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1. Introduction

Data perturbation represents one common approach in privacy preserv
data mining (PPDM). It builds on a longer history in the areas of statistical dis-
closure control and statistical databases [1] where the original {pyidataset
is perturbed and the result is released for data analysis. Typically,ia “pr
vacy/accuracy” trade-off is faced. On the one hand, perturbation noasl-
low the original data records to be adequately recovered. On the othmrsit
allow “patterns” in the original data to be mined. Data perturbation includes a
wide variety of techniques including (but not limited to): additive, multiplica-
tive [24], matrix multiplicative k-anonymization [38, 41], micro-aggregation
[3, 26], categorical data perturbation [10, 45], data swapping feshmpling
[27], data shuffling [34] (see [1, 28] for a more complete survey).

In this chapter we mostly focus on two types of data perturbation that apply to
continuous data: additive and matrix multiplicative. Additive data perturbation
was originally introduced in statistical disclosure control more that twentysyea
ago and was further studied in the PPDM community in the last eight years.
Matrix multiplicative data perturbation were introduced only five years ago in
the PPDM community and is in its early stages of study. In order to better
understand the privacy offered by these techniques, some PPDEfrckses
have assumed the role of an attacker and developed techniques fchibgea
privacy by estimating the original data from the perturbed data and aiisaiea
additional prior knowledge. Their work offers insight into vulnerabiliti€this
type of data perturbation. We provide a detailed survey of their work iffart
to allow the reader to observe common themes and future directions. Mareove
due to its rapidly growing study, we also provide a brief overview of attacks
k-anonymization.

This chapter is organized as follows. Section 2 describes definitions and
notation used throughout. Section 3 discusses additive data perturiiatices
and several attack techniques in detail. Section 4 describes matrix multiplicative
data perturbation, its uses and several attack techniques in detail. Section 5
discusses-anonymization and recent literature addressing vulnerabilities of
this data perturbation model. Finally, Section 6 concludes the paper with a
summary.

2. Definitions and Notation

Throughout this chapter, the original dataset is representedras an real-
valued matrixX', with each column a data record. The data owner pertiirts
produce am’ x m data matrixt’, which is then released to the public or another
party for analysis. The attacker usésand any other available information to
produce an estimation of, denoted byX. Unless otherwise stated, we will
assume that each record of the original dataset arose as an indejpsardele
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from ann-dimensional random vectot’ with unknown probability density
function (.d.f) (and this assumption is public knowledge). Bet denote
the covariance matrix ot’. We will also assume that » has all distinct and
non-zero eigenvalues (more details later) since, as argued in [207hghia
assumption holds in most practical situations.

Unless otherwise stated, all vectors are column-vectors. Given a mgtrix
AT denotes its transpose ard ! denotes its inverse (provided one exist).
denotes the identity matrix with dimensions specified by context. Given vector
z, ||z|| denotes the Euclidean distancesoto the origini.e. the Euclidean
norm.

3. Attacking Additive Data Perturbation

The data owner replaces the original datasetith

Y = X+R, (12.1)

whereR is a noise matrix with each column generated independently from a
n-dimensional random vect® with mean vector zero. As is commonly done,
we assume throughout thgf equalsr?1, i.e.,the entries ofR were generated
independently from some distribution with mean zero and variafdeypical
choices for this distribution include Gaussian and uniform). In this cass,
sometimes referred to aslditive white noise

While having a long history in the statistical disclosure control and statistical
database fields (see [6] for a comprehensive survey), additivgpdetabation
was first revisited to address PPDM problems by Agrawal and Srikant fey
assumed the.d.f. of R is public. They developed a technique for estimating
the p.d.f. of X from Y and show how a decision tree classifier can then be
constructed. Their distribution recovery technique is further develimddd9].

We describe five different attack techniques against additive petikomba
The first three attacks filter off the random noise by analyzing the eigessta
of the data: spectral filtering [22], singular value decomposition (SVDYilte
ing [17], and principal component analysis (PCA) filtering [18]. Théyuse
eigen-analysigor filtering out the protected data. The fourth attack is a Bayes
approach based on maximum a posteriori probability (MAP) estimation [18].
The fifth attack shows that if the.d.f. of X" is reconstructed, in some cases,
it can lead to disclosure. We refer to this attacldesribution analysis Note
that in all five we assume that the attacker knowspthkf. of R, and attacker
implicitly knows that the perturbed data records arose as independenesamp
from random vectop) = X + R. Next, we describe each of these attacks in
detail.
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3.1 Eigen-Analysis and PCA Preliminaries

Before describing eigen-analysis based attacks, we first providefédack-
ground of eigen-analysis and PCA. LE&tbe ann-dimensional random vector.
Generally speaking the eigenvalues of covarianigeare then roots (possible
including repeats) of the degreegolynomial|>y — I\| where|.| denotes the
matrix determinant. SincEy is positive semi-definite, all its eigenvalues are
non-negative and real [13, pg. 295]. If we assume that they arekidistinct
and non-zero, they can be denotedgs> ... > \% > 0. Associated with\%,
is its normalized eigenspac®’, = {v € R" : Tyv = v\, and|[v|| = 1}.
These normalized eigenspaces are pair-wise orthogonal and havesitimen
one [13, pg. 295]. Hence each can be written{a$, —v’.} wherev’, is
lexicographically larger tharv?,. Let Vy denote the normalized eigenvector
matrix [v}. - - - v%] (which is orthogonal).

As is standard practice in PCA, we assume tkidias mean vector zero (if
not itis replaced byt — E[X]). The;*" principal component (PCYf X is

vX X (or —v?, X) It can be shown that the PCs are pair-wise uncorrelated
and capture the maximum possible variance in the following sense. For each
1 < j < n, there does not existe R™ orthogonal tav, forall 1 < ¢ < j such

thatVar(v' X) > Var(vf,(TX). It can further be shown thézfar(vg(TX) =
Xy Therefore, the dimensionality &f can be reduced by choositig< k£ < n

and transformingt’ to X = Vi X whereVy denotes the leftmosgt columns
of Vy. The amount of “information” preserved is typically quantified by

k
Pim1 My

100 .
Yoy Ny

This is commonly referred to as the percentage of variance capturdd by
If this percentage is large, most of the information is preserved in the sense
thatVy X is a good approximation t&'. Indeed, if the percentage is 10@,,

k = n, thenVy X = VXV;{X X. The properties of left multiplication to
X by VXV}(F have special significance in the eigen-analysis based attacks. We
call this transformation, projection throughhe firstk PCs.

In practice, one has a collection of data tuples on which dimensionality re-
duction via PCA is desired. If the tuples can all be regarded as independe
samples fromX’, PCA can be fruitfully carried out on their standard sample co-
variance matrix (after subtracting from each the row-mean vector of theet.

The eigen-analysis based attacks will make critical use of the projectioe of th
dataset through its firgt PCs.
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Figure 12.1. Wigner’s semi-circle law: a histogram of the eigenvaluesgg%/ for a large,
randomly generated.

3.2 Spectral Filtering

This technique, developed by Kargumtial. [22], utilizes the fact that the
eigenvalues of a random matrix are distributed in a fairly predictable manner.
For example, Wigner's semi-circle law [47] says thatiis ap x p matrix whose
entries were generated independently from a distribution with zero mean and
unit variance, then, for large the distribution of the eigenvalues é% has
p.d.f. depicted in Figure 12.1; it takes the shape of a semi-circle. As another
example, considet x m matrix R whose entries were generated independently
from a distribution with mean zero and variangg For largem andn, the
distribution of the eigenvalues of the sample covariance matrik isfsimilar
to the semi-circle law. And, key to the spectral filtering technique, this result
allows bounds on these eigenvalues to be computed.

Karguptaet al. observe that if thg’" eigenvalue arising frorl” is “large”,
itis a good approximation to th2" eigenvalue arising fronX’. Therefore, the
projection ofY through its PCs corresponding to these large eigenvalues (say
the firstk) is a good approximation to the projection &f through its firstk
PCs. As suchX is set to the projection of through its firstc PCs. Results
from matrix perturbation theory and spectral analysis of large randonicesitr
provide the basis for this observation.
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LEMMA 12.1 [40, Corollary 4.9] For anyn-dimensional random vector¥
and R (R has mean vector zero) ard = X + R, it is the case that: for
1<j<n, X, e [N+, Xy + AR].

Therefore, if)\g, € [\, )\%z], then this eigenvalue is largely affected by noise
(R). Hence, it is not regarded by Kargumtal. as large and, therefore, not
regarded as a good approximation)df. On the other hand),\g, > A%z is

regarded as large and, therefore, is regarded as a good approrimaig .
So how can the attacker use this threshold criterion given Bfaly

LetSy angi r be the standard sample covariance matrices computed from
Y andR; let A} >...> Al and\L, > ... > A% be the associated eigenvalues,
respectively. The above criterion can be modified to consider> \}, as
large. But how should the attacker estimate an upper-boun&}ﬁn This
guestion is answered using a result from large random matrix theory ditade
in the opening paragraph of this subsection. IntuitivelyRagrows large, the
eigenvalues computed frol can be bounded by the attacker. And when
is large relative ta, these bounds are quite good. Formally stated [21, 39], as
m,n—»ooand%—ngl,

Ao = 021+ 1/V/Q)* 2 Mg 2 g = Mg = 02(1 - 1/V/Q)*

As such,f\’]g“f” serves as the estimate of an upper-boundpn Moreover,
for @ large relative tar?, this bound will be quite good as all eigenvalues of
¥ will be concentrated in a small band. Since the attacker is assumed to know
o2, then she can computd;®” and will deem any\}, > A7%* as large.

The spectral filtering algorithm is given in Algorithm 2. The empirical re-
sults show that when the variance of the noise is low and the original data
does not contain many inherent random components, the recoveredamiata
be reasonably close to the original data. However, two important questions
remain to be answered. 1) What are the theoretical bounds on the estimation
accuracy? 2) What are the fundamental factors that determine the guality o
the data estimation? The first is touched on in Section 3.3 and the second in
Section 3.4.

3.3 SVD Filtering

Guoet al. [17] revisited spectral filtering to address the issue of an optimal
choice ofk and to develop bounds on the estimation accuracy. They showed
that whenk = min{1 < j < n|5\§, < 20%} — 1, the estimated data is approx-
imately optimal,i.e., the benefits due to the inclusion of th& eigenvector
is greater than the information loss due to the noise projected alonkfthe
eigenvector. They further proposed a singular value decompositeediziata
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Protocol 2 Spectral Filtering

Require: Y, the perturbed data matrix and, the variance of the random
noise.
Ensure: X, an estimate of the original data matfix
1: Compute the sample meanBfand subtract it from every column &f.
2: Compute the standard sample covariahgeof Y, its eigenvalues\j, >

... > Az, and their associated normalized eigenvect¢rs. . . , 0%

3 Computek = max{1 < j < n|X, > A%}, LetVy denote the matrix
ki)

4 SetX to Vyffg Y.

reconstruction approach, and proved the equivalence of this agiptoapec-

tral filtering. A lower bound and upper bound of the estimation error in terms
of Frobenius matrix norm were also derived. We refer readers tol[afor
more details.

3.4 PCA Filtering

Huanget al. [18] observe that a key factor in determining the accuracy of
spectral filtering is the degree of correlation that exists among the attributes o
X relative too?. The higher the degree, the greater the accuracy in estimating
the original data. Indeed, for smal] the higher the degree of correlation, the
more variance will be captured by the fiksPCs. The addition oR does not
change this property. The attributes/fre uncorrelated and thus, the amount
of variance captured bgny direction is the same. Therefore, removing the
lastn — k PCs ofX’ does not cause much variance loss but will camis)a’“;—’€
percent of the variance iR to be lost.

Based on this observation, Huaegal. [18] proposed a filtering technique
based on PCA. A major difference with spectral filtering, is that PCA filtering
does not use matrix perturbation theory and spectral analysis to estimate the
dominant PCs ofX. Instead PCA filtering takes a more direct approach based
on the fact that

Yy =Yy +Xg =Sy + oL (12.2)

The first equality is due to the independencetbaindR and the second by
assumption. Therefore, the attacker can directly estifigtes i]y — 0?1,
then compute the top PCs of this. The PCA filtering procedure is given in
Algorithm 3.
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Protocol 3PCA Filtering

Require: Y, the perturbed data matrix?, the variance of the random noise;
andl < k < n, the number of PCs to keep.
Ensure: X, an estimate of the original data matfix
1. Compute the sample meanYfand subtract it from every column &f.
2. Compute the standard sample covarialge of Y, and producesy =
Yy —o’l anestimate oEy. A
3: Compute the eigenvalues dfy, )\}( > ... > A%. Compute their their

associated normalized eigenvectars, . . . , 9. LetVy denote the matrix
o) - %],

4: SetX to Vx VLY.

_ The original dataset estimate can be written as the sum of two pErts:

Vx VLY = Vx VX + Vx VI R. Therefore, the recovery errdis determined

by the the percentage of variance captured by theifirsEs ofX’ and the noise.

It can be shown that the mean squared recovery error caused byisieepart

is 025. These results echo the empirical results observed in spectral filtering
and suggests an approach for chooging

3.5 MAP Estimation Attack

Different from eigen-analysis, MAP estimation considers both prior and
posterior knowledge via Bayes’ theorem to estimate original dataset. €lor ea
1 < i < m, the attacker will produce; an estimate of; using y;. Let fy and
fr denote the.d.fof X andR, respectively. Given: € R andy € R™, let
fapy=y and fy x—, denote thep.d.fof & conditioned ony = y and thep.d.f

of Y conditioned ont' = z, respectively. The MAP estimate of is®

Ty = argsup{fx|y=y,(r):z € R"}

= argsup{fy|x=(vi)fx(z) 1z € R"}

= argsup{fr(yi — z)fx(z) 1 2 € R"}. (12.3)
The second equality is due to Bayes’ theorem and the third due to the fact tha
Y =X + R andR is independent oft’.

Huanget al. [18] considered the case where bgghandfr are multi-variate
normal (and the attacker knows this). The following closed form exess

3assuming the estimated sample covariaXigeis very close ta x

5Due to independence, the attacker will gain nothing moreiifgiall of Y.

SHereargsup{} is based osupA which denotes the smallest upper bound on &gt A is upper-bounded,
supA always exists.
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can then be derived withy denoting the mean vector &f.
&= (S + 1)) (SR e +yi/o?).

The assumption thaty is multi-variate normal and known to the attacker
is quite strong. Other cases are worth comment (in eAghs multi-variate
normal and known to the attacker). Whér is known but not multivariate
normal, it may be difficult to derive a closed-form expressionipr In this
case, the attacker can use numerical methods such as Newton’s gdadiesrit
methods. Wherfy is not known, the MAP estimate reduces to the maximum
likelihood estimate (MLE) by assumingy is uniform over some interval.
Therefore,fy can be dropped from (12.3) arigd = y;. However, this estimate
may suffer from accuracy problems due to droppjiag

Itis worth noting that the MAP approach has been widely studied in statistical
disclosure control. For example, Trottigtial. [44] used this approach to study
the linkage privacy breaches in the scenario where microdata is maskethby
additive and multiplicative noise. In their settings, the attacker tries to identify
the identity (of a person) linked to a specific record, which is differemtfthe
primary focus of this chapter - data record recovery.

3.6 Distribution Analysis Attack

Recall that techniques exist for estimatifig from Y. This is quite useful
as fy represents a useful data mining pattern. However, in some cases, this
reconstructed distribution can be used by the attacker to gain extra kryswvled
about the private data. For example, assume the each er@yofiniformly
distributed ovef—1, 1] and the observed perturbed data= 1. If there is no
additional information, the attacker can determitie= [0,2]. However, if a
large amount of data is available, the reconstructed distribution will havéa hig
degree of accuracy. Assume the attacker can perfectly re¢ggverich is:

0.5, 0<z<I;
fx(r) = 0.5, 5<z<6;
0, otherwise.

Then, the estimate ot given) = 1 is localized to a smaller intervél, 1]
instead of|0, 2]. When data has a multi-variate distribution, the attacker can
determineinterval$;, I, . . ., I,,, which are narrow in one or more dimensions,
and for which the number of data records that fall in the interval is verylsma
Such intervals make outliers/minorities more identifiable than they would seem
when merely looking at the perturbed data set. This kind of disclosure leads
to a bigger open problenmwhen do data mining results cause privacy breach?
Further discussions can be found in [4, 9, 31, 16, 12].
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3.7 Summary

This section surveyed recent research that investigated the vulneraldity
ditive data perturbation. The research showed, in many cases, tagepnfor-
mation can be reasonably well derived from the perturbed data. Thergrima
attack techniques presented are summarized in Table 12.1.

Table 12.1. Summarization of Attacks on Additive Perturbation

Categories Related Work General Assumptions

Eigen-Analysis [14,17,18,22] the degree of correlation betweenrtpmal
data attributes is high relative &

MAP Estimation [18] data and noise arose from a
multi-variate normal distribution

Distribution Analysis  [4, 9, 16] reconstructed distribution describes

the original data with sufficient accuracy

One possible improvement on additive perturbation is to use colored noise
with similar correlation structure to the original data [23, 48], R ~ (0, X%),
whereXr = Xy for 8 > 0. With this method, the covariance of the perturbed
data is

Zy =Yy + 03y = (1 + ﬂ)EX
The correlation coefficients of the perturbed attributes are the same ax that
the original attributes:

_1+8 Cou(X;, X))
PP T T Var(X)Var(xy)

This kind of perturbation puts noise on the principal components of the atigin
data, therefore, separating noise from the data using eigen analysimédmc
difficult. However, this approach is not free from problem either. Doming
Ferreret al. [9] pointed out that the reconstructed distribution (using their
p-dimensional reconstruction algorithm, a multivariate generalization of the
approach describe in [5] for the univariate case) may still lead to diséasu
some cases. The higher the dimensionality, the more likely is the disclosure.

In summary, additive perturbation has its roots in statistical disclosure con-
trol. It offers a simply way to mask private data while allowing aggregate
statistics to be queried; and making more sophisticated privacy preseatig d
mining possible. However, recent work from PPDM community has shown this
technique vulnerable to attack in many caseg.(high correlations between
many attributes). Therefore, careful attention must be paid when apphisg
technique in practice.

Before closing this section, we note that several researchers hapyesed
privacy metrics.g.,interval-based [5], entropy-based [4], mixture models [49].

= PXX; -
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However, the relationship between these and the recovery accuttheyaifack
techniques is not clear.

4. Attacking Matrix Multiplicative Data Perturbation
The data owner replaces the original datavith
Y = MX, (12.4)

whereM is ann’ x n matrix chosen to have certain useful properties\/lis
orthogonal ¢/ = n andM™ M = I)[7, 36, 37], then the perturbation exactly
preserves Euclidean distances,, for any columnse, zo in X, their corre-
sponding columng, , i in Y satisfy||z; — 22| = ||y1 — y2||.2 If each entry of

M is generated independently from the same distribution with mean zero and
variances? (n’ not necessarily equal t@) [28, 30], then the perturbation ap-
proximately preserves Euclidean distances on expectation up to corastiamt f
a2n’. If M is the product of a discrete cosine transformation matrix and a trun-
cated perturbation matrix [33], then the perturbation approximately preserv
Euclidean distances.

Because matrix multiplicative perturbation preserves Euclidean distance
with either small or no error, it allows many important data mining algorithms to
be applied to the perturbed data and produce results very similar to, dlyexac
the same as those produced by the original algorithm applied to the original
data,e.g., hierarchical clustering, k-means clustering. However, the issue of
how well X is hidden is not clear and deserves careful study. Without any prior
knowledge, an attacker can do very little (if anything) to accurately recove
X. However, no prior knowledge seems an unreasonable assumption in many
situations. Motivated by this line of reasoning, several researcheesitzes-
tigated the vulnerabilities of matrix multiplicative perturbation using various
forms of prior knowledge [8, 15, 28-30]. In the bulk of this section (hd a
4.2), we discuss attack techniques based on two types of prior knowledge

1 Known input-output (1/0): The attacker knows some small collection
of original data records and the attacker knows the mapping between
these known original data records and their perturbed counterpdfts in
In other words, the attacker has a set of input-output pairs.

2 Known sample: The attacker has a collection of independent samples
(columns ofS) from X' (S may or may not overlap wittX).

The first two attacks are based on the known I/O prior knowledge assump-
tion. The first one [29] assumes an orthogonal perturbation matrix while the

8Conversely, any functiof” : R — R™ which preserves Euclidean distance (foragly € R™, ||z — y|
= ||T'(z) — T'(y)||) and fixes the origin is equivalent to left-multiplication &gn x n orthogonal matrix.
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second [28] assumes a randomly generated perturbation matrix. Thetthird a
tack is based on the known sample prior knowledge assumption and assumes a
orthogonal perturbation matrix. It works by examining certain feature¢beof
original and perturbed data distributiorige(, thep.d.f. of X and))), namely

the eigenvectors df y andXy. These features have two important properties:

(i) they are related to each other in a natural way allowiido be estimated,

and (ii) they can be accurately extracted frénandY’.

Before moving on, we emphasize the fact that the perturbation technique
considered here, matrix multiplicative, is completely different than multiplica-
tive data perturbation mentioned in the introduction. There each eleméhnt of
is separately multipliedby a randomly generated number.

4.1 Known 1/O Attacks

Without loss of generality, the attacker is assumed to koWl < p < m),
the firstp columns ofX (of course, the attacker also kno¥s the firstp columns
of Y). In other words, the attacker knows a set of input/output fairsy; ),
ooy (zp, yp) Wherey; = Mz;.

Orthogonal Perturbation Matrix. Liu et al. [29] assumed! is orthogo-

nal. Unlike all other attacks in this chapter, trdgynot assumthat the original
data records arose as independent samples oifiheir attacker useg, and

X, to produce M, an estimation of/. Then, for any < i < m, the attacker
will producez;, an estimation of; as

& = MTy,. (12.5)

The rationale for (12.5) is: i/ ~ M, thenz; ~ MTy; = MT (Mx;) = ;.
In choosing)M, the attacker knows that/ must be inM(X,,, Y,), the set of
all n x n, orthogonal matrices), such that0X,, = Y,. However, with no
additional information for further narrowing down this space of the pdggsis,
the attacker will assume each is equally likely tolde Therefore, she will
chooseM uniformly fromM(X,,, ;).

Given an error tolerance> 0, the attacker’s success probabilityz;, €), is
defined as the probability that the relative Euclidean distance betwesmd
Z;isno larger tham, i.e., Pr(||Z; — x;|| < ||zi||e). Liu etal. developed closed
form expression

plie) = 4 (7)2aresin (ately) i lloille < 2d(ai, X, (12.6)
1 otherwise

whered(z;, X,,) denotes the Euclidean distanceagfto the space of vectors
spanned by the columns d&f,, i.e., inf{||x — z;||:x is in the column space
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of X, }. Equation (12.6) illustrates that the sensitivity of a tuplg,to breach
depends upon its length relative to its distance to the column spadg,,of

ie., % Tuples whose relative length is large are particularly sensitive
to breach. In particular whep; is in the column space of,, the attacker’s
success probability equals one. latial. also described how the attacker can
compute||z;|| andd(z;, X,,) for anyp < i < m, and therefore, determine
which tuple is most sensitive to breach.

Chenet al. [8] also discussed a known I/O attack technique. They however
consider a combination of matrix multiplicative and additive perturbation:
M X + R. They considered the case when the number of linearly independent
data tuples (columns iX})) is no smaller than the data dimensionalityrows
in X,). They pointed out thad/, an estimate of\/, can be produced using

linear regression, ther; estimated ad/ly;.

Random Perturbation Matrix. Liu [28] developed a MAP-based known
I/0 attack which works under the assumption thats ann’ x n matrix whose
entries were generated independently from a normal distribution with mean
zero and variance? (n’ may be< n or > n).1% The larger/ is, the more
closely preserved are Euclidean distances between data tuples (upstanton
factora?n’), but, the better the known 1/O attack will work at breaching privacy.
Therefore, a trade-off must be balanced in settihg

For simplicity, we assume that the columnggfare linearly independent.
For anyp < i < m, the attacker will producé; an estimate of;. If z; is
linearly dependent on the columns &f,, the attacker can discover this gs
will be linearly dependent on the columnsf. In this case, the attacker will
set; = X, (Y, Y,) 'Y, y; which equalsz; (perfect recovery}? Henceforth,
we assumer; is linearly independent of the columns &f,. Therefore, the
attacker will only consider estimates, € R", which are also linearly inde-
pendent of the columns of, (for brevity, we write “Li. £” to mean thatt is
linearly independent of the columns &f,). Finally, since the columns df,
are assumed to be linearly independent, then it follows that the columxis of
are too.

Let M be ann’ x n matrix of random variables each independently and
identically distributed as normal with mean zero and variarfce€lhe columns
of Y arose as independent samples from random vé¢ter M X. Using the

10They do assume that the original data records arose as irdeqtesamples fror'.

11This assumption is not essential. It can be eliminated at theaf@ more complicated attack algorithm.
However, the fundamental idea remains the same.

12There exist; € R? such thatX,z; = z; andYyz; = y;. Since the columns df}, are assumed to be
linearly independent, then by [13, pg. 96], the matiig’ v,,) =1 Y,T exists. ThusX, (Y] ¥;) 'Y, y;

= Xp(VIYp) T (YT Yy)zi = Xpzi = .
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MAP approach, the attacker will choose Liso as to maximize the likelihood
that X equalsz given that) equalsy; and M X, equalsY,. This analysis
is based on the following key observation (whose proof follows directynfr
manipulating moment-generating functions). For any maftjxet B denote
the column vector which results from stacking the columns of

THEOREM 12.2 Foranyn x g matrix A with linearly independent columns,
MA is distributed as ar(¢n’)-variate Gaussian with mean vector zero and
covariance matrix

ATA 0 0 0 ]
0 ATA o 0
T ...
el
| 0 0 0 - ATA]

Let [X,, ] and[Y}, y;] denote matrices which result from attachibgnd
y; as an additional right-most column onif, andY,. Observe thatX,, Z]
has linearly independent columns. '-ﬁ@w:yi,m:?p denote thep.d.f. of

X conditioned ony = y; and M X, = Y,; let fm denote thep.d.f. of

M|[X,, z]. Using the MAP approach, the attacker will choose
Ti = argsup{ fy|y—y, px,—v; (L) : L. 2 € R"}.
Using Bayes'’ rule, it can be shown that
&; = argsup{ frg 7 (Yo, i) fa(2) : Li. 2 € R"},

thus, Theorem 12.2 implies

Ti = argsup{o([Yp, yi]) fx (2) - Li. & € R"}, (12.7)

whereg is the((p + 1)n')-variate Gaussian distribution with mean vector zero

and covariance matrizm. For simplicity we assume that the attacker
P

knows nothing aboufy and, following a common practice, uses a uniform

distribution over some interval in place ¢f in (12.7)1* Thus,

z; = argsup{o([Yp, vi]) : Li. £ € R"}. (12.8)

Producing a closed-form expression farin (12.8) is desirable, but quite
difficult. Instead, the attacker can turn to numerical approaches. BExqpais

14A more complicated approach could have the attacker usingatttetfiat the columns ok, arose as
independent samples froAi, and useX), to inform a better substitution fofy in (12.7).
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were reported in [28] where the attacker used the Matlab implementatén
the Nelder-Mead simplex algorithm [35] to solve this optimization problem.
The results show that the accuracy of the attack technigue increases with
the number of known input-output pairs.

4.2 Known Sample Attack

The attacker is assumed to know a collection of independent samples
(columns ofS) from X (S may or may not overlap wittk). Furthermore,
the attacker assum@ég is orthogonal.

The approach is based on the observation that the eigenvectdrsaoé
equal to those oft' left-multiplied by (up to a factor oft1). Therefore
by estimatingXy and Xy and matching their eigenvectors, the attacker can
produce, )M, an estimation ofi/. Using this, data record; (1 < i < m) is
estimated as; = M7y;.

The following results (proved in [29]) establishes the key match between the
normalized eigenspaces.

THEOREM 12.3 The eigenvalues dfy and ¥y are the same and for all
1 <j <n, MV} = Vi, whereM'V’, equals{Mv : v € V/ }.

COROLLARY 12.4 Letl,, bethe space of all xn, matrices with each diagonal
entry 1 and each off-diagonal entry ®@{ matrices in total). There exists
Dy € I, such thatV = V3, DoV

First assume that the attacker knows the covariance matdgeand Xy
and, thus, computégy andVy,. By Corollary 12.4, the attacker can perfectly
recover M if she can choose the righp from I,,. To do so, the attacker
utilizes S andY’, in particular, the fact that these arose as independent samples
from X and) = MX. ForanyD € 1, if D = Dy, thenVyDV)?S andY
have both arisen as independent samples fanThe attacker will estimate
M asM = VyDV};, where D was chosen froni,, so as to maximize the
likelihood thatVy, DV'S andY arose from the same random vector. To make
this choice, the attacker can use a multi-variate two-sample hypothesis test for
equal distributions [42]. The smaller thevalue, the more convincingly the
null hypothesis (thaty DV'S andY have both arisen as independent samples
from )) can be rejected. ThereforB, € 1, is chosen to maximize thevalue.
Finally, the attacker can eliminate the assumption at the start of the previous
paragraph by replacing » and>y with estimates computed froi andY’.
Using the standard sample covariance matrices, the pseudo-code faathe a
technique is shown in algorithm 4. A weakness lies in its computation cost,
O(2™(m + p)?). For high-dimensional data, the technique is infeasible.

B5http://www.mathworks.com/access/helpdesk/help/techeiminsearch.html
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Protocol 4 Eigen-Analysis Attack
Require: Y, the perturbed data matrix arij the sample data matrix.
Ensure: X, an estimate of the original data matrix
1: Compute standard, sample covariance matricésarfdy” andVy andVy
their normalized eigenvector matrices.
2: ChooseD € 1I,, so as to maximize thg-value of two-sample hypothesis
test for equal distributions ovfy, DV£'S andY .

3 SetM to Vy DV andX to MTY .

It should be noted the eigen-analysis attack does not work if each dntry o
M were generated independently from some distribution with mean zero and
variances?. In that caseXy will equal I for some constant > 0, thereby
killing any useful matching like that in Theorem 12.3.

4.3 Other Attacks Based on ICA

Before finishing the section, we briefly describe some attacks based on in-
dependent component analysis (ICA) [19].

ICA Overview. Given ann/-variate random vecto¥, one common ICA
model posits that this random vector was generated by a linear combination of
independent random variablé®,., V = AS with § ann-variate random vector

with independent components. Typically,is further assumed to satisfy the
following additional assumptions: (i) at most one component is distributed as
a Gaussian; (iip/ > n; and (iii) A has ranka.

One common scenario in practice: there is a set of unobserved samples (the
columns ofn x ¢ matrix S) that arose fromS which satisfies (i) - (iii) and
whose components are independent. But observedisq matrix I whose
columns arose as linear combination of the row§'ofThe columns o/ can
be thought of as samples that arose from a random voidrich satisfies the
above generative model. There are ICA algorithms whose goal is toaecov
S and A up to a row permutation and constant multiple. This ambiguity is
inevitable due to the fact that for any diagonal matrix (with all non-zeraten
diagonal)D, and permutation matri®, if A, S is a solution, then so(gADP),
(P1DLS).

Other Attacks. Liu et al. [30] considered matrix multiplicative data per-
turbation wherél/ is ann’ x n matrix with each entry generated independently
from the some distribution with mean zero and variasnteThey discussed the
application of the above ICA approach to estim&téirectly fromY: S = X,
y=),5=X,V =Y,andA = M. They argued the approach to be prob-
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lematic because the ICA generative model imposes assumptions not likely to
hold in many practical situations: the componentstoéire independent with

at most one such being Gaussian distributed. Moreover, they pointedadut

the row permutation and constant multiple ambiguity further hampers accurate
recovery ofX. A similar observation is made later by Chetal. [8].

Guo and Wu [15] considered matrix multiplicative perturbation assuming
only that M is ann x n matrix (orthogonal or otherwise). Further they as-
sumed a weaker variant of the known /O holds: the attacker kn&ﬂvsa
collection of original data columns frot but does not know to which of the
columns inY these correspond. They develop an ICA-based attack technique
for estimating the remaining columns Xi. To avoid the ICA problems de-
scribed in the previous paragraph, they instead applied $6#aratelyto X
andY” producing representatiorfs! ¢, S;) and (Ay, Sy ). They argued that
these representations are related in a natural way allowing be estimated.
Their approach is similar in spirit to the known sample attack described earlier
which relatedS andY through representations derived through eigen-analysis.

4.4 Summary

This section discussed the vulnerabilities of matrix multiplicative data per-
turbation to certain attacks based on prior knowledge. The primary attack
techniques discussed are summarized in Table#2.2.

Table 12.2. Summarization of Attacks on Matrix Multiplicative Perturbation

Categories Related Work  General Assumptions
Linear algebra/measure theory  [29] known |/d@,is orthogonal
MAP Estimation [28] known I/OM isn' x n

with entries generated
independently frorav'(0, o),
Eigen-Analysis [29] known sampl@/ is orthogonal,
ICA [8, 30] M has rankn, the data
attributes are largely independent and
at most one is Gaussian
ICA [15] M isn x n, weak known I/O

Chenet al. [8] discussed a modification of matrix multiplicative data per-
turbation to improve its resilience to attack. They examine the combination of
matrix multiplicative and additive data perturbation. They argue that this ap-

17All the attack techniques, except known I/O with orthogoha| implicitly assume that the original data
records arose independently frokh
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proach offers additional privacy protection, but the utility of the perdrtiata
is negatively affected since additive noise does not preserve Eutliilgtance
well.

5. Attacking k-Anonymization

Before concluding this chapter, we briefly survey a very recent kaddy
research aimed at analyzing the vulnerabilities of the poptHanonymity
model [38, 41]. Here, the private dafé is perturbed such that each of the
resulting records is identical to at ledst— 1 others with respect to a pre-
defined set of attributes callepiasi-identifiers All of the other attributes are
calledsensitive attributeand these are not modified by the perturbation. This
perturbation can be carried out by judiciciadue generalizatiofe.g, zip 95120
— 951**) or tuple suppressigrand it is aimed at preventing linkage attacks
through the quasi-identifiers.

Recently, Machanavajjhalket al. [32] developed a background knowledge
attack onk-anonymity which we call Aiomogeneity attackrhey showed how
a lack of diversity among the sensitive attribute values can be used to dstablis
linkage between individuals and sensitive values. To remedy this probleyn, th
proposed a new privacy definition callediversity such thatin each equivalence
class there are at lealstwell-represented” sensitive values. Along the same
line, Wonget al. [48] proposed arfa, k)-anonymization model such that the
relative frequency of the sensitive value in every equivalence cldsssghan
or equal toa. Li et al. [25] later developed attacks drdiversity (skewness
attack and similarity attack), and argued thatdiversity is neither necessary
nor sufficient to prevent attribute disclosure. To cope with these problems
they proposed an improved framework caltedoseness, which requires the
distribution of a sensitive attribute in any equivalence class to be close to the
distribution of the attribute in the original data set.

Wanget al. [46] considered the privacy breach caused by the attacker’s data
mining capabilities. They presented an approach (that combines assocision
hiding andk-anonymity) to limit the confidence of inferring sensitive properties
about the existing individuals.

Aggarwal [2] also argued the originafanonymity model to be problematic.
He considered the case of high dimensional data and pointed out that-the ex
ponential number of quasi-identifier combinations can allow precise irderen
attacks unless an unacceptably high amount of information loss is suffered

6. Conclusion

This chapter provides a detailed survey of attack techniques on additive
and matrix multiplicative perturbation. It also presents a brief overview of
attacks onk-anonymization. These attacks offer insights into vulnerabilities
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data perturbation techniques under certain circumstances. In summary, the
following information could lead to disclosure of private information from the
perturbed data.

1. Attribute Correlation: Many real world data has strong correlated at-
tributes, and this correlation can be used to filter off additive white noise,. Se
e.g, [14, 17, 18, 22].

2. Known Sample: Sometimes, the attacker has certain background knowl-
edge about the data such as fhe.f. or a collection of independent samples
which may or may not overlap with the original data. Szg, [28, 29, 18].

3. Known Inputs/Outputs: Sometimes, the attacker knows a small set of
private data and their perturbed counterparts. This correspondambelp the
attacker to estimate other private data. $eg, [28, 15, 29].

4. Data Mining Results: The underlying pattern discovered by data mining
also provides a certain level of knowledge which can be used to gugabidte
data to a higher level of accuracy. Sedy, [4, 9, 31, 16, 12, 46].

5. Sample Dependency: Most of the attacks (except the known 1/O giedklo
by [29]) discussed in this chapter assume the data as independent staomples
some unknown distribution. This assumption may not hold true for all real
applications. For certain types of data, such as the time series data, tistse ex
auto correlation/dependency among the samples. How this dependency can
help the attacker to estimate the original data is still an open problem.
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