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ABSTRACT We introduce a novel statistical approach that quantifies, for the first time, the amount of colocalization of two
fluorescent-labeled proteins in an image automatically, removing the bias of visual interpretation. This is done by estimating
simultaneously the maximum threshold of intensity for each color below which pixels do not show any statistical correlation. The
sensitivity of the method was illustrated on simulated data by statistically confirming the existence of true colocalization in
images with as little as 3% colocalization. This method was then tested on a large three-dimensional set of fixed cells
cotransfected with CFP/YFP pairs of proteins that either co-compartmentalized, interacted, or were just randomly localized in
the nucleolus. In this test, the algorithm successfully distinguished random color overlap from colocalization due to either co-
compartmentalization or interaction, and results were verified by fluorescence resonance energy transfer. The accuracy and
consistency of our algorithm was further illustrated by measuring, for the first time in live cells, the dissociation rate (kd) of the
HIV-1 Rev/CRM1 export complex induced by the cytotoxin leptomycin B. Rev/CRM1 colocalization in nucleoli dropped
exponentially after addition of leptomycin B at a rate of 1.25 3 10�3 s�1. More generally, this algorithm can be used to answer
a variety of biological questions involving protein-protein interactions or co-compartmentalization and can be generalized to
colocalization of more than two colors.

INTRODUCTION

Spatial colocalization between two fluorescently labeled

molecular species (typically between proteins) is a common

question in optical microscopy. However, existing colocal-

ization techniques are generally visual-based and therefore

highly prone to random error and bias. We introduce here

a novel statistical approach that automatically quantifies

colocalization in any region of an image without the bias of

visual interpretation. Two proteins are considered colocal-

ized if they bind to the same spatial compartments (i.e., the

same as co-compartmentalized). If the compartments are

well-separated spatially, then typical visual approaches

might be sufficient to discriminate those that are colocalized.

On the other hand, if the compartments are not visually

distinct, then real quantitative tools are needed. In addition,

the random localization of two free proteins in the same

compartment does not imply actual colocalization. This

definition of colocalization also requires that spatial variation

of intensity is necessary for colocalization to be measurable.

Several approaches have been proposed before for

colocalization using cross-correlation analysis (Akner et al.,

1991; Barbarese et al., 1995; Grande et al., 1997; Lynch et al.,

1991; Manders et al., 1993; Rubbi and Milner, 2000; van

Steensel et al., 1996), or cluster analysis of the two-di-

mensional histogram (Demandolx and Davoust, 1997).

However, most of those approaches are either qualitative

(only proving existence of colocalization, e.g., cross-

correlation analysis) or subjective (due to manual identifica-

tion of clusters in two-dimensional histograms). The most

quantitative estimate of colocalization is the Pearson’s

correlation coefficient, (r) (Manders et al., 1992), which

depends on the amount of colocalized signals in both

channels in a nonlinear manner. A more biologically mean-

ingful set of coefficients are the colocalization coefficients

(Manders et al., 1993). They quantify the colocalized fraction

of each molecular species, but they also require a threshold

value for each channel, which is then used as a cutoff between

specific staining versus nonspecific. The overlapping regions

between both channels that are above cutoff are then con-

sidered as colocalized regions, and the proportions of signal

for each channel inside those areas are defined as colocaliza-

tion coefficients. A problem with this technique is that the

thresholds are typically based on visual estimation of the

images or the performance of a segmentation algorithm

leading to inconsistent and irreproducible results. Our

approach solves this problem by taking into account the

amount of correlation in different regions of the two-

dimensional histogram to automatically estimate the thresh-

olds. This automatic procedure, based on spatial statistics,

makes our approach unique and robust.

In this article, we further describe how protein interactions

can sometimes be concluded indirectly from quantitative

colocalization given prior knowledge of the biological

system. Although other microscopy techniques exist for

detecting interaction directly, our method has fewer limi-

tations. Fluorescence resonance energy transfer (FRET;
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Herman, 1989) only detects interaction of proteins ,10 nm

apart, generally restricting it to small and directly bound

proteins. Methods based on monitoring over time intensity

fluctuation of each protein simultaneously (i.e., fluorescence

cross-correlation spectroscopy, image cross-correlation spec-

troscopy, photon counting histogram, and fluorescence

intensity distribution analysis) are restricted to live samples

with only a few labeled proteins per confocal volume. With

the exception of image cross-correlation spectroscopy, they

are also limited to single point measurements (Checovich

et al., 1995; Chen et al., 1999; Jameson and Sawyer, 1995;

Kask et al., 1999; Petersen et al., 1993; Winkler et al., 1999;

Wiseman et al., 2000). Fluorescence recovery after photo-

bleaching (FRAP) offers another method to measure protein

interactions, which does not have the limitations of the above

methods, but still requires live samples. It evaluates binding

kinetics of a protein by measuring the rate of fluorescence

recovery after photobleaching (McNally et al., 2000) and

interpreting slow recovery as the signature of bound proteins.

As with fluorescence cross-correlation spectroscopy (FCS)

using one labeled protein only, FRAP measurements only

gives information about the binding constant of the labeled

protein to a cellular site and not to any other particular

protein. Advantages of our colocalization approach over

these dynamic measurements are that an arbitrary volume in

the cell can be selected for measurement and fixed samples

may be employed.

We first validated our approach on simulated data,

identifying its limits of detection and showing its ability to

detect and quantify colocalization in images where colo-

calization was not obvious visually. We then tested our

algorithm on diffuse protein nucleolar patterns. This was

done on a large series of three-dimensional images of fixed

HeLa cells looking at known protein-protein interactions, co-

compartmentalization, or random overlap. Results correlated

well to FRET measurements of the same groups. Finally, we

used colocalization measurements to calculate the dissoci-

ation rate of HIV-Rev and CRM1 induced by the drug

leptomycin B (LMB) in live HeLa cells (Kudo et al., 1999).

This is the first in situ measurement of the kd of HIV-Rev and
CRM1 and it shows that our colocalization algorithm can

return an accurate evaluation of the proportions of interacting

proteins.

MATERIAL AND METHODS

Cell culture

To visualize the HIV-1 Rev-CRM1 interaction, HeLa cells in glass-bottom

plates were cotransfected with pRev-CFP expressing HIV-1 Rev

N-terminally fused to cyan fluorescent protein (CFP) and pYFP-CRM1

expressing the human CRM1 protein C-terminally fused to yellow

fluorescent protein (YFP, Effectene; Qiagen, Valencia, CA). For the three-

dimensional control imaging of fixed cells, we used different combinations

of cotransfection with pRev-CFP, pRev-YFP, pTat-YFP, or pYFP. One day

after transfection cells were washed with PBS, colorless medium was added

and cells were analyzed by microscopy. During microscope image

acquisition, cells were maintained at 37�C and at 5% CO2 in a heating

chamber (20/20 Technology, Wilmington, NC). Leptomycin B (LMB,

a generous gift from Dr. Wolff, Sandoz Research Institute, Vienna, Austria)

was added in the media after taking two images of the same cell at a 5-min

time interval. The final concentration of LMB in the media was 50 nM,

enough to saturate all CRM1 protein in the cell (Daelemans et al., 2002).

Microscopy and image analysis tools

There are several requirements to have accurate colocalization measure-

ments (and this is true for any method). In brief, one must make sure that the

images acquired have low noise levels and no bleedthrough, and that the

optical setup used for each color leads to the same point spread functions

(PSFs) and is free of registration errors. For this, we used the following

instruments and protocols. Images were acquired with a Zeiss LSM 510

confocal microscope equipped with an Axiovert 200 microscope (Carl Zeiss,

Thornwood, NY) and a 403 1.3 NA plan-NEOFLUAR oil differential

interference contrast objective lens. CFP and YFP were excited with Argon

laser lines at 458 and 514 nm and by using a dichroic beam splitter (HFT

458/515). Emissions were collected as follows: emitted beam was split by

a beam splitter (NFT 490), and light below 490 nm was collected by

a bandpass filter (BP 480–520) leading to a collection from 480 to 490 nm

for CFP. Light above 490 nm was collected by a bandpass filter (BP 565–

615) leading to a collection from 565 to 615 nm for YFP. (Digital images

consist of a chessboard-like array of elements, called pixels for two-

dimensional images and voxels for three-dimensional images. Each pixel

or voxel is assigned one intensity value. For simplification in this article,

both pixels and voxels are referred to as pixels.) The pixel sizes were 0.15 3

0.15 3 0.4 mm3 and pinholes were set to one Airy unit (i.e., 63 and 74 mm

for CFP and YFP, respectively). We verified the three-dimensional PSFs

were the same for different excitation and emission wavelengths, and there

was no registration shift between images. This was done by imaging 0.5-mm

diameter multicolor fluorescent beads with the previously described CFP/

YFP setup. No significant difference was observed in the X, Y, or Z

directions. Background levels were obtained by measuring the mean

intensity of each stain outside the cells. Bleedthrough was checked by taking

images of cells with a single transfection (either Rev-CFP or YFP-CRM1) or

no transfection and acquiring dual channel images with the same setup used

for the cotransfected cells. Laser power and detection gains were adjusted so

that the mean pixel intensity in singly transfected cells acquired with the

filter set used for the nontransfected fluorophore was equal (i.e., within 1 SD)

to the mean pixel intensity of cells without transfection (i.e., levels of

autofluorescence, which were actually insignificant). In this manner,

bleedthrough could be neglected. The amount of noise in a region of

interest was determined by measuring the Pearson correlation coefficient

(Manders et al., 1992) of two consecutive acquisitions of the same channel.

In our case, we tried to keep this correlation above 90%. The image and

statistical analysis was performed with Matlab (MathWorks, Natick, MA)

and DIPimage (image processing toolbox for Matlab, Delft University of

Technology, The Netherlands).

Colocalization concept

When two proteins are spatially distributed over the region of the cell being

analyzed, no specific colocalization exists between the two proteins when

their spatial distributions are independent of each other, although some

amount of random overlap will be present between the two images.

Conversely, if the two proteins have some specific colocalization, then the

overlay of the two spatial distributions will show a level of correlation that is

in excess of the random overlap. To express this concept mathematically, let

protein type 1 and type 2 be acquired in channels 1 and 2 with intensity value

arrays I1 and I2, respectively. In all our derivations, intensities are

background-subtracted. Each channel is then the summation of a colocalized

component C and a random component R1 and R2, respectively. This can be

written as

3994 Costes et al.

Biophysical Journal 86(6) 3993–4003



I1 ¼ C1R1

I2 ¼ a3C1R2; (1)

where the stoichiometry coefficient a takes into account the possibility that

proteins 1 and 2 may not colocalize in a 1:1 ratio. The value a is also

dependent on the microscope settings of each channel.

The Pearson correlation coefficient (r) is then defined by

r ¼ I1 3 I2 � I1 3 I2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I
2

1 � I1
2

� �
3 I

2

2 � I2
2

� �r ; (2)

where averages over the region of the image being analyzed are indicated by

a bar above the variables. Substituting the expressions in Eq. 1 into Eq. 2 and

noting that the mean of the product of two uncorrelated signals is

approximately equal to the product of the means of the individual signals,

r can be written as a function of C, R1, and R2 only:

r¼

�
C

2�C
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2�C
2

� �
1 R

2

1�R1
2

� �h i
3 C

2�C
2

� �
1 R

2

2�R2
2

� �h ir :

(3)

One can observe from Eq. 3 that r ranges from �1 to 1, and is equal to 1 for
100% colocalization (i.e., R1 and R2 are null images) and 0 for random

overlap of proteins (i.e., C is null). (Negative values of r are not used for

colocalization, since they indicate an anti-colocalized situation where a pixel

is bright in one channel and dim in the other.) One can also note that

r is invariant to background or intensity scales (i.e., if I1 is substituted by

aI1 1 b in Eq. 2, r remains unchanged). This makes the correlation coeffi-

cient a robust estimator for colocalization (Manders et al., 1992), but a

major drawback of r is the lack of a biological meaning and its quadratic

dependence to the colocalized signal.

Finally, a more biologically meaningful set of coefficients are the

proportion of each protein colocalized with the other (Manders et al., 1993).

We define them as

M1 ¼
C

I1
¼ C

C1R1

M2 ¼
aC

I2
¼ aC

aC1R2

: (4)

Note that M1 and M2 are not necessarily the same for the two proteins.

Test of significance of true colocalization

Before evaluating the amounts of colocalizationM1 andM2 in a region of the

image, we first check that true colocalization in present. This cannot be

determined directly from the value of r since intermediate positive values are

difficult to interpret. Therefore a statistical significance test was derived to

evaluate the probability (P-value) that the measured value of r from the two

colors (robs) is significantly greater than values of r that would be calculated
if there was only random overlap. This test (Lifshitz, 1998) is performed by

randomly scrambling the pixels in one image, and then measuring the

correlation (r) of this image with the other (unscrambled) image. Since

scrambling the pixels in one image will make the two spatial distributions

independent, then only the contribution to the correlation of the random

overlap will be measured. By repeatedly scrambling and measuring the

amount of random overlap, the probability distribution of the amounts of

random overlap specifically for these two proteins in the region of interest is

generated (i.e., distribution centered on 0). Comparing the amount of

correlation measured from the unscrambled image with this distribution

determines whether significant colocalization exists for a predefined

probability for significance. See Fig. 1S in the in the Supplementary

Material Appendix for an illustration.

The above procedure, however, assumes that each pixel’s intensity is

uncorrelated with its neighboring pixels when generating the distribution of

the amounts of random overlap. This is not actually the case in optical

images, because either the texture of the object or the point spread function

(PSF) leads to correlations in the intensities of adjacent pixel intensities. To

take this into account, images are divided into independent blocks which are

approximately the size of the texture or the PSF, in the case that the texture is

below the resolution as measured by the smaller of the widths of the

autocorrelations for the two images. Then instead of scrambling individual

pixels, the blocks are scrambled. The consequence of this is that there are

significantly fewer independent data points in the image, which in turn leads

to a significantly broader distribution of random overlap measurements. See

Fig. 2S in the Supplementary Material Appendix for further explanation and

an illustration.

The reason for the broader distribution when pixel intensities are

correlated can be explained theoretically for binary images as follows.

Assume an image region has N pixels, of which a random subset of a pixels

contain protein type 1 in one image and a random subset of b pixels contain

protein type 2 in the other image; then the probability, p, of x pixels

containing both proteins 1 and 2 is given by

pðxÞ ¼ a
x

� �
N � a
b� x

� ��
N
b

� �
: (5)

To illustrate the point, we apply the following values of 60, 15, and 9 for N,
a, and b, respectively, which leads to p(0,1,2,3,4,5,6,7,8,9) ¼ (0.06, 0.22,

0.32, 0.25, 0.11, 0.03, 0.005, 0.0004, 0.00, 0.00). For simplicity we assume

that the image is one-dimensional and that pixel intensities are correlated

with their nearest neighbors (in other words, positive and negative signals

come in sets of three), then the number of independent points is reduced by 3

to N ¼ 20, and then similarly a and b reduce to 5 and 3, respectively. Using

these values, p(0, . . . ,3, . . . .6, . . . .9) ¼ (0.4, 0.46, 0.13, 0.01), which is

a much broader distribution.

We performed 200 randomizations for each region being analyzed and

chose a P-value of .95% to indicate significant true colocalization. For

these values, ,11 out of the 200 randomizations would be expected to

produce Pearson correlation coefficients higher than the value measured for

the unscrambled images.

Quantification of colocalization and
identification of colocalized pixels

Colocalization in a two-color image (e.g., red and green) can be visualized in

a two-dimensional histogram, where the number of pixels with red and green

intensities IR, IG is plotted as a scattergram with each axis representing the

intensity of each color (see Fig. 1). Based on the expressions in Eq. 1, pixels

with significant colocalization (i.e., C � (R1, R2/a)) should be very close to

a line IG ¼ aIR 1 b, where a is the stoichiometry constant a in the

expressions in Eq. 1, and b reflects the difference of mean random overlap

between the green and red channels after correction for a. We approximate

this linear behavior by a least-square fit in the two-dimensional histogram

based on orthogonal regression. The slope derived from the least-square fit is

directly proportional to the Pearson correlation coefficient r, and therefore

takes into account the overall correlation present in the image.

Typically, colocalized areas are defined by regions where both channels

are above a red and green threshold, TR and TG, respectively. In other
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studies these thresholds are defined visually or via a separate segmentation

algorithm for the two-dimensional histogram. We propose here an algorithm

that determines automatically these thresholds based on a simple statistical

criterion. If one assumes that a pixel is the summation of a colocalized

component and a random component (see the expressions in Eq. 1), then

there is a higher probability to have colocalization in pixels that are brighter

in both channels than in dim pixels. In addition, those bright pixels have

a significant positive contribution to the overall correlation coefficient of the

image. Hence, our approach for identifying colocalized pixels proceeds by

successively classifying pixels as being colocalized if their intensities, IR, IG
are both above the threshold pair T (TG) and aT 1 b (TR), respectively. The
approach starts with the maximal value of T and incrementally lowers T

until the correlation coefficient of remaining pixel intensities below T and

aT1 b equals zero. The method is illustrated and further described in Fig. 1.

This approach leads to the approximation of the colocalization coefficients

(Eq. 4) as

M1 ffi
+
I1.T

I1

+
All I1

I1
; and M2 ffi

+
I2 . aT1b

I2

+
All I2

I2
; (6)

where T is the automatic threshold below which the Pearson correlation

coefficient becomes negative. There is no formal mathematical proof that

this approach always leads to accurate values for M1 and M2. However,

intuitively, based on Eq. 3, pixels below the threshold pair will have an

overall correlation of 0, indicating that on average there is no colocalization

present. To test the validity of this approach we thus tested our algorithm on

a variety of computer three-dimensional-color simulated images and real

biological samples, as will be described in Results.

A general problem that is inherent to all known methods is the

classification of pixels as either colocalized or non-colocalized, when all

pixels are actually the sum of colocalized and non-colocalized signals (see

expressions in Eq. 1). However, we show in simulations that the overall

amount of colocalization remains very accurate in our method, although

errors are made in the classification of individual pixels. For instance, very

low intensity colocalized pixels are often not detected by our method (solid

ellipse in Fig. 1). This is because for the same colocalization thresholds there

are also regions that contain pixels that contribute negatively to the

correlation coefficient r (located in rectangles in Fig. 1), resulting in an

overall correlation of zero. These undetected colocalized pixels have a small

contribution to the total amount of colocalization and have intensities close

to background. Also our method can wrongly classify pixels that are way off

the diagonal of the two-dimensional histogram but which have fairly large

intensities for both channels as colocalized. However, these pixels typically

represent a very low proportion of the image.

Another approach was tested for the selection of colocalized pixels in the

two-dimensional histogram to help distinguish between low intensity

colocalized pixels and background. We selected pixels closest to the

diagonal line in the two-dimensional histogram (see Fig. 1 A). However,
when testing this approach, typically a large number of background noise

pixels ended up being identified as colocalized (e.g., circled by dashed line,

Fig. 1 A) and most intense pixels that deviated from the diagonal were

missed. Another issue with this alternative was the need for much more

accurate determination of the diagonal line than our method requires.

RESULTS

Simulated data

Simulations covering different amounts of colocalization

were performed, from 100% of green pixels colocalized to

red pixels to no colocalized pixels. Fig. 2 shows one set of

FIGURE 1 The automatic threshold search is done in a two-dimensional histogram (shown on left graph) along a line whose slope and intercept (a and b) are

obtained by linear least-square fit of the red and green intensities (IR and IG) over all pixels in the image (i.e., IG ¼ a 3 IR 1 b). The threshold (T) corresponds

to two intensity values (T and a 3 T 1 b) applied simultaneously to the red and green channels, respectively. Any pixel with red intensities .T and green

intensity.a 3 T1 b is said to be above the threshold. Starting with the highest intensity value, the algorithm reduces the threshold value incrementally and

computes the correlation coefficient of the image using only pixels with intensities below the threshold. The algorithm continues reducing the threshold until r

reaches 0. The corresponding three-dimensional color image for this simulation is shown on the right of the graph (noted No threshold) and the pixels above

different threshold are shown as white surfaces. In this simulation, r is 0.4 for threshold T1, 0.25 for lower threshold T2, and 0 for threshold T3. Thus, T3 is the

automatic threshold our algorithm will return for the red channel and a 3 T3 1 b for the green channel. As further discussed in the main text, some pixels

are still colocalized (i.e., ellipse shown in red) and some pixels are anti-colocalized (i.e., one channel dim, the other one bright, shown as rectangles) in the

r ¼ 0 region (light pink area). However, trying to include the dim colocalized pixels is a difficult task since, as they become dimmer, they are most

likely background noise (i.e., shown in dotted circle).
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simulations where each three-dimensional image had more

positive red pixels than green, leading to a systematically

larger amount of colocalization in the green channel than in

the red. Fig. 2 shows good agreement between the known

amounts of colocalization and the amounts automatically

detected by the algorithm, with most of the data lying on

a diagonal of slope 1. The method’s accuracy was confirmed

by the closeness of the true and measured colocalization

(1.5% deviation). On the other hand, Pearson’s correlation

coefficient (asterisks and pluses) sometimes considered as

a direct measure of colocalization (Barbarese et al., 1995),

only equaled the amount of colocalization at low values (i.e.,

0%). This simulation illustrates well the performance of our

method in dealing with the difficult case of unbalanced

colocalization where the proportion of each protein colo-

calized with the other is not the same. In this case,

colocalization can only be fully described by the measure-

ment of the two colocalized fractions for each protein which

are two different values (i.e., M1 different from M2), and not

by a single measurement, such as the correlation coefficient.

Furthermore, it is noteworthy in this simulation that for

low amounts of colocalization which are not visible (i.e.,

a few percent), the algorithm could still compute accurate

amounts.

Our algorithm resulted in a small proportion (;5%) of

pixels being misclassified as false-positives and false-

negatives (see Fig. 2), but these errors were balanced, thus

the overall measure of colocalization remained accurate.

The subvisual capability of our algorithm was also

illustrated in another simulation (Fig. 3) where individual

pixels contained colocalized signals that were not sig-

nificantly above the mean intensity of the full image. In

such cases, it was impossible to identify the colocaliza-

tion by eye. However, the algorithm was able to detect it

FIGURE 2 In this simulation pixel-sized objects were generated with

random positions and colocalized pixels had identical nonzero intensities in

both colors. The intensity distribution of all pixels was uniform with a range

100–255 in both channels. A test series of 100 three-dimensional images

(30 3 30 3 30) was generated with different fractions of colocalization

by controlling the percentage of identical objects in both channels. The

choice of the density of each object was set deliberately low and different

(i.e., 6% of the area is covered by green objects and 9% by red) to force the
amount of red and green colocalization to be different. Simulations covering

the full range of possible colocalization were performed, from all green

objects colocalized (i.e., 100% and 67% colocalized green and red objects,

respectively) to no colocalization. Finally, noise with intensity distributed

uniformly between 10 and 30 was added to both channels. The Pearson’s

correlation coefficient, r, is plotted twice for the same image, once against

the real amount of green colocalization (green 1) and once against the red

amount of colocalization (red *). We can see that r (* or 1) evaluates

inaccurately either amount of colocalization in comparison to our current

algorithm (s or h). The P-value (not shown) remained above the 95%

significance level as long as.1% of the green objects were colocalized. For

all test images, measured amounts of colocalization were accurate with,2%

deviation, as is observed with most points close to the diagonal of slope 1

(dashed line). Finally, the two dashed curves show the fractions of pixels

without colocalization that were incorrectly classified as being colocalized.

This was worst for intermediate amount of colocalization, where up to 5% of

pixels were misclassified.

FIGURE 3 Detection of nonrandom colocalization that is not visible. A
and B are two independent computer-generated 256 3 256 images with

pixel intensities randomly distributed between 0 and 255 except for 3% of

the pixels (shown in image C) having the same intensity for both channels.

Even though one cannot see which pixels are identical between A and B, our
algorithm could identify this difference unequivocally with a true

colocalization significance test above the significant threshold of 0.95. D

shows the sensitivity of the algorithm as a function of the proportion of

colocalization by repeating the process described above for different

colocalized images going from 0% to 100% colocalization. This graph

shows P-values .95% for colocalized amounts as low as 3%. If there is

,3% of the image being colocalized, the algorithm returns an inconclusive

answer about the existence of colocalization; i.e., P-value is,95%. Note on

D: if no colocalization was deliberately inserted, i.e., image C was blank, the

P-value of the two initial uncorrelated images used for this simulation was

0.68. This value has no meaning in itself and could be anywhere between

0 and 1 for two uncorrelated images, with a most probable value ;0.5 (see

Fig. 1s of Supplementary Material for distribution of r).
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unequivocally for amounts of colocalization as low as 3%

(Fig. 3 D).

Biological data

A first set of analyses was performed successfully (Costes

et al., 2002) on simple positive and negative biological

controls, consisting of fixed cells stained for the same protein

with two different fluorophores or for two different cellular

compartments, i.e., lysosome and mitochondria, respectively

(see Supplementary Material).

We then tested the algorithm on a large set of three-

dimensional images of fixed HeLa cells cotransfected with

different fluorescent proteins. Three groups of 40 cells each

were analyzed for colocalization. The first group was

a negative control and was cotransfected with free YFP

and HIV-1 Rev protein fused with CFP. Free YFP fills

uniformly the whole cell, whereas wild-type Rev is localized

in the nucleoli of the cell (see Fig. 4 A). The second group

was a positive control with cells cotransfected with the two

nucleolar proteins Tat fused to YFP and HIV-1 Rev fused to

CFP. In this group, Rev and Tat do not interact directly but

bind to ribosomal RNA (rRNA) in an unrelated manner in

the nucleoli (see Fig. 4 B). Thus, those two proteins co-

compartmentalize into submicron regions of the nucleoli

probably smaller than the PSF of the microscope. The third

group consisted of cells cotransfected by HIV-1 Rev CFP

and HIV-1 Rev YFP, both localizing in the nucleoli (see Fig.

4 C). Wild-type Rev is known to multimerize and therefore

the colocalization in this last group is still representative of

the co-compartmentalization to rRNA, but should be higher

since Rev is expected to also bind indirectly to rRNA via its

multimerization with other Rev proteins directly bound to

rRNA. The analysis showed a clear statistical separation of

the amount of colocalization between each group (Fig. 4 D).
The negative controls had an average of 5% colocalization

FIGURE 4 Colocalization control study. A–C show representative confocal slices of the analyzed HeLa cells (CFP shown in green and YFP in red). On the

left of these panels, one center slice is shown and on the right a reconstructed surface of the nuclear membrane is shown in blue. The nucleoli where

colocalization was computed are shown as white surfaces. Each group analysis was performed on a population of 40 cells. Group A focused on colocalization of

free YFP and Rev-CFP in the nucleoli and had very little colocalization, as shown by the green distribution in D with an average colocalization of 5% for both

signals and a P-value of 0.7 indicating the random aspect of that colocalization. Group B focused on colocalization of Tat-YFP and Rev-CFP, two proteins

known to bind to rRNA. This co-compartmentalization led to an average colocalization of 60% for both signals with a P-value .0.995. Finally, group C

focused on colocalization of Rev-YFP and Rev-CFP, a protein known to multimerize in addition to binding to rRNA. This combination of co-

compartmentalization and interaction led to a very narrow distribution of colocalization in the nucleoli;98% for both signals with a P-value.0.95. E shows

a representative two-dimensional histogram of those different groups within the nucleoli. The red channel (Rev, Tat, or free YFP) is on the x axis and the green
(Rev) is on the y axis in the two-dimensional histograms. Automatic selected colocalized areas are shown by a rectangular yellow overlay in the two-

dimensional histogram. One can appreciate, in the Rev-Tat case, how difficult it would be to decide manually what threshold levels to use.
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for both Rev and free YFP and an average P-value of 0.7

indicating that this colocalization was likely the result of

random overlap. On the other hand, the co-compartmen-

talization of Rev and Tat on rRNA gave a very wide

distribution of colocalization with an average of 60% and

a P-value.95%. Note on the two-dimensional histogram in

Fig. 4 E it would be impossible to determine manually where

the thresholds for each channel should be placed. In the Rev-

Rev case, a skewed distribution toward 100% colocalization

was measured (Fig. 4 D) with an average colocalization of

98% and a P-value .95%. This trend was confirmed by

measuring the FRET efficiency in each group with the

acceptor photobleaching method (manuscripts in prepara-

tion). The comparison between the mean amount of

colocalization for HIV-Rev and the FRET efficiencies in

each group is shown in Table 1 and reinforce the fact that Rev-

Rev are much closer spatially than Rev-Tat (i.e., 25% vs. 5%

efficiency).

The consistency and accuracy of simulations and fixed

specimens led us to believe our algorithm could quantify

accurately the dissociation of two proteins in a live system.

To test our hypothesis, we applied our method on a system

where, to our knowledge, only interaction takes place. We

looked at HeLa cells cotransfected with HIV-1 Rev fused to

CFP and its nuclear export factor CRM1 fused to YFP. In

contrast with the Rev-Rev case, FRET was negative for this

complex, presumably due to the large size of CRM1 (130

kDa). The HIV-1 Rev protein is an essential regulator of the

HIV-1 rRNA expression that promotes the export of

unspliced and partially spliced rRNAs from the nucleus to

the cytoplasm of the cell (Felber et al., 1989; Malim et al.,

1988; Sodroski et al., 1986; Terwilliger et al., 1988). In cells

expressing Rev, CRM1 colocalizes in the nucleolus due to its

interaction with Rev (Zolotukhin and Felber, 1999). The

cytotoxin LMB inhibits the CRM1/Rev association by

binding irreversibly to CRM1 (Kudo et al., 1999). Therefore,

addition of LMB to cells coexpressing Rev and CRM1

induces the dissociation of the Rev/CRM1 complex in the

nucleolus leading to the diffusion in the nucleus of CRM1

bound to LMB while Rev stays localized in the nucleolus

(Daelemans et al., 2002). After LMB addition into the cell

media, the equilibrium between association and dissociation

of the CRM1/Rev complex is broken, only allowing

dissociation. Thus, the complex concentration is expected

to decay at an exponential rate after addition of the drug at

a rate equal to the dissociation rate constant kd of the CRM1/

Rev complex. Mathematically,

CR%
kd

ka3LMB

R1C0½CR�ðtÞ ¼ ½CR�ð0Þ exp
�kdt; (7)

where [C], [R], and [CR] are the concentrations in the

nucleolus of CRM1, Rev, and the CRM1/Rev complex

respectively. For mathematical clarification, we denote con-

centrations with [ ], the volumes by V, and the nucleolus and
the full cell compartments as nucleo and cell, respectively.
Assuming only interaction takes place (co-compartmentali-

zation only due to interaction), the percent colocalization for

each protein in the nucleolus (i.e., MRev and MCRM1) can be

expressed as

MRev ¼
½CR�nucleo

½CR�nucleo 1 ½R�nucleo
MCRM1 ¼

½CR�nucleo
½CR�nucleo 1 ½C�nucleo

8>><
>>:

9>>=
>>;
: (8)

Assuming there is no loss or gain of proteins in the whole

cell, then

ð½C�cell 1 ½CR�cellÞVcell ¼ CRM1cell

ð½R�cell 1 ½CR�cellÞVcell ¼ Revcell; (9)

where CRM1cell and Revcell are the constant total amounts of

CRM1 and Rev proteins in the cell. The amounts of CRM1

and Rev in the nucleolus can be similarly defined as

ð½C�nucleo 1 ½CR�nucleoÞVnucleo ¼ CRM1nucleo

ð½R�nucleo 1 ½CR�nucleoÞVnucleo ¼ Revnucleo: (10)

However, CRM1nucleo and Revnucleo will not be constant once
LMB is added to the media. On the other hand, the ratio with

CRM1cell and Revcell, respectively, can be evaluated by the

ratio of the integrated intensity of CRM1 and Rev in

the nucleolus over the full cell as shown in the expressions in

Eq. 11,

Revnucleo
Revcell

¼
+

nucleo

IRev

+
cell

IRev

CRM1nucleo

CRM1cell
¼

+
nucleo

ICRM1

+
cell

ICRM1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

0

½CR�nucleo 1 ½R�nucleo ¼ aR

+
nucleo

IRev

+
cell

IRev

½CR�nucleo 1 ½C�nucleo ¼ aC

+
nucleo

ICRM1

+
cell

ICRM1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; (11)

TABLE 1 FRET versus colocalization

Group % Rev colocalization % FRET efficiency

Rev-free 5 6 8 (40) 0 6 2 (6)

Rev-Tat 60 6 23 (40) 5 6 4 (10)

Rev-Rev 98 6 4 (40) 25 6 3 (14)

Mean 6 SD (number of cells).
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where aR ¼ Revcell=Vcell and aC ¼ CRM1cell=Vcell are pro-

portionality constants and I is the pixel intensity in the

image. Note aR and aC remain the same over the full time

course of the decay (see Eq. 9). We can then express the

concentration of CRM1/Rev bound complex as a function of

intensity ratios and percent colocalization by substituting the

expressions in Eq. 11 in Eq. 8:

MRev¼
½CR�nucleo
aR

+
nucleo

IRev

+
cell

IRev

MCRM1¼
½CR�nucleo
aC

+
nucleo

ICRM1

+
cell

ICRM1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
0

½CR�nucleo¼aR

+
nucleo

IRev

+
cell

IRev
MRev

½CR�nucleo¼aC

+
nucleo

ICRM1

+
cell

ICRM1

MCRM1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:

(12)

MRev and MCRM1 are returned by our colocalization al-

gorithm for each time point, and aR and aC do not need to

be evaluated if we normalize the time response by setting

the first time point to 1. In this case, using this mathematical

model in conjunction with our colocalization algorithm, we

should be able to measure for the first time in live cells the

dissociation rate of the HIV-1 Rev/CRM1 complex.

Images were collected with a confocal microscope and

background-corrected, showing Rev-CFP and YFP-CRM1

with green and red pseudo colors, respectively. With this

choice of colors, the exit of CRM1 from the nucleolus can be

visualized clearly, with the initial yellow color due to the

green-red overlap turning to green, 33 min after addition of

LMB (Fig. 5 A). In the experiment, we first controlled the

consistency of our measurements for each cell by computing

the amount of colocalization of two images acquired before

LMB addition. If the two measurements differed by .10%,

the cell was not used for computation (three out of 11 cells

were rejected). An average lag of;6minwas observed before

decays commenced. Thus, for all cells, the commencement

time for dissociation was corrected for this lag and con-

centrations were normalized such that decays started at time

0 with a relative complex concentration of 1. This enabled all

cell measurements to be taken together (Fig. 5 D). Using the

test of significance, true colocalization was observed from

the start time until ;20 min later. In the quantification of

the corrected colocalization (i.e., the expressions in Eq. 2),

the exponential decay was found to be statistically the same

for both Rev andCRM1 decays. Therefore, measurements for

both proteins were taken and fitted together to a decreasing

exponential by the nonlinear least-squares Gauss-Newton

method (Dennis, 1977), to return a kd of (1.25 6 0.31) 3

10�3 s�1 (95% confidence interval) with a goodness for the fit

of R2 ¼ 0.96. The corresponding colocalized pixels and

thresholded two-dimensional histograms at different time

points in the decay curve are also shown in Fig. 5, B and C,
respectively. The loss of colocalization is reflected by

a change of slope of the two-dimensional histograms, becom-

ing more and more vertical as colocalization drops (i.e., x axis
is CRM1). This change also indicates the diminution of

CRM1 proteins in the nucleolus as it fills the entire nucleus

and the nuclear membrane, which reduces the overall inten-

sity range on the x axis of the two-dimensional histogram.

In CRM1/Rev dissociation, the proportion of Rev in the

nucleolus increased after addition of LMB, whereas the

proportion of CRM1 decreased in the nucleolus and diffused

into the whole nucleus (see Fig. 5 E). Thus, the rate of

decrease ofRev colocalization in the nucleoluswas faster than

the actual dissociation rate of the CRM1/Rev complex. The

import of Rev from the cytoplasm to the nucleolus accelerated

the drop of colocalization by increasing the concentration of

unbound Rev in the nucleolus (see expressions in Eq. 2).

Conversely, the diffusion of unbound CRM1 into the nucleus

reduced the concentration of unbound CRM1 in the nucle-

olus, slowing down the measured colocalization decay. This

was observed on uncorrected colocalization data where the

rate of decay of Rev colocalizationwas found to be 1.36 0.05

times faster than the rate for CRM1.

DISCUSSION

We developed an automatic algorithmic method to measure

the amount of colocalization in two-color three-dimensional

microscopic images. Our algorithm has been commercial-

ized by Bitplane AG (Zurich, Switzerland) and made avail-

able to the intramural National Institutes of Health research

community as part of the software MIPAV (McAuliffe et al.,

2001). This method first measures the probability (P-value)
that true colocalization is present in a selected region of the

image. We opted to use a P-value .95% to indicate true

colocalization. As a second step, colocalized pixels in the

selected region are identified using a statistical criterion

based on the two-dimensional histogram of both channels

allowing the computation of the overall fraction of each

proteins being colocalized (i.e., colocalization coefficients,

Eqs. 4 and 6).

Simulations (Figs. 2 and 3) showed that the method was

able to accurately quantify as little as 3% true colocalization

in images where visual examination would not be conclu-

sive. This subvisual feature was also apparent on biological

cases we tested. For example, it clearly separated groups

of cells where we had pure random colocalization with a

P-value �95%, from groups where we had co-compart-

mentalization or interaction with a P-value .95% (Fig. 4).

This result indicates the novelty and value of our method

given the fact that both proteins of interest had a diffuse

pattern in the region of interest (i.e., nucleoli) for all cases

(Fig. 4, A–C). Finally, the P-value also confirmed the loss of

Rev/CRM1 interaction in the nucleolus (Fig. 5 D), by

dropping below the 95% cutoff value 20 min after injection

of a drug-inducing dissociation of the Rev/CRM1 complex.
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On the quantitative side, the strength of the algorithm

comes from the use of a statistical criterion that makes

detection automatic and completely reproducible. This is

clearly demonstrated in Fig. 4 on the large fixed cell study. In

the case of Rev and Tat, both proteins localize in the nucleoli

by binding to rRNA. The algorithm was able to select

automatically a threshold value which would have been

impossible to find manually based on the two-dimensional

histogram (Fig. 4 E). Fortuitously, the quantification of

colocalization for this test was accurate enough to distinguish

co-compartmentalization alone from combined co-compart-

mentalization and interaction with statistically different

averages of 60% and 98%, respectively. This difference was

confirmed by FRET where the corresponding efficiency

measurements were 5% and 25%, respectively. The sensitiv-

ity of the method is impressive considering the fact that Tat

and Rev co-compartmentalization occurred on a target that

cannot be resolved by light microscopy (i.e., rRNA). This

indicates that rRNA concentration probably varies on a scale

close to the size of the PSF.

To further illustrate the quantitative strength of the algo-

rithm, we demonstrated its ability on a biological test where

we could model and predict what we should measure.

Measuring a dynamic event in live cells offered such a pos-

sibility. By blocking the CRM1-Rev association with

leptomycin B (Daelemans et al., 2002), one would expect

to see an exponential decay by measuring the concentration

of CRM1/Rev complex. This concentration could be

FIGURE 5 Rev-CRM1 dissociation. (A) Time series of two-dimensional confocal sections of a cell cotransfected with CRM1 and Rev fused to YFP (red)

and CFP (green), respectively. (B) The corresponding estimate of colocalized pixels (shown in white). (C) The corresponding two-dimensional histograms for

each image in A. The red channel (CRM1) is on the x axis and the green one (Rev) on the y axis in the two-dimensional histogram. Selected colocalized areas are

also shown by yellow transparent rectangular areas. Initially, CRM1 colocalized with Rev in the nucleolus. Thirty-three minutes after addition of leptomycin B,

an inhibitor of the CRM1-cargo binding, most of the CRM1 has dispersed in the nucleus. The last image of the color sequence indicates the region of the

nucleolus in which the amount of colocalization is computed (bold dashed line in A). The nucleus and cell limits are also shown (solid and light dashed lines,
respectively, in A). (D) The graph shows the relative concentration of the bound complex Rev/CRM1 derived from the amount of colocalization of each protein

(expressions in Eq. 12) as a function of time after the end of the lag period. The dissociation rate constant kd was found to be (1.25 6 0.31) 3 10�3 s�1 (fit

shown by solid line). Error bars are standard errors based on all cells averaged for each time point. Average P-values for colocalization significance test are also

plotted as: and confirm Rev/CRM1 interaction for at least the first 20 min of dissociation (at a 95% significance level). These results match very well the two-

dimensional histogram shown in C, where the linear behavior goes from a clear inclined line to a vertical line at 33 min, indicating no more colocalization. E

shows the least-square fits of the import rate of Rev into the nucleolus and the diffusion of CRM1 out of the nucleolus after injection of LMB versus the

dissociation rate obtained in D, which clearly indicates that simply measuring the loss of CRM1 outside the nucleolus after injection of LMB had nothing to do

with measuring the dissociation of Rev/CRM1.
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evaluated in a relative manner by a mathematical model

linking it to the colocalization coefficients of Rev and CRM1

(see Eqs. 7–12). The corrected colocalization data (Fig. 5 D)
correlated well with the prediction of the expressions in Eq.

12 as shown by the goodness of the fit (dashed line, R2 was

0.96) to the measurements, suggesting the algorithm detected

real protein interaction. In addition, our mathematical model

showed that the dissociation rate could not have been

obtained solely by measuring the rate of nucleolar relocation

of Rev or CRM1 (Fig. 5 E). This led to the measurement for

the first time in live cells of the dissociation rate constant

of the HIV-Rev/CRM1complex in the nucleolus with kd ¼
1.25 3 10�3 s�1.

Colocalization is often quantified by computing the

Pearson’s correlation coefficient (Manders et al., 1992).

However, this approach only reports one measurement per

image. This coefficient has sometimes been interpreted as the

percent amount of colocalization in the image (Barbarese

et al., 1995), which is clearly not the case based on Eqs. 3

and 4. This interpretation can be misleading when the relat-

ive amounts of the two species are different (Fig. 2). In

comparison, our method quantifies colocalization coeffi-

cients for each color separately. It is done automatically and

results are approximately invariant to the relative amounts of

the two proteins (Fig. 2). This is an important feature in the

Rev/CRM1 study, where the relative amounts of the two

species changes because of Rev import and CRM1 export

from the nucleolus (Fig. 5).

One could argue that a similar and simpler approach could

be thresholding each channel separately, based on some

automatic threshold algorithm (e.g., isodata, skewed bi-

modality, unimodal background symmetry, etc.). These

algorithms are typically optimized to identify background

or objects (i.e., segmentation). In case of a diffuse pattern,

such as the Rev study shown in Fig. 4, these algorithms will

typically split equally the image into a brighter region and

a dimmer one. Thus, when using such algorithms on the

negative controls of Rev CFP and free YFP (Fig. 4 A), high
levels of colocalization are falsely computed (data not

shown). The main reason for this approach to fail in this case

is the fact that the correlation between each channel is not

used as a criterion for threshold. Finally, if one decides to use

manual threshold instead, this becomes very difficult and

poorly reproducible when colocalization is not visible in the

images or in the two-dimensional histogram (e.g., group B,
Fig. 4).

The automatic approach for quantifying colocalization

that we employed has the advantage of being simple and

intuitive. Similar analysis would have taken much longer

using approaches based on visual interpretation which would

also be highly prone to random error and bias. Furthermore,

the approach can be extended to evaluation of the colo-

calization of three or more molecular species, which would

be much harder to do visually or with other analytical

techniques (e.g., FRET, FCS, PCH, FIDA, or FRAP). Note

that our method is not a substitute for those other techniques,

but is a complementary approach. For example, our approach

can be readily combined with FRET to clarify co-compart-

mentalization, direct, or indirect binding. FRET alone would

only detect interaction if the average distance between the

binding proteins is ,10 nm. Colocalization alone would be

unable to distinguish binding proteins from nonbinding

proteins located within a cellular compartment smaller than

the resolution of light microscopes (;200 nm).

Another caveat of our approach is that it is forcing each

pixel to be classified as either entirely colocalized or entirely

non-colocalized signals. All other current colocalization

methods also make the same assumption. However, this is

clearly not the case in reality since, in general, a pixel’s

intensity is the result of the sum of hundreds of labeled

proteins either binding to the substrate or free-convolved by

the PSF. In fact, assuming that the selected points in the two-

dimensional histogram are entirely colocalized, this can

actually lead to overprediction of the amount of colocaliza-

tion (data not shown). This is due to the fact that the

colocalization coefficients computation (Eq. 6) includes

contribution of random overlap. Overpredictions are, how-

ever, fairly small as long as colocalized pixels are fairly

sparse in the image (see simulations of Fig. 2). This is due to

the fact that, inasmuch as the search for the colocalization

threshold leads to lower values in the algorithm, the positive

contribution of the colocalized pixels left below the thresh-

olds are compensated by an increasing negative contribution

of random overlap (rectangular regions in Fig. 1). Thus, our
method is best used to compute the colocalization coef-

ficients and not so much in identifying specific colocalized

pixels.

Ideally one would like a method that treats each pixel as

the sum of colocalized and non-colocalized signals, as our

colocalization model suggests in the expressions in Eq. 1.

This could be done in many ways. One could try to establish

a better fit for the linear pattern in the two-dimensional

histogram than the orthogonal linear regression. This could

lead to the identification of the mean intensities of colo-

calization as well as of the two random populations. This in

turn could be used to assign to each pixel a proportion of

colocalization based on their relative position to the identi-

fied linear pattern. One could also try to directly deconvolve

the two-dimensional histogram into the colocalized contri-

bution and the two random contributions. Finally, it would

be interesting to actually approach the problem at the image

level, using the neighbor intensity pixel as an indicator of

colocalization itself. In brief, there is still a lot of work to be

done in the field of quantitative colocalization.

In conclusion, rapid and reliable measurements of protein

interactions in the cell are becoming essential for the under-

standing of many cellular processes. The simple procedure

described here allows extraction of quantitative information

about molecular interactions or localization from two or

more color images. Our method can also analyze anti-
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colocalization by colocalizing the presence of one protein

with the absence of the other. With further extension, a more

general analysis of spatial organization of proteins in cells

could be performed. Such microscopic measurements are

becoming more readily accessible. With the appropriate

imaging algorithms, optical hardware, and mathematical

modeling, optical microscopy will increasingly provide

quantitative information about protein chemistry inside live

cells that currently can only be obtained outside the cell by in

vitro assays.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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