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Preface

These are my lecture notes from CS���� Design and Analysis of Algo�
rithms� a one�semester graduate course I taught at Cornell for three consec�
utive fall semesters from ��� to ���	 The course serves a dual purpose
 to
cover core material in algorithms for graduate students in computer science
preparing for their PhD qualifying exams� and to introduce theory students to
some advanced topics in the design and analysis of algorithms	 The material
is thus a mixture of core and advanced topics	
At �rst I meant these notes to supplement and not supplant a textbook�

but over the three years they gradually took on a life of their own	 In addition
to the notes� I depended heavily on the texts

� A	 V	 Aho� J	 E	 Hopcroft� and J	 D	 Ullman� The Design and Analysis
of Computer Algorithms� Addison�Wesley� ��
�	

� M	 R	 Garey and D	 S	 Johnson� Computers and Intractibility� A Guide
to the Theory of NP�Completeness� W	 H	 Freeman� ��
�	

� R	 E	 Tarjan� Data Structures and Network Algorithms� SIAM Regional
Conference Series in Applied Mathematics ��� ����	

and still recommend them as excellent references	
The course consists of �� lectures	 The notes from these lectures were

prepared using scribes	 At the beginning of each lecture� I would assign a
scribe who would take notes for the entire class and prepare a raw LaTEX
source� which I would then doctor and distribute	 In addition to the �� lec�
tures� I have included �� homework sets and several miscellaneous homework
exercises� all with complete solutions	 The notes that were distributed are
essentially as they appear here� no major reorganization has been attempted	
There is a wealth of interesting topics� both classical and current� that I

would like to have touched on but could not for lack of time	 Many of these�
such as computational geometry and factoring algorithms� could �ll an entire
semester	 Indeed� one of the most di�cult tasks was deciding how best to
spend a scant �� lectures	
I wish to thank all the students who helped prepare these notes and who

kept me honest
 Mark Aagaard� Mary Ann Branch� Karl�Friedrich B�ohringer�
Thomas Bressoud� Suresh Chari� Sofoklis Efremidis� Ronen Feldman� Ted
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Fischer� Richard Hu�� Michael Kalantar� Steve Kautz� Dani Lischinski� Pe�
ter Bro Miltersen� Marc Parmet� David Pearson� Dan Proskauer� Uday Rao�
Mike Reiter� Gene Ressler� Alex Russell� Laura Sabel� Aravind Srinivasan�
Sridhar Sundaram� Ida Szafranska� Filippo Tampieri� and Sam Weber	 I am
especially indebted to my teaching assistants Mark Novick �fall ����� Alessan�
dro Panconesi �fall ����� and Kjartan Stef�ansson �fall ���� for their help with
proofreading� preparation of solution sets� and occasional lecturing	 I am also
indebted to my colleagues L�aszl�o Babai� Gianfranco Bilardi� Michael Luby�
Keith Marzullo� Erik Meineche Schmidt� Bernd Sturmfels� �Eva Tardos� Steve
Vavasis� Sue Whitesides� and Rich Zippel for valuable comments and interest�
ing exercises	 Finally� I wish to express my sincerest gratitude to my colleague
Vijay Vazirani� who taught the course in fall ��
 and who was an invaluable
source of help	
I would be most grateful for any suggestions or criticism from readers	

Cornell University Dexter Kozen
Ithaca� NY December ����
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I Lectures





Lecture � Algorithms and Their

Complexity

This is a course on the design and analysis of algorithms intended for �rst�
year graduate students in computer science	 Its purposes are mixed
 on the
one hand� we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the bene�t of those who might wish to spe�
cialize in this area� on the other� we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize
in other areas	
We will assume that the student is familiar with the classical material nor�

mally taught in upper�level undergraduate courses in the design and analysis
of algorithms	 In particular� we will assume familiarity with


� sequential machine models� including Turing machines and random ac�
cess machines �RAMs�

� discrete mathematical structures� including graphs� trees� and dags� and
their common representations �adjacency lists and matrices�

� fundamental data structures� including lists� stacks� queues� arrays� bal�
anced trees

� fundamentals of asymptotic analysis� including O���� o���� and ���� no�
tation� and techniques for the solution of recurrences

� fundamental programming techniques� such as recursion� divide�and�
conquer� dynamic programming

� basic sorting and searching algorithms	
These notions are covered in the early chapters of ��� ��� ����	

�



� Lecture � Algorithms and Their Complexity

Familiarity with elementary algebra� number theory� and discrete proba�
bility theory will be helpful	 In particular� we will be making occasional use of
the following concepts
 linear independence� basis� determinant� eigenvalue�
polynomial� prime� modulus� Euclidean algorithm� greatest common divisor�
group� ring� �eld� random variable� expectation� conditional probability� con�
ditional expectation	 Some excellent classical references are ���� ��� ���	
The main emphasis will be on asymptotic worst�case complexity	 This

measures how the worst�case time or space complexity of a problem grows
with the size of the input	 We will also spend some time on probabilistic
algorithms and analysis	

��� Asymptotic Complexity

Let f and g be functions N � N � where N denotes the natural numbers
f�� �� � � �g	 Formally�

� f is O�g� if

�c � N
�

� n f�n� � c � g�n� �

The notation
�

� means �for almost all� or �for all but �nitely many�	
Intuitively� f grows no faster asymptotically than g to within a constant
multiple	

� f is o�g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

This is a stronger statement	 Intuitively� f grows strictly more slowly
than any arbitrarily small positive constant multiple of g	 For example�
n��� is o���logn�

�

�	

� f is ��g� if g is O�f�	 In other words� f is ��g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

� f is ��g� if f is both O�g� and ��g�	

There is one cardinal rule


Always use O and o for upper bounds and � for lower bounds	 Never
use O for lower bounds	
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There is some disagreement about the de�nition of �	 Some authors �such
as ����� prefer the de�nition as given above	 Others �such as ������ prefer
 f
is ��g� if g is not o�f�� in other words� f is ��g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

�The notation
�

� means �there exist in�nitelymany�	� The latter is weaker and
presumably easier to establish� but the former gives sharper results	 We won�t
get into the fray here� but just comment that neither de�nition precludes
algorithms from taking less than the stated bound on certain inputs	 For
example� the assertion� �The running time of mergesort is ��n log n�� says
that there is a c such that for all but �nitely many n� there is some input
sequence of length n on which mergesort makes at least �

c
n log n comparisons	

There is nothing to prevent mergesort from taking less time on some other
input of length n	
The exact interpretation of statements involving O� o� and � depends on

assumptions about the underlying model of computation� how the input is
presented� how the size of the input is determined� and what constitutes a
single step of the computation	 In practice� authors often do not bother to
write these down	 For example� �The running time of mergesort is O�n log n��
means that there is a �xed constant c such that for any n elements drawn from
a totally ordered set� at most cn log n comparisons are needed to produce a
sorted array	 Here nothing is counted in the running time except the number
of comparisons between individual elements� and each comparison is assumed
to take one step� other operations are ignored	 Similarly� nothing is counted
in the input size except the number of elements� the size of each element
�whatever that may mean� is ignored	
It is important to be aware of these unstated assumptions and understand

how to make them explicit and formal when reading papers in the �eld	 When
making such statements yourself� always have your underlying assumptions in
mind	 Although many authors don�t bother� it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write	
The question of what assumptions are reasonable is more often than not a

matter of esthetics	 You will become familiar with the standard models and
assumptions from reading the literature� beyond that� you must depend on
your own conscience	

��� Models of Computation

Our principal model of computation will be the unit�cost random access ma�
chine �RAM�	 Other models� such as uniform circuits and PRAMs� will be
introduced when needed	 The RAM model allows random access and the use
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of arrays� as well as unit�cost arithmetic and bit�vector operations on arbi�
trarily large integers� see ���	
For graph algorithms� arithmetic is often unnecessary	 Of the two main

representations of graphs� namely adjacency matrices and adjacency lists� the
former requires random access and ��n�� array storage� the latter� only linear
storage and no random access	 �For graphs� linear means O�n  m�� where
n is the number of vertices of the graph and m is the number of edges	� The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers	 To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car� cdr� cons� eq� and nil of pure LISP� see also ����	

��� A Grain of Salt

No mathematical model can re!ect reality with perfect accuracy	 Mathemat�
ical models are abstractions� as such� they are necessarily !awed	
For example� it is well known that it is possible to abuse the power of

unit�cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time ����	 However�
this violates the unwritten rules of good taste	 One possible preventative
measure is to use the log�cost model� but when used as intended� the unit�cost
model re!ects experimental observation more accurately for data of moderate
size �since multiplication really does take one unit of time�� besides making
the mathematical analysis a lot simpler	
Some theoreticians consider asymptotically optimal results as a kind of

Holy Grail� and pursue them with a relentless frenzy �present company not
necessarily excluded�	 This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity� but whose con�
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible	 What is the
value of such results" Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems� but more
often than not they are of strictly mathematical interest	 Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering	
Nowhere is the argument more vociferous than in the theory of parallel

computation	 There are those who argue that many of the models of compu�
tation in common use� such as uniform circuits and PRAMs� are so inaccurate
as to render theoretical results useless	 We will return to this controversy later
on when we talk about parallel machine models	
Such extreme attitudes on either side are unfortunate and counterproduc�

tive	 By now asymptotic complexity occupies an unshakable position in our
computer science consciousness� and has probably done more to guide us in
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improving technology in the design and analysis of algorithms than any other
mathematical abstraction	 On the other hand� one should be aware of its lim�
itations and realize that an asymptotically optimal solution is not necessarily
the best one	
A good rule of thumb in the design and analysis of algorithms� as in life� is

to use common sense� exercise good taste� and always listen to your conscience	

��� Strassen�s Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide�and�conquer	 Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms� let�s take a
look at Strassen�s classical algorithm for matrix multiplication and some of its
progeny	 Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken	
The usual method of matrix multiplication takes � multiplications and �

additions to multiply two �	 � matrices� or in general O�n�� arithmetic oper�
ations to multiply two n	n matrices	 However� the number of multiplications
can be reduced	 Strassen ��
� published one such algorithm for multiplying
� 	 � matrices using only 
 multiplications and �� additions
�

a b

c d

�
�

�
e f

g h

�
#

�
s�  s� 
 s�  s� s�  s	

s�  s� s� 
 s�  s	 
 s�

�

where

s� # �b
 d� � �g  h�

s� # �a d� � �e h�

s� # �a
 c� � �e f�

s� # h � �a b�

s	 # a � �f 
 h�

s� # d � �g 
 e�

s� # e � �c d� �

Assume for simplicity that n is a power of �	 �This is not the last time you will
hear that	� Apply the �	 � algorithm recursively on a pair of n	 n matrices
by breaking each of them up into four square submatrices of size n

�
	 n

�

�

A B

C D

�
�

�
E F

G H

�
#

�
S�  S� 
 S�  S� S�  S	

S�  S� S� 
 S�  S	 
 S�

�

where

S� # �B 
D� � �G  H�
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S� # �A D� � �E  H�

S� # �A
 C� � �E  F �

S� # H � �A B�

S	 # A � �F 
H�

S� # D � �G 
E�

S� # E � �C  D� �

Everything is the same as in the � 	 � case� except now we are manipulat�
ing n

� 	
n

� matrices instead of scalars	 �We have to be slightly cautious� since
matrix multiplication is not commutative	� Ultimately� how many scalar oper�
ations � �
� �� does this recursive algorithm perform in multiplying two n	n

matrices" We get the recurrence

T �n� # 
T �
n

�
�  dn�

with solution

T �n� # ��  
�

�
d�nlog� �  O�n��

# O�nlog� ��

# O�n��
�����

which is o�n��	 Here d is a �xed constant� and dn� represents the time for the
matrix additions and subtractions	
This is already a signi�cant asymptotic improvement over the naive algo�

rithm� but can we do even better" In general� an algorithm that uses c multi�
plications to multiply two d	 d matrices� used as the basis of such a recursive
algorithm� will yield an O�nlog

d
c� algorithm	 To beat Strassen�s algorithm� we

must have c � dlog� �	 For a � 	 � matrix� we need c � �log� � # ���� � � �� but
the best known algorithm uses �� multiplications	
In ��
�� Victor Pan ���� ��� showed how to multiply 
�	
� matrices using

������ multiplications	 This gives an algorithm of approximately O�n����	����	
The asymptotically best algorithm known to date� which is achieved by en�
tirely di�erent methods� is O�n��������� ����	 Every algorithm must be ��n���
since it has to look at all the entries of the matrices� no better lower bound is
known	
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A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure	 Updating this extra information may slow down each individual
step� this additional cost is sometimes called overhead	 However� it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm	
To illustrate� let�s look at topological sort	 Let G # �V�E� be a directed

acyclic graph �dag�	 The edge set E of the dag G induces a partial order �a
re!exive� antisymmetric� transitive binary relation� on V � which we denote
by E� and de�ne by
 uE�v if there exists a directed E�path of length � or
greater from u to v	 The relation E� is called the re�exive transitive closure
of E	

Proposition � Every partial order extends to a total order �a partial order
in which every pair of elements is comparable��

Proof� If R is a partial order that is not a total order� then there exist u� v
such that neither uRv nor vRu	 Extend R by setting

R 
# R � f�x� y� j xRu and vRyg �

The new R is a partial order extending the old R� and in addition now uRv	
Repeat until there are no more incomparable pairs	 �

�
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In the case of a dag G # �V�E� with associated partial order E�� to say
that a total order � extends E� is the same as saying that if uEv then u � v	
Such a total order is called a topological sort of the dag G	 A naive O�n��
algorithm to �nd a topological sort can be obtained from the proof of the
above proposition	
Here is a faster algorithm� although still not optimal	

Algorithm 
 �Topological Sort II�

�	 Start from any vertex and follow edges backwards until �nding a
vertex u with no incoming edges	 Such a u must be encountered
eventually� since there are no cycles and the dag is �nite	

�	 Make u the next vertex in the total order	

�	 Delete u and all adjacent edges and go to step �	

Using the adjacency list representation� the running time of this algorithm is
O�n� steps per iteration for n iterations� or O�n��	
The bottleneck here is step �	 Aminor modi�cation will allow us to perform

this step in constant time	 Assume the adjacency list representation of the
graph associates with each vertex two separate lists� one for the incoming
edges and one for the outgoing edges	 If the representation is not already of
this form� it can easily be put into this form in linear time	 The algorithm
will maintain a queue of vertices with no incoming edges	 This will reduce the
cost of �nding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue	

Algorithm � �Topological Sort III�

�	 Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty	

�	 Pick a vertex u o� the queue and make u the next vertex in the
total order	

�	 Delete u and all outgoing edges �u� v�	 For each such v� if its list
of incoming edges becomes empty� put v on the queue	 Go to step
�	

Step � takes time O�n�	 Step � takes constant time� thus O�n� time over all
iterations	 Step � takes time O�m� over all iterations� since each edge can be
deleted at most once	 The overall time is O�m n�	
Later we will see a di�erent approach involving depth �rst search	
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��� Minimum Spanning Trees

Let G # �V�E� be a connected undirected graph	

De
nition � A forest in G is a subgraph F # �V�E�� with no cycles	 Note
that F has the same vertex set as G	 A spanning tree in G is a forest with
exactly one connected component	 Given weights w 
 E � N �edges are
assigned weights over the natural numbers�� a minimum �weight� spanning
tree �MST� in G is a spanning tree T whose total weight �sum of the weights
of the edges in T � is minimum over all spanning trees	 �

Lemma � Let F # �V�E� be an undirected graph� c the number of connected
components of F � m # jEj� and n # jV j� Then F has no cycles i	 c m # n�

Proof�
��� By induction on m	 If m # �� then there are n vertices and each

forms a connected component� so c # n	 If an edge is added without forming
a cycle� then it must join two components	 Thus m is increased by � and c is
decreased by �� so the equation c m # n is maintained	
�
� Suppose that F has at least one cycle	 Pick an arbitrary cycle and

remove an edge from that cycle	 Then m decreases by �� but c and n remain
the same	 Repeat until there are no more cycles	 When done� the equation
c m # n holds� by the preceding paragraph� but then it could not have held
originally	 �

We use a greedy algorithm to produce a minimum weight spanning tree	
This algorithm is originally due to Kruskal ����	

Algorithm � �Greedy Algorithm for MST�

�	 Sort the edges by weight	

�	 For each edge on the list in order of increasing weight� include that
edge in the spanning tree if it does not form a cycle with the edges
already taken� otherwise discard it	

The algorithm can be halted as soon as n
 � edges have been kept� since we
know we have a spanning tree by Lemma �	
Step � takes time O�m logm� # O�m log n� using any one of a number of

general sorting methods� but can be done faster in certain cases� for example
if the weights are small integers so that bucket sort can be used	
Later on� we will give an almost linear time implementation of step �� but

for now we will settle for O�n log n�	 We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices� namely the
vertices in the connected components of the two endpoints of e in the forest
being built	 We represent each connected component as a linked list	 Each
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list element points to the next element and has a back pointer to the head of
the list	 Initially there are no edges� so we have n lists� each containing one
vertex	 When a new edge �u� v� is encountered� we check whether it would
form a cycle� i�e� whether u and v are in the same connected component�
by comparing back pointers to see if u and v are on the same list	 If not�
we add �u� v� to the spanning tree and take the union of the two connected
components by merging the two lists	 Note that the lists are always disjoint�
so we don�t have to check for duplicates	
Checking whether u and v are in the same connected component takes

constant time	 Each merge of two lists could take as much as linear time�
since we have to traverse one list and change the back pointers� and there
are n 
 � merges� this will give O�n�� if we are not careful	 However� if we
maintain counters containing the size of each component and always merge
the smaller into the larger� then each vertex can have its back pointer changed
at most log n times� since each time the size of its component at least doubles	
If we charge the change of a back pointer to the vertex itself� then there are at
most log n changes per vertex� or at most n log n in all	 Thus the total time
for all list merges is O�n log n�	

��� The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem	 For details and references� see ����� Chapter ��� which
proves the correctness of the greedy algorithm as a special case of this more
general approach	 In the next lecture� we will give an even more general
treatment	
Let G # �V�E� be an undirected connected graph with edge weights w 


E � N 	 Consider the following two rules for coloring the edges of G� which
Tarjan ����� calls the blue rule and the red rule


Blue Rule� Find a cut �a partition of V into two disjoint sets X and
V 
X� such that no blue edge crosses the cut	 Pick an uncolored edge
of minimum weight between X and V 
X and color it blue	
Red Rule� Find a cycle �a path in G starting and ending at the same
vertex� containing no red edge	 Pick an uncolored edge of maximum
weight on that cycle and color it red	

The greedy algorithm is just a repeated application of a special case of the
blue rule	 We will show next time


Theorem � Starting with all edges uncolored� if the blue and red rules are
applied in arbitrary order until neither applies� then the 
nal set of blue edges
forms a minimum spanning tree�
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Before we prove the correctness of the blue and red rules for MST� let�s �rst
discuss an abstract combinatorial structure called a matroid	 We will show
that the MST problem is a special case of the more general problem of �nd�
ing a minimum�weight maximal independent set in a matroid	 We will then
generalize the blue and red rules to arbitrary matroids and prove their cor�
rectness in this more general setting	 We will show that every matroid has a
dual matroid� and that the blue and red rules of a matroid are the red and
blue rules� respectively� of its dual	 Thus� once we establish the correctness of
the blue rule� we get the red rule for free	
We will also show that a structure is a matroid if and only if the greedy

algorithm always produces a minimum�weight maximal independent set for
any weighting	

De
nition � A matroid is a pair �S�I� where S is a �nite set and I is a
family of subsets of S such that

�i� if J � I and I � J � then I � I�

�ii� if I� J � I and jIj � jJ j� then there exists an x � J 
 I such that
I � fxg � I	

The elements of I are called independent sets and the subsets of S not in I
are called dependent sets	 �

This de�nition is supposed to capture the notion of independence in a
general way	 Here are some examples


��
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�	 Let V be a vector space� let S be a �nite subset of V � and let I � �S be
the family of linearly independent subsets of S	 This example justi�es
the term �independent�	

�	 Let A be a matrix over a �eld� let S be the set of rows of A� and let
I � �S be the family of linearly independent subsets of S	

�	 Let G # �V�E� be a connected undirected graph	 Let S # E and let I
be the set of forests in G	 This example gives the MST problem of the
previous lecture	

�	 Let G # �V�E� be a connected undirected graph	 Let S # E and let
I be the set of subsets E� � E such that the graph �V�E 
 E�� is
connected	

�	 Elements ��� � � � � �n of a �eld are said to be algebraically independent
over a sub�eld k if there is no nontrivial polynomial p�x�� � � � � xn� with
coe�cients in k such that p���� � � � � �n� # �	 Let S be a �nite set of
elements and let I be the set of subsets of S that are algebraically
independent over k	

De
nition 	 A cycle �or circuit� of a matroid �S�I� is a setwise minimal �i�e��
minimal with respect to set inclusion� dependent set	 A cut �or cocircuit� of
�S�I� is a setwise minimal subset of S intersecting all maximal independent
sets	 �

The terms circuit and cocircuit are standard in matroid theory� but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST	 However� be advised that cuts in graphs as de�ned in
the last lecture are unions of cuts as de�ned here	 For example� in the graph
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the set f�s� u�� �t� u�g forms a cut in the sense of MST� but not a cut in
the sense of the matroid� because it is not minimal	 However� a moment�s
thought reveals that this di�erence is inconsequential as far as the blue rule
is concerned	
Let the elements of S be weighted	 We wish to �nd a setwise maximal

independent set whose total weight is minimum among all setwise maximal
independent sets	 In this more general setting� the blue and red rules become


Blue Rule� Find a cut with no blue element	 Pick an uncolored ele�
ment of the cut of minimum weight and color it blue	
Red Rule� Find a cycle with no red element	 Pick an element of the
cycle of maximum weight and color it red	



Lecture 
 Matroids and Independence ��

��� Matroid Duality

As the astute reader has probably noticed by now� there is some kind of duality
afoot	 The similarity between the blue and red rules is just too striking to be
mere coincidence	

De
nition �� Let �S�I� be a matroid	 The dual matroid of �S�I� is �S�I���
where

I� # fsubsets of S disjoint from some maximal element of Ig �

In other words� the maximal elements of I� are the complements in S of the
maximal elements of I	 �

The examples � and � above are duals	 Note that I�� # I	 Be careful
 it
is not the case that a set is independent in a matroid i� it is dependent in its
dual	 For example� except in trivial cases� � is independent in both matroids	

Theorem ��

�� Cuts in �S�I� are cycles in �S�I���

�� The blue rule in �S�I� is the red rule in �S�I�� with the ordering of the
weights reversed�

��� Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids	
A proof for the special case of MST can be found in Tarjan�s book �����
Chapter ��� Lawler �
�� states the blue and red rules for arbitrary matroids
but omits a proof of correctness	

De
nition �
 Let �S�I� be a matroid with dual �S�I��	 An acceptable col�
oring is a pair of disjoint sets B � I �the blue elements� and R � I� �the red
elements�	 An acceptable coloring B�R is total if B � R # S� i�e� if B is a
maximal independent set and R is a maximal independent set in the dual	 An
acceptable coloring B�� R� extends or is an extension of an acceptable coloring
B�R if B � B� and R � R�	 �

Lemma �� Any acceptable coloring has a total acceptable extension�

Proof� Let B�R be an acceptable coloring	 Let U� be a maximal element
of I� extending R� and let U # S 
 U�	 Then U is a maximal element of
I disjoint from R	 As long as jBj � jU j� select elements of U and add them
to B� maintaining independence	 This is possible by axiom �ii� of matroids	
Let bB be the resulting set	 Since all maximal independent sets have the same
cardinality �Exercise �a� Homework ��� bB is a maximal element of I containing
B and disjoint from R	 The desired total extension is bB�S 
 bB	 �
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Lemma �� A cut and a cycle cannot intersect in exactly one element�

Proof� Let C be a cut and D a cycle	 Suppose that C �D # fxg	 Then
D
fxg is independent and C
fxg is independent in the dual	 Color D
fxg
blue and C
fxg red� by Lemma ��� this coloring extends to a total acceptable
coloring	 But depending on the color of x� either C is all red or D is all blue�
this is impossible in an acceptable coloring� since D is dependent and C is
dependent in the dual	 �

Suppose B is independent and B�fxg is dependent	 Then B�fxg contains
a minimal dependent subset or cycle C� called the fundamental cycle� of x and
B	 The cycle C must contain x� because C 
 fxg is contained in B and is
therefore independent	

Lemma �� �Exchange Lemma� Let B�R be a total acceptable coloring�

�i� Let x � R and let y lie on the fundamental cycle of x and B� If the
colors of x and y are exchanged� the resulting coloring is acceptable�

�ii� Let y � B and let x lie on the fundamental cut of y and R �the funda�
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid�� If the colors of x and y are exchanged� the resulting coloring
is acceptable�

Proof� By duality� we need only prove �i�	 Let C be the fundamental cycle
of x and B and let y lie on C	 If y # x� there is nothing to prove	 Otherwise
y � B	 The set C
fyg is independent since C is minimal	 Extend C
fyg by
adding elements of jBj as in the proof of Lemma �� until achieving a maximal
independent set B�	 Then B� # �B 
 fyg� � fxg� and the total acceptable
coloring B�� S 
 B� is obtained from B�R by switching the colors of x and y	

�

A total acceptable coloringB�R is called optimal ifB is of minimumweight
among all maximal independent sets� equivalently� if R is of maximumweight
among all maximal independent sets in the dual matroid	

Lemma �� If an acceptable coloring has an optimal total extension before
execution of the blue or red rule� then so has the resulting coloring afterwards�

Proof� We prove the case of the blue rule� the red rule follows by duality	
Let B�R be an acceptable coloring with optimal total extension bB� bR	 Let A
be a cut containing no blue elements� and let x be an uncolored element of A
of minimum weight	 If x � bB� we are done� so assume that x � bR	 Let C be
the fundamental cycle of x and bB	 By Lemma ��� A�C must contain another

�We say �the� because it is unique �Exercise �b� Homework ��� although we do not need
to know this for our argument�
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element besides x� say y	 Then y � bB� and y �� B because there are no blue
elements of A	 By Lemma ��� the colors of x and y in bB� bR can be exchanged
to obtain a total acceptable coloring bB �� bR� extending B � fxg� R	 Moreover�bB� is of minimum weight� because the weight of x is no more than that of y	

�

We also need to know

Lemma �� If an acceptable coloring is not total� then either the blue or red
rule applies�

Proof� Let B�R be an acceptable coloring with uncolored element x	 By
Lemma ��� B�R has a total extension bB� bR	 By duality� assume without loss
of generality that x � bB	 Let C be the fundamental cut of x and bR	 Since all
elements of C besides x are in bR� none of them are blue in B	 Thus the blue
rule applies	 �

Combining Lemmas �� and �
� we have

Theorem �� If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies� then the resulting coloring
is an optimal total acceptable coloring�

What is really going on here is that all the subsets of the maximal inde�
pendent sets of minimal weight form a submatroid of �S�I�� and the blue rule
gives a method for implementing axiom �ii� for this matroid� see Miscellaneous
Exercise �	

��� Matroids and the Greedy Algorithm

We have shown that if �S�I� is a matroid� then the greedy algorithm produces
a maximal independent set of minimum weight	 Here we show the converse

if �S�I� is not a matroid� then the greedy algorithm fails for some choice of
integer weights	 Thus the abstract concept of matroid captures exactly when
the greedy algorithm works	

Theorem �	 ���
�� see also ����� A system �S�I� satisfying axiom �i� of
matroids is a matroid �i�e�� it satis
es �ii�� if and only if for all weight as�
signments w 
 S � N � the greedy algorithm gives a minimum�weight maximal
independent set�

Proof� The direction ��� has already been shown	 For �
�� let �S�I�
satisfy �i� but not �ii�	 There must be A�B such that A�B � I� jAj � jBj�
but for no x � B 
A is A � fxg � I	
Assume without loss of generality that B is a maximal independent set	

If it is not� we can add elements to B maintaining the independence of B� for
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any element that we add to B that can also be added to A while preserving
the independence of A� we do so	 This process never changes the fact that
jAj � jBj and for no x � B 
A is A � fxg � I	
Now we assign weights w 
 S � N 	 Let a # jA 
 Bj and b # jB 
 Aj	

Then a � b	 Let h be a huge number� h� a� b	 �Actually h � b� will do	�

Case � If A is a maximal independent set� assign

w�x� # a � for x � B 
A

w�x� # b � for x � A
B

w�x� # � for x � A � B

w�x� # h for x �� A � B �

Thus

w�A� # a�b �� # ab a

w�B� # b�a �� # ab b �

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight	

Case 
 If A is not a maximal independent set� assign

w�x� # � for x � A

w�x� # b for x � B 
A

w�x� # h for x �� A � B �

All the elements of A will be chosen �rst� and then a huge element outside of
A � B must be chosen� since A is not maximal	 Thus the minimum�weight
maximal independent set B was not chosen	 �


