B) indicates that the PSD estimation method
presented here is susceptible to bias from strongly interfering
sources with high energy spread across the entire spectrum,
such as the electric guitar.

Future work should focus on including the full effect of
the leakage responses h,,;(k), instead of a scalar gain, on
the estimation of leakage PSDs employing blind identifica-
tion methods, which should improve the overall noise term
estimation and further reduce distortion in the output signal.
Moreover, a perceptually driven control of the amount of sup-
pression applied, as has been suggested in speech enhancement
applications, could minimize audible distortion and maximize
the perceived leakage reduction.
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