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1. Introduction

Data perturbation represents one common approach in privacy preserving
data mining (PPDM). It builds on a longer history in the areas of statistical dis-
closure control and statistical databases [1] where the original (private) dataset
is perturbed and the result is released for data analysis. Typically, a “pri-
vacy/accuracy” trade-off is faced. On the one hand, perturbation must not al-
low the original data records to be adequately recovered. On the other, itmust
allow “patterns” in the original data to be mined. Data perturbation includes a
wide variety of techniques including (but not limited to): additive, multiplica-
tive [24], matrix multiplicative,k-anonymization [38, 41], micro-aggregation
[3, 26], categorical data perturbation [10, 45], data swapping [11],resampling
[27], data shuffling [34] (see [1, 28] for a more complete survey).

In this chapter we mostly focus on two types of data perturbation that apply to
continuous data: additive and matrix multiplicative. Additive data perturbation
was originally introduced in statistical disclosure control more that twenty years
ago and was further studied in the PPDM community in the last eight years.
Matrix multiplicative data perturbation were introduced only five years ago in
the PPDM community and is in its early stages of study. In order to better
understand the privacy offered by these techniques, some PPDM researchers
have assumed the role of an attacker and developed techniques for breaching
privacy by estimating the original data from the perturbed data and any available
additional prior knowledge. Their work offers insight into vulnerabilities of this
type of data perturbation. We provide a detailed survey of their work in an effort
to allow the reader to observe common themes and future directions. Moreover,
due to its rapidly growing study, we also provide a brief overview of attackson
k-anonymization.

This chapter is organized as follows. Section 2 describes definitions and
notation used throughout. Section 3 discusses additive data perturbation,its uses
and several attack techniques in detail. Section 4 describes matrix multiplicative
data perturbation, its uses and several attack techniques in detail. Section 5
discussesk-anonymization and recent literature addressing vulnerabilities of
this data perturbation model. Finally, Section 6 concludes the paper with a
summary.

2. Definitions and Notation

Throughout this chapter, the original dataset is represented as ann×m, real-
valued matrixX, with each column a data record. The data owner perturbsX to
produce ann′×m data matrixY , which is then released to the public or another
party for analysis. The attacker usesY and any other available information to
produce an estimation ofX, denoted byX̂. Unless otherwise stated, we will
assume that each record of the original dataset arose as an independent sample
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from ann-dimensional random vectorX with unknown probability density
function (p.d.f.) (and this assumption is public knowledge). LetΣX denote
the covariance matrix ofX . We will also assume thatΣX has all distinct and
non-zero eigenvalues (more details later) since, as argued in [20, pg. 27], this
assumption holds in most practical situations.

Unless otherwise stated, all vectors are column-vectors. Given a matrixA,
AT denotes its transpose andA−1 denotes its inverse (provided one exists).I
denotes the identity matrix with dimensions specified by context. Given vector
x, ||x|| denotes the Euclidean distance ofx to the origin i.e. the Euclidean
norm.

3. Attacking Additive Data Perturbation

The data owner replaces the original datasetX with

Y = X + R, (12.1)

whereR is a noise matrix with each column generated independently from a
n-dimensional random vectorR with mean vector zero. As is commonly done,
we assume throughout thatΣR equalsσ2I, i.e.,the entries ofR were generated
independently from some distribution with mean zero and varianceσ2 (typical
choices for this distribution include Gaussian and uniform). In this case,R is
sometimes referred to asadditive white noise.

While having a long history in the statistical disclosure control and statistical
database fields (see [6] for a comprehensive survey), additive dataperturbation
was first revisited to address PPDM problems by Agrawal and Srikant [5]. They
assumed thep.d.f. of R is public. They developed a technique for estimating
the p.d.f. of X from Y and show how a decision tree classifier can then be
constructed. Their distribution recovery technique is further developedin [4, 9].

We describe five different attack techniques against additive perturbation.
The first three attacks filter off the random noise by analyzing the eigenstates
of the data: spectral filtering [22], singular value decomposition (SVD) filter-
ing [17], and principal component analysis (PCA) filtering [18]. They all use
eigen-analysisfor filtering out the protected data. The fourth attack is a Bayes
approach based on maximum a posteriori probability (MAP) estimation [18].
The fifth attack shows that if thep.d.f. of X is reconstructed, in some cases,
it can lead to disclosure. We refer to this attack asdistribution analysis. Note
that in all five we assume that the attacker knows thep.d.f. of R, and attacker
implicitly knows that the perturbed data records arose as independent samples
from random vectorY = X + R. Next, we describe each of these attacks in
detail.
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3.1 Eigen-Analysis and PCA Preliminaries

Before describing eigen-analysis based attacks, we first provide a brief back-
ground of eigen-analysis and PCA. LetX be ann-dimensional random vector.
Generally speaking the eigenvalues of covarianceΣX are then roots (possible
including repeats) of the degreen polynomial|ΣX − Iλ| where|.| denotes the
matrix determinant. SinceΣX is positive semi-definite, all its eigenvalues are
non-negative and real [13, pg. 295]. If we assume that they are alsoall distinct
and non-zero, they can be denoted asλ1

X > . . . > λn
X > 0. Associated withλj

X
is its normalized eigenspace, V

j
X = {v ∈ R

n : ΣX v = vλj
X and||v|| = 1}.

These normalized eigenspaces are pair-wise orthogonal and have dimension
one [13, pg. 295]. Hence each can be written as{vj

X ,−vj
X } wherevj

X is
lexicographically larger than−vj

X . Let VX denote the normalized eigenvector
matrix [v1

X · · · vn
X ] (which is orthogonal).

As is standard practice in PCA, we assume thatX has mean vector zero (if
not, it is replaced byX − E[X ]). Thejth principal component (PC)of X is

vj
X

T
X (or −vj

X
T
X ). It can be shown that the PCs are pair-wise uncorrelated

and capture the maximum possible variance in the following sense. For each
1 ≤ j ≤ n, there does not existv ∈ R

n orthogonal tovℓ for all 1 ≤ ℓ < j such

thatV ar(vTX ) > V ar(vj
X

T
X ). It can further be shown thatV ar(vj

X
T
X ) =

λj
X . Therefore, the dimensionality ofX can be reduced by choosing1 ≤ k ≤ n

and transformingX to X̃ = Ṽ T
X X whereṼX denotes the leftmostk columns

of VX . The amount of “information” preserved is typically quantified by

100

∑k
ℓ=1 λℓ

X∑n
ℓ=1 λℓ

X
.

This is commonly referred to as the percentage of variance captured byX̃ .
If this percentage is large, most of the information is preserved in the sense
that ṼX X̃ is a good approximation toX . Indeed, if the percentage is 100,i.e.,
k = n, thenṼX X̃ = ṼX Ṽ T

X X = X . The properties of left multiplication to
X by ṼX Ṽ T

X have special significance in the eigen-analysis based attacks. We
call this transformation, aprojection throughthe firstk PCs.

In practice, one has a collection of data tuples on which dimensionality re-
duction via PCA is desired. If the tuples can all be regarded as independent
samples fromX , PCA can be fruitfully carried out on their standard sample co-
variance matrix (after subtracting from each the row-mean vector of the dataset).
The eigen-analysis based attacks will make critical use of the projection of the
dataset through its firstk PCs.
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Figure 12.1. Wigner’s semi-circle law: a histogram of the eigenvalues ofA+A′
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3.2 Spectral Filtering

This technique, developed by Karguptaet al. [22], utilizes the fact that the
eigenvalues of a random matrix are distributed in a fairly predictable manner.
For example, Wigner’s semi-circle law [47] says that ifA is ap×p matrix whose
entries were generated independently from a distribution with zero mean and
unit variance, then, for largep, the distribution of the eigenvalues ofA+A′

2
√

2p
has

p.d.f. depicted in Figure 12.1; it takes the shape of a semi-circle. As another
example, considern×m matrixR whose entries were generated independently
from a distribution with mean zero and varianceσ2. For largem andn, the
distribution of the eigenvalues of the sample covariance matrix ofR is similar
to the semi-circle law. And, key to the spectral filtering technique, this result
allows bounds on these eigenvalues to be computed.

Karguptaet al. observe that if thejth eigenvalue arising fromY is “large”,
it is a good approximation to thejth eigenvalue arising fromX. Therefore, the
projection ofY through its PCs corresponding to these large eigenvalues (say
the firstk) is a good approximation to the projection ofX through its firstk
PCs. As suchX̂ is set to the projection ofY through its firstk PCs. Results
from matrix perturbation theory and spectral analysis of large random matrices
provide the basis for this observation.
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Lemma 12.1 [40, Corollary 4.9] For anyn-dimensional random vectorsX
andR (R has mean vector zero) andY = X + R, it is the case that: for
1 ≤ j ≤ n, λj

Y ∈ [λj
X + λn

R, λj
X + λ1

R].

Therefore, ifλj
Y ∈ [λn

R, λ1
R], then this eigenvalue is largely affected by noise

(R). Hence, it is not regarded by Karguptaet al. as large and, therefore, not
regarded as a good approximation ofλj

X . On the other hand,λj
Y > λ1

R is

regarded as large and, therefore, is regarded as a good approximation of λj
X .

So how can the attacker use this threshold criterion given onlyY ?
Let Σ̂Y andΣ̂R be the standard sample covariance matrices computed from

Y andR; let λ̂1
Y ≥ . . . ≥ λ̂n

Y andλ̂1
R ≥ . . . ≥ λ̂n

R be the associated eigenvalues,
respectively. The above criterion can be modified to considerλ̂j

Y > λ̂1
R as

large. But how should the attacker estimate an upper-bound onλ̂1
R? This

question is answered using a result from large random matrix theory alluded to
in the opening paragraph of this subsection. Intuitively, asR grows large, the
eigenvalues computed fromR can be bounded by the attacker. And whenm
is large relative ton, these bounds are quite good. Formally stated [21, 39], as
m, n → ∞ and m

n
→ Q ≥ 1,

λ̂max
R = σ2(1 + 1/

√
Q)2 ≥ λ̂1

R ≥ λ̂n
R ≥ λ̂min

R = σ2(1 − 1/
√

Q)2.

As such,̂λmax
R serves as the estimate of an upper-bound onλ̂1

R. Moreover,
for Q large relative toσ2, this bound will be quite good as all eigenvalues of
Σ̂R will be concentrated in a small band. Since the attacker is assumed to know
σ2, then she can computêλmax

R and will deem anŷλj
Y > λ̂max

R as large.
The spectral filtering algorithm is given in Algorithm 2. The empirical re-

sults show that when the variance of the noise is low and the original data
does not contain many inherent random components, the recovered datacan
be reasonably close to the original data. However, two important questions
remain to be answered. 1) What are the theoretical bounds on the estimation
accuracy? 2) What are the fundamental factors that determine the quality of
the data estimation? The first is touched on in Section 3.3 and the second in
Section 3.4.

3.3 SVD Filtering

Guoet al. [17] revisited spectral filtering to address the issue of an optimal
choice ofk and to develop bounds on the estimation accuracy. They showed
that whenk = min{1 ≤ j ≤ n|λ̂j

Y < 2σ2} − 1, the estimated data is approx-
imately optimal,i.e., the benefits due to the inclusion of thekth eigenvector
is greater than the information loss due to the noise projected along thekth

eigenvector. They further proposed a singular value decomposition-based data
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Protocol 2Spectral Filtering

Require: Y , the perturbed data matrix andσ2, the variance of the random
noise.

Ensure: X̂, an estimate of the original data matrixX.
1: Compute the sample mean ofY and subtract it from every column ofY .
2: Compute the standard sample covarianceΣ̂Y of Y , its eigenvalueŝλ1

Y ≥

. . . ≥ λ̂n
Y , and their associated normalized eigenvectorsv̂1

Y , . . . , v̂n
Y .

3: Computek = max{1 ≤ j ≤ n|λ̂j
Y > λ̂max

R }. Let ˜̂
VY denote the matrix

[v̂1
Y · · · v̂k

Y ].

4: SetX̂ to ˜̂
VY

˜̂
V T

Y Y.

reconstruction approach, and proved the equivalence of this approach to spec-
tral filtering. A lower bound and upper bound of the estimation error in terms
of Frobenius matrix norm were also derived. We refer readers to [14,17] for
more details.

3.4 PCA Filtering

Huanget al. [18] observe that a key factor in determining the accuracy of
spectral filtering is the degree of correlation that exists among the attributes of
X relative toσ2. The higher the degree, the greater the accuracy in estimating
the original data. Indeed, for smallk, the higher the degree of correlation, the
more variance will be captured by the firstk PCs. The addition ofR does not
change this property. The attributes ofR are uncorrelated and thus, the amount
of variance captured byany direction is the same. Therefore, removing the
lastn − k PCs ofX does not cause much variance loss but will cause100n−k

n

percent of the variance inR to be lost.
Based on this observation, Huanget al. [18] proposed a filtering technique

based on PCA. A major difference with spectral filtering, is that PCA filtering
does not use matrix perturbation theory and spectral analysis to estimate the
dominant PCs ofX. Instead PCA filtering takes a more direct approach based
on the fact that

ΣY = ΣX + ΣR = ΣX + σ2I. (12.2)

The first equality is due to the independence ofX andR and the second by
assumption. Therefore, the attacker can directly estimateΣX asΣ̂Y − σ2I,
then compute the topk PCs of this. The PCA filtering procedure is given in
Algorithm 3.
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Protocol 3PCA Filtering

Require: Y , the perturbed data matrix;σ2, the variance of the random noise;
and1 ≤ k ≤ n, the number of PCs to keep.

Ensure: X̂, an estimate of the original data matrixX.
1: Compute the sample mean ofY and subtract it from every column ofY .
2: Compute the standard sample covarianceΣ̂Y of Y , and producêΣX =

Σ̂Y − σ2I an estimate ofΣX .
3: Compute the eigenvalues of̂ΣX , λ̂1

X ≥ . . . ≥ λ̂n
X . Compute their their

associated normalized eigenvectors,v̂1
X , . . . , v̂n

X . Let ˜̂
VX denote the matrix

[v̂1
X · · · v̂k

X ].

4: SetX̂ to ˜̂
VX

˜̂
V T

X Y.

The original dataset estimate can be written as the sum of two parts:X̂ =
˜̂
VX

˜̂
V T

X Y =
˜̂
VX

˜̂
V T

X X +
˜̂
VX

˜̂
V T

X R. Therefore, the recovery error3 is determined
by the the percentage of variance captured by the firstk PCs ofX and the noise.
It can be shown that the mean squared recovery error caused by the noise part
is σ2 k

n
. These results echo the empirical results observed in spectral filtering

and suggests an approach for choosingk.

3.5 MAP Estimation Attack

Different from eigen-analysis, MAP estimation considers both prior and
posterior knowledge via Bayes’ theorem to estimate original dataset. For each
1 ≤ i ≤ m, the attacker will producêxi an estimate ofxi using5 yi. LetfX and
fR denote thep.d.fof X andR, respectively. Givenx ∈ R

n andy ∈ R
n′

, let
fX|Y=y andfY|X=x denote thep.d.fof X conditioned onY = y and thep.d.f
of Y conditioned onX = x, respectively. The MAP estimate ofxi is6

x̂i = argsup{fX|Y=yi
(x) : x ∈ R

n}

= argsup{fY|X=x(yi)fX (x) : x ∈ R
n}

= argsup{fR(yi − x)fX (x) : x ∈ R
n}. (12.3)

The second equality is due to Bayes’ theorem and the third due to the fact that
Y = X + R andR is independent ofX .

Huanget al. [18] considered the case where bothfX andfR are multi-variate
normal (and the attacker knows this). The following closed form expression

3assuming the estimated sample covarianceΣ̂X is very close toΣX
5Due to independence, the attacker will gain nothing more if using all of Y .
6Hereargsup{} is based onsupAwhich denotes the smallest upper bound on a setA (if A is upper-bounded,
supA always exists.
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can then be derived withµX denoting the mean vector ofX .

x̂i = (Σ−1
X + (1/σ2)I)−1(Σ−1

X µX + yi/σ2).

The assumption thatfX is multi-variate normal and known to the attacker
is quite strong. Other cases are worth comment (in each,fR is multi-variate
normal and known to the attacker). WhenfX is known but not multivariate
normal, it may be difficult to derive a closed-form expression forx̂i. In this
case, the attacker can use numerical methods such as Newton’s gradientdescent
methods. WhenfX is not known, the MAP estimate reduces to the maximum
likelihood estimate (MLE) by assumingfX is uniform over some interval.
Therefore,fX can be dropped from (12.3) and̂xi = yi. However, this estimate
may suffer from accuracy problems due to droppingfX .

It is worth noting that the MAP approach has been widely studied in statistical
disclosure control. For example, Trottiniet al. [44] used this approach to study
the linkage privacy breaches in the scenario where microdata is masked byboth
additive and multiplicative noise. In their settings, the attacker tries to identify
the identity (of a person) linked to a specific record, which is different from the
primary focus of this chapter - data record recovery.

3.6 Distribution Analysis Attack

Recall that techniques exist for estimatingfX from Y . This is quite useful
asfX represents a useful data mining pattern. However, in some cases, this
reconstructed distribution can be used by the attacker to gain extra knowledge
about the private data. For example, assume the each entry ofR is uniformly
distributed over[−1, 1] and the observed perturbed dataY = 1. If there is no
additional information, the attacker can determineX ∈ [0, 2]. However, if a
large amount of data is available, the reconstructed distribution will have a high
degree of accuracy. Assume the attacker can perfectly recoverfX which is:

fX (x) =





0.5, 0 ≤ x ≤ 1;
0.5, 5 ≤ x ≤ 6;
0, otherwise.

Then, the estimate ofX givenY = 1 is localized to a smaller interval[0, 1]
instead of[0, 2]. When data has a multi-variate distribution, the attacker can
determine intervalsI1, I2, . . . , In, which are narrow in one or more dimensions,
and for which the number of data records that fall in the interval is very small.
Such intervals make outliers/minorities more identifiable than they would seem
when merely looking at the perturbed data set. This kind of disclosure leads
to a bigger open problem -when do data mining results cause privacy breach?
Further discussions can be found in [4, 9, 31, 16, 12].



284 PRIVACY-PRESERVING DATA MINING: MODELS AND ALGORITHMS

3.7 Summary

This section surveyed recent research that investigated the vulnerabilityad-
ditive data perturbation. The research showed, in many cases, the private infor-
mation can be reasonably well derived from the perturbed data. The primary
attack techniques presented are summarized in Table 12.1.

Table 12.1. Summarization of Attacks on Additive Perturbation

Categories Related Work General Assumptions

Eigen-Analysis [14, 17, 18, 22] the degree of correlation between the original
data attributes is high relative toσ2

MAP Estimation [18] data and noise arose from a
multi-variate normal distribution

Distribution Analysis [4, 9, 16] reconstructed distribution describes
the original data with sufficient accuracy

One possible improvement on additive perturbation is to use colored noise
with similar correlation structure to the original data [23, 43],i.e.,R ∼ (0, ΣR),
whereΣR = βΣX for β > 0. With this method, the covariance of the perturbed
data is

ΣY = ΣX + βΣX = (1 + β)ΣX .

The correlation coefficients of the perturbed attributes are the same as thatof
the original attributes:

ρYi,Yj
=

1 + β

1 + β

Cov(Xi,Xj)√
V ar(Xi)V ar(Xj)

= ρXi,Xj
.

This kind of perturbation puts noise on the principal components of the original
data, therefore, separating noise from the data using eigen analysis becomes
difficult. However, this approach is not free from problem either. Domingo-
Ferreret al. [9] pointed out that the reconstructed distribution (using their
p-dimensional reconstruction algorithm, a multivariate generalization of the
approach describe in [5] for the univariate case) may still lead to disclosure in
some cases. The higher the dimensionality, the more likely is the disclosure.

In summary, additive perturbation has its roots in statistical disclosure con-
trol. It offers a simply way to mask private data while allowing aggregate
statistics to be queried; and making more sophisticated privacy preserving data
mining possible. However, recent work from PPDM community has shown this
technique vulnerable to attack in many cases (e.g.,high correlations between
many attributes). Therefore, careful attention must be paid when applyingthis
technique in practice.

Before closing this section, we note that several researchers have proposed
privacy metricse.g.,interval-based [5], entropy-based [4], mixture models [49].
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However, the relationship between these and the recovery accuracy ofthe attack
techniques is not clear.

4. Attacking Matrix Multiplicative Data Perturbation

The data owner replaces the original dataX with

Y = MX, (12.4)

whereM is ann′ × n matrix chosen to have certain useful properties. IfM is
orthogonal (n′ = n andMT M = I) [7, 36, 37], then the perturbation exactly
preserves Euclidean distances,i.e., for any columnsx1, x2 in X, their corre-
sponding columnsy1, y2 in Y satisfy||x1−x2|| = ||y1−y2||.8 If each entry of
M is generated independently from the same distribution with mean zero and
varianceσ2 (n′ not necessarily equal ton) [28, 30], then the perturbation ap-
proximately preserves Euclidean distances on expectation up to constant factor
σ2n′. If M is the product of a discrete cosine transformation matrix and a trun-
cated perturbation matrix [33], then the perturbation approximately preserves
Euclidean distances.

Because matrix multiplicative perturbation preserves Euclidean distance
with either small or no error, it allows many important data mining algorithms to
be applied to the perturbed data and produce results very similar to, or exactly
the same as those produced by the original algorithm applied to the original
data,e.g.,hierarchical clustering, k-means clustering. However, the issue of
how wellX is hidden is not clear and deserves careful study. Without any prior
knowledge, an attacker can do very little (if anything) to accurately recover
X. However, no prior knowledge seems an unreasonable assumption in many
situations. Motivated by this line of reasoning, several researchers have inves-
tigated the vulnerabilities of matrix multiplicative perturbation using various
forms of prior knowledge [8, 15, 28–30]. In the bulk of this section (4.1 and
4.2), we discuss attack techniques based on two types of prior knowledge.

1 Known input-output (I/O): The attacker knows some small collection
of original data records and the attacker knows the mapping between
these known original data records and their perturbed counterparts inY .
In other words, the attacker has a set of input-output pairs.

2 Known sample: The attacker has a collection of independent samples
(columns ofS) fromX (S may or may not overlap withX).

The first two attacks are based on the known I/O prior knowledge assump-
tion. The first one [29] assumes an orthogonal perturbation matrix while the

8Conversely, any functionT : R
n → R

n which preserves Euclidean distance (for allx, y ∈ R
n, ||x − y||

= ||T (x) − T (y)||) and fixes the origin is equivalent to left-multiplication byann × n orthogonal matrix.
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second [28] assumes a randomly generated perturbation matrix. The third at-
tack is based on the known sample prior knowledge assumption and assumes an
orthogonal perturbation matrix. It works by examining certain features ofthe
original and perturbed data distributions (i.e., thep.d.f. of X andY), namely
the eigenvectors ofΣX andΣY . These features have two important properties:
(i) they are related to each other in a natural way allowingM to be estimated,
and (ii) they can be accurately extracted fromS andY .

Before moving on, we emphasize the fact that the perturbation technique
considered here, matrix multiplicative, is completely different than multiplica-
tive data perturbation mentioned in the introduction. There each element ofX
is separately multipliedby a randomly generated number.

4.1 Known I/O Attacks

Without loss of generality, the attacker is assumed to knowXp (1 ≤ p < m),
the firstpcolumns ofX (of course, the attacker also knowsYp, the firstpcolumns
of Y ). In other words, the attacker knows a set of input/output pairs(x1, y1),
. . ., (xp, yp) whereyj = Mxj .

Orthogonal Perturbation Matrix. Liu et al. [29] assumedM is orthogo-
nal. Unlike all other attacks in this chapter, theydo not assumethat the original
data records arose as independent samples fromX . Their attacker usesYp and
Xp to produce,M̂ , an estimation ofM . Then, for anyp ≤ i ≤ m, the attacker
will producex̂i, an estimation ofxi as

x̂i = M̂T yi. (12.5)

The rationale for (12.5) is: ifM̂ ≈ M , thenx̂i ≈ MT yi = MT (Mxi) = xi.
In choosingM̂ , the attacker knows thatM must be inM(Xp, Yp), the set of
all n × n, orthogonal matrices,O, such thatOXp = Yp. However, with no
additional information for further narrowing down this space of the possibilities,
the attacker will assume each is equally likely to beM . Therefore, she will
chooseM̂ uniformly fromM(Xp, Yp).

Given an error toleranceǫ > 0, the attacker’s success probability,ρ(xi, ǫ), is
defined as the probability that the relative Euclidean distance betweenxi and
x̂i is no larger thanǫ, i.e., Pr(||x̂i −xi|| ≤ ||xi||ǫ). Liu et al. developed closed
form expression

ρ(xi, ǫ) =

{ (
1
π

)
2arcsin

(
||xi||ǫ

2d(xi,Xp)

)
if ||xi||ǫ < 2d(xi, Xp);

1 otherwise,
(12.6)

whered(xi, Xp) denotes the Euclidean distance ofxi to the space of vectors
spanned by the columns ofXp, i.e., inf{||x − xi||:x is in the column space
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of Xp}. Equation (12.6) illustrates that the sensitivity of a tuple,xi, to breach
depends upon its length relative to its distance to the column space ofXp,

i.e., ||xi||
2d(xi,Xp) . Tuples whose relative length is large are particularly sensitive

to breach. In particular whenxi is in the column space ofXp, the attacker’s
success probability equals one. Liuet al. also described how the attacker can
compute||xi|| andd(xi, Xp) for any p ≤ i ≤ m, and therefore, determine
which tuple is most sensitive to breach.

Chenet al. [8] also discussed a known I/O attack technique. They however
consider a combination of matrix multiplicative and additive perturbation:Y =
MX + R. They considered the case when the number of linearly independent
data tuples (columns inXp) is no smaller than the data dimensionality,n (rows
in Xp). They pointed out that̂M , an estimate ofM , can be produced using
linear regression, thenxi estimated aŝM−1yi.

Random Perturbation Matrix. Liu [28] developed a MAP-based known
I/O attack which works under the assumption thatM is ann′×n matrix whose
entries were generated independently from a normal distribution with mean
zero and varianceσ2 (n′ may be≤ n or > n).10 The largern′ is, the more
closely preserved are Euclidean distances between data tuples (up to constant
factorσ2n′), but, the better the known I/O attack will work at breaching privacy.
Therefore, a trade-off must be balanced in settingn′.

For simplicity, we assume that the columns ofYp are linearly independent.11

For anyp ≤ i ≤ m, the attacker will producêxi an estimate ofxi. If xi is
linearly dependent on the columns ofXp, the attacker can discover this asyi

will be linearly dependent on the columns ofYp. In this case, the attacker will
setx̂i = Xp(Y

T
p Yp)

−1Y T
p yi which equalsxi (perfect recovery).12 Henceforth,

we assumexi is linearly independent of the columns ofXp. Therefore, the
attacker will only consider estimates,x̂ ∈ R

n, which are also linearly inde-
pendent of the columns ofXp (for brevity, we write “l.i. x̂” to mean that̂x is
linearly independent of the columns ofXp). Finally, since the columns ofYp

are assumed to be linearly independent, then it follows that the columns ofXp

are too.
Let M be ann′ × n matrix of random variables each independently and

identically distributed as normal with mean zero and varianceσ2. The columns
of Y arose as independent samples from random vectorY = MX . Using the

10They do assume that the original data records arose as independent samples fromX .
11This assumption is not essential. It can be eliminated at the cost of a more complicated attack algorithm.
However, the fundamental idea remains the same.
12There existszi ∈ R

p such thatXpzi = xi andYpzi = yi. Since the columns ofYp are assumed to be
linearly independent, then by [13, pg. 96], the matrix(Y T

p Yp)−1Y T
p exists. Thus,Xp(Y T

p Yp)−1Y T
p yi

= Xp(Y T
p Yp)−1(Y T

p Yp)zi = Xpzi = xi.
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MAP approach, the attacker will choose l.i.x̂ so as to maximize the likelihood
thatX equalsx̂ given thatY equalsyi andMXp equalsYp. This analysis
is based on the following key observation (whose proof follows directly from
manipulating moment-generating functions). For any matrixB, let B denote
the column vector which results from stacking the columns ofB.

Theorem 12.2 For anyn × q matrixA with linearly independent columns,
MA is distributed as an(qn′)-variate Gaussian with mean vector zero and
covariance matrix

ΣMA = σ2




AT A 0 0 · · · 0
0 AT A 0 · · · 0
0 0 AT A · · · 0
...

...
...

. . .
...

0 0 0 · · · AT A




Let [Xp, x̂] and[Yp, yi] denote matrices which result from attachingx̂ and
yi as an additional right-most column ontoXp andYp. Observe that[Xp, x̂]
has linearly independent columns. LetfX|Y=yi,MXp=Yp

denote thep.d.f. of

X conditioned onY = yi andMXp = Yp; let fM[Xp,x̂]
denote thep.d.f. of

M[Xp, x̂]. Using the MAP approach, the attacker will choose

x̂i = argsup{fX|Y=yi,MXp=Yp
(x̂) : l.i. x̂ ∈ R

n}.

Using Bayes’ rule, it can be shown that

x̂i = argsup{fM[Xp,x̂]
([Yp, yi])fX (x̂) : l.i. x̂ ∈ R

n},

thus, Theorem 12.2 implies

x̂i = argsup{φ([Yp, yi])fX (x̂) : l.i. x̂ ∈ R
n}, (12.7)

whereφ is the((p + 1)n′)-variate Gaussian distribution with mean vector zero
and covariance matrixΣM[Xp,x̂]

. For simplicity we assume that the attacker
knows nothing aboutfX and, following a common practice, uses a uniform
distribution over some interval in place offX in (12.7).14 Thus,

x̂i = argsup{φ([Yp, yi]) : l.i. x̂ ∈ R
n}. (12.8)

Producing a closed-form expression forx̂i in (12.8) is desirable, but quite
difficult. Instead, the attacker can turn to numerical approaches. Experiments

14A more complicated approach could have the attacker using the fact that the columns ofXp arose as
independent samples fromX , and useXp to inform a better substitution forfX in (12.7).
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were reported in [28] where the attacker used the Matlab implementation15 of
the Nelder-Mead simplex algorithm [35] to solve this optimization problem.
The results show that the accuracy of the attack technique increases withn′ or
the number of known input-output pairs.

4.2 Known Sample Attack

The attacker is assumed to know a collection of independent samples
(columns ofS) from X (S may or may not overlap withX). Furthermore,
the attacker assumesM is orthogonal.

The approach is based on the observation that the eigenvectors ofY are
equal to those ofX left-multiplied byM (up to a factor of±1). Therefore
by estimatingΣY andΣX and matching their eigenvectors, the attacker can
produce,M̂ , an estimation ofM . Using this, data recordxi (1 ≤ i ≤ m) is
estimated aŝxi = M̂T yi.

The following results (proved in [29]) establishes the key match between the
normalized eigenspaces.

Theorem 12.3 The eigenvalues ofΣX and ΣY are the same and for all
1 ≤ j ≤ n, MV

j
X = V

j
Y , whereMV

j
X equals{Mv : v ∈ V

j
X }.

Corollary 12.4 LetIn be the space of alln×n, matrices with each diagonal
entry±1 and each off-diagonal entry 0 (2n matrices in total). There exists
D0 ∈ In such thatM = VYD0V

T
X .

First assume that the attacker knows the covariance matricesΣX andΣY
and, thus, computesVX andVY . By Corollary 12.4, the attacker can perfectly
recoverM if she can choose the rightD from In. To do so, the attacker
utilizesS andY , in particular, the fact that these arose as independent samples
from X andY = MX . For anyD ∈ In, if D = D0, thenVYDV T

X S andY
have both arisen as independent samples fromY. The attacker will estimate
M as M̂ = VYDV T

X , whereD was chosen fromIn so as to maximize the
likelihood thatVYDV T

X S andY arose from the same random vector. To make
this choice, the attacker can use a multi-variate two-sample hypothesis test for
equal distributions [42]. The smaller thep-value, the more convincingly the
null hypothesis (thatVYDV T

X S andY have both arisen as independent samples
fromY) can be rejected. Therefore,D ∈ In is chosen to maximize thep-value.

Finally, the attacker can eliminate the assumption at the start of the previous
paragraph by replacingΣX andΣY with estimates computed fromS andY .
Using the standard sample covariance matrices, the pseudo-code for the attack
technique is shown in algorithm 4. A weakness lies in its computation cost,
O(2n(m + p)2). For high-dimensional data, the technique is infeasible.

15http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fminsearch.html
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Protocol 4Eigen-Analysis Attack
Require: Y , the perturbed data matrix andS, the sample data matrix.
Ensure: X̂, an estimate of the original data matrixX.

1: Compute standard, sample covariance matrices ofS andY andV̂X andV̂Y
their normalized eigenvector matrices.

2: ChooseD ∈ In so as to maximize thep-value of two-sample hypothesis
test for equal distributions on̂VYDV̂ T

X S andY .
3: SetM̂ to V̂YDV̂ T

X andX̂ to M̂T Y .

It should be noted the eigen-analysis attack does not work if each entry of
M were generated independently from some distribution with mean zero and
varianceσ2. In that case,ΣY will equal γI for some constantγ > 0, thereby
killing any useful matching like that in Theorem 12.3.

4.3 Other Attacks Based on ICA

Before finishing the section, we briefly describe some attacks based on in-
dependent component analysis (ICA) [19].

ICA Overview. Given ann′-variate random vectorV, one common ICA
model posits that this random vector was generated by a linear combination of
independent random variables,i.e., V = AS with S ann-variate random vector
with independent components. Typically,S is further assumed to satisfy the
following additional assumptions: (i) at most one component is distributed as
a Gaussian; (ii)n′ ≥ n; and (iii) A has rankn.

One common scenario in practice: there is a set of unobserved samples (the
columns ofn × q matrix S) that arose fromS which satisfies (i) - (iii) and
whose components are independent. But observed isn′ × q matrix V whose
columns arose as linear combination of the rows ofS. The columns ofV can
be thought of as samples that arose from a random vectorV which satisfies the
above generative model. There are ICA algorithms whose goal is to recover
S andA up to a row permutation and constant multiple. This ambiguity is
inevitable due to the fact that for any diagonal matrix (with all non-zeros onthe
diagonal)D, and permutation matrixP , if A, S is a solution, then so is(ADP ),
(P−1D−1S).

Other Attacks. Liu et al. [30] considered matrix multiplicative data per-
turbation whereM is ann′×n matrix with each entry generated independently
from the some distribution with mean zero and varianceσ2. They discussed the
application of the above ICA approach to estimateX directly fromY : S = X ,
V = Y, S = X, V = Y , andA = M . They argued the approach to be prob-
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lematic because the ICA generative model imposes assumptions not likely to
hold in many practical situations: the components ofX are independent with
at most one such being Gaussian distributed. Moreover, they pointed outthat
the row permutation and constant multiple ambiguity further hampers accurate
recovery ofX. A similar observation is made later by Chenet al. [8].

Guo and Wu [15] considered matrix multiplicative perturbation assuming
only thatM is ann × n matrix (orthogonal or otherwise). Further they as-
sumed a weaker variant of the known I/O holds: the attacker knows,X̃, a
collection of original data columns fromX but does not know to which of the
columns inY these correspond. They develop an ICA-based attack technique
for estimating the remaining columns inX. To avoid the ICA problems de-
scribed in the previous paragraph, they instead applied ICAseparatelyto X̃
andY producing representations(A eX , S eX) and(AY , SY ). They argued that
these representations are related in a natural way allowingX to be estimated.
Their approach is similar in spirit to the known sample attack described earlier
which relatedS andY through representations derived through eigen-analysis.

4.4 Summary

This section discussed the vulnerabilities of matrix multiplicative data per-
turbation to certain attacks based on prior knowledge. The primary attack
techniques discussed are summarized in Table 12.2.17

Table 12.2. Summarization of Attacks on Matrix Multiplicative Perturbation

Categories Related Work General Assumptions

Linear algebra/measure theory [29] known I/O,M is orthogonal
MAP Estimation [28] known I/O,M is n′

× n

with entries generated
independently fromN (0, σ2),

Eigen-Analysis [29] known sample,M is orthogonal,
ICA [8, 30] M has rankn, the data

attributes are largely independent and
at most one is Gaussian

ICA [15] M is n × n, weak known I/O

Chenet al. [8] discussed a modification of matrix multiplicative data per-
turbation to improve its resilience to attack. They examine the combination of
matrix multiplicative and additive data perturbation. They argue that this ap-

17All the attack techniques, except known I/O with orthogonalM , implicitly assume that the original data
records arose independently fromX .
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proach offers additional privacy protection, but the utility of the perturbed data
is negatively affected since additive noise does not preserve Euclidean distance
well.

5. Attacking k-Anonymization

Before concluding this chapter, we briefly survey a very recent bodyof
research aimed at analyzing the vulnerabilities of the populark-anonymity
model [38, 41]. Here, the private dataX is perturbed such that each of the
resulting records is identical to at leastk − 1 others with respect to a pre-
defined set of attributes calledquasi-identifiers. All of the other attributes are
calledsensitive attributesand these are not modified by the perturbation. This
perturbation can be carried out by judiciousvalue generalization(e.g., zip 95120
→ 951**) or tuple suppression, and it is aimed at preventing linkage attacks
through the quasi-identifiers.

Recently, Machanavajjhalaet al. [32] developed a background knowledge
attack onk-anonymity which we call ahomogeneity attack. They showed how
a lack of diversity among the sensitive attribute values can be used to establish a
linkage between individuals and sensitive values. To remedy this problem, they
proposed a new privacy definition calledl-diversity such that in each equivalence
class there are at leastl “well-represented" sensitive values. Along the same
line, Wonget al. [48] proposed an(α, k)-anonymization model such that the
relative frequency of the sensitive value in every equivalence class isless than
or equal toα. Li et al. [25] later developed attacks onl-diversity (skewness
attack andsimilarity attack), and argued thatl-diversity is neither necessary
nor sufficient to prevent attribute disclosure. To cope with these problems,
they proposed an improved framework calledt-closeness, which requires the
distribution of a sensitive attribute in any equivalence class to be close to the
distribution of the attribute in the original data set.

Wanget al. [46] considered the privacy breach caused by the attacker’s data
mining capabilities. They presented an approach (that combines associationrule
hiding andk-anonymity) to limit the confidence of inferring sensitive properties
about the existing individuals.

Aggarwal [2] also argued the originalk-anonymity model to be problematic.
He considered the case of high dimensional data and pointed out that the ex-
ponential number of quasi-identifier combinations can allow precise inference
attacks unless an unacceptably high amount of information loss is suffered.

6. Conclusion

This chapter provides a detailed survey of attack techniques on additive
and matrix multiplicative perturbation. It also presents a brief overview of
attacks onk-anonymization. These attacks offer insights into vulnerabilities
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data perturbation techniques under certain circumstances. In summary, the
following information could lead to disclosure of private information from the
perturbed data.

1. Attribute Correlation: Many real world data has strong correlated at-
tributes, and this correlation can be used to filter off additive white noise. See,
e.g., [14, 17, 18, 22].

2. Known Sample: Sometimes, the attacker has certain background knowl-
edge about the data such as thep.d.f. or a collection of independent samples
which may or may not overlap with the original data. See,e.g., [28, 29, 18].

3. Known Inputs/Outputs: Sometimes, the attacker knows a small set of
private data and their perturbed counterparts. This correspondence can help the
attacker to estimate other private data. See,e.g., [28, 15, 29].

4. Data Mining Results: The underlying pattern discovered by data mining
also provides a certain level of knowledge which can be used to guess theprivate
data to a higher level of accuracy. See,e.g., [4, 9, 31, 16, 12, 46].

5. Sample Dependency: Most of the attacks (except the known I/O developed
by [29]) discussed in this chapter assume the data as independent samplesfrom
some unknown distribution. This assumption may not hold true for all real
applications. For certain types of data, such as the time series data, there exists
auto correlation/dependency among the samples. How this dependency can
help the attacker to estimate the original data is still an open problem.
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