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Abstract

It is demonstrated that any two reference frames (RFs), which are uniformly

and rectilinearly moving relative to each other, can be adjusted via (possi-

bly anisotropic) rescaling and re-synchronization so that the resulting pair

of RFs is Lorentzian; this statement remains true if the word “Lorentzian”

is replaced by “Galilean” or “Riemannian”, i.e., if a finite positive value of

c2 is replaced by ∞ or by a negative real number. In this particular sense,

the Lorentzian, as well as Galilean or Riemannian, phenomenon turns out to

be merely a matter of an arbitrary choice of appropriate rescaling and re-

synchronization of any given pair of RFs. Generalizations and refinements

of this result are obtained, including universal generalized Lorentzian adjust-

ment via rescaling and re-synchronization of arbitrarily large families of RFs.

Alternatively, the generalized Lorentzian property of a pair of RFs is shown

to be a consequence of reciprocity and isotropy, with no adjustment needed

in this case. The universality of light and of the corresponding Lorentzian

property of the spacetime is questioned. Waves of transformation of space-

time are introduced, which have in a certain sense a more universal character

than electromagnetic or gravitational waves.
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I. INTRODUCTION

¶ This paper is peculiar in more aspects than one. Here are some indications as to what
this paper is and does, and what it is not and does not.

• This paper is an attempt at a careful critical reading of Einstein’s paper on the special
theory of relativity [4]. In particular, we rigorously examine the physical procedures re-
quired to establish an appropriate correspondence between space- and time-measuring
devices in two reference frames moving uniformly and rectilinearly relative to each
other; we refer to such physical procedures as adjustment of reference frames.

• As such, this paper is most definitely not in the mainstream. To the best of my
knowledge, it bears little relation with any work which has followed Einstein’s [4].
Therefore, “reading” this paper by way of associations with existing literature will
most probably result in misunderstanding.

• This paper is entirely self-contained, except for the purely mathematical references
[3,6,7].

• In no way does this paper use the notion of the metric tensor or any terms based
on that notion. The consideration is local throughout the paper, except for Section
V, where a condition of differentiability in an entire region of spacetime is imposed.
Therefore, an attempt to interpret the results of this paper in metric-based terms will
most probably lead to misunderstanding.

• Neither any properties of electromagnetic waves nor even their existence are used in
this paper.

• Thus, in the usual sense, the theories presented here pertain neither to the “special”
theory of relativity (since we do not unilize the notion of light) nor to the “general”
one (since we do not unilize the notion of the metric).

• No specific properties such as inertiality, group properties, properties of specific mea-
suring devices as rigid or elastic bodies are used.

• No properties of spacetime such as isotropy and reciprocity are fixed throughout this
paper. Rather, an entire spectrum of possible physical scenarios is considered, ranging
from scenarios with no assumptions whatsoever on isotropy or reciprocity to ones
where both isotropy and reciprocity are assumed to be fully present.

• In each such scenario, it is shown that there exists an adjustment of the pair of reference
frames in question which makes the pair Lorentzian; the “amount” of the required
adjustment is the less the more isotropy or reciprocity is there.
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• The treatment is completely rigorous, which is convenient and almost unavoidable for
a careful logical examination and especially when dealing with the multitude of the
possible scenarios. Yet, the mathematics involved is most elementary, even though at
times tedious.

• One should note that the notion of reference frames (RFs) and that of RF change
transformations (RFCTs) are defined in this paper to allow the most general con-
sideration: namely, so that any non-singular 4 × 4 real matrix is a matrix of some
RFCT.

Since the first days of the theory of relativity, the common belief has been that the Lorentzian
transformations can appear only as a consequence of special physical conditions, which the
RFs under consideration must satisfy, such as inertiality, constancy (in various senses) of the
speed of light, isotropy, reciprocity, the principle of relativity, properties of rigid or elastic
bodies, various group conditions, etc.

Quite contrary to this belief, we demonstrate in this paper that the Lorentzian trans-
formations can arise simply as the result of an appropriate (possibly anisotropic) rescaling
and re-synchronization of any given pair of mutually uniformly and rectilinearly moving
(URMoving) RFs.

This is the first main result of this paper, Theorem 10, page 25, stated also in the
first sentence of the above Abstract. The import of this statement depends foremost on
the definition of an RF and on that of an RF URMoving relative to another RF. At this
point, suffice it to say that our definitions will be such that any non-singular linear — or,
even more generally, affine – transformation of R4 serves as the RF change transformation
(RFCT) for some pair of RFs, URMoving relative to each other. (An affine transformation
is any composition of a linear transformation and a parallel translation.) Thus, our notion
of an RF URMoving relative to another RF is as wide as it can possibly be.

We call an RF f̃ an adjustment of another RF f if f̃ is at rest relative to f . It is easy to
see – refer to Proposition 2, page 17 – that any adjustment of an RF may be obtained as a
composition of the following four elementary types of adjustment: the (trivial) space-time
origin adjustment, temporal adjustment, spatial adjustment, and re-synchronization.

In the fundamental paper by Einstein [4] and in most texts, the special theory of relativity
is derived based on the principle of relativity and on the postulate of the constancy of the
speed of light.

Even at the first attempt to examine these two cornerstones of the theory, it becomes
clear that their possible meaning crucially depends on the adjustment procedures employed
in order to put into correspondence spacetime measurements in the two given RFs, which
includes adjustment of the rates of the clocks, of the directions of the spatial axes, of the
units along them, and synchronization of the clocks as a function of the spatial position of
the clock. We shall refer to such procedures as (mutual) adjustment of (the pair of) RFs.

Most of the existing accounts of the theory of relativity do not emphasize the import
of the choice of adjustment procedures. However, the original paper by Einstein [4] treats
the matter of adjustment quite explicitly. In particular, beams of light are used for syn-
chronization of clocks; Einstein assumes, in addition to the principles of relativity and of
the constancy of the speed of light, that the relation “the clock at point A synchronizes
with the clock at point B” that he defines will be symmetric and transitive, i.e., it will be a
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relation of equivalence. The spatial geometry in each of the two given RFs is assumed to be
Euclidian. Physically, this means the existence of rigid bodies with their usually assumed
properties.

The correspondence between the spatial units is established according to Einstein [4] by
transporting rods from one RF into another RF, URMoving relative to the first one. With
such an approach, one could ask whether the logical foundations of the special theory of
relativity are not thus compromised, since the rods to be so transported must be accelerated
if the relative speed of the two RFs is nonzero.

To avoid this difficulty, some authors just require – tacitly or, less often, explicitly –
only the existence of a universal adjustment of all, say inertial, RFs such that the principles
of relativity and that of the constancy of the speed of light are satisfied. However, this
approach not only needs the additional, certainly not trivial, requirement of the existence
of a universal adjustment but also leaves open the question as to how such a universal
adjustment can be physically achieved.

To overcome all these difficulties, we engage into a comprehensive study of adjustment
of RFs in relation with the generalized Lorentzian property. Surprisingly, this appears to be
the first systematic study of adjustment of RFs.

We introduce generalized Lorentzian – i.e., C-Lorentzian for some real C – pairs of RFs
and the corresponding RFCTs; we refer to an RFCT (and to a corresponding pair of RFs)
as C-Lorentzian if the RFCT preserves the C-metric

(t2 − t1)2 − C[(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2]

in R4 – cf. the Minkowski metric c2(t2− t1)2− [(x2−x1)2 + (y2−y1)2 + (z2− z1)2]. If C > 0
and c = 1/

√
C, then the two metrics are essentially the same, differing only by a constant

factor.
It is the sign of C that is of utmost importance. Let us refer to the C-metric as positive-

Lorentzian or simply Lorentzian if C > 0, 0-Lorentzian or Galilean if C = 0 (which corre-
sponds to c = ∞ and implies the preservation of the time interval |t2 − t1|), and negative-
Lorentzian or Riemannian if C < 0.

An implication of Theorem 10, page 25, is that any given pair of mutually URMoving
RFs is Lorentzian up to adjustment. A significant feature of Theorem 10 is that, however
wide or narrow definition of URMoving RFs is assumed, the word “Lorentzian” in the last
implication can be freely replaced by “Galilean” or “Riemannian”. This may seem highly
surprising, since the Lorentzian property, as contrasted to the Galilean or Riemannian one,
now looks merely as a matter of the choice of rescaling and re-synchronization of one and
the same pair of RFs, rather than a fundamental property of a physical spacetime.

Such a impression would be true only in part. In Sections II E and IV D, we show that
– if certain verifiable physical conditions of isotropy and reciprocity take place – the sign
of C can be described as a natural local property of the physical spacetime. We propose
critical experiments which could discriminate, again locally, between the three possible types
of spacetime geometry: Lorentzian, Galilean, or Riemannian. We shall refer to any of these
three types of spacetime geometry as generalized Lorentzian. We do not assume that the
entire spacetime is of any one of these three types.

Mathematically, Theorem 10 is very simple; it just means that any non-singular 4 × 4
real matrix A (i.e., the matrix of any RFCT) can be represented as
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A =
(
τ1 bT1
0 S1

)
B

(
τ bT

0 S

)
, (1)

where B is a C-Lorentzian matrix and the matrix blocks S and S1 are 3 × 3; note that(
τ bT

0 S

)
is the general form of the matrix of adjustment transformations.

Now a surprise possibly produced by the statement of Theorem 10 should all but dis-
appear. Indeed, the L.H.S. of (1) can be described by 4 × 4 = 16 real parameters (“de-
grees of freedom”), while the R.H.S. of (1) contains two times more, 32 parameters in all:
2(16 − 3) = 26 parameters of the two adjustment matrices plus 6 parameters of the C-
Lorentzian matrix B.

Moreover, not only does representation (1) exist, it is not unique. A reason for this, as
one can now see, is that a general adjustment matrix contains “too many”, 13, “degrees of
freedom”. One may therefore want to allow only certain special forms of adjustment, rather
than the general one. Alternatively or concurrently, one may also want to choose a standard
form of the C-Lorentzian matrix B.

That is just one way to look at results of Subsections III C through III I, where we have
certain uniqueness. In particular, in Subsection III H, one of the two adjustment matrices in
(1) is required to be the identity matrix while the C-Lorentzian matrix B is required to be a
C-boost; then the total on each side of (1) is (16− 3) + 3 = 16 “degrees of freedom”, which
provides for a unique representation of any non-singular 4× 4 real matrix as the product of
the matrix of an adjustment and that of a C-boost.

One may want just to put up with such a matrix language, without delving into such
questions as what an RF itself is; then one may skip some material of Section II.

In the general theory of relativity (TR), since all locally linear (i.e. differentiable) RFCTs
are allowed, the qualitative distinction between time and space, rather strong in the special
TR, seems to almost disappear. This almost complete elimination of the distinction between
time and space may seem hardly reconcilable with experimental practice, in which time-
measuring devices and processes are quite different from space-measuring ones. Thus, a
reasonable question is, How could it be substantiated that all linear RFCTs should be
allowed, be it in a special or general TR?

Another result of this paper may serve to address this concern. This result is Theorem
12, page 25, which at the first glance and by itself might seem even more surprising than
Theorem 10, since the latter is only an immediate corollary to the former.

Theorem 12 may be stated as follows: Let (f, g) be a pair of RFs which are mutually
URMoving with a nonzero velocity and let (f1, g1) be any other such pair; then RFs f and
g can be respectively adjusted to some RFs f̃ and g̃ so that the RFCT from f̃ to g̃ is the
same as the RFCT from f1 to g1.

In other words, any affine RFCT with the corresponding nonzero relative velocity is
reducible by means of RF adjustment to any other such RFCT. In addition, it is easy to see
that this statement remains true if one replaces here the nonzero relative velocity requirement
by the requirement that for both RFCTs the corresponding relative velocity is zero; however,
because of unavoidable measurement errors, exactly-zero velocities are obviously exceptions,
which cannot possibly be experimentally detected. In this sense, practically all affine RFCTs
can be obtained from practically any other affine RFCT via RF adjustment. Thus, Theorem
12 provides a reason as to why all linear RFCTs should be allowed, and not only in the general
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theory of relativity but in the special one as well. More exactly, however, what Theorem 12
says is that being relatively in motion or being relatively at rest is the only invariant of RF
adjustment. We see that some degree of distinction between time and space must remain so
that the relations of being relatively at rest or not at rest can be defined.

Pauli [2], pg. 11, describing results by Ignatowsky, Frank and Rothe [1], wrote: “Nothing
can, naturally, be said about the sign, magnitude, and physical meaning of α”; Pauli’s α
corresponds to C in our notation. Contrary to Pauli’s opinion, in Section IV we describe
an experiment through which the sign and magnitude of C can be measured, even though
indirectly; the dimension of C is naturally that of [velocity]−2. Moreover, we provide a
physical interpretation of 1/C as the product of the velocities of certain time and space
waves – see (59), page 43.

The main distinction between time and space is that time is one-dimensional and space is
three-dimensional. For in the cases when only one spatial dimension is of interest, time and
space become exchangeable. This may be not very surprising in certain everyday situations
or, more generally, whenever there is a standard velocity. We say, e.g, ”the distance from
point A to point B is a ten-minute walk”.

Much deeper insights are provided by results of Section V which demonstrate, in particu-
lar, that there exists a complete in a certain sense duality between time and one-dimensional
space in terms of certain waves of transformation of the spacetime.

(Incidentally, in a number of derivations of the Lorentzian property, the spatial compo-
nent of the spacetime is assumed to be easily reducible to one dimension. But with one
spatial dimension, there is virtually no problem. Indeed, assuming just the reciprocity of
the RFCT, its 2× 2 matrix A must satisfy the equation A = A−1; now a few lines of most
elementary algebra show that the RFCT is generalized Lorentzian.)

One may argue that the privileged role of the positive-Lorentzian geometry (with C > 0),
in contrast to the negative- or 0-Lorentzian ones, is related to the special role ascribed to
light, and this is true. In fact, a much stronger statement is true [3]: Suppose that, for a
given pair of RFs, there is some signal whose speed c is always the same in both of the RFs,
i.e., the equality c2(t2 − t1)2 − [(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2] = 0 in one of the RFs
implies the same in the other RF; then the RFCT is a scalar multiple αL of a Lorentzian
transformation L, where α is a positive real.

Hence, if a slight reciprocity requirement is also satisfied (in order for the factor α in αL
to be necessarily equal to ±1), then the RFCT is simply Lorentzian. Such an additional
reciprocity requirement can be considered as an extremely non-restrictive form of the prin-
ciple of relativity. Thus, the principle of the constancy of the speed of light is so strong that
almost by itself, just with an addition of a very weak trace of the principle of relativity, it
implies the Lorentzian property; here one even does not need to assume that the two given
RFs are mutually URMoving – the latter is already implied by the only assumption of the
constancy of the speed of the signal!

Such extreme restrictiveness of the requirement of the constancy of the speed of light is
obviously related with its being too counterintuitive as perceived by many researchers since
the first days of the relativity theory. Some of them have also thought that to give the
electrodynamic notion of light any special role in a theory of kinematics means to reverse
the natural order of ideas. For how can one possibly define a theoretical concept of electro-
magnetic waves before such kinematic notions as the coordinates of events in time and space
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and relations between them have been developed?
At this point, one may further argue that the special role of light does not necessarily

imply putting electrodynamics before kinematics but is merely justified by the agreement
between the Lorentzian kinematics and the equations of electrodynamics.

The latter objection would be theoretically justified if the conventional form of the equa-
tions of electrodynamics were the only one theoretically possible or at least logically prefer-
able. However, it requires no effort to give a simple (and just as inherently consistent as the
conventional form) extension of the equations of electrodynamics, comprising the negative-
Lorentzian and 0-Lorentzian spacetimes (in addition to the positive-Lorentzian ones). As
could be expected, the so extended equations do not admit electromagnetic waves at all in
negative-Lorentzian and 0-Lorentzian spacetimes; we also briefly describe here the corre-
sponding hypothetical mechanics of not charged particles as well.

The generalized Maxwell-Hertz equations for empty space, with
1

c
replaced by

√
C, are

√
C
∂E

∂t
= ∇×H,

√
C
∂H

∂t
= −∇×E, ∇ · E = 0, and ∇ ·H = 0,

where H is the magnetic field (whose components take on imaginary values when C < 0)
and E is the electric field. This implies the system of 6 scalar equations

C
∂2E

∂t2
−∆E = 0 and C

∂2H

∂t2
−∆H = 0,

which are the conventional hyperbolic (wave) equations if C > 0 but elliptic ones if C < 0.
Thus, electromagnetic waves cannot exist in the negative-Lorentzian domains, where

C < 0.
Similarly, the conventional formula for the electromagnetic force is generalized as

F = eE +
√
Cev ×H,

and so, the components of F always take on real values, no matter what is the sign of C.
The formulas for the mass and the energy become

m =
m0√

1− Cv2
and E =

m

C
=

m0

C
√

1− Cv2
;

thus, the mass m decreases as v increases if C < 0, whereas the energy E always increases
as v increases, whether C is positive or negative.

Electromagnetic waves, as well as the conventionally described gravitational ones, can
exist only in positive-Lorentzian domains. In Section V, we describe certain transformation
waves that can exist in domains of any of the three types of spacetime geometry. We see this
as another argument against the necessity of the positive-Lorentzian geometry and against
that of the universal existence and character of light throughout the entire universe.

Yet one more potential objection can be seen here – that so far all experiments have been
in agreement with the positive-Lorentzian structure of spacetime. By itself, this statement
can hardly be doubted; furthermore, we believe that if the aforementioned critical experiment
proposed in Section IV of this paper, were conducted in a vicinity of the Earth, it only would
once again positively confirm the positive-Lorentzian property.

8



However, what any experiment or at least any experiment dealing with signals with
bounded velocities can really test is a property of only a bounded spacetime domain in
which we happened to be situated, rather than that of the entire universe. The latter may
nevertheless have negative-Lorentzian domains as well, even if very remote from us, plus
three-dimensional 0-Lorentzian hypersurfaces between the positive-Lorentzian and negative-
Lorentzian domains. At least, no substantial logic is seen which would exclude the possibility
of such an intermittent structure of the universe at large.

Actually, if there are any purely theoretical reasons to discriminate between the three
types of spacetime, some general preference should be given to the negative-Lorentzian and
not to the positive-Lorentzian type. Indeed, in this paper we also describe certain universal
adjustments of however large families of mutually URMoving RFs. We show that any family
of mutually URMoving RFs possesses a universal negative-Lorentzian adjustment. However,
to possess a universal positive-Lorentzian or 0-Lorentzian adjustment, a family of RFs must
satisfy certain restrictions – see Theorem 16, page 27. In this sense, the negative-Lorentzian
adjustment is more universal than the positive-Lorentzian and 0-Lorentzian ones.

An intriguing question is, If there are negative-Lorentzian domains in the universe, how
could they be experimentally detected? At this point, we are far from being able to fully
describe the nature of signals that may originate in negative-Lorentzian domains and to say
in what manner can such signals get transformed upon entering our, doubtlessly positive-
Lorentzian, part of the universe. Note that in negative-Lorentzian domains there may exist
signals of any finite or infinite speed; if such infinite-speed or too-high-speed signals can
penetrate into Lorentzian domains at all, they must at least appropriately decrease their
speed upon such penetration.

What we can also say with certainty is that those hypothetical signals cannot origi-
nally exist in the negative-Lorentzian domains as either electromagnetic or conventionally
described gravitational waves. It might therefore seem to be not a very good idea to try to
detect negative-Lorentzian domains via electromagnetic or gravitational waves. Instead, it
makes sense to try to detect waves of transformation of spacetime, described in Section V,
using methods of Section IV.

In this paper, almost no assumptions are made in general; instead, a number of possible
scenarios are proposed; these scenarios depend on the number and nature of assumptions.
If anything is being assumed, it is explicitly stated. To make such an approach effective, it
is important to verify every time that the assumptions made are necessary or essential, and
we adhere to this maxim.

By the already mentioned Theorem 10, page 25, any pair of mutually URMoving
RFs can be adjusted to a C-Lorentzian pair via (possibly anisotropic) rescaling and re-
synchronization.

On the other side of this spectrum of results is Theorem 27, page 31, which says that
certain reciprocity and isotropy properties of a pair of mutually URMoving RFs imply that
the given pair of RFs is already generalized Lorentzian. Moreover, by Theorem 28, the
generalized Lorentzian pairs can be fully characterized by reciprocity and isotropy.

It should therefore be clear that generally, the more is the extent to which reciprocity
and isotropy conditions are satisfied by a given pair of mutually URMoving RFs, the less
adjustment is needed in order to adjust such a pair to a generalized Lorentzian one.
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We consider three main levels of assumptions regarding a given pair of mutually
URMoving RFs and identify the three corresponding levels of adjustment needed in order
to reduce the given pair of RFs to a generalized Lorentzian pair:

0. no assumptions at all – then both (possibly anisotropic) rescaling and re-synchronization
may be needed; see Theorem 10;

1. only reciprocity or isotropy is assumed – then, respectively, only (possibly anisotropic)
rescaling or isotropic rescaling with re-synchronization may be needed; see Theorem
19, page 29, and Theorem 24, page 31;

2. both reciprocity and isotropy are assumed – then no adjustment is needed, the pair of
RFs is then already generalized Lorentzian; see Theorem 27, page 31.

This is a physical paper of a rather infrequently encountered style. We try to make
explicit the distinction between the two modes of consideration: (i) when we are discussing
relations between the reality and the model and (ii) when we are acting within a rigorous
mathematical model. Thus, we first build various models – see Section II; then we work
within the model under consideration by means of purely mathematical methods, without
using nearly impossible to rigorously define – at least before kinematics is developed – notions
such as clocks, rods, light, inertiality, etc. – see Sections III and V and the Appendixes;
finally, we go back to reality to consider methods of testing of the results and to interpret
the predictions of the theory – see Section IV.

The theorems in this paper can each be considered as a mini-theory of relativity; the as-
sumptions of a theorem correspond to a possible real-world scenario; each of the assumptions
corresponds to a postulate, i.e., to a statement about properties of physical objects.

We find this style to be especially appropriate for the subject of this paper; it helps to
organize the multitude of different scenarios, to clearly distinguish and, on the other hand,
to show the correspondence between physical objects and relations and their counterparts in
the model(s) used. This approach is also effective in that it provides maximum generality,
since one and the same model notion may, and often does, admit many different physical
realizations.

In particular, we need not restrict ourselves to inertial RFs, i.e. ones usually considered
as “freely falling” far away from large masses, where the divergence of the gravitational field
is negligible. Instead, for the most part of this paper, we theoretically consider pairs of
RFs which are only assumed to be URMoving relative each other, neither of them having to
be inertial or otherwise distinguished by itself; obviously, this is in perfect correspondence
with the spirit of the theory of relativity. On the other hand, pairs of inertial RFs can be
considered as special, even if most common, physical realizations of the notion of pairs of
mutually URMoving RFs.

This paper is devoted foremost to establishing as much order and clarity as possible
in kinematic foundations of physics. For is any unifying, thoroughly penetrating physical
theory possible other than one which is based on a firm and free of contradiction or vicious
circles kinematic foundation?

One may argue that as soon as the Lorentzian transformations are derived and as long
as the corresponding predictions are all well confirmed by all experiments, there is no need
to question the basis on which the theory is built. It is however always an advantage to have

10



a theory, based on less contradictory and more general logical foundations, which would be
more flexible and more easily adaptable whenever new experimental data appear.

The most basic notion in all the models introduced in this paper is that of the RF. An
RF is understood, in accordance with Einstein [5], as any 1-to-1 correspondence between the
space of all events and the space of all four-tuples of their temporal and spatial coordinates;
the latter space may be either R4 or a subset of R4. The other notions are all built on the
notion of the RF using logic, which parallels the corresponding relations between physical
objects.

This correspondence between physical objects and relations and their model counterparts
is indicated by using, after necessary discussion, the same term both for the physical object
and the respective model notion. The confusion between the two will hardly be possible
because of the context; in particular, Section III is explicitly devoted to the statement and
discussion of theoretical results within different rigorous models, while in Section II all the
basic notions to be subsequently used are introduced and discussed.

Let us emphasize that we need not rigorously define notions like those of observers, clocks,
rods, inertiality, light; none of them is among our basic notions. Therefore, our theoretical
results do not depend on the concrete physical realizations of these notions. Of course, these
physical notions are important, but we refer to them only at the initial stage of building of
the models and at the concluding stages of testing of the models and of interpreting of the
results.

II. BASIC NOTIONS: REALITY–MODEL CONNECTION

A. Events, reference frames (RFs), RF change transformations (RFCTs), and

relabeling of events

Essentially, our notion of an RF coincides with the one proposed by Einstein [5] in his
general theory: “We allot to the universe four space-time variables x1, x2, x3, x4 in such a
way that for every point-event there is a corresponding system of values of the variables
x1, x2, x3, x4. To two coincident point-events there corresponds one system of values of
the variables x1, x2, x3, x4 ...”. Thus, two events with same space-time coordinates in an
appropriate RF are considered to be the same.

We use the term events, rather than “point-events”, and denote events by e, e0, e1, . . . .
The set of all events is called the event space and is denoted by E . Let us stress that in this
paper the nature of events is irrelevant; no structure on the event space E is assumed. The
only assumption made about E is that it can be put into a 1-to-1 correspondence with R4.
Any such correspondence is referred to as an RF. More exactly, let us define an RF as an
arbitrary 1-to-1 mapping of E onto R4. This definition will be used throughout this paper,
except only for Section V; see further details there.

Thus, any RF f takes every event e in E to the corresponding 4-tuple f(e) =
(
t
r

)
=:(

tf (e)
rf(e)

)
in R4 of the time-space coordinates of event e in RF f , so that the real number tf(e)
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and the vector rf(e) in R3 represent, respectively, the one temporal and the three spatial
coordinates of event e in RF f . Following the common practice, we identify vectors in Rd

with the corresponding d × 1 real column matrices and let small boldfaced Roman letters
stand for vectors in R3 and the corresponding italicized letters, for their length: r := |r|,

v := |v|, etc. We also let X, Y , etc., or
(
t
r

)
, where t is a real number, denote vectors in

R4. Whenever speaking of pairs or any other families of RFs, we shall always assume that
the RFs in question are defined on the same event space, unless otherwise specified.

For any two RFs f and g, the RFCT Ag,f from g to f is then defined as the mapping
that carries the vector g(e) ∈ R4 of the temporal and spatial coordinates of every event e
in RF g to the vector f(e) ∈ R4 of the coordinates of the same event e in RF f , so that the
following diagram is commutative:

E
g
−→ R4

↓ idE ↓ Ag,f

E
f
−→ R4

Here, as usual, idΣ denotes the identity mapping of a set Σ, i.e. the mapping that does
not move any element of Σ. The diagram being commutative means here that Ag,f ◦ g =
f ◦ idE(= f). Thus, RFCT Ag,f is a 1-to-1 transformation of R4 onto itself, and is the
composition of mapping f and the inverse g−1 of g, i.e.,

Ag,f = f ◦ g−1.

It is the relative motion of given RFs as represented by the RFCT only, rather the nature
of the RFs themselves, that matters in a theory of relativity; in the rest of this subsection,
this thesis is clarified in terms of re-labeling.

Let us call any 1-to-1 mapping ` of the event space E onto itself or another set E ` a
re-labeling of E ; let us then call E ` a re-labeled event space. Let e` := `(e) ∈ E ` denote the
re-labeling of event e in E under mapping `.

Then the formula f `(e`) = f(e) for all e in E – so that f = f ` ◦ ` and f ` = f ◦ `−1

– determines an obvious 1-to-1 correspondence between the RFs f : E → R4 defined on
the “original” event space E and their “re-labeled” versions f `: E ` → R4 defined on the
re-labeled event space E `.

This is illustrated by another commutative diagram:

E
f
−→ R4

↓ ` ↓ idR4

E `
f`

−→ R4

Let us say that two pairs of RFs (f, g) and (f1, g1) are the same up to re-labeling of events
if f1 = f ` and g1 = g ` for some re-labeling `, one and the same for f and g.

1. Proposition: Identical RFCTs and re-labeling of events
Two pairs of RFs (f, g) and (f1, g1) are the same up to re-labeling of events if and only if
the pairs have the same RFCTs: Ag1,f1 = Ag,f . 2

It is very easy to verify this statement; see Appendix 1, page 46.
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B. Uniform rectilinear motions (URMotions) and their velocities relative to RFs

Let M be any motion, that is, any subset of the event space E . Let f be any RF. For any
two different events e1 and e2, belonging to motion M , let us define the (average) velocity
of motion M relative to RF f between the two events as

vM,f(e1, e2) :=
rf(e2)− rf (e1)

tf(e2)− tf (e1)

provided that tf (e2) 6= tf(e1); otherwise, vM,f(e1, e2) or, more exactly, the relative speed
|vM,f(e1, e2)| is considered infinite, and the direction of the line through the origin carrying
the vector rf (e2)− rf(e1) is assigned to velocity vM,f(e1, e2); the direction of such a line is

defined by the unordered set {e,−e} of unit vectors with e :=
rf(e2)− rf(e1)

|rf(e2)− rf(e1)|
(note that

necessarily rf(e2) 6= rf(e1), since e2 6= e1 while tf (e2) = tf (e1) ).
Thus, the scope of this paper is not restricted to finite velocities only. Physically, though,

this particular point does not represent a significant advantage, since, obviously, infinite
velocities cannot possibly be experimentally detected, as well as any finite velocity cannot
be measured precisely. However, it is certainly more convenient not to restrict modeling
by the exclusion of infinite velocities; one reason for this is that the velocity vM,f(e1, e2)
between two different events can always be made infinite simply by using re-synchronization
(refer to Subsection II D, page 15) in order to make events e1 and e2 synchronous relative
to RF f , so that tf(e2) = tf (e1).

A URMotion relative to an RF f is then defined as any motion U , containing at least two
different events and such that the average relative velocity vU,f(e1, e2) between two different
events e1 and e2 belonging to U does not depend on the choice of such events e1 and e2.

Let us denote the constant velocity of a URMotion U relative to RF f simply by vU,f ,
so that vU,f = vU,f(e1, e2) for any choice of two different events e1 and e2 belonging to U .

In other words, a subset U of the event space E is a URMotion relative to an RF f if
and only if the image f(U) (“world-line”) of U under mapping f lies on a (straight) line in
R4.

Thus, the so-defined model notion of the URMotion corresponds to the uniform and
rectilinear motion of a negligibly small physical particle. The “world-line” of such a particle
does not have to be an entire (straight) line. As follows from the Fundamental Fact cited
below in Subsection II C, the use of such a more general notion does not diminish the strength
of the subsequent results; on the other hand, such a model notion better corresponds to
physical reality, since in practice only finitely many events can be observed, and so, the
corresponding points in R4 can never fill a continuous line.

C. Mutually uniformly and rectilinearly moving (URMoving) RFs, their relative

velocities, and linearity of RFCTs

We have modeled the uniform and rectilinear motion of a negligibly small physical par-
ticle. A physical RF is thought of as consisting of a (usually very large) number of specially
arranged small particles and hence cannot be considered to be same as just any one small
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physical particle. Therefore, another round of modeling is needed to introduce model notions
of mutually URMoving RFs and their relative velocities.

Let us say that an RF g is URMoving relative to another RF f if every URMotion U
relative to g is a URMotion relative to f , too. Geometrically, this simply means that the
RFCT Ag,f = f ◦ (g)−1 maps every line in R4 into a line.

The Fundamental Fact in any special TR is that if an RF g is URMoving relative to
another f , then the RFCT Ag,f is affine; this fact is just a restatement of the fundamental
theorem of affine geometry [6]. In particular, this fact implies that if RF g is URMoving
relative to RF f , then f is URMoving relative to g; hence, one can refer to a pair (f, g) of
mutually URMoving RFs.

Obviously, one could equivalently define URMoving RFs as follows. Let us call a motion
M accelerated relative to RF f if there are three distinct events e1, e2, and e3, belonging to
M and such that vM,f(e2, e3) 6= vM,f(e1, e2).

Then an RF g is URMoving relative to another RF f if and only if every motion which
is accelerated relative to f is accelerated relative to g as well.

This statement may be considered as a weak form of the principle of relativity.
To test directly by the above definition whether two given RFs are mutually URMoving,

one would have to examine whether “every URMotion U relative to g is a URMotion relative
to f”. It is therefore of importance for testing purposes that the latter requirement can be
relaxed to the following [7]: “every URMotion U relative to g with a small enough relative
speed |vU,g| is a URMotion relative to f”, i.e.: “there exists a real number δ := δg,f > 0
such that every URMotion U relative to g with |vU,g| < δ is a URMotion relative to f”.
The latter condition may be even further relaxed by replacing the inequality |vU,g| < δ by
|vU,g−v0| < δ, for some fixed v0 ∈ R3, thus only requiring that every URMotion U relative
to g with a relative velocity vU,g close enough to some given vector v0 be a URMotion
relative to f .

If an RF g is URMoving relative to another f , then, by the Fundamental Fact, the RFCT
Ag,f is affine and its action on the vectors X in R4 is therefore given by

Ag,f : X 7−→ Ag,f(X) = Ag,fX + sg,f , (2)

where Ag,f is a 4 × 4 real matrix, which will be called the matrix of the RFCT Ag,f , and
sg,f is a vector in R4, which will be called the shift of Ag,f .

Obviously, equation (2) can be rewritten as

f(e) = Ag,fg(e) + sg,f , for all e ∈ E . (3)

The shift sg,f does not cause any essential difficulties, and so, will be assumed for simplicity
to be zero, unless otherwise indicated, so that all for any mutually URMoving pair of RFs
(f, g), RFCT Ag,f will be assumed to be not just affine but linear. Dropping also, for brevity,
the argument e in eq. (3), one may rewrite it simply as

f = Ag,fg.

Any terms originally defined either for a pair (f, g) of mutually URMoving RFs or for
the affine RFCT Ag,f or for the matrix Ag,f will apply interchangeably to all of these three
notions. E.g., in Section III A, page 22, we shall rigorously define C-Lorentzian matrices;
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then, a pair (f, g) of mutually URMoving RFs or the RFCT Ag,f will be C-Lorentzian if
and only if the matrix Ag,f is C-Lorentzian.

If every pair of a family of RFs possesses a certain property, then we shall refer to the
family as possessing this property as well; e.g., a natural family of RFs is a family of RFs
in which every pair is natural.

Next, if an RF g is URMoving relative to another RF f , define the velocity of g relative
to f as vg,f := vU,f , where U is any URMotion relative to g with vU,g = 0; it is not hard to
see that this definition is correct in the sense that vU,f does not depend on the choice of U
given vU,g = 0.

Physically, the latter definition corresponds to the following. One fixes any small particle
which is at rest relative to RF g; such a particle represents a URMotion relative to g with
the zero relative velocity, as though the particle was “attached to” RF g. Since RF g is
URMoving relative to RF f , the particle represents a URMotion relative to f as well. Then,
the constant velocity of this particle relative to f will be the relative velocity of g relative
to f ; this velocity does not depend on the choice of a particle at rest relative to g.

The above definition of the relative velocity may be restated as follows. Let e1 and e2

be any two events whose spatial coordinates in RF g are the same, i.e., rg(e2) = rg(e1);
then the velocity of g relative to f is vg,f = (rf(e2)− rf (e1))/(tf(e2)− tf (e1)) provided that
tf (e2) 6= tf (e1). If for any two events e1 and e2, rg(e2) = rg(e1) implies tf (e2) = tf (e1),
then the relative velocity vg,f is infinite. It can be seen that all the vectors of the form
rf(e2) − rf(e1) for all pairs of events e1 and e2 satisfying the equality rg(e1) = rg(e2) are
directed along one line in R3; that line is the line of the direction of the vector of the relative
velocity vg,f , be it finite or infinite.

For any 4× 4 matrix A, we shall routinely use the block representation

A =
(
A00 A01

A10 A11

)
, (4)

where A11 is 3× 3.
If an RF g is URMoving relative to another RF f and A = Ag,f , then it is easy to see

that the velocity of g relative to f is

vg,f =
A10

A00

(5)

provided that A00 6= 0; otherwise, |vg,f | is infinite and vg,f has the direction of the line in
R3 through 0 carrying the vector A10.

Any RF `∗, defined on an event space E , may be considered as a re-labeling of E (see
Subsection II A, page 10). E.g., one may choose `∗ to describe a physical RF, which is
stationary relative to “remote stars”. Then the re-labeled version f `∗ of any RF f coincides
with the RFCT A`∗,f from the “stationary” RF `∗ to RF f , f `∗ = A`∗,f .

Next, an RF f may be called inertial if it is URMoving relative to the “stationary” RF
`∗. i.e., if the re-labeled version f `∗ of RF f is an affine mapping of E `∗ = R4 onto itself.

Then any RF g1 which is not inertial is moving with (possibly non-uniform) acceleration
relative to the “stationary” RF `∗. Let us define another RF f1 by the formula f1(e) = Ag1(e)
for all events e in E , where A is any non-singular 4× 4 real matrix. Then RF f1, as well as
g1, is not inertial; it is accelerated relative to the “stationary” RF `∗.
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Nonetheless, RFs f1 and g1 are URMoving relative to each other, and so, pair (f1, g1)
belongs in the subsequent special theories of relativity given in this paper, even though RFs
f1 and g1 are not inertial.

Replacing the special and hard to rigorously define notion of the inertial RFs by the
more general notion of relatively URMoving RFs is in better conformance with the spirit of
relativity.

D. Notion and types of adjustment of reference frames

Given a physical RF, constructed using e.g. rods and clocks in the well-known manner,
one can adjust it by changing the directions of the three coordinate rods or the spatial
units along them. One can also adjust the RF by changing the rates of the clocks or the
directions of their hands’ movement. Finally, one can shift the readings of the clocks, possibly
depending on their spatial locations; this latter kind of adjustment may be referred to as
re-synchronization. Using any of these kinds of adjustment of the given RF, one obtains
another RF; it is physically evident that the latter RF is at rest relative to the former one.
This motivates the following model notion of adjustment of RFs.

Let us say that an RF f̃ is an adjustment of another RF f – or, equivalently, that RF f̃
is at rest relative to RF f – if RF f̃ is URMoving with a zero velocity vf̃ ,f relative to RF f .

In this case, let us also say that the RFCT Af,f̃ is an adjustment (transformation).

In view of (5), page 14, the matrix Af,f̃ of an adjustment is any real 4×4 matrix A with
A10 = 0 and A00 6= 0, that is any one of the form

A =
(
τ bT

0 S

)
, (6)

for a nonzero real number τ and a non-singular real 3× 3 matrix S.
Here and in what follows, superscript T will denote matrix transposition, as usual.
It is easy to see that the adjustment transformations, as well as their matrices of form

(6), constitute a group. This fact will not however play a significant role in this paper.
Let us say that a pair of RFs (f̃ , g̃) is an adjustment of another pair of RFs (f, g) if f̃ is

an adjustment of f and g̃ is an adjustment of g.
More generally, suppose that F is any family of RFs. For every RF g in F , let us take any

adjustment g̃ of g. Let us call the resulting family F̃ := (g̃: g ∈ F) a universal adjustment
of the family F .

Along with expressions like “f̃ (or F̃) is an adjustment of f (or F)”, we shall inter-
changeably use their self-explanatory paraphrases, such as “f (or F) can be adjusted (or is
adjustable) to f̃ (or F̃)”.

Let diag(A1, . . . , An), where A1, . . . , An are real square matrices, stand for the block-
diagonal matrix with the diagonal blocks A1, . . . , An.

Let In denote the n× n identity matrix.
Adjustment transformations include the following four elementary model types or any

composition thereof; in the listing below,
(
t
r

)
stands for an arbitrary vector in R4:
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1. space-time origin adjustment:
(
t
r

)
7−→

(
t+ t0
r + r0

)
, for some fixed t0 ∈ R and r0 ∈ R3;

the matrix of this transformation is I4; since we agreed to assume that the shift sg,f

in (3), page 13, is zero, this trivial type of adjustment will not in fact be subsequently
needed;

2. temporal adjustment:
(
t
r

)
7−→

(
τt
r

)
, for some fixed nonzero τ ∈ R; the matrix of

this transformation is diag(τ, I3); in particular, this type includes

(a) temporal re-orientation, when τ = ±1; obviously, τ = −1 corresponds to the
change of the sign of the temporal coordinates of all events; in the case τ = 1,
the given RF is left unchanged;

(b) temporal rescaling, when τ is positive; physically, this corresponds to any propor-
tional change of the rates of all the clocks in the given RF;

3. spatial adjustment:
(
t

r

)
7−→

(
t

Sr

)
, for some fixed non-singular 3× 3 real matrix S;

physically, this corresponds to any change of the rods determining the spatial basis in
the given RF; the matrix of this adjustment transformation is diag(1, S); in particular,
this type includes

(a) spatial re-orientation, when matrix S is orthogonal;

(b) (possibly anisotropic) spatial rescaling, when matrix S is symmetric and positive-
definite; in other words, a spatial rescaling is a linear transformation of the form(

t
xe1 + ye2 + ze3

)
7−→

(
t

ξ1xe1 + ξ2ye2 + ξ3ze3

)
, for some fixed orthonormal

basis (e1, e2, e3) of R3 and some fixed positive real numbers ξ1, ξ2, and ξ3, which
may be called the coefficients of rescaling of the three mutually orthogonal axes
along the spatial basis vectors e1, e2, and e3; here, x, y, and z are arbitrary real
numbers; the matrix of this rescaling transformation in the orthonormal basis

of vectors
(

1
0

)
,
(

0
e1

)
,
(

0
e2

)
,
(

0
e3

)
in R4 is diag(1, ξ1, ξ2, ξ3); spatial rescaling

further includes

i. isotropic spatial rescaling, when the rescaling coefficients ξ1, ξ2, and ξ3 are

equal to one another:
(
t
r

)
7−→

(
t
ξr

)
, for some fixed positive ξ; the matrix

of this transformation is diag(1, ξI3).

4. re-synchronization:
(
t
r

)
7−→

(
t+ bT r

r

)
, for some fixed b ∈ R3; in other words, a re-

synchronization is any linear transformation of R4 preserving the spatial coordinates
of all events as well as the time intervals between any two events occurring at any one
and the same point of space; if b 6= 0, then the temporal coordinates of all the events
with the spatial coordinates r are shifted by bT r, proportionally to the projection of r

onto the axis through b. The matrix of this transformation is
(

1 bT

0 I3

)
. Physically,
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a re-synchronization corresponds to a shift of the readings of all the clocks in the
given RF without changing their rates and without changing the spatial coordinates
of events; of course, the readings of the clocks must be shifted in such a way that
all URMotions relative to the RF before re-synchronization remain so thereafter, so
that the transformation of the spacetime coordinates is affine; it is also required that
this transformation preserve the spacetime origin, so that the transformation is in fact
linear.

It is evident from the above discussion that each of the listed model types of adjustment
is physically realizable. The following simple proposition shows that the above listing of the
types of adjustment is essentially complete, and so, the above-defined notion of adjustment
is neither too general nor too narrow.

2. Proposition: Adjustment structure
Any adjustment transformation can be represented as a composition of the listed above four
elementary types of adjustment, in any order. 2

This follows easily because any matrix of the form (6) can be represented as the product
of the matrices of adjustments of the four types, in any order. E.g.,(

τ bT

0 S

)
= I4

(
τ 0T

0 I3

)(
1 0T

0 S

)(
1 (b/τ)T

0 I3

)
.

Of the listed types of adjustment, re-synchronization and anisotropic spatial rescaling
seem to be the least desirable. In Subsections III D, III E, and III F we shall see when it is
possible to do without re-synchronization and when it is possible to use isotropic rescaling
rather than the anisotropic version.

Let us define an adjustment without re-synchronization as any adjustment which can be
represented as a composition of the three elementary types of adjustment listed above other
than re-synchronization. The matrix of an adjustment without re-synchronization is one of
the form diag(τ, S), where τ is a nonzero real and S is non-singular.

Let us define a re-orientation as any composition of a temporal re-orientation and a
spatial re-orientation, that is, any composition of adjustment transformations of subtypes
2(a) and 3(a), listed above. The matrix of a re-orientation is one of the form diag(ε,Q),
where ε = ±1 and Q is an orthogonal matrix.

Let us define a rescaling as any composition of a temporal rescaling and a spatial rescal-
ing, that is, any composition of adjustment transformations of subtypes 2(b) and 3(b).
The matrix of a rescaling is one of the form diag(τ, S), where τ is a positive real and S
is symmetric and positive-definite. In other words, the matrix of any rescaling in an ap-

propriate orthonormal basis of vectors
(

1
0

)
,
(

0
e1

)
,
(

0
e2

)
, and

(
0
e3

)
in R4 has the form

diag(τ, ξ1, ξ2, ξ3), where τ, ξ1, ξ2, ξ3 are positive reals – the rescaling coefficients.
Let us define an isotropic rescaling as a composition of a temporal rescaling and an

isotropic spatial rescaling, that is, any composition of transformations of subtypes 2(b) and
3(b)i. The matrix of an isotropic rescaling is one of the form diag(τ, ξI3), where τ and ξ are
positive reals.
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Note that any adjustment of any RF g does not change its velocity vg,f relative to any
other RF f , which is URMoving relative to g. This can be seen as another confirmation of
consistency of the above modeling of adjustment of RFs.

3. Remark: C-Lorentzian adjustment without re-synchronization means the same as
C-Lorentzian rescaling
(For a rigorous definition of a generalized Lorentzian pair refer to Section III A below.) A
pair of RFs can be rescaled to a generalized Lorentzian pair if and only if it can adjusted
without re-synchronization to a generalized Lorentzian pair.

Indeed, any spatial re-orientation obviously preserves C-Lorentzian pairs of RFs. On the
other hand, any spatial adjustment can be represented as the composition of an anisotropic
spatial rescaling and a spatial re-orientation, in either order, according to the polar decom-
position of matrices. Hence, the statement of this remark follows. 2

If there is a mapping f 7→ f̃ of a family F of RFs onto another family F̃ of RFs so that
for every RF f in F , f̃ is an adjustment of f of a certain type, then we refer to family F̃
as to that same type of (universal) adjustment of family F . E.g., if for every f in F , f̃ is
an isotropic rescaling of f , then we say that F̃ is a (universal) isotropic rescaling of F or,
in other words, F is isotropically rescalable to F̃ .

E. Reciprocal, isotropic, and natural pairs of RFs

In this subsection, some rigorous model expressions for the principle of relativity will be
given.

Imagine two physical RFs located in the spacetime so that they can be considered com-
pletely symmetric to each other with respect to some center of symmetry. E.g., such a
situation can be the case if the following conditions are fulfilled.

(I) All the masses of the universe and their velocities are symmetric with respect to
some point, which is thus the center of symmetry of the universe; an approximation to this
ideal situation would be absence of large masses in a sufficiently large neighborhood of a
comparatively small spacetime domain where the two RFs are located. (II) The two RFs
in question can be obtained only by means of physical processes which are symmetric with
respect to the center of symmetry.

Then, obviously, the central symmetry will coincide with the RFCT from one of the two
RFs to the other.

Clearly, instead of the central symmetry one consider here any (not necessarily orthog-
onal) symmetry with respect to any straight line or any two- or three-dimensional plane in
the spacetime. Here, the spacetime is considered locally, so that it can be assumed to be
approximately flat.

Instead of any of the described above kinds of symmetry of the coordinate space R4,
one can consider any re-labeling `: E → E of events, which is involutive in the sense that
` ◦ ` = idE ; in other words, if an event ẽ is the re-labeled version of another event e under
re-labeling `, i.e., ẽ = `(e), then event e is the re-labeled version of event ẽ under the same
re-labeling mapping `, i.e., e = `(ẽ); for the definition of re-labeling of events, refer to
Subsection II A.
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One thus comes to the following definition.
Let us call a pair (f, g) of mutually URMoving RFs reciprocal if Ag,f = Af,g.
According to Proposition 1, a pair (f, g) of mutually URMoving RFs is reciprocal if and

only if the pairs (f, g) and (g, f) are the same up to a (necessarily involutive) re-labeling of
events: f ` = g and g ` = f , where the re-labeling is ` = g−1 ◦ f = f−1 ◦ g.

Note that a pair (f, g) of mutually URMoving RF is reciprocal if and only if the RFCT
matrix A = Ag,f is involutive, i.e., A2 = I4 or, equivalently, A−1 = A. (Remember that the
shift sg,f in (3), page 13, is assumed to be zero throughout the paper.)

Hence, considering the Jordan canonical form of matrix A, it is easy to see that in
some basis in R4, the matrix of RFCT Ag,f for a reciprocal pair (f, g) must be of the form
diag(ε0, ε1, ε2, ε3), where ε0, ε1, ε2, ε3 = ±1. Thus indeed, the involutive transformation Ag,f

is any (not necessarily orthogonal) symmetry in R4 with respect to any linear subspace of
R4.

Another important property a physical spacetime may have is isotropy. Let us assume
for a moment that this is the case. Yet, from a viewpoint of at least one of any two physical
RFs, URMoving relative each other with a nonzero velocity v, the inherent isotropy of the
spacetime will necessarily appear violated because of the definite direction of the relative
velocity v. However, if both of two appropriately constructed physical RFs are rotated
around the vector of the relative velocity v through one and the same angle, then one may
expect that the pair of the RFs will remain essentially the same as before the rotation in
the sense that the RFCT will not change.

One thus comes to the following definition.
We shall say that two mutually URMoving RFs f and g are mutually isotropically ori-

ented or, for brevity, that the pair (f, g) is isotropic if for any 3 × 3 rotation matrix Q

such that Qvg,f = vg,f , the RFCT Ag̃,f̃ coincides with Ag,f , where f̃ := diag(1, Q)f and
g̃ := diag(1, Q)g.

In other words, a pair of RFs (f, g) is isotropic if the RFCT from g to f does not change
when both RFs undergo adjustment of the spatial axes via one and the same rotation of R3

preserving the vector of the relative velocity vg,f .
By Proposition 1, page 11, this can be also expressed as follows: a pair of RFs (f, g) is

isotropic if the pair of RFs (f̃ , g̃) obtained from (f, g) via one and the same rotation of their
spatial axes so that to preserve the vector of the relative velocity vg,f is the same as the
original pair (f, g) up to re-labeling of events.

The notion of isotropy remains meaningful even when the relative speed |vg,f | is infinite;
in such a case, once again, the rotations verifying the isotropy are around the well-defined
line of the direction of vg,f .

4. Proposition: One rotation suffices to verify isotropy
Let (f, g) be a pair of mutually URMoving RFs with v := vg,f 6= 0. Then the following
conditions are equivalent to one another:

1. pair (f, g) is isotropic;

2. for some 3×3 matrix Q of rotation about v through not a multiple of 180◦, the RFCT
Ag̃,f̃ , where f̃ := diag(1, Q)f and g̃ := diag(1, Q)g, coincides with Ag,f ;
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3. in any orthonormal basis of R4 of the form
(

1
0

)
,
(

0
v/v

)
,
(

0
e2

)
,
(

0
e3

)
, the matrix

of the RFCT Ag,f is of the form B = diag(B0, λP ), where λ is a positive real number
and P is a 2× 2 rotation matrix.

2

The equivalence of Conditions 1 and 2 of Proposition 4 means that in the definition of
the isotropic pair, instead of the invariance of the RFCT with respect to all rotations about
v, it suffices to require the invariance of the RFCT with respect to only one rotation through
not a multiple of 180◦; in particular, the angle of the rotation can be chosen to be arbitrarily
small.

Proposition 4 will be proved in Appendix 9, page 54.
Let us say that a pair of mutually URMoving RFs (f, g) is natural if it can be adjusted

via re-orientation and isotropic rescaling to a reciprocal and isotropic pair of RFs.
We suggest that the model notion of the natural pair of RFs generalizes the idea of

the pair of specially constructed inertial RFs. By an inertial RF we understand a physical
RF, “freely falling without rotation” and located in a small enough region of the physical
spacetime, where the divergence of the gravitational field is negligible.

The above-mentioned special construction consists in the following. Let an inertial RF
have three mutually perpedicular rigid coordinate axes realized as rods joined together at
one point (the spatial origin), with the same scale unit along all the three axes; we thus
assume that the 3-dimensional Euclidian geometry is an appropriate model for description
of properties of rigid bodies. To synchronize the clocks, a sufficient number of completely
identical clocks are prepared at the spatial origin, say. Then each clock is slowly transported
to its designated spatial position so that a sufficiently dense network of clocks is obtained.

The above special construction is applied to every inertial RF in question separately
from any other RF. Let us refer to such a construction as standard autonomous.

We may conjecture that any two inertial RFs, located in the same small region of the
space-time and obtained via a standard autonomous construction, “can be adjusted via re-
orientation and isotropic rescaling to a reciprocal and isotropic pair of RFs”; the terms in the
latter quoted phrase are to be understood as physical objects and relations corresponding
to their model counterparts.

Thus, the hypothesis is that all the pairs of inertial RFs obtained via a standard au-
tonomous construction are adequately modeled by the notion of natural pairs. Hence, by
Part 2 of Proposition 31, page 32 (cf. Section IV D), the local sign of the constant C is
uniquely determined. Thereby, the most important local characteristic of the spacetime –
the local type of the spacetime geometry, whether positive-Lorentzian or negative-Lorentzian
– is determined by means of any pair of inertial RFs not at rest relative to each other, ob-
tained via a standard autonomous construction and located in a spacetime neighborhood of
the given point of the spacetime.

Obviously, all the construction processes within a standard autonomous construction can
be performed with however small accelerations as well as speeds. This allows one to avoid
in principle the difficulty with the procedure described in Introduction, where measuring
devices had to be transported from one RF into another, moving with a nonzero speed v

relative to the first one.
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F. Proper pairs of RFs

Let (f, g) be a pair of mutually URMoving RFs and let A := Ag,f . Let us call the pair
(f, g) improper if A11 is non-singular and A01A

−1
11 A10 = 0 (recall (4), page 14); otherwise, let

us call the pair (f, g) proper.
Let us call the pair (f, g) strictly proper if A00 6= 0, A11 is non-singular, and A01A

−1
11 A10 6=

0.
It is easy to see that any adjustment without re-synchronization (as defined in Subsection

II D, page 15) does not turn a proper pair of RFs into an improper one, or vice versa. A
similar statement is true regarding strictly proper pairs.

Note that improper, or even not strictly proper, pairs of RFs are exceptions, which
cannot be possibly detected experimentally; indeed, no elements of the matrix A := Ag,f

can be precisely determined because of random errors inherent in any physical measurement.
At times, we exclude improper and not strictly proper pairs of RFs to avoid too many

technicalities arising in the exceptional, inessential cases. Nevertheless, a reader who is
interested in exploring the nature of these exceptions a little further may want to continue
reading this subsection for such details.

Given any two mutually URMoving RFs f and g, let us write the matrix A := Ag,f as

A =
(
A00 A01

A10 A11

)
=

 ∂t

∂t′
∂t

∂r′∂r

∂t′
∂r

∂r′

 , (7)

where t′ := tg(e), r′ := rg(e), t := tf (e), r := rf(e), for any event e.
Then

vg,f =
A10

A00

=

∂r

∂t′
∂t

∂t′

and

vf,g = −A−1
11 A10. (8)

The row-matrix

gradr′t :=
∂t

∂r′
= A01 (9)

may be called the gradient of the f -time t relative to the g-space r′, or the spatial gradient of
asynchrony of f relative to g. Since t = A00t

′+A01r
′, one can say that the f -time coordinate

t of an event e depends only on the g-time coordinate t′ of e and on the orthogonal projection
of the g-space coordinate vector r′ of e onto the gradient gradr′t.

In these terms, pair (f, g) being improper means that the gradient gradr′t is orthogonal
to the velocity

vf,g =

∂r′

∂t
∂t′

∂t
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of RF f relative to RF g. Hence, for a improper pair (f, g), the f -time coordinate tf(e) of
an event e depends – in addition to tg(e) – only on the component of the g-space coordinate
vector rg(e) in a direction perpendicular to the velocity vf,g of RF f relative to RF g. Such
a situation would probably seem counterintuitive.

Recall that A00 6= 0 if and only if |vg,f | 6= ∞. Similarly, by a common algorithm of
matrix inversion, A11 is non-singular if and only if |vf,g| 6= ∞. Thus, a pair of RFs (f, g)
is strictly proper if and only if it is proper and the relative speeds |vf,g| and |vg,f | are both
finite.

III. STATEMENTS OF RESULTS AND DISCUSSION: THREE LEVELS OF

ASSUMPTIONS AND THE THREE CORRESPONDING LEVELS OF

ADJUSTMENT

A. Preliminary: C-Lorentzian transformations and their structure

Let C be any real number. Let us say that a 4 × 4 real matrix A is C-Lorentzian if

for all real t and t′ and all vectors r and r′ in R3 the relation A
(
t′

r′

)
=
(
t
r

)
implies

t2 − Cr2 = t′2 − Cr′2. This definition is equivalent to the following equation:

ATdiag(1,−CI3)A = diag(1,−CI3). (10)

In other words, a pair of mutually URMoving RFs is C-Lorentzian if and only if

(g(e2)− g(e1))
Tdiag(1,−CI3)(g(e2)− g(e1)) = (f(e2)− f(e1))Tdiag(1,−CI3)(f(e2)− f(e1))

(11)

for all events e1 and e2. Actually, condition (11) of the preservation of the “C-interval” is
so strong by itself that the restriction “mutually URMoving” can be removed here without
altering the meaning of the definition if C 6= 0; in the case C > 0 this follows from the paper
by Alexandrov [3]; in the case C < 0, from the fact that every isometry of Rn is affine.

(Since we assume throughout that the shift sg,f in (3), page 13, is zero, (11) can be
written simply as g(e)Tdiag(1,−CI3)g(e) = f(e)Tdiag(1,−CI3)f(e), for all events e.)

Let us say that A is generalized Lorentzian if A is C-Lorentzian for some C ∈ R.
The following theorem on the multiplicative parametrization of C-Lorentzian matrices

will be a useful tool in the proofs of some of the main results of this paper. It may be also
of interest by itself.

5. Proposition: Multiplicative boost-orientation representation of C-Lorentzian trans-
formations
Let C be any non-zero real number. Let A be a non-singular 4 × 4 real matrix. Then A
is C-Lorentzian if and only if one of the following two mutually exclusive cases takes place:
either (i) there exist some ε ∈ {−1, 1}, v ∈ R3, and orthogonal 3 × 3 matrix Q such that
Cv2 < 1 and

A = BC,vdiag(ε,Q) =
(
εγv −CγvvTQ
εγvv −SvQ

)
(12)
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or (ii) there exist some unit vector e ∈ R3 and orthogonal 3× 3 matrix Q such that

A = BC,e
∞ diag(1, Q) =

(
0

√
−CeTQ

e/
√
−C (−I3 + P e)Q

)
. (13)

Here

BC,v :=
(
γv −CγvvT

γvv −Sv

)
; (14)

γv := γv,C :=
1

√
1− Cv2

; (15)

Sv := Sv,C := I3 + (γv − 1)P v, (16)

P v :=
1

v2
vvT if v 6= 0; (17)

S0 := I3; (18)

BC,e
∞ := lim

v→∞
BC,ve =

(
0

√
−CeT

e/
√
−C −I3 + P e

)
. (19)

Note that (13) may occur (but of course not necessarily does) only if C < 0.
The parameters ε, v, and Q of representation (12), as well as the parameters e and Q of

representation (13), are uniquely determined by the matrix A. 2

This proposition is proved in Appendix 2, page 46.

6. Remark: Interpretation of the boost-orientation representation
Let RFs f and g be such that Ag,f = A. Then, according to (5), page 14, the unique v in
the representation (12) coincides with vg,f , the velocity of g relative to f . Matrix BC,v may
be called a C-boost matrix or, more exactly, the matrix of the C-boost in the direction of v.
Respectively, BC,e

∞ may be called an infinite C-boost matrix or, more exactly, the matrix of
an infinite C-boost in the direction of e; in case (13) takes place, the velocity of g relative
to f is infinite. Next, ε and Q represent the mutual orientation of RFs f and g in time
and space, respectively; indeed, consider RF g̃ := diag(ε,Q)g, which is a re-orientation of
RF g; then (12) implies f = BC,vg̃, so that the matrix Ag̃,f coincides with BC,v. Next, P v

is the matrix of the orthogonal projection of R3 onto the direction of v, and so, Sv has a
transparent geometrical interpretation: for any vector u in R3, Svu is the vector obtained
from u by stretching γv times the component of u parallel to v while leaving the component
of u perpendicular to v unchanged; note that the stretch coefficient γv tends to 1 and hence
Sv tends to S0 = I3 as v tends to 0. 2
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7. Remark: 0-Lorentzian transformations
The structure of the 0-Lorentzian transformations as defined above is trivial: a non-singular
4×4 real matrix A is 0-Lorentzian if and only if A00 = ±1 and A01 = 0T (remember (4), page
14). This is immediate from relations (A1)–(A3) (with C = 0) in the proof of Proposition
5, page 46.

We see that there are “too many” 0-Lorentzian transformations; the cause is that the
matrix diag(1,−CI3) in the definition (10) is triply degenerate if C = 0, and so, the above
definition of the 0-Lorentzian transformations is insufficiently restrictive in this case.

We shall therefore redefine the notion of the 0-Lorentzian transformations by means of
an additional requirement of continuity in C. Namely, further on let us refer to a matrix as
0-Lorentzian if it is a limiting point as C → 0 of both the set of all C-Lorentzian matrices
with C > 0 and the set of all C-Lorentzian matrices with C < 0.

It is obvious that no sequence of matrices of the form (13) has a limit as C → 0. Hence,
by Proposition 5, a matrix A is 0-Lorentzian if and only if it has the form (12) with C = 0,
that is,

A = B0,vdiag(ε,Q) =
(

1 0T

v −I3

)
diag(ε,Q) =

(
ε 0T

εv −Q

)
(20)

2

8. Remark: A pair of mutually URMoving RFs with a nonzero relative velocity can be
C-Lorentzian for at most one C
It is easy to see that given A = Ag,f satisfying (12) or (13) and such that vg,f 6= 0, the value
of C in (12) ot (13) is uniquely determined – namely, C = (A2

00 − 1)/|A10|2 (recall (4), page
14).

On the other hand, if (f, g) is a generalized Lorentzian pair with vg,f = 0, then, in view
of (12), (13), and (20), (f, g) is C-Lorentzian for any real C. 2

9. Remark: Scalar C-boosts
Special cases of C-boost matrices BC,v and BC,e

∞ defined by (14) and (19) are the scalar
C-boost matrices

BC,v =


γv −Cγvv 0 0
γvv −γv 0 0
0 0 −1 0
0 0 0 −1

 (21)

or

BC
∞ = lim

v→∞
BC,v =


0

√
−C 0 0

1/
√
−C 0 0 0

0 0 −1 0
0 0 0 −1

 , (22)

corresponding to v = (v, 0, 0)T and e = (1, 0, 0)T . One has
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BC,v = diag(1, Qv)BC,vdiag(1, QT
v) (23)

and

BC,e
∞ = diag(1, Qe)BC

∞diag(1, QT
e ), (24)

where Qv is any orthogonal matrix whose first column is v/v if v 6= 0 (if v = 0, then Qv

is any orthogonal matrix at all) and Qe is any orthogonal matrix whose first column is e.
Hence, by Proposition 5, a non-singular 4× 4 real matrix A is C-Lorentzian if and only if
either there exist orthogonal 3× 3 matrices Q1 and Q2 such that either

A = diag(1, Q1)BC,vdiag(ε,Q2) (25)

for some ε ∈ {−1, 1} and v ∈ R or

A = diag(1, Q1)BC
∞diag(1, Q2). (26)

In case C > 0 representation (25) is well known. However, in contrast to the uniqueness of
all the parameters in representations (12) and (13), matrices Q1 and Q2 in (25) and (26) are
obviously not unique. 2

B. Level 0: without any assumptions, any two mutually URMoving RFs are

adjustable to a C-Lorentzian pair

10. Theorem: Any pair of RFs is C-Lorentzian up to rescaling and re-synchronization

For any real C, any pair of mutually URMoving RFs can be adjusted to a C-Lorentzian
pair. By Remark 3, page 18, this can be done by rescaling and re-synchronization only. 2

11. Remark: Scalar C-boost adjustment
Furthermore, any pair pair of mutually URMoving RFs can be adjusted to a scalar C-boost
pair, for any given real C. 2

Since for any real C, there obviously exist both a C-boost pair of RFs not at rest relative
to each other and a C-boost pair of RFs at rest relative to each other, Theorem 10 and
Remark 11 are immediate from the following general result.

12. Theorem: Adjustment can turn almost any RFCT into almost any other RFCT
Suppose that an RF g is URMoving relative to an RF f and an RF g1 is URMoving relative
to an RF f1. Then the following two conditions are equivalent to each other:

1. there exists an adjustment (f̃ , g̃) of the pair (f, g) such that the RFCT Ag̃,f̃ is the
same as Ag1,f1;
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2. Either (i) vg,f 6= 0 and vg1,f1 6= 0 or (ii) vg,f = 0 and vg1,f1 = 0.

2

Thus, Theorem 12 says that the only invariant of the RFCT under adjustment is whether
or not the corresponding pair of RFs are at rest relative to each other.

This can also be expressed as follows: The only invariant of the RFCT under adjustment
of the pair of RFs is whether or not the two RFs are adjustments of each other. This latter
restatement of Theorem 12 may at first glance seem trivial but it certainly is not so – the
emphasis here is on the “the only”. Since the condition that two RFs are at rest relative
to each other, i.e. that the relative velocity is precisely zero, cannot possibly be detected
experimentally, one can also somewhat loosely restate Theorem 12 as above: Adjustment
can turn almost any RFCT into almost any other RFCT.

Note also that the first of the two equivalent conditions in Theorem 12 can be restated as
follows: (f, g) can be adjusted to a pair (f̃ , g̃) which is the same as (f1, g1) up to re-labeling
of events (recall Proposition 1, page 11).

Proof of Theorem 12 is given in Appendix 3, page 47.

13. Remark: “Symmetric” form of Theorem 12
It is easy to see, either from the proof of Theorem 12 or directly, that the first of the two
equivalent conditions of Theorem 12 can be restated in the following symmetric manner,
formally better reflecting the exchangeability of the roles of the pairs (f, g) and (f1, g1):
pairs of RFs (f, g) and (f1, g1) can be adjusted to some other two pairs of RFs (f̃ , g̃) and

(f̃1, g̃1), respectively, so that Ag̃,f̃ = Ag1,f1; in other words, pairs (f, g) and (f1, g1) can be
adjusted to some other two pairs of RFs, which are the same up to re-labeling of events. 2

Theorem 10 and Proposition 2, page 17, imply that any pair of RFs can be adjusted,
for any prescribed real C, to a C-Lorentzian pair by means of the four types of adjustment
described in Subsection II D. In this sense, the phenomenon of the RFCT being positive-
Lorentzian (or 0-Lorentzian or negative-Lorentzian or any other) is seen merely as a matter
of an appropriate adjustment, which may appear rather surprising. In particular, what may
seem surprising is that any positive-Lorentzian pair of RFs can be made just by a choice
of adjustment, at one’s will, into either a 0-Lorentzian or a negative-Lorentzian pair, any
0-Lorentzian pair – into either a positive-Lorentzian or a negative-Lorentzian one, and any
negative-Lorentzian pair of RFs – into either a positive-Lorentzian or a 0-Lorentzian one.

In connection with Theorem 10, one could ask, When is it possible to adjust only one of
two URMoving RFs so that the resulting pair of RFs is C-Lorentzian? The next theorem
provides a complete answer to this question.

14. Theorem: Unilateral C-Lorentzian adjustment
Let f and g be two RFs, URMoving relative to each other. Let v := vg,f and let C be a
real number such that Cv2 < 1 (assuming that 0 · ∞2 := ∞). Then RF g can be adjusted
via rescaling and re-synchronization to an RF g̃ such that the pair (f, g̃) is C-Lorentzian. 2

Theorem 14 is immediate from its more detailed version, Theorem 34, page 33, taking
also into account Remark 3, page 18.
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15. Remark: Necessity of Cv2 < 1 for unilateral C-Lorentzian adjustment
The condition Cv2 < 1 is not only sufficient in Theorem 14 but necessary as well. Indeed, if g̃
is an adjustment of g, i.e. if g̃ is at rest relative to g, then it is easy to see that vg̃,f = vg,f = v.
Hence, the condition Cv2 < 1 is necessary for the pair (f, g̃) to be C-Lorentzian, in view of
(15), page 23. 2

C. Level 0: Universal C-Lorentzian adjustment

Given a C-Lorentzian pair of RFs (f, g) with vg,f 6= 0, C is uniquely determined, ac-
cording to Remark 8, page 24. So, C serves to relate RFs f and g for all events e. In this
sense, C is constant.

Suppose now that one has to deal with more than two RFs, so that there are at least
three RFs f1, f2, and f3 under consideration. Let us fix any real number C. By Theorem
10, each of the pairs p1 := (f2, f3), p2 := (f1, f3), and p3 := (f1, f2) can be adjusted to a C-
Lorenzian pair, to obtain C-Lorentzian pairs p̃1 := (f̃ 1

2 , f̃
1
3 ), p̃2 := (f̃ 2

1 , f̃
2
3 ), and p̃3 := (f̃ 3

1 , f̃
3
2 ),

respectively; the superscripts here refer to the corresponding pair. Thus, for each of the three
RFs f1, f2, and f3, one has two adjustments, e.g. two adjustments f̃ 2

1 and f̃ 3
1 of f1, depending

into which of the two pairs the RF is included. One may now ask whether this dependence
of the C-Lorentzian adjustment on the pair of RFs can be avoided. A positive and more
general answer to this question will be given below in this section.

Suppose that F is any family of mutually URMoving RFs.
Let F̃ be a universal adjustment of F , as defined at the end of Subsection II D, page 15.

Let us refer to F̃ as a C-Lorentzian universal adjustment of F if F̃ is a C-Lorentzian family
of RFs, i.e., if any pair of RFs in F̃ is C-Lorentzian; let us call a C-Lorentzian universal
adjustment positive-Lorentzian if C > 0, 0-Lorentzian if C = 0, and negative-Lorentzian if
C < 0.

Now, the more general question that we want to consider is the existence of a
C-Lorentzian universal adjustment of a given family of RFs. The next theorem shows that
a C-Lorentzian universal adjustment always exists if C < 0; for C ≥ 0, certain general
conditions must be satisfied in order for a C-Lorentzian universal adjustment to exist. In
other words, there always exists a negative-Lorentzian universal adjustment, and this is not
so for either positive-Lorentzian or negative-Lorentzian adjustments. Thus, the negative-
Lorentzian adjustment is more “universal”, so to speak, than either the positive-Lorentzian
or 0-Lorentzian ones.

16. Theorem: Existence of a C-Lorentzian universal adjustment
Let C be any given real number. There exists a C-Lorentzian universal adjustment of F if
and only if one of the following three conditions is satisfied:

1. C < 0;

2. C > 0 and there exist an RF f in F and an adjustment f̃ of f such that the speeds
of all RFs in F relative to f̃ are less than 1/

√
C;

28



3. C = 0 and there exist an RF f in F and an adjustment f̃ of f such that the speeds
of all RFs in F relative to f̃ are finite.

In this statement, each of the two entries of the phrase “there exist an RF f in F and an
adjustment f̃ of f” can be replaced by “for any RF f in F there exists an adjustment f̃ of
f”. 2

Theorem 16 follows from Theorem 34, page 33; under Condition 2 or 3 of Theorem 16,
apply Theorem 34 with f̃ in place of f and with every g in F other than f ; under Condition
1, before applying Theorem 34 in the same manner, choose arbitrarily and fix an RF f in
F and any adjustment f̃ of f .

17. Remark: Uniqueness of a C-boost universal adjustment
Moreover, it follows from Theorem 34 that the universal C-Lorentzian adjustment in Theo-
rem 16 can always be chosen so that all the RFCTs within the resulting family F̃ are finite
or infinite C-boosts. Let us call such an adjustment a universal C-boost adjustment. It also
follows from Theorem 34 that a universal C-boost adjustment is in a certain sense unique.
E.g., given f and f̃ such as in Theorem 16, every adjustment g̃ within a universal C-boost
adjustment is uniquely determined for each g ∈ F with a finite vg,f̃ ; for each g ∈ F with an
infinite vg,f̃ , there will be exactly two appropriate adjustments g̃; the latter duplicity can

be eliminated if it is additionally required that τ in the matrix
(
τ bT

0 S

)
of the adjustment

RFCT Ag,g̃ is positive, say. 2

Let V F ,f := {vg,f : g ∈ F} denote the set of all the vectors (or, more exactly, the set of
the terminal points of the vectors) of the velocities of all RFs in F relative to some RF f in
F .

18. Remark: Two-sheet hyperboloid condition for positive-Lorentzian universal adjust-
ment
Theorem 16 shows that for any given C < 0, there always exists a C-Lorentzian universal
adjustment of any family F . Thus, there always exists a negative-Lorentzian universal ad-
justment. For the existence of a positive- or 0-Lorentzian universal adjustment, additional
conditions on the family F are needed. The following statements hold, in which there is no
mentioning of an adjustment f̃ of f .

1. There exists a positive-Lorentzian universal adjustment of F if and only if for some
[or, equivalently, for any] f ∈ F , the set V F ,f of relative velocities is either bounded
or is contained in the inside, say H, of a two-sheet hyperboloid in R3; the hyperboloid
may have any center of symmetry and any orientation in R3; the inside H of the
hyperboloid is assumed here to also contain all the infinitely remote points in the
directions contained in the asymptotic cone limα↓0 αH of H; hence, some of the relative
velocities in V F ,f may be infinite.

2. There exists a 0-Lorentzian universal adjustment of F if and only if, for some [or,
equivalently, for any] f ∈ F , either the set V F ,f contains only finite relative velocities

29



or is contained in the complement R3 \ P of a two-dimensional affine plane P in R3

which does not pass through 0; the complement R3 \P is assumed here to also contain
all the infinitely remote points in the directions not contained in the plane passing
through 0 and parallel to P ; hence, some of the relative velocities in V F ,f may be
infinite. Note that the set R3 \ P can be considered as a set-limit of the insides of
a certain sequence of two-sheet hyperboloids, whose two sheets are getting closer to
each other and flatter.

Details on this remark are given in Appendix 5, page 49. 2

D. Level 1: Given only reciprocity, only spatial adjustment may be needed

Given two pairs (f1, g1) and (f2, g2) of mutually URMoving RFs, let us call the two pairs
spatially similar if there exists a non-singular 3× 3 real matrix S such that

f2 = diag(1, S)f1 and g2 = diag(1, S)g1. (27)

In other words, two pairs (f1, g1) and (f2, g2) of RFs are spatially similar if f2 and g2 may
be obtained from f1 and g1, respectively, by means of one and the same spatial adjustment.

Obviously, if two pairs of RFs are spatially similar, then they are adjustable to each
other without re-synchronization.

Observe that two pairs (f1, g1) and (f2, g2) of RFs are spatially similar if and only if

Ag1,f1 = diag(1, S−1)Ag2,f2 diag(1, S), (28)

for some non-singular 3× 3 real matrix S.

19. Theorem: Reciprocity implies spatial similarity to a generalized Lorentzian pair
If a proper pair of RFs is reciprocal, then it is spatially similar to a generalized Lorentzian
pair. 2

20. Remark: Improper reciprocal pairs are asymptotically spatially similar to 0-
Lorentzian pairs
Any improper reciprocal pair of RFs (f, g) is asymptotically spatially similar to a
0-Lorentzian pair in the sense that there exists a sequence of pairs of RFs (fk, gk), which
are spatially similar to (f, g) and such that limk→∞A

fk,gk exists and is 0-Lorentzian, i.e.,
Galilean. The relation of being spatially similar is carried here, as in (27), by spatial trans-
formations whose matrices Sk or their inverses S−1

k are nearly singular. 2

Proof of Theorem 19 and Remark 20 is given in Appendix 6, page 49.

21. Remark: Reciprocity of C-boosts
It is straighforward to check that any C-boost or infinite C-boost pair of RFs is reciprocal
(recall definitions (14) and (19), page 23). 2
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The following theorem provides an interesting connection between reciprocity and
rescaling to a generalized Lorentzian pair. It is immediate from Theorem 19, Proposition 2
(page 17), Remark 3 (page 18), Proposition 5 (page 22), and Remark 21.

22. Theorem: Reciprocity and generalized Lorentzian rescaling
A proper pair (f, g) of RFs can be adjusted without re-synchronization to a generalized
Lorentzian pair of RFs if and only if it can be adjusted without re-synchronization to a
reciprocal pair of RFs. 2

Note that by Remark 3, page 18, the phrase “adjusted without re-synchronization to a
generalized Lorentzian pair” in the statement of Theorem 22 can be replaced by “rescaled
to a generalized Lorentzian pair”.

Some further details on adjustment without re-synchronization can be found in Subsec-
tion III I, page 34.

E. Another Level 1: Given isotropy, only isotropic rescaling and re-synchronization

may be needed

Euclidian geometry is usually assumed – tacitly or explicitly – as the model for the spatial
component of the spacetime in accounts of the special theory of relativity. In reality, this
assumption corresponds to certain assumed properties of rigid bodies. In this subsection,
we establish a necessary and sufficient condition characterizing such an assumption.

We begin with the following.

23. Theorem: Given isotropy, only isotropic rescaling and re-synchronization may be
needed
Let C be any real number. Then any strictly proper isotropic pair of RFs can be adjusted
via isotropic rescaling and re-synchronization to a C-Lorentzian pair. 2

This theorem should be compared with Theorem 10, page 25; without the isotropy
assumption, anisotropic rescaling may be needed.

The isotropy condition in Theorem 23 can be relaxed to the following weak isotropy
version of it.

Let (f, g) be a pair of mutually URMoving RFs with v := vg,f 6= 0. For any vector r in
R3, let r⊥ := (I3−P v)r denote the vector component of r perpendicular to v. Let us say that
RFs f and g are mutually weakly-isotropically oriented or, for brevity, pair (f, g) is weakly-
isotropic if for any two events e1 and e2 which are simultaneous in RF g, the length of the
component perpendicular to v of the space interval between e1 and e2 in RF f is proportional
to that in g; in other words, tg(e2) = tg(e1) implies |rf(e2)⊥−rf(e1)⊥| = ξ|rg(e2)⊥−rg(e1)⊥|
for some real constant ξ. Note that since matrix Ag,f is non-singular, ξ here must be nonzero,
and so, ξ > 0.

It follows form Proposition 4, page 19, that every isotropic pair of RFs is weakly-isotropic.
The essential difference between the notions of isotropic and weakly-isotropic pairs of RFs

is that for the latter, the space intervals are considered only for pairs of events simultaneous
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in RF g.
Theorem 23 is immediate from the following more detailed result.

24. Theorem: Characterization of anisotropy-free adjustment
Let C be any real number. Let (f, g) be a strictly proper pair of RFs. Then (f, g) can be
adjusted via isotropic rescaling and re-synchronization to a proper C-Lorentzian pair of RFs
(f̃ , g̃) if and only if it can be adjusted via spatial re-orientation to a weakly-isotropic pair of
RFs (f̂ , ĝ). 2

25. Remark: Uniqueness

1. The proper C-Lorentzian adjustment (f̃ , g̃) of (f, g) in Theorem 24 can be chosen so

that (i) (f̃ , g̃) is C-boost, i.e., Ag̃,f̃ = BC,u for some u, (ii) g̃ is obtained from g by
isotropic rescaling and spatial re-orientation only, and (iii) f̃ is obtained from f by
re-synchronization and temporal rescaling only; if C ≥ 0, then f̃ may be taken to be
just a re-synchronization of f – no temporal adjustment is then needed.

2. Such a choice of (f̃ , g̃) is unique given (f, g) and the (constant) value of
∂tf̃

∂tf
, where

tf := tf(e) and tf̃ := tf̃(e), e ∈ E .

3. The weakly-isotropic pair of RFs (f̂ , ĝ) can be chosen so that f̂ = f , and ĝ is obtained
from g by spatial re-orientation only.

2

Proof of Theorem 24 and Remark 25 is given in Appendix 7, page 51.

26. Remark: Weak isotropy vs. isotropy
Let (f, g) be a strictly proper reciprocal and weakly isotropic pair of RFs. Since (f, g) is
reciprocal, by Theorem 19, page 29, (f, g) can be rescaled, and hence adjusted without re-
synchronization, to a generalized Lorentzian pair (f̂ , ĝ). On the other hand, since (f, g) is
weakly isotropic, by Theorem 24 (f, g) can be adjusted via re-synchronization and isotropic
spatial rescaling to a generalized Lorentzian pair (f̌ , ǧ), perhaps different from (f̂ , ĝ).

The question is, Can one always choose (f̂ , ĝ) and (f̌ , ǧ) to be the same, so that (f, g)
can be isotropically adjusted to a generalized Lorentzian pair? The answer is no; see a
counterexample in Appendix 8, page 54. 2

F. Level 2: Reciprocity and isotropy already imply the generalized Lorentzian

property

27. Theorem: Reciprocal and isotropic pairs are generalized Lorentzian
If a pair of RFs is reciprocal and isotropic, then it is generalized Lorentzian. 2
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This Theorem is proved in Appendix 9, page 54.

28. Theorem: Generalized Lorentzian characterization of natural pairs
A pair of RFs is natural if and only if it can be isotropically rescaled to a generalized
Lorentzian pair. 2

This follows from Theorem 27, Proposition 5 (page 22), Remark 21 (page 29), and the
fact that any C-boost pair of RFs is isotropic.

G. Level 2: Universal generalized Lorentzian isotropic rescaling

Let F be a family of mutually URMoving RFs. If F is natural, i.e. every pair of RFs
in F is natural, then by Theorem 28, every pair of RFs in F can be isotropically rescaled
to a C-Lorentzian pair of RFs. Hence, the following question arises: Is there always a
C-Lorentzian isotropic rescaling of the entire family F? The following theorem answers yes
to this question.

29. Theorem: Existence of a universal C-Lorentzian isotropic rescaling
Family F is natural if and only if F can be isotropically rescaled to a C-Lorentzian family
for some real C =: CF . 2

Proof of this result is given in Appendix 10, page 55.
In view of Theorem 28, Theorem 29 can be restated as follows.

30. Theorem: Existence of a universal C
Suppose that every pair of RFs in F can be isotropically rescaled to a generalized Lorentzian
pair. Then F can be isotropically rescaled to a C-Lorentzian family for some real C =: CF .
2

This theorem is immediate from Theorem 29 and Theorem 28.

31. Proposition: Choice of a universal C
Let us refer to the constant C = CF mentioned in Theorems 29 and 30 as a universal
constant of family F , because in a C-Lorentzian family F̃ , every pair of RFs is C-Lorentzian
for one and the same C, rather than C depending on the choice of a pair in F̃ .

1. Depending on the choice of the universal isotropic rescaling, the universal constant
CF can be chosen arbitrarily except for its sign, which may be 1, −1, or 0 (assuming
that sign (0) = 0). E.g., the universal constant CF may be assumed without loss of
generality to be 1, −1, or 0.

2. The sign of the universal constant CF is uniquely determined by F unless all RFs in
F are at rest relative to one another; in the latter, exceptional case, the value of CF
is a completely arbitrary real number.
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3. For any fixed f in F , its isotropic rescaling f̃ as the part of a universal C-Lorentzian
isotropic rescaling F̃ of F can be chosen completely arbitrarily; of course, the choice of
the isotropic rescaling of RFs in F other than f depends on the choice of f̃ . Moreover,
given any f in F and any isotropic rescaling f̃ of f , the entire isotropic rescaling F̃ of
F is uniquely determined.

4. Given any fixed RF f in F which is not at rest relative to at least one other RF g in F
and given any fixed isotropic rescaling f̃ of f , the value of CF is uniquely determined.

2

Proof of this proposition is given in Appendix 11, page 57.

32. Remark: Isotropy is essential
Theorem 30 would no longer hold if the two entries of “isotropically rescaled” in its statement
were replaced by “rescaled”. – See Remark 38 below. 2

33. Remark: Three spatial dimensions are essential
The analogue of Theorem 30 with less than three spatial dimensions would not hold, even if
its conclusion “F can be isotropically rescaled to a C-Lorentzian family” for a universal C
were relaxed to merely “F can be isotropically rescaled to a generalized Lorentzian family”.
– See Appendix 12, page 59. 2

H. Unilateral C-boost-adjustment and parametrization of affine transformations

34. Theorem: Unilateral C-boost adjustment
Let f and g be two RFs, URMoving relative to each other. Let v := vg,f and let C be a
real number.

1. The following conditions are equivalent:

(a) there exists an adjustment g̃ of g such that the pair (f, g̃) is C-boost;

(b) v <∞ and Cv2 < 1.

If either of these equivalent conditions takes place, then the appropriate adjustment g̃
of g is uniquely determined, and Ag̃,f = BC,v.

2. Also, the following conditions are equivalent:

(a) there exists an adjustment g̃ of g such that the pair (f, g̃) is infinite-C-boost;

(b) v =∞ and C < 0.
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If either of the latter two equivalent conditions takes place, then there are exactly two
appropriate adjustments g̃ of g, with Ag̃,f equal to either BC,e

∞ or BC,−e
∞ , where the pair

of unit vectors {e,−e} determines the direction of the infinite relative velocity v; the
appropriate adjustment g̃ of g is determined completely uniquely if, in addition, the

sign of
∂tg

∂tg̃
is prescribed. (Loosely speaking, the sign of

∂tg

∂tg̃
determines the relative

orientation of the time axes in RFs g and g̃.)

2

35. Remark: C-boost-adjustment parametrization of affine transformations
Obviously, any non-singular 4× 4 real matrix A is a matrix of some RFCT. Therefore, The-
orem 34 means any such matrix A possesses a unique multiplicative representation of the
form (A86), page 60, or, in the exceptional case A00 = 0, of the form (A95) with τ > 0. One
thus concludes that the C-boost transformations together with the adjustment transforma-
tions provide for a unique factorization representation of arbitrary affine transformations
of R4. Now multiplicative representations (12), (13), and (20), page 24, of the generalized
Lorentzian transformations can be seen as special cases of (A86) and (A95), with τ = ±1,
b = 0, and S = Q – an orthogonal matrix. 2

I. More on generalized Lorentzian adjustment without re-synchronization, or

rescaling

Of the four types of adjustment, listed in Subsection II D, page 15, it is rather certainly
re-synchronization that seems to be the least desirable, as the one most substantially af-
fecting the relation of temporal measurements with spatial ones. One could therefore ask:
When a pair of mutually URMoving RFs is adjustable without re-synchronization to a gen-
eralized Lorentzian pair? A characterization of such pairs in terms of adjustment without
re-synchronization to reciprocal pairs of RFs was given by Theorem 22, page 30; once again,
by Remark 3, page 18, generalized Lorentzian adjustment without re-synchronization means
the same as generalized Lorentzian rescaling.

In this subsection, it is shown that pairs of RFs that can be rescaled to generalized
Lorentzian pairs constitute, in a certain sense, a majority of pairs of mutually URMoving
RFs.

Moreover, it is possible to give a necessary and sufficient condition for the existence
of a generalized Lorentzian rescaling of a pair (f, g) of mutually URMoving RFs in terms
of the RFCT matrix Ag,f . That condition is rather cumbersome if given with the utmost
generality, accounting for a number of exceptions of purely mathematical character, which
cannot even be experimentally detected. However, if the consideration is restricted to the
strictly proper pairs, defined in Subsection II F, page 21, then the necessary and sufficient
condition can be expressed quite simply.

36. Theorem: A majority of pairs of RFs admit a generalized Lorentzian rescaling
Let C be any nonzero real number. Let (f, g) be a strictly proper pair of mutually URMoving
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RFs and let A := Ag,f . Then (f, g) can be rescaled (or, equivalently, adjusted without re-
synchronization) to a C-Lorentzian pair of RFs if and only if µ < 1 and Cµ > 0, where

µ := µg,f :=
A01A

−1
11 A10

A00
. (29)

2

Thus indeed, a generalized Lorentzian rescaling exists for a “majority” of pairs of
URMoving RFs: if µ 6< 1, then one can fix this violation e.g. by merely replacing any one
of the four blocks, A00, A01, A10, or A11 by its opposite (−A00), (−A01), (−A10), or (−A11)
so that to switch the sign of µ and thus get µ ≤ −1 < 1; then, however, one would need to
switch the sign of C as well, to satisfy the condition Cµ > 0.

One now sees that µ is an important characteristic of a pair of RFs. It is dimensionless,
invariant with respect to any adjustment without re-synchronization and with respect to the
interchange of the roles of f and g: µf,g = µg,f = µg̃,f̃ , where g̃ and f̃ are any adjustments
of g and f without re-synchronization, and has the following expressions:

µ = −

∂t

∂r′
vf,g

∂t

∂t′

= −

∂t′

∂r
vg,f

∂t′

∂t

= −

∂t

∂r′
∂r′

∂t
∂t′

∂t

∂t

∂t′

= −

∂t′

∂r

∂r

∂t′

∂t′

∂t

∂t

∂t′

= −
1

2

∂t

∂r′
∂r′

∂t
+
∂t′

∂r

∂r

∂t′

∂t′

∂t

∂t

∂t′

in terms of Subsection II F, page 21.
Note that the pair (f, g) is strictly proper if and only if the relative speeds |vg,f | and

|vf,g| are both finite and µ 6= 0.
Note also that if the pair (f, g) can be rescaled (or, equivalently, adjusted without re-

synchronization) to a C-Lorentzian pair of RFs (f̃ , g̃), then µ = Cv2 = 1−γ−2
v – cf. (A110),

page 62 – and so, Cµ = C2v2, where v := vg̃,f̃ .
Proof of Theorem 36 is given in Appendix 14, page 62.

37. Example: Non-transitivity of generalized Lorentzian rescaling
There are three RFs f , g, and h such that each of the pairs (f, g) and (g, h) is a generalized
Lorentzian pair, while the pair (f, h) cannot be rescaled, and hence cannot be adjusted
without re-synchronization, to a generalized Lorentzian pair. Indeed, let, e.g.,

g := diag
(

2−3/2
(

4 −8
1 −4

)
, I2

)
h and f := diag

(
2−1/2

(
2 −1
2 −2

)
, I2

)
g,

for an arbitrary RF h, so that f = diag
(

1

4

(
7 −12
6 −8

)
, I2

)
h. Then the pairs (f, g) and

(g, h) are (1/2)-Lorentzian and 8-Lorentzian, respectively, while according to Theorem 36,
the pair (f, h) cannot be rescaled to a generalized Lorentzian pair. 2

38. Remark: A universal generalized Lorentzian rescaling of a pairwise reciprocal and
proper family of RFs need not exist
Now consider the problem of the existence of a generalized Lorentzian universal rescaling

36



of a family F of mutually URMoving RFs. As Example 37 shows, as a minimum, one
should impose here the condition that each pair of RFs in F can be rescaled to a generalized
Lorentzian pair. However, we shall see that this condition will not suffice, even if every pair
of RFs in F is known to be proper and reciprocal (and thus, by Theorem 19, page 29, can
be rescaled to a generalized Lorentzian pair) and even if F is known to consist of only three
RFs; elaboration on this statement is given in Appendix 15, page 63.

This shows that in Theorem 30, page 32, the isotropy stipulation cannot be dropped
and that, moreover, it could not be dropped even if the conclusion of Theorem 30 were
weakened in the following two aspects at once: (i) isotropic rescalability were replaced by
mere rescalability or, equivalently, by adjustability without re-synchronization and (ii) a
C-Lorentzian family with a universal constant C = CF were replaced by a generalized
Lorentzian family, with C depending on the choice of a pair of RFs in F . 2

IV. TESTING RECIPROCITY AND/OR ISOTROPY AND EXECUTING AN

APPROPIATE GENERALIZED LORENTZIAN ADJUSTMENT

In this section, we summarize developed in the previous sections special theories of relativ-
ity in order to consider relevant problems of testing of reciprocity and isotropy assumptions
and the corresponding problems of execution of adjustment.

Let (f, g) be a strictly proper pair of mutually URMoving RFs, so that the relative
velocity v := vg,f is finite and nonzero. Physically, as explained in Introduction and Section
II, the notion of such a pair may have many different kinds of physical realization. However,
of foremost interest to us here is the standard autonomous construction for inertial RFs,
described in Subsection II E, which will be assumed in this section.

Our main objective in this section is to propose a method to test the hypothesis that all
the pairs of inertial RFs obtained via a standard autonomous construction are adequately
modeled by the notion of natural pairs. Recall that a pair of mutually URMoving RFs
(f, g) is defined as natural if it can be adjusted via re-orientation and isotropic rescaling to
a reciprocal and isotropic pair of RFs. Thus, to test whether a pair of RFs is natural means
to test properties of reciprocity and isotropy. We approach this task at the three main levels
described in Introduction, page 9.

But before we proceed towards that end, we shall indicate how to test whether the two
so constructed physical RFs can be adequately described as a a pair of mutually URMoving
RFs (f, g). That will be the case whenever the RFCT Ag,f is affine. Any affine RFCT
can be completely determined by the measurement of the time-space coordinates Xi :=(
ti
ri

)
:= f(ei) and X ′i :=

(
t′i
r′i

)
:= g(ei), i = 0, . . . , 4, of any 5 events e0, . . . , e4 in RFs f

and g, assuming that the X ′i ’s are affine-independent. Taking more events: e5, e6, . . ., the
“observers” can test whether the RFCT is indeed affine, that is, whether the two physical
RFs under consideration may be described, with an appropriate degree of accuracy, as
mutually URMoving. (To exchange the information on the identification of the events and
on their time-space measurements, the “observers” in f and g must each possess a signal
with the relative speed greater than the relative speed of the other RF.)
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A. Level 0: Executing an appropiate generalized Lorentzian adjustment with no

assumptions on a pair of mutually URMoving RFs

By Theorem 10, page 25, for any real C, any pair of mutually URMoving RFs can be
adjusted to a C-Lorentzian pair. Therefore, if all the types of adjustment listed in Subsection
II D are permitted, then the only testing needed here is the described above testing whether
the two RFs in question are mutually URMoving.

Hence, at Level 0, it only remains to show how to execute an appropiate generalized
Lorentzian adjustment.

If Cv2 < 1 (recall, v := vg,f was supposed to be finite and nonzero) then, by Theorem
34, page 33, there exists a unique adjustment

g̃ :=
(
τ bT

0 S

)
g (30)

of RF g such that the pair (f, g̃) is C-boost. Even when the condition Cv2 < 1 is not satisfied
for the given pair (f, g) and a given C, it is satisfied if f is replaced by an appropriate (say

temporal) adjustment f̃ of f

(
note that if f̃ = diag(τ, I3)f , then vg,f̃ =

vg,f

τ

)
.

Thus, without loss of generality, the condition Cv2 < 1 may be assumed to take place.
Then all the parameters of the needed here adjustment (30) can be uniquely determined
using relations (A91), (A93), (A92), and (A94), established below in Appendix 13, page 60:

S = Sv
(
A10A01

A00
− A11

)
,

bT = CvTS + γ−1
v A01,

τ =
A00

γv
,

where v := vg,f and γv are computed according (5), page 14, and (15), page 23, respectively.
It is seen that neither the value nor the sign of C is determined by the mere fact that a

pair (f, g) can be adjusted to a C-Lorentzian pair.

B. Level 1: Testing reciprocity only and executing an appropiate generalized

Lorentzian adjustment

According to our hypothesis in its strongest form, all the pairs of inertial RFs obtained
via a standard autonomous construction are adequately modeled by the notion of natural
pairs and thus can be adjusted via re-orientation and isotropic rescaling to a reciprocal and
isotropic pair of RFs.

However, in this subsection we want to describe a method of testing of reciprocity only,
rather than of both reciprocity and isotropy, and describe how to execute a corresponding
generalized Lorentzian adjustment.

Because our construction is autonomous, there is no reason to expect that the given
pair of RFs (f, g) will be reciprocal by itself, without any adjustment. At the same time,
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re-synchronization is not needed here. Moreover, if re-synchronization were allowed here as
well, than in view of Theorem 12, page 25, reciprocity could not be possibly tested.

By Theorem 22, page 30, (f, g) can be can be adjusted without re-synchronization to a
reciprocal pair of RFs if and only if it can be rescaled (or, equivalently, adjusted without
re-synchronization) to a generalized Lorentzian pair of RFs; in turn, by Theorem 36, page
34, this is equivalent to the system of two inequalities

µ < 1 and Cµ > 0, (31)

where µ :=
A01A

−1
11 A10

A00

.

Thus, this system of inequalities constitutes a definitive test of the reciprocity or, more
exactly, a test of the adjustability without re-synchronization to a reciprocal pair.

In case the results of this test are positive, appropriate (but not unique at that) adjust-
ments f̃ := diag(1, N−1)f and g̃ := diag(τ,M)g of RFs f and g, such that the pair (f̃ , g̃) is
C-boost, are described by the formulas

N = ((aTb)−1bbT + b2b
T
2 + b3b

T
3 )1/2,

τ = A00/γv,

M = −(NSv)−1A11,

where a := A00(AT11)−1AT01, b := CA10, b2 := a × b, b3 := a × b2, v := C−1N(AT11)−1AT01,
and γv is given by (15), page 23 [cf. (A111)–(A114), (A106), (A109), and the paragraph
that precedes (A111)].

By the second inequality in (31), the sign of C is uniquely determined by the pair (f, g).
However, in view of Remark 38, page 35, with the reciprocity property only, the sign of
C can hardly be considered a local property of the physical spacetime, since a universal
generalized Lorentzian rescaling of a pairwise reciprocal family need not exist. Moreover,
the sign of C may depend on the choice of the pair of RFs (f, g) in such a family. E.g., if
RFs f , g, and h are such that Ag,f = BC1,v and Ah,g = BC2,u are scalar boost matrices with,
say, C1 = 1, v = 0.2, C2 = 3, and u = 0.1, then one has µh,f < 0, and so, by (31), pair
of RFs (f, h) can be rescaled to a C-Lorentzian pair only with C < 0, while C1 > 0 and
C2 > 0.

C. Another Level 1: Testing isotropy only and executing an appropiate generalized

Lorentzian adjustment

In this subsection we want to describe methods of testing of the condition of weak
isotropy. Again, although the spacetime may be adequately described as isotropic in a
domain containing the given pair of RFs (f, g), there is no reason to expect that (f, g) will
be isotropic or weakly isotropic as it is, without any adjustment – because the physical
construction is autonomous for each of the two RFs under consideration.

According to Theorem 24, page 31, (f, g) can be adjusted via spatial re-orientation to a
weakly-isotropic pair of RFs (f̂ , ĝ) if and only if it can be adjusted via isotropic rescaling
and re-synchronization to a proper C-Lorentzian pair of RFs (f̃ , g̃).
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It can be seen from the proof of Theorem 24 [cf. (A42), page 52] that (f, g) can be
adjusted via spatial re-orientation to a weakly-isotropic pair of RFs if and only if

(I3 − P
v)A11A

T
11(I3 − P

v) = ξ2(I3 − P
v) (32)

for some ξ > 0, where v := vg,f .
This is a definitive test of the weak isotropy.

In case the result of this test is positive, appropriate adjustments f̃ :=
(
τ1 bT1
0 I3

)
f and

g̃ :=
(
τ bT

0 ξQ

)
g of RFs f and g, such that the pair (f̃ , g̃) is C-boost, are uniquely described

– given C and τ1 and given that τ > 0 –

ξ =
|AT11r

⊥|

|r⊥|
, (33)

Q = Qε := ε
P u(AT11)−1

|A−1
11 u◦|

−
1

ξ
(I3 − P

u)A11, (34)

τ = τ1
|A10|

ξε|A−1
11 A10|

(A01A
−1
11 A10 − A00), (35)

bT1 = u−2(uTA11 − τ1u
2A01 + γ−1ξuTQ)A−1

11 , (36)

bT = γ−1(τ1A01 + bT1A11 + ξCγuTQ), (37)

where ε := sign
[
(A01A

−1
11 A10 − A00)τ1

]
,

u :=
A10√

τ2 + C|A10|2
, (38)

and γ := γu (recall (15), page 23) [cf. (A44), (A45), (A50), (A47), (A51), (A49), (A38), and
(A40)]; here, τ1 is any nonzero real number with the large enough absolute value so that τ
in (35) is large enough so that u can be defined by (38); in particular, if C ≥ 0, then τ1 may
be taken to be any nonzero real number.

It is seen that neither the value nor even the sign of C is uniquely determined by the
mere fact that a pair (f, g) can be adjusted via isotropic rescaling and re-synchronization to
a C-Lorentzian pair.

D. Level 2: Testing reciprocity and isotropy and executing an appropiate generalized

Lorentzian adjustment

In this subsection, we shall describe how to test the full content of our main hypothesis
that all the pairs of inertial RFs obtained via a standard autonomous construction are
adequately modeled by the notion of natural pairs and thus can be adjusted via re-orientation
and isotropic rescaling to a reciprocal and isotropic pair of RFs. We shall also describe how
to execute an appropriate generalized Lorentzian adjustment, which will be shown to be
unique in a certain sense. What is even more important, it will be shown that the constant
C can also be uniquely determined here.
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By Theorem 28, page 32, pair (f, g) is natural if and only if it can be isotropically rescaled
to a generalized Lorentzian pair. Therefore, in view of Proposition 5, page 22, pair (f, g)
is natural if and only if if the RFCT matrix A := Ag,f admits a representation of the form
(A105), page 62, with N = ξ1I3 and M = ξQ for some positive real ξ and ξ1, and some

orthogonal 3 × 3 matrix Q. Note that diag(1, ξ1I3)BC,v = BCξ−2
1 , ξ1v diag(1, ξ1I3). Hence,

without loss of generality, we shall assume that ξ1 = 1, so that the condition that (f, g) is
natural may be rewritten as

A = BC,vdiag(τ, ξQ) (39)

or, equivalently, as the system of equations

A00 = γvτ, (40)

A01 = −γvCξv
TQ, (41)

A10 = γvτv, (42)

A11 = −ξSvQ. (43)

Eqs. (42) and (40) uniquely determine v =
A10

A00
(= vg,f). Note next that the existence of an

orthogonal matrix Q satisfying (43) is equivalent to the condition

A11A
T
11 = ξ2(Sv)2 (44)

for some ξ > 0.
Thus, (44) uniquely determines ξ > 0; alternatively and equivalently, ξ may be uniquely

determined by (A44), page 52, which follows from (A42), which follows from (43). Also,
(43) implies

Q = −ξ−1(Sv)−1A11. (45)

This implies γvξv
TQ = −vTA11. Hence, given (43), equation (41) can be rewriten as

A01 = CvTA11. (46)

This uniquely determines the value of C, say by the formula

C =
A01A

T
01

vTA11A
T
01

. (47)

Hence, τ is uniquely determined by (40), and Q is uniquely determined by (45), taking into
account (16) and (15), page 23.

Note that representation (39) means that the pair (f, g̃) is C-boost, where g̃ :=
diag(τ, ξQ)g is an adjustment of g obtained via re-orientation and isotropic rescaling.

Thus, all the elements of representation (39) – C, v, τ , ξ, and Q – are uniquely deter-
mined. In particular, the adjustment (f, g̃) of pair (f, g) is uniquely determined. But the
most important fact here is that the value of C is uniquely determined.

Moreover, in view of Theorem 29 (or Theorem 30) and Proposition 31, page 32, the sign
of C can be considered truly a local property of the physical spacetime provided that the
main hypothesis is true in its full form, as stated in the beginning of this subsection.

At the same time, one has a definitive test as to whether (f, g) is natural, i.e., can be
adjusted via re-orientation and isotropic rescaling to a reciprocal and isotropic pair of RFs.
This test consists of the following two conditions [cf. (46) and (44)]:
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1. vectors AT01 and AT11A10 are collinear with each other and

2. A11A
T
11 = ξ2(Sv)2 for some ξ > 0, where Sv = SC,v is defined by (16), page 23,

v = vg,f , and C is determined by (47).

V. WAVES OF TRANSFORMATION OF SPACETIME

A. Equations of waves of transformation of spacetime, wave duality, and wave

interpretation of C

For the local, or special, theory of relativity the notion of the RF introduced in Subsection
II A as a 1-to-1 mapping of the event space E onto R4 is adequate. In the general theory,
E and R4 should be replaced by subsets of theirs. Respectively, an RFCT in the general
theory is a mapping of a subset of R4 onto some, perhaps other, subset of R4.

Let A be such an RFCT, which is defined and differentiable on some open set D in
R4 and whose Jacobian matrix at point X is A := A(X), for any X in D. Matrix A can
be considered as the matrix Ag,f of the RFCT from an RF g to another RF f , URMoving
relative to g, where both RFs f and g can be considered as located in an infinitesimally small
neighborhood of the point X of the domain D in R4. By Theorem 10 (page 25), Proposition
5 (page 22), and equations (23) and (24) (page 25), the pair (f, g) can be adjusted to a

C-boost pair (f̃ , g̃), for every given C. Thus, the matrix Ã := Ã(X) := Ag̃,f̃ is C-boost, at
every point X in D.

Suppose that such local adjustments can be done in a consistent fashion, so that the
resulting C-boost matrices Ã(X), X ∈ D, constitute a family of the Jacobian matrices of a
differentiable mapping defined on domain D.

The question is, What are characteristic properties of the family of the C-boost matrices
Ã(X), X ∈ D?

To simplify the notation and without loss of generality, we shall assume that A(X) =
Ã(X) for all X in D, so that the original family A(X), X ∈ D, already consists of C-boost
matrices, where the local value of C = C(X) at point X in D may of course depend on
X. Likewise, the speed parameter v = v(X) in (21), page 24, may depend on the point
X =: (t, x, y, z)T in D.

Let the four-dimensional vector (τ, ξ, η, ζ)T in R4 denote the image of a point X =
(t, x, y, z)T in D under the mapping A, i.e., (τ, ξ, η, ζ)T = A((t, x, y, z)T ), so that here τ
is the “new”, transformed temporal coordinate, while ξ, η, and ζ are the “new” spatial
coordinates of an event with the “old” temporal coordinate t and “old” spatial coordinates
x, y, and z.

Thus, the scalar C-boost Jacobian matrix A = A(X) = A((t, x, y, z)T ) has the form

A = diag (J,−I2) , (48)

where J :=
∂(τ, ξ)

∂(t, x)
:=

(
τt τx
ξt ξx

)
is a 2 × 2 Jacobian matrix; the subscripts t and x stand

for the partial derivatives with respect to t and x. Let us disregard such experimentally
non-detectable degeneracies as some of the elements of J being zero at some point.
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Then one can see that the scalar-boost property of A is completely characterized by the
system of equations traceJ = 0 and det J = −1, that is,

τt + ξx = 0, (49)

τtξx − τxξt = −1. (50)

By (21), page 24, one has

C = −
τx
ξt
. (51)

Rewrite system (49)–(50) as

ξx = −τt, (52)

ξt =
1− τ2

t

τx
. (53)

The latter two equations, together with ξxt = ξtx, yield

τ2
xτtt − 2τtτxτtx + (τ2

t − 1)τxx = 0. (54)

Conversely, if τ is a solution of equation (54), then there exists a solution ξ of system
(52)–(53), and so, system (49)–(50) is solved, in principle.

39. Remark: Wave duality between time and space
System (49)–(50) is self-dual in the sense that it remains invariant when the “new” temporal
coordinate τ is interchanged with the “new” spatial coordinate ξ and, simultaneously, the
“old” temporal coordinate t is interchanged with the “old” spatial coordinate x. Therefore,
given a family of solutions τ = τ(t, x) and ξ = ξ(t, x) of system (49)–(50), one can obtain
another, dual, family of solutions τ̂(t, x) := ξ(x, t) and ξ̂(t, x) := τ(x, t) by such interchanging
of variables. Obviously, if a family of solutions of (49)–(50) is dual to another family, then
vice versa is also true, so that one can refer in this case to the two families as to a dual
pair. If a family of solutions of (49)–(50) is dual to itself, let us call it self-dual. To avoid
misunderstanding, note that in a self-dual family of solutions of (49)–(50), every member of
the family is dual to a possibly different member of the same family, not necessarily to itself.
Note also that any family of solutions of (49)–(50) can be (at least formally) extended to a
self-dual family, namely, to the union of the given family with its dual.

In the next two subsections, we shall present, as two models, two dual pairs of explicitly
described families of non-linear solutions of (49)–(50). The two families of the first dual pair
are identical to each other, so that in fact one has one self-dual family. In contrast, the two
families of the second dual pair are different from each other. 2

As an immediate consequence to Remark 39, one has the following, dual to (54), equation:

ξ2
t ξxx − 2ξtξxξtx + (ξ2

x − 1)ξtt = 0. (55)

Equations (54) and (55) are non-linear wave equations, since they are of the hyperbolic
type; indeed, their discriminants are everywhere positive, equal to (2τtτx)

2−4τ2
x(τ2

t −1) = 4τ2
x

for (54) and 4ξ2
t for (55).
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40. Remark: Wave interpretation of C
Recall that any equation of the form ψ = ψ(αt + βx), with β 6= 0, represents a wave
propagating along the x-axis with constant velocity

vψ = −
α

β
= −

ψt

ψx
. (56)

Hence, τ and ξ, the solutions to the wave equations (54) and (55), may be considered
as the time wave and the space wave, respectively, propagating along the x-axis with not
necessarily constant velocities

vτ = −
τt

τx
(57)

and

vξ = −
ξt

ξx
. (58)

It follows from (51), (57), (58), and (49) that
1

C
is the product of the velocities of the time

and space waves along the x-axis:

1

C
= vτvξ. (59)

In particular, it follows, once again, that C has the dimension of (velocity)−2. 2

In view of the Cáuchy–Kowalevsky Theorem, one can impose arbitrary analytical initial
conditions on τt, τx, ξt, and ξx in problem (49)–(50). Thus, there exist solutions of (49)–(50)
with local values of C of both signs, depending on the point in the spacetime.

We shall present three explicitly given families of nonlinear solutions of (49)–(50). For
each solution belonging to the first of these families, C may take on values of both signs,
depending on t and x. For each solution belonging to either of the other two families, C is
everywhere positive.

B. Self-dual sum-of-two-waves family of solutions

In search of an interesting family of explicit solutions of system (49)–(50) or, equivalently,
(54) or (55), one could first try a single wave – say τ = τ(x − ut) as a solution to (54) –
propagating with a constant velocity u along the x-axis. However, as it is easy to see, that
would lead only to the trivial family of linear solutions of (49)–(50) that correspond to the
scalar C-boost matrices (48) independent of X = (t, x, y, z)T , with τt, τx, ξt, and ξx being
arbitrary constants satisfying (49)–(50).

Any such trivial solution is a member (corresponding to ψ = 0 below) of the following
much richer and more interesting family of explicit solutions of (49)–(50), described by the
formulae

τ = γ(t− C linvx) + ψ(x− ut) + τ0, (60)

ξ = γ(vt− x) + uψ(x− ut) + ξ0, (61)
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where

γ :=
ε1√

1− C linv2
, (62)

u :=
γ + ε2

C linγv
, (63)

ε1 = ±1, ε2 = ±1, while C lin, v, τ0, and ξ0 are arbitrary real parameters, except that C lin

and v are assumed to be nonzero and such that the definition of γ by (62) makes sense; here,
the function ψ can be considered as an arbitrary infinite-dimensional, functional parameter.

This family was derived assuming that τ or, equivalently, ξ is the sum of two waves each
with a constant velocity; it is then necessary that at least one of the two waves be linear, as
in (60) and in (61). We omit the derivation. Let us only indicate that it is straightforward
to check that indeed the functions τ and ξ given by (60)–(61) satisfy the system (49)–(50)
at all points X = (t, x, y, z)T where ψ(x− ut) is differentiable.

Let us emphasize that u in (60)–(61) is not arbitrary but is determined by C lin, v, and
ε2 according to (63).

The family (60)–(61) is especially interesting when the ψ-terms are small as compared
to the linear terms, and so, may be considered as non-linear perturbation waves.

Notice that equations (60) and (61) have the same functional form with respect to the
arguments t and x.

What is more interesting is that family (60)–(61) is self-dual in the sense of Remark 39:
when τ is interchanged with ξ and, simultaneously, t is interchanged with x, any member
of the family (60)–(61) turns into another member of the same family, with certain “dual”
values of the numerical parameters ε1, ε2, C lin, v, τ0, and ξ0, and the functional parameter

ψ; namely, ε̂1 := −ε1, ε̂2 := ε2, Ĉ lin := 1/C lin, v̂ := C linv, τ̂0 := ξ0, ξ̂0 := τ0, and ψ̂(λ) :=
uψ(−uλ) for all λ, where u is defined by (63); note that the “dual” value of u, that is,

û := (γ̂ + ε̂2)/(Ĉ linγ̂v̂) – is reciprocal to u, û = 1/u.
Each of equations (60)–(61) describes a linear superposition of two waves, a linear wave

and an arbitrary wave with a constant (but not arbitrary) velocity; let us refer to the latter
wave as to the ψ-wave.

The linear wave components of τ and ξ in (60)–(61), i.e. τ lin := γ(t− C linvx) + τ0 and
ξlin := γ(vt− x) + ξ0, jointly describe the mutual URMotion of a scalar (C lin)-boost pair of
RFs, with constant relative velocity v along the x-axis.

Recall that C lin can take on values of either sign. Therefore, in the case when the
derivative of ψ is uniformly small enough, the true local value of C obtained according to
(51) will have the same sign as C lin everywhere in spacetime, and so, it can be everywhere
positive or everywhere negative. On the other hand, taking e.g. ψ(λ) := ln |λ|, it is easy to
see that for every solution of (60)–(61), the sign of C can vary depending on t and x.

The ψ-wave components of τ and ξ in (60)–(61), i.e. τψ := ψ(x−ut) and ξψ := uψ(x−ut)
describe waves moving with constant velocity u.

Note that in the domains of the spacetime where ψ-wave components of τ and ξ are much
larger than the linear ones, e.g. in a neighborhood of the plane of singularity x− ut = 0 in
R4 in the case ψ(λ) ≡ ln |λ|, the true local value of C will be close to [cf. (51)]
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Cψ := −
τψx

ξψt
=

1

u2
, (64)

which is always positive.
Let us also note that for every member of the family of solutions (60)–(61), the velocities

v of the linear wave and u of the ψ-wave are different from each other.

C. Dual sum-and-product wave families of solutions

Another family of explicit solutions of (49)–(50) is described by the formulae

τ =
1

2α
ln

(e2αt+β2 − 1)2

e2αt+β2
−

1

α
ln |αx+ β1|+ τ0, (65)

ξ = −x
e2αt+β2 + 1

e2αt+β2 − 1
−

2β1/α

e2αt+β2 − 1
+ ξ0. (66)

Here, α 6= 0, β1, β2, τ0, and ξ0 are arbitrary real parameters.
Note that τ in (65) is the sum of two functions, one of which depends only on t and the

other, only on x. It is a wave propagating along the x-axis with variable velocity [see (57)]

vτ = −
τt
τx

= (αx+ β1)
e2αt+β2 + 1

e2αt+β2 − 1
. (67)

Next, in the case β1 = ξ0 = 0, ξ in (66) is the product of two functions, one of which
depends only on t and the other, only on x. It is a wave propagating along the x-axis with
variable velocity [see (58)]

vξ = −
ξt
ξx

= (αx+ β1)
4e2αt+β2

e4αt+2β2 − 1
. (68)

It follows from (51), (65), and (66) or, alternatively, from (59), (67), and (68) that

C =
(e2αt+β2 − 1)2

4e2αt+β2(αx+ β1)2
.

Thus, C is positive everywhere.
Asymptotic behavior of τ and ξ for large t is given by

τ ≈


t+

β2

2α
−

1

α
ln |αx+ β1|+ τ0, αt→∞,

− t−
β2

2α
−

1

α
ln |αx+ β1|+ τ0, αt→ −∞,

ξ ≈

 − x+ ξ0, αt→∞,

x+ 2β1/α+ ξ0, αt→ −∞

It follows that the direction of “time” τ is the same as that of t when αt → ∞ and is
opposite when αt→ −∞. A similar relation takes place between ξ and x when αt→ ±∞.
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The family dual to the one given by (65)–(66) is described by the formulae

τ̂ = −t
e2αx+β2 + 1

e2αx+β2 − 1
−

2β1/α

e2αx+β2 − 1
+ ξ0, (69)

ξ̂ =
1

2α
ln

(e2αx+β2 − 1)2

e2αx+β2
−

1

α
ln |αt+ β1|+ τ0. (70)

APPENDIX

A1. Proof of Proposition 1
Assume that Ag1,f1 = Ag,f , i.e. f1 ◦ g

−1
1 = f ◦ g−1. Then the 1-to-1 mapping f−1

1 ◦ f is
identical to g−1

1 ◦ g; let us denote this mapping by `, so that ` = f−1
1 ◦ f = g−1

1 ◦ g. Thus, ` is
a re-labeling of the event space. Moreover, one obviously has f1 = f ◦ `−1 and g1 = g ◦ `−1,
so that f1 = f ` and g1 = g `.

Conversely, suppose that if f1 = f ` = f ◦ `−1 and g1 = g ` = g ◦ `−1 are the re-labeled
versions of f and g under any re-labeling `. Then it is easy to see that f1 ◦ g

−1
1 = f ◦ g−1,

i.e., Ag1,f1 = Ag,f . 2

A2. Proof of Proposition 5
Let matrix A be partitioned as in (4), page 14. It is C-Lorentzian if and only if (10), page
22, takes place or, equivalently,

A2
00 − CA

T
10A10 = 1, (A1)

A00A01 − CA
T
10A11 = 0T , (A2)

AT01A01 − CA
T
11A11 = −CI3. (A3)

First, it is straightforward to check that either (12) or (13) implies that A is C-Lorentzian.
On the other hand, (12) can be rewritten as the system of equations

A00 = εγv, (A4)

A01 = −Cγvv
TQ, (A5)

A10 = εγvv, (A6)

A11 = −SvQ. (A7)

Note that (A4) and (15) imply

A00 6= 0, (A8)

which excludes case (13), in particular. Moreover, (A4), (A6), and (A7) yield

ε = signA00, (A9)

v =
A10

A00
, (A10)

Q = −(Sv)−1A11. (A11)
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Hence, ε and v are uniquely determined by A, and Q is uniquely determined by A and C.
Note also that (A1) and (A10) imply Cv2 < 1, so that (15) makes sense.

Thus, in case (A8), it suffices to show that equations (A1)–(A3) together with (A9)–
(A11) imply that Q is orthogonal and that equations (A4)–(A7) hold. It is easy to check
that

(Sv)−1 = I3 + (γ−1
v − 1)P v. (A12)

Hence, using (A11), (17), (15), (A10), (A2), and (A3), one has

QTQ = AT11(I3 + (γ−2
v − 1)P v)A11 = AT11A11 − C

−1AT01A01 = I3,

i.e., Q is indeed orthogonal. Next, (A1), (A10), (A9), and (15) imply (A4). Further, (A4)
and (A10) yield (A6), and (A11) is equivalent to (A7). Finally, (A11), (A12), (17), and (A2)
imply (A5).

It remains to consider the case when (A8) is false. In this case, (A1) implies C < 0.
Hence, (13) may be rewritten as

A01 =
√
−CeTQ, (A13)

A10 =
e
√
−C

, (A14)

A11 = (P e − I3)Q, (A15)

plus A00 = 0. Then (A14) yields

e =
√
−CA10, (A16)

whence, using (A13), one has P eQ = eeTQ =
√
−CA10e

TQ = A10A01, and so, by (A15),

Q = A10A01 − A11. (A17)

Thus, e and Q are uniquely determined by A and C. It remains to show that eTe = 1 and
that Q is orthogonal. But eTe = 1 follows from (A16), (A1), and A00 = 0, while QTQ = I3

follows from (A17), (A1), (A2), (A3), and A00 = 0. 2

A3. Proof of Theorem 12
To prove Theorem 12, we shall need

A4. Lemma: Nonsingularity of the “determinant” matrix
If a 4 × 4 real matrix A is non-singular and A00 6= 0, then the matrix A00A11 − A10A01 is
also non-singular [recall the convention (4)]. 2Proof If (A00A11 − A10A01)r = 0 for

some r ∈ R3, then A
(
λ

r

)
=
(

0
0

)
for λ = −A01r/A00, and so, by the non-singularity of A,

one has r = 0. 2

Let us now return to Proof of Theorem 12. That Condition 1 of Theorem 12 implies
Condition 2 therein follows immediately from the definition of adjustment in terms of being
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relatively at rest, which implies transitivity: if an RF h is an adjustment of (i.e., is at rest
relative to) an RF g and RF g is an adjustment of (i.e., is at rest relative to) an RF f , then
RF h is an adjustment of (i.e., is at rest relative to) RF f .

It remains to prove that Condition 2 of Theorem 12 implies Condition 1.
Let A := Ag,f and B := Ag1,f1 , where the pairs (f, g) and (f1, g1) satisfy Condition 2 of

Theorem 12. According to (6), page 15, it remains to show that there are two nonsingular
matrices of the form (

τ bT

0 S

)
and

(
τ1 bT1
0 S1

)
,

where S and S1 are 3× 3, such that

B

(
τ bT

0 S

)
=
(
τ1 bT1
0 S1

)
A, (A18)

that is,

τB00 = τ1A00 + bT1A10, (A19)

B00b
T +B01S = τ1A01 + bT1A11, (A20)

τB10 = S1A10, (A21)

B10b
T +B11S = S1A11. (A22)

Without loss of generality, B00 6= 0. Indeed, otherwise, B10 6= 0, since B is non-singular.
Then, one can replace B by, e.g.,

B̃ =
(
B̃00 B̃01

B̃10 B̃11

)
:=
(

1 b̃T

0 I3

)
B

with some b̃ such that B̃00 = b̃TB10 6= 0.
Hence, (A19) and (A20) may be rewritten, respectively, as

τ =
1

B00
(τ1A00 + bT1A10) (A23)

and

bT =
1

B00

(τ1A01 + bT1A11 − B01S). (A24)

Using the last expression, one can rewrite (A22) as

S = (B00B11 −B10B01)−1[B00S1A11 −B10(τ1A01 + bT1A11)]; (A25)

by Lemma 4, the matrix B00B11 −B10B01 is non-singular. Since A is non-singular, one can
always choose a nonzero real number τ1 and a vector b1 ∈ R3 so that in (A23), τ 6= 0. In
fact, A10 and B10 are either both nonzero or both zero, because of the condition that f and
g are not at rest relative to each other and f1 and g1 are not at rest relative to each other
or, alternatively, f and g are at rest relative to each other and f1 and g1 are at rest relative
to each other. Hence, one can always find a non-singular matrix S1 to satisfy (A21). Then,
all the relations (A19)–(A22) will take place if τ , b, and S are given by (A23)–(A25). Note
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finally that in view of (A18), the matrix
(
τ bT

0 S

)
will be non-singular; this follows because

τ1 6= 0 and S1 is non-singular, and so,
(
τ1 bT1
0 S1

)
is non-singular. 2

A5. Detais on Remark 18
This remark is immediate from Theorem 16 and the following observation. Let f̃ be an
adjustment of some RF f in F , so that

f̃ =
(
τ bT

0 S

)
f.

If g is in F , u = vg,f̃ , and v = vg,f , then u = |Sv|/|τ + bTv|; if v is infinite, this formula
still works “in the limit”; thus, u = |Se|/|bTe| if v is infinite and has the direction of the
line carrying unit vectors ±e. It remains to notice the following:

(i) for any small enough C > 0, the set of the terminal points of the vectors v satisfying
the inequality |Sv|/|τ + bTv| < 1/

√
C is the inside of a two-sheet hyperboloid if b 6=

0; moreover, the inside of any two-sheet hyperboloid in R3 is contained in the set {v ∈
R3: |Sv|/|τ + bTv| < 1/

√
C}, for appropriate S, τ , and C; the same inequality describes

the inside of an ellipsoid if b = 0;
(ii) the relation |Sv|/|τ+bTv| <∞ describes the complement to R3 of the plane defined

by the equation τ + bTv = 0 if b 6= 0; otherwise, it describes the set of all finite velocities
v. 2

A6. Proof of Theorem 19 and Remark 20
Let A := Ag,f . The reciprocity means A2 = I4, or

A2
00 +A01A10 = 1, (A26)

A00A01 +A01A11 = 0T , (A27)

A00A10 +A11A10 = 0, (A28)

A10A01 +A2
11 = I3. (A29)

Multiplying (A29) by A11 on the right and then using (A27) to replace A01A11 by
−A00A01, one has −A00A10A01 + A3

11 = A11. Again using (A29), now to replace A10A01

by I3 − A2
11, one obtains

A3
11 +A00A

2
11 − A11 −A00I3 = 0. (A30)

Hence the eigenvalues of A11 satisfy the equation

λ3 +A00λ
2 − λ−A00 ≡ (λ+A00)(λ2 − 1) = 0, (A31)

and so, may equal only to 1, (−1), or (−A00). In particular, now we see that all the
eigenvalues of A11 must be real. Therefore, there exists a non-singular 3 × 3 real matrix S
such that the matrix S−1AS is in a Jordan canonical form.
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But, in view of (28), A may be replaced by diag(1, S−1)A diag(1, S), for any non-singular
3×3 real matrix S; then A11, A01, and A10 become replaced by S−1A11S, A01S, and S−1A10,
respectively. Therefore, A11 may be assumed to be in a Jordan canonical form. Thus, only
the following three cases are possible.

Case 1 A11 = diag(λ1, λ2, λ3), where {λ1, λ2, λ3} ⊆ {1,−1,−A00}.
Then (A29) implies that A10A01 = I3 − A2

11 = diag(1 − λ2
1, 1 − λ2

2, 1 − λ2
3) is a diagonal

matrix of rank ≤ rank (A10) ≤ 1, and so, for some permutation matrix P , P−1A10A01P

equals to either diag(1 − A2
00, 0, 0) or the zero matrix. Hence, by (A26), one always has

P−1A10A01P = diag(1−A2
00, 0, 0), and so, by (A29), (P−1A11P )2 = diag(A2

00, 1, 1). Replac-
ing now A01, A10, and A11 by A01P , P−1A10, and P−1A11P , respectively, that is, replacing
A by diag(1, P−1)A diag(1, P ), one has

A10A01 = diag(1− A2
00, 0, 0) (A32)

and

A11 = diag(ε1A00, ε2, ε3) (A33)

for some ε1, ε2, and ε3 in {1,−1}.
Subcase 1.1 A00 = ε0 for some ε0 ∈ {1,−1}.

Then, by (A33), A11 = diag(ε1, ε2, ε3) for some ε1, ε2, and ε3 in {1,−1}, and, by (A32),
either A10 = 0 or A01 = 0T . Therefore, letting α → 0 or α → ∞ depending on whether
A10 = 0 or A01 = 0T , one sees that diag(1, α−1I3)Adiag(1, αI3) converges to the matrix
diag(ε0, ε1, ε2, ε3), which is C-Lorentzian for all real C; in particular, it is 0-Lorentzian.
Thus, A is asymptotically spatially similar to a 0-Lorentzian pair of RFs, in the sense of
Remark 20.

Subcase 1.2 A00 6∈ {1,−1}.
In this subcase, (A32) implies that for some nonzero real a, A01 = (a−1, 0, 0) and A10 =
((1−A2

00)a, 0, 0)T . Hence, (A27) implies that in (A33), ε1 = −1. Thus,

A =


A00 a−1 0 0

(1− A2
00)a −A00 0 0

0 0 ε2 0
0 0 0 ε3

 ,

whence A is C-Lorentzian with C := −a−2/(1− A2
00).

Case 2, in which

A11 =

λ 1 0
0 λ 0
0 0 µ

 ,
where λ, µ ∈ {1,−1,−A00}.

In this case, in view of (A30), λmust be a double root of (A31), wherefore λ = −A00 = −δ
for some δ ∈ {1,−1}, and so, µ = ε for some ε ∈ {1,−1, A00} = {1,−1}. Now (A29) yields

A10A01 =

 0 2δ 0
0 0 0
0 0 0

 ,
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whence, for some nonzero real b, one has A10 = (b, 0, 0)T and A01 = (0, 2δ/b, 0). Therefore,

A =


δ 0 2δ/b 0
b −δ 1 0
0 0 −δ 0
0 0 0 ε

 (A34)

for some δ and ε in {1,−1}, and so,

diag(1, 1, α−1, 1)A diag(1, 1, α, 1)−→
α→0


δ 0 0 0
b −δ 0 0
0 0 −δ 0
0 0 0 ε

 ,
the latter being a 0-Lorentzian matrix. Thus, A is asymptotically spatially similar to a
0-Lorentzian pair of RFs.

Case 3, in which

A11 =

λ 1 0
0 λ 1
0 0 λ

 ,
where λ ∈ {1,−1,−A00}. This case is in fact impossible, since it would imply, in view of
(A30), that λ is a triple root of equation (A31), which cannot have a triple root for any
value of A00. 2

A7. Proof of Theorem 24 and Remark 25
Note that for any ξ > 0 and any orthogonal 3 × 3 matrix Q, one has diag(1, ξQ)BC,v =
BCξ−2, ξQvdiag(1, ξQ); recall (14), page 23, for the definition ofBC,v. Hence, in view of Propo-
sition 5, page 22, pair (f, g) can be adjusted via isotropic rescaling and re-synchronization
to a proper C-Lorentzian pair if and only if the matrix A := Ag,f satisfies the equation

BC,u
(
τ bT

0 ξQ

)
=
(
τ1 bT1
0 I3

)
A, (A35)

for some u 6= 0, b1, and b in R3, ξ > 0, orthogonal matrix Q, and real τ 6= 0 and τ1 6= 0.
Equation (A35) is a special case of (A18), with

S1 = I3, S = ξQ, and B = BC,u. (A36)

Let us define γ by

γ = γu; (A37)

recall (15), page 23. Note that (A21) can be rewritten here as

u =
A10

γτ
. (A38)

Hence, in view of (5), page 14, vectors u, v := vg,f , and A10 have the same direction, and
so,
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P u = P v. (A39)

Given (A38), equation (A37) is equivalent to

u =
|A10|√

τ2 + C|A10|2
. (A40)

Let v◦ stand for the unit vector along v (or, equivalently, along u):

v◦ :=
v

v
=

A10

|A10|
=

u

u
. (A41)

In view of (A36) and (14), (A22) now implies

(I3 − P
v)A11Q

T = −ξ(I3 − P
v), (A42)

which in turn implies that (f, g) can be adjusted via spatial re-orientation to a weakly-
isotropic pair of RFs (f̂ , ĝ), where f̂ := f and ĝ := diag(1, Q)g. This demonstrates the
“only if” part of Theorem 24. Also, this verifies the last of the three statements of Remark
25.

Let us now verify the second, “uniqueness” statement of Remark 25. This amounts to
showing that τ , b, ξ, Q, and b1 are uniquely determined in (A35) given τ1 and given that
τ > 0.

Rewrite (A42) as QT (I3 − P v)r = −ξ−1AT11(I3 − P v)r for all r in R3 or, equivalently, as

QT r⊥ = −ξ−1AT11r
⊥ (A43)

for all r⊥ in R3 that are orthogonal to v. This implies

ξ =
|AT11r

⊥|

|r⊥|
, (A44)

for any r with r⊥ 6= 0.
Note also that if (A43) takes place for some orthogonal matrix Q, then there exist exactly

two orthogonal matrices Q satisfying (A43). Using (A42), it is straightforward to check that
in such a case those two matrices Q are

Qε := ε
P u(AT11)−1

|A−1
11 u◦|

−
1

ξ
(I3 − P

u)A11, ε = ±1; (A45)

note that (AT11)−1 exists since the pair (f, g) is strictly proper.
For B = BC,u, as in (A36), one has B00B11 − B10B01 = −γI3 + (γ − 1)P u, and so,

equation (A25) can be rewritten as

ξ(−γI3 + (γ − 1)P u)Q = γ(A11 − τ1uA01 − ubT1A11). (A46)

Multiplying both sides of this equation by uT on the left and by A−1
11 on the right, one

obtains
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bT1 = u−2(uTA11 − τ1u
2A01 + γ−1ξuTQ)A−1

11 . (A47)

Replacing here Q by Qε from (A45), multiplying by u on the right, and then using (A38),
one has

τγ(1− bT1 u) = τ1A01A
−1
11 A10 − τξε

|A−1
11 A10|

|A10|
. (A48)

On the other hand, in view of (A38), equation (A19) can be rewritten here as

τγ(1− bT1 u) = τ1A00.

This, together with (A48) and the condition τ > 0, implies

ε = sign
[
(A01A

−1
11 A10 −A00)τ1

]
(A49)

and

τ = τ1
|A10|

ξε|A−1
11 A10|

(A01A
−1
11 A10 − A00). (A50)

Equation (A20) can be rewritten here as

bT = γ−1(τ1A01 + bT1A11 + ξCγuTQ). (A51)

Now we can demonstrate the second, uniqueness statement of Remark 25. We see that
ε is uniquely determined by (A49). Also, since v = vg,f is uniquely determined by the pair
(f, g), the value of ξ is uniquely determined by (A44). Therefore, τ is uniquely determined
by (A50). Next, the direction and the length of u are uniquely determined by (A38) and
(A40), respectively. Now one can compute also γ using (A37). Then Q = Qε is uniquely
determined by (A45), and so, b1 is uniquely determined by (A47), and finally, b is uniquely
determined by (A51).

It remains to prove the “if” part of Theorem 24 and the first part of Remark 25. Thus,
suppose that the pair (f, g) can be adjusted via spatial re-orientation to a weakly-isotropic
pair (f̂ , ĝ). Without loss of generality, one may assume that (f, g) itself is weakly-isotropic.
This means that for some ξ > 0 and for all r in R3, one has |(I3−P v)A11r| = ξ|(I3−P v)r|.
Hence, (A42) takes place for some orthogonal matrix Q. Note that A01A

−1
11 A10 − A00 6= 0;

indeed, otherwise, one would have A

(
1
r

)
=
(

0
0

)
if r = −A−1

11 A10, and so, A would be

singular. Next, define ε by (A49) and then τ by (A50), choosing τ1 to be any nonzero real
number with the large enough absolute value so that τ is large enough so that u can be
defined by (A40), and thus γ can be defined by (A37); then define u by (A38). Now define
Q := Qε by (A45), b1 by (A47), and finally b by (A51).

Then it is straightforward to check that equation (A35) is satisfied. This proves the “if”
part of Theorem 24 and the first part of Remark 25; it is obvious that if C ≥ 0, then τ1 can
be taken to be equal to 1 (or to any other nonzero real) in order for the R.H.S. of (A40) to
be defined. 2
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A8. Counterexample for Remark 26
Let g be any RF and let f := Ag, where

A := BC,v + diag(0, 0, 2, 2) +

(
1−
√

1− Cv2

v
, 1, 0, 0

)T
(0, 0, a, b),

C, v, a, and b are nonzero reals, and Cv2 < 1; recall here definition (21), page 24. Then
the pair (f, g) is reciprocal and weakly isotropic; at the same time, pair (f, g) cannot be
isotropically rescaled to a generalized Lorentzian pair. Indeed, otherwise, one could find a
real number C̃ and positive real numbers τ f , ξf , τ g, and ξg such that the matrix

diag(τ f , ξfI3)−1A diag(τ g, ξgI3) =
(

(τ f )−1τ gA00 (τ f )−1ξgA01

(ξf)−1τ gA10 (ξf)−1ξgA11

)
is C̃-Lorentzian, which would imply, in particular, (cf. (A2), page 46) that the vectors
A00A01 = v−1(γv − 1)(−1 − γv, a, b) and AT10A11 = γvv(−γv, a, b) are collinear, which is
obviously not true. 2

A9. Proof of Proposition 4 and Theorem 27
Let us first consider the case v := vg,f 6= 0. Obviously, Condition 3 of Proposition 4 implies
Condition 1 implies Condition 2. To complete the proof of Proposition 4, it remains to show
that Condition 2 of Proposition 4 implies Condition 3. Let B be the matrix of the RFCT

Ag,f in an orthonormal basis of the form
(

1
0

)
,

(
0

v/v

)
,

(
0
b2

)
,

(
0
b3

)
. Then Condition 2

implies Bdiag(I2, R) = diag(I2, R)B for some 2 × 2 matrix R of rotation through not a

multiple of 180◦. Writing R as
(

cos θ − sin θ
sin θ cos θ

)
with sin θ 6= 0, it is now easy to obtain

Condition 3. Thus, Proposition 4 is proved.
Let us now prove Theorem 27. Since the reciprocity means B2 = I4, one has the system

of the equations (i) B2
0 = I2 and (ii) λ2P 2 = I2, whence λ = 1. Since v 6= 0 and in view

of (5), one can represent B0 as γ
(

1 −Cv
v −a

)
, for some real numbers C, γ, and a, provided

v < ∞. Now (i) implies a = 1 and γ = ±γv = ±(1 − Cv2)−1/2. It is thus shown that

B = diag(B0, P ), where B0 = ±γv

(
1 −Cv
v −1

)
and P is a 2 × 2 rotation matrix. Hence,

BTdiag(1,−CI3)B = diag(1,−CI3), and so, B is C-Lorentzian provided that 0 < v < ∞.

The possibility v =∞ is treated in the same manner. Here, one can write B0 =
(

0 −Cu
u −a

)
,

for some real numbers C, u 6= 0, and a. Using now (i) B2
0 = I2, one has a = 0 and Cu2 = −1,

wherefore B is again C-Lorentzian.
The case v = 0 is only easier. Here, the matrix Q in the isotropy condition is any

orthogonal 3× 3 matrix, and so, A := Ag,f = diag(µ, νI3), for some real numbers µ and ν.
Now the reciprocity A2 = I4 yields µ = ±1 and ν = ±1, whence A is C-Lorentzian for any
real C. 2

A10. Proof of Theorem 29
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The “if” part is immediate from Theorem 28. To prove the “only if” part, let us assume
that F is a natural family of RFs.

By Theorem 28, for each pair of RFs (f, g) in F there exist a real number Cf,g and
positive real numbers τ f,g, ξf,g, τ g,f , and ξg,f such that the isotropically rescaled pair (f̃ g, g̃f)
is Cf,g-Lorentzian, where f̃ g := diag(τ f,g, ξf,gI3)f and g̃f := diag(τ g,f , ξg,fI3)g.

For any f and g in F , since the pair (f̃ g, g̃f) is Cf,g-Lorentzian, the pair (f, ˜̃g
f
) is

C̃f,g-Lorentzian, where ˜̃g
f

:= diag

(
τ g,f

τ f,g
,
ξg,f

ξf,g
I3

)
g, which is an isotropic rescaling of g, and

C̃f,g := Cf,g(ξf,g/τ f,g)2.
Therefore, without loss of generality, one may assume that F has the property that all

the relative velocities within F are nonzero; otherwise, consider first, in place of F , any

maximal subfamily F0 of F with this property; then, by the last part of Remark 8, (f, ˜̃g
f
)

will be C-Lorentzian for any real C, if f is any RF in F0 and g is any RF in F with vg,f = 0

(since for such f and g, one will have v
˜̃g
f
,f = 0).

Now, let us first consider the case of non-collinearity when there are three RFs f , g1, and
g2 in F such that the relative velocities vg1,f and vg2,f are non-collinear with each other.

Let us fix any such f , g1, and g2. Note that v
˜̃g
f
1 ,f and v

˜̃g
f
2 ,f are non-collinear, since vg1,f and

vg2,f are so.
Hence, without loss of generality one may assume that (i) for every g in F the pair (f, g)

is Cf,g-Lorentzian for some real Cf,g, (ii) vg1,f and vg2,f are non-collinear for some g1 and
g2 in F , and (iii) vg,h 6= 0 for any two RFs g and h in F .

Conditions (ii) and (iii) imply that for every g in F , either vg,f and vg1,f are non-collinear
or vg,f and vg2,f are non-collinear. Thus, in the non-collinearity case it remains to prove the
following.

Suppose that f , g, and h are three RFs such that (i) vg,f and vh,f are linearly independent
and (ii) the pairs (f, g), (f, h), and (g̃, h) are C1-, C2-, and C3-Lorentzian, respectively, for
some real C1, C2, and C3 and for some isotropic rescaling g̃ = diag(τ, ξI3)g of g, where τ
and ξ are some positive reals. Then C1 = C2; note that, because of the group property,
C1 = C2 = C for some C would imply that the pair (g, h) is C-Lorentzian, as well as (f, g)
and (f, h) are.

Let A := Ag,f and B := Ah,f . In view of Proposition 5, page 22, and because re-
orientation preserves C-Lorentzian pairs, one may assume without loss of generality that
A = BC1,v or A = BC1,e1

∞ and B = BC2,u or B = BC2,e2
∞ for some v, u, and unit e1

and e2 in R3 such that v or e1 is linearly independent of u or e2, as applicable. Then
Ag,h = B−1A = BA, and Ag̃,h = BAdiag(τ, ξI3)−1.

Consider first the case of the finite relative velocities, when A = BC1,v and B = BC2,u.
Since (g̃, h) is C3-Lorentzian and in view of definition (10), page 22, and identity (BC,v)−1 =
BC,v, one has

diag(1,−C3I3)BC2,uBC1,v = (BC1,vBC2,u)Tdiag(1,−C3I3)diag(τ2, ξ2I3),

which can be rewritten as the system of equations

γuγv(1− C2u
Tv) = γuγv(1− C1u

Tv)τ2, (A52)

−γuγvC3(u− γ−1
u Suv) = γuγvτ

2(−C2u + C1γ
−1
u Suv), (A53)
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γuγv(−C1v + C2γ
−1
v Svu) = −γuγvC3ξ

2(v − γ−1
v Svu), (A54)

−C3(−γuγvC1uvT + SuSv) = −C3ξ
2(−γuγvC2uvT + SuSv). (A55)

Since v and u are linearly independent, (A53) implies C3 = C1τ
2 and C3 = C2τ

2, whence
C1 = C2.

If one or both of the two relative velocities is infinite, that is, if A = BC1,e1
∞ and/or B =

BC2,e2
∞ , then the corresponding equations may be obtained from (A52)–(A55) by the limit

transition(s) with v = ve1 as v →∞ and/or u = ue2 as u →∞, so that γvv → e1/
√
−C1

and Sv → I3 − P e1 and/or γuu→ e2/
√
−C2 and Su → I3 − P e2 .

The case when only one of the two relative velocities is infinite, i.e. A = BC1,e1
∞ or

B = BC2,e2
∞ , is similar to the the case of finite relative velocities; one uses here the limit

version of (A54) if A = BC1,e1
∞ and that of (A53) if B = BC2,e2

∞ .
If now both of the two relative velocities are infinite, i.e. A = BC1,e1

∞ and B = BC2,e2
∞ ,

then the limiting versions of (A53)–(A55) may be written as

C3(I3 − P
e2)e1 = C1τ

2(I3 − P
e2)e1, (A56)

C2(I3 − P
e1)e2 = C3ξ

2(I3 − P
e1)e2, (A57)

C3

(
−

C1√
C1C2

e2e
T
1 + (I3 − P

e2)(I3 − P
e1)

)
= C3ξ

2

(
−

C2√
C1C2

e2e
T
1 + (I3 − P

e2)(I3 − P
e1)

)
.

(A58)

Note that (I3 − P e1)e2 6= 0 and (I3 − P e2)e1 6= 0 since e1 and e2 are linearly independent.
Hence, if C3 = 0, then (A56) and (A57) imply C1 = 0 = C2. Note also that the matrix
I3 is linearly independent of P e1, P e2, e2e

T
1 , and P e2P e1, since P e2P e1 = (eT2 e1)e2e

T
1 and

rank(aP e1 + bP e2 + ce2e
T
1 ) = rank(aP e1 + e2(be2 + ce1)T ) ≤ rank(P e1) + rank(e2) = 2 for

all real a, b, and c, while rank(I3) = 3. Hence, in the case C3 6= 0, (A58) implies ξ2 = 1, and
so, C1 = C2.

Thus, C1 = C2 whenever the case of non-collinearity obtains.
Otherwise, one may assume that v = (v, 0, 0)T , u = (u, 0, 0)T , and e1 = e2 = (1, 0, 0)T .

Then – for the finite relative velocities – equations (A52)–(A55) assume the form

γuγv(1− C2uv) = γuγv(1− C1uv)τ2, (A59)

−γuγvC3(u− v) = γuγvτ
2(−C2u+ C1v), (A60)

γuγv(−C1v + C2u) = −γuγvC3ξ
2(v − u), (A61)

−γuγvC3(−C1uv + 1) = −γuγvC3ξ
2(−C2uv + 1), (A62)

−C3I2 = −C3ξ
2I2. (A63)

Here, the two eqs. (A62) and (A63) correspond to the single eq. (A55).
If C3 6= 0, then (A63) implies ξ2 = 1, and so, C1 = C2 by (A62), since uv 6= 0.
If C3 = 0, then the matrix

Ag̃,h = diag
(
γuγv

(
1− C2uv 0
u− v 1− C1uv

)
, I2

)
diag(τ, ξI3)

−1 (A64)
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is 0-Lorentzian. Hence, by (20), page 24, the matrix diag(γuγv(1−C1uv), 1, 1) is orthogonal.
This means that (γuγv(1− C1uv))2 = 1, or

2C1uv = C1v
2 + C2u

2. (A65)

But (A60) and C3 = 0 imply C2u = C1v. The latter eq. together with (A65) imply
C1(u− v) = 0, since v 6= 0. If u = v, then C2u = C1v yields C1 = C2. If u 6= v, then C1 = 0,
and again C2u = C1v yields C2 = 0 = C1.

It remains to consider the limiting versions of eqs. (A59)–(A64) with v → ∞ and/or
u→∞.

For instance, the limiting versions of eqs. (A59), (A60), and (A61) with only u → ∞
imply C2 = C1τ

2, C3 = C2τ
2, and C2 = C3ξ

2, respectively. Hence, if C3 = 0, then
C2 = 0 = C1. If C3 6= 0, then (A63) implies ξ2 = 1, and so, C2 = C3; hence, τ2 = C3/C2 = 1;
thus, C2 = C1τ

2 = C1.
The limiting case with only v →∞ is completely similar to the latter one.
Consider finally the limiting versions of eqs. (A59)–(A64) with both v →∞ and u→∞.

If C3 6= 0, then C1 = C2 follows from (A63) and the limiting version of (A62). If C3 = 0,
then the limiting version of (A64) is

Ag̃,h = diag

(
−

C2√
C1C2

,−
C1√
C1C2

, 1, 1

)
diag(τ, ξI3)−1.

By (20), page 24, the matrix ξ−1diag

(
−

C1√
C1C2

, 1, 1

)
must be orthogonal. This implies

C1 = C2. 2

A11. Proof of Proposition 31
It is easy to check that if a family F of RFs is C-Lorentzian, then its isotropic rescaling F̃
defined by f̃ := diag(τ, ξI3)f for all f in F with τ and ξ independent of f is C̃-Lorentzian
with C̃ := Cτ2/ξ2. This implies Part 1 of the proposition.

To verify the rest of the proposition, take any two RFs f and g in F . Then there are
isotropic rescalings f̃ := diag(τ f , ξfI3)f and g̃ := diag(τ g, ξgI3)g of f and g such that the
pair (f̃ , g̃) is C-Lorentzian for some real C =: CF ; here, τ f , ξf , τ g, and ξg are positive reals.
Let A := Ag,f .

Consider first the case when the relative velocity vg,f is finite. Then, by Proposition 5,

diag(τ f , ξfI3)A = BC,vdiag(ε,Q)diag(τ g, ξgI3) (A66)

for some v in R3, ε = ±1, and orthogonal matrix Q. Equivalently,

τ fA00 = ετ gγv, (A67)

τ fA01 = −ξgCγvv
TQ, (A68)

ξfA10 = ετ gγvv, (A69)

ξfA11 = −ξgSvQ. (A70)

Eq. (A67) implies
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ε = signA00 (A71)

and A00 6= 0. Also, (A70) implies that A11 is non-singular. Next, (A69) and (A67) yield

v =
ξf

τ f
A10

A00
. (A72)

It follows from (A70) that

ξgI3 = ξf(A11A
T
11)1/2(Sv)−1 (A73)

and

Q = −(A11A
T
11)1/2A11. (A74)

It also follows from (A70) that ξfvTA11 = −ξgγvvTQ. Comparing this with (A68), one has
τ fA01 = CξfvTA11. This can be rewritten, in view of (A72), as

C
AT10A11

A00
=

(
τ f

ξf

)2

A01. (A75)

Also, (A67) implies

τ g = τ f
A00

εγv
. (A76)

Now, Parts 2 and 4 follow from (A75). Note that the positive real numbers τ f and
ξf , determining the isotropic rescaling f̃ = diag(τ f , ξfI3)f of f , can be chosen completely
arbitrarily; then one can compute v by (A72) and C by (A75); after that, γv by (15) (page
23), and finally uniquely determine the isotropic rescaling g̃ = diag(τ g, ξgI3)g of g using
(A73) and (A76), for any g in F with a finite relative velocity vg,f . This partially proves
Part 3 of the proposition.

It remains to treat the case when the relative velocity vg,f is infinite. Here, we need to
consider the limiting versions of eqs. (A67)–(A70) when v = ve with v →∞ and e being a
unit vector in R3:

τ fA00 = 0, (A77)

τ fA01 = ξg
√
−CeTQ, (A78)

ξfA10 = τ g
e
√
−C

, (A79)

ξfA11 = −ξg(I3 − P
e)Q; (A80)

here, one can always choose ε = 1; cf. (19), page 23. The treatment of this case is similar.
First, (A79) yields

e =
A10

|A10|
(A81)

and
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τ g = ξf
√
−C|A10|. (A82)

It follows from (A80) that

(ξg)2(I3 − P
e) = (ξf)2A11A

T
11. (A83)

Next, (A78) implies

C = −

(
τ f

ξg

)2

A01A
T
01. (A84)

Here, given any positive reals τ f and ξf , one uniquely determines e by (A81), then ξg > 0
by (A83), next C by (A84), and finally τ g by (A82).

This completes the proof of the proposition.
Note that Q here is also uniquely determined. Indeed, (A78) and (A79) imply

τ fξf

τ gξg
A10A01 = P eQ. This and (A80) now imply

Q =
τ fξf

τ gξg
A10A01 −

ξf

ξg
A11. (A85)

Hence, in any case, all the parameters ε, v, e, and Q are uniquely determined – by (A71),
(A72), (A81), and (A74) or (A85). 2

A12. Details on Remark 33
Consider first the case of R1 in place of R3. Here, let f be any RF and let then e.g.

g :=
1

2
√

2

(
3 −1
1 −3

)
f and h :=

1
√

2

(
2 −2
1 −2

)
f . Let g̃ := diag(2/

√
5,
√

5/2) g. Then the

pairs (f, g), (f, h), and (g̃, h) are C1-, C2-, and C3-Lorentzian, respectively, with C1 := 1,
C2 := 2, and C3 := 16/5.

Consider second R2 in place of R3. One counterexample for this case is as follows. Let
C2 be any negative real. Let ξ be any positive real except 1. Let C1 := C2ξ

2, C3 := C2ξ
−2,

and τ := ξ−2. Let e1 and e2 be any two orthogonal unit vectors in R2. For any negative
real C and any unit vector e in R2, let us define here BC,e

∞ as in (19), page 23, but with I2 in
place of I3. Let now f be any RF, and define RFs g, h, and g̃ by g := BC1,e1

∞ f , h := BC2,e2
∞ f ,

and g̃ := diag(τ, ξI2)g. Then the pairs (f, g) and (f, h) are obviously C1- and C2-Lorentzian.
Also, the pair (g̃, h) is C3-Lorentzian, since

Ag̃,h = BC3,−e1
∞ diag(1, Q),

where the matrix Q := e1e
T
2 − e2e

T
1 is orthogonal (since e1 and e2 are orthogonal).

Let now G stand for any one of the two above triples (f, g, h), constructed with R1 or R2

in place of R3. In either case, we have seen that every pair of RFs in G can be isotropically
rescaled to a generalized Lorentzian pair. Moreover, the pairs (f, g) and (f, h) are already
C1- and C2-Lorentzian.

Let us show now that there is no generalized Lorentzian isotropic rescaling Ĝ := (f̂ , ĝ, ĥ)
of G, where f̂ := diag(τ f , ξfI)f , ĝ := diag(τ g, ξgI)g, and ĥ := diag(τh, ξhI)f , for any
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positive reals τ f , ξf , τ g, ξg, τh, and ξh; here, I stands either for I1 = 1 or I2, according to
the number of the spatial dimensions. Assume that, to the contrary, there is a generalized
Lorentzian isotropic rescaling Ĝ := (f̂ , ĝ, ĥ) of G.

It follows from the second statement of Part 3 of Proposition 31, page 32, applied to
(f, g) or (f, h) in place of F , that there exists at most one choice of τ g, ξg, τh, and ξh given
τ f and ξf and given that the pairs (f̂ , ĝ) and (f̂ , ĥ) are generalized Lorentzian. But it is
easy to check that the choice τ g := τh := τ f and ξg := ξh := ξf makes the pairs (f̂ , ĝ) and
(f̂ , ĥ) generalized Lorentzian, namely, Ĉ1- and Ĉ2-Lorentzian with Ĉ1 := C2(τ f/ξf)2 and
Ĉ2 := C2(τ f/ξf)2. Hence, this is the only choice of τ g, ξg, τh, and ξh.

With such a choice, the pair (ĝ, ĥ) being generalized Lorentzian implies, in the same
manner, that (g, h) is so. But (g̃, h) is generalized Lorentzian as well, and g̃ = diag(τ, ξI) g
for some positive τ and ξ. It follows again from the second statement of Part 3 of Proposition
31 – applied now to (g, h) in place of F , h in place of f , and (g̃, h) in place of F̃ – that
τ = ξ = 1, which contradicts the above constructions, in which ξ (as well as τ) differs from
1. 2

A13. Proof of Theorem 34
Let A := Ag,f . To prove Part I of Theorem 34, page 33, it suffices to show that the
representation

A = BC,u
(
τ bT

0 S

)
(A86)

takes place for a nonzero real number τ , a non-singular real 3 × 3 matrix S, and vectors
b ∈ R3 and u ∈ R3 if and only if v < ∞ and Cv2 < 1, and then necessarily u = A10/A00

[cf. (5)].
Toward that end, rewrite (A86) as the system of the equations

A00 = γuτ, (A87)

A01 = γu(b
T − CuTS), (A88)

A10 = γuτu, (A89)

A11 = γuubT − SuS; (A90)

here, Su is defined as in (16) or (18), page 23. Then (A89) and (A87) imply A00 6= 0 and

u =
A10

A00

= v; (A91)

hence, the condition that v <∞ and Cv2 < 1 simply means that one can define γu = γv as
in (15). Next, (A88) is equivalent to

bT = CuTS + γ−1
u A01. (A92)

Now, (A90) together with (A91), (A92), and (A12) yield

S = Su
(
A10A01

A00

− A11

)
. (A93)
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By (A87),

τ =
A00

γu
. (A94)

Vice versa, (A91), (A92), (A93), and (A94) imply (A87)–(A90) or, equivalently, (A86).
In turn, (A86) implies that S is nonsingular, as well as A is. Hence, Part I of Theorem 34
is proved.

To prove Part II of Theorem 34, it suffices to show that (i) the representation

A = BC,e
∞

(
τ bT

0 S

)
(A95)

takes place for a nonzero real number τ , a non-singular real 3 × 3 matrix S, and a unit
vector e ∈ R3 if and only if v =∞ and C < 0, and then necessarily either e or −e has the
direction of A10, and (ii) given the sign of τ , the matrices b and S are uniquely determined.

Here, the necessity of the conditions v = ∞ and C < 0 is obvious. Also, by definition,
v =∞ implies A00 = 0. Rewrite now (A95) as the system of the equations

A00 = 0, (A96)

A01 =
√
−CeTS, (A97)

A10 =
τ
√
−C

e, (A98)

A11 =
1
√
−C

ebT + (P e − I3)S. (A99)

Then, (A98) implies

e = ε
A10

|A10|
(A100)

where ε := sign τ = ±1, and

τ = ε
√
−C|A10|. (A101)

By (17), page 23, P e = eeT ; next, (A97) means eTS = A01/
√
−C; hence, (A99) can be

rewritten as

S = −A11 +
e
√
−C

(bT +A01). (A102)

Substituting this expression for S into (A97), one has

bT =
√
−CeTA11. (A103)

Substituting this expression for bT into (A102), one obtains

S = (P e − I3)A11 +
eA01√
−C

, (A104)
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with e given by (A100).
Vice versa, (A100), (A101), (A103), and (A104) imply (A97)–(A99). Hence, Part II of

Theorem 34 is proved as well. 2

A14. Proof of Theorem 36
The theorem can be restated as follows: Let C be any nonzero real number and let A := Ag,f

for a strictly proper pair of RFs (f, g). Then there exist some v ∈ R3, real τ 6= 0, and non-
singular 3× 3 matrices M and N such that

A = diag(1, N)BC,vdiag(τ,M) (A105)

if and only if µ < 1 and Cµ > 0, where µ is given by (29), page 35. It is easy to see that
using here the matrix diag(1, N) of the form less general than that of diag(τ,M) in fact does
not diminish generality.

Rewrite (A105) as the system of equations

A00 = γvτ, (A106)

A01 = −γvCvTM, (A107)

A10 = γvτNv, (A108)

A11 = −NSvM. (A109)

Substituting these expressions into (29), one has

µ = Cv2, (A110)

which implies µ < 1, in order for γv to exist. Also, (A110), together with (29) and with
(f, g) being strictly proper, implies Cµ > 0. This demonstrates the “only if” part of the
theorem.

To prove the “if” part, observe first that for any two vectors a and b in R3 such that
aTb > 0, there exists a symmetric positive-definite matrix P such that Pa = b; for instance,
choose P = (aTb)−1bbT + b2b

T
2 + b3b

T
3 , where b2 and b3 are any vectors in R3, which are

orthogonal to a and, together with b, form a basis in R3 (e.g., one can take b2 := a × b
and then b3 := a× b2).

Hence, whenever aTb > 0, there exists a non-singular 3× 3 matrix N such that

NNTa = b. (A111)

Now, apply this observation to the vectors

a := A00(AT11)−1AT01 (A112)

and

b := CA10, (A113)

which satisfy the inequality aTb > 0, because aTb = CµA2
00 and Cµ > 0. Next, let

63



v := C−1NT (AT11)−1AT01. (A114)

Then (A114), (A111), (A112), and (A113) imply Cv2 = CvTv = µ < 1, and so, γv can be
determined by (15), page 23. Solving now (A106) for τ and (A109) for M , one can easily
check that all equations (A106)–(A109) are thus satisfied. 2

A15. Counterexample for Remark 38
Let f , g, and h be RFs such that g = Af and h = Bf , where

A =


3 −8/3 0 0
3 −3 0 0
0 0 1 0
0 0 0 −1

 and B =


2 −16/3 4 140/9
6 −10 3 70/3
−3/2 1 2 0
9/4 −3 0 6

 .

Note that A2 = B2 = (BA−1)2 = I4, so that every pair of RFs among f , g, and h is
reciprocal; moreover, every such pair is strictly proper since A11 and B11 are non-singular,
aT1 b1 6= 0, and aT2 b2 6= 0, where a1 := (AT11)−1AT01 = (8/9, 0, 0)T , b1 := A10 = (3, 0, 0)T ,
a2 := (BT

11)−1BT
01 = (8/3,−2,−70/9)T , and b2 := B10 = (6,−3/2, 9/4)T .

Note that, provided a and b are given by (A112) and (A113), condition (A111) is not
only sufficient but necessary for (A105), since (A111) follows from (A106)–(A109).

Therefore, if the triple (f, g, h) is can be adjusted without re-synchronization to a triple
(f̃ , g̃, h̃) such that the pairs (f̃ , g̃) and (f̃ , h̃) are generalized Lorentzian, then there exists a
non-singular 3× 3 matrix N such that

NNTa1 = λ1b1 and NNTa2 = λ2b2

for a1, b1, a2, b2 defined above and for some real numbers λ1 and λ2, which must be then
nonzero.

Hence, for all real α1 and α2, one has

2∑
i,j=1

αiαja
T
i λjbj =

(
NT

2∑
i=1

αiai

)T (
NT

2∑
i=1

αiai

)
≥ 0;

this implies 4λ1λ2(aT1 b1)(aT2 b2) ≥ λ2
1(aT2 b1)2 + λ2

2(aT1 b2)2 + 2λ1λ2(aT1 b2)(aT2 b1) for some
real nonzero λ1 and λ2, which further implies (aT1 b1)2(aT2 b2)2 ≥ (aT1 b1)(aT2 b2)(aT1 b2)(aT1 b2);
however, the latter inequality is false for the above a1, b1, a2, and b2. Thus, our triple
(f, g, h) is not adjustable without re-synchronization to a triple (f̃ , g̃, h̃) such that the pairs
(f̃ , g̃) and (f̃ , h̃) are generalized Lorentzian, even though every pair of RFs among f , g, and
h is reciprocal and proper (and therefore can be rescaled to a generalized Lorentzian pair).
2
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