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Abstract and, for a dominating Lebesgue densjty the Renyi
information divergence of with respect tof,

In this paper we develop robust estimators of the 1 ()
Rényi information divergence (l-divergence) given a L(f, f,) = —1n/<
reference distribution and a random sample from an -V fol@)
unknown distribution.  Estimation is performed by The quantityl, (f, f,) is a special case of I-divergence
constructing a minimal spanning tree (MST) passing which is called the Chernoff distance or the Renyi cross-
through the random sample points and applying a entropy betweerf and f, [1]. The I-divergence takes
change of measure which flattens the reference distri- on jts minimum value (equals zero) if and onlyfif=
bution. In a mixture model where the reference distri- ¢ (a.e.). The Rnyi information divergencé, (f, f,)
bution is contaminated by an unknown noise distribu- specializes to the &iyi entropyH,, (f) whenf, is equal
tion one can use these results to reject noise sampleso a uniform density ovelo, 1]7. Other special cases of
by implementing a greedy algorithm for pruning the  interest are obtained for= L for which one obtains the
longest branches of the MST, resulting in a tree called |og Hellinger distance squared

the k-MST. We illustrate this procedure in the context of

density discrimination and robust clustering for a planar 2
v glora 1) = ( [ ViG@RE)

mixture model.

> folx)dz  (2)

and forv — 1 for which one obtains the Kullback-
Liebler divergence

1. Introduction
) fo(x)
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Letd, = {ﬂfcll, 3, ..., 2.} denote a sample of i.i.d. The problem of estimating the I-divergence arises in
data points ink® having unknown (Ii_ebeggue multivari- - the very large class of density classification problems
ate densityf (z;) supported or0, 1]¢. Define the order {5y clustering and pattern recognition [1, 3]. In these

v Rényi entropy off [7] problems one applies a threshold test to an estimate of
L,(f, f,) in order to decide whethef is equal tof,. I-
1 . . . . . . . .
H,(f) = ln/f”(m)dm ) divergence estimation also arises in image registration
1-v where the I-divergence can be directly related to mutual

information between two imageSand f, [8]. For an

1This work was supported in part by AFOSR under MURI grant: OV?rVieW of entropy and I-divergence estimation appli-
F49620-97-0028. cations the reader can refer to [2] and [1].




In this paper we present a methodology robust esti- mial time algorithm for the pland-MST problem with

mation of I, (f, f,) for unknownf and arbitrary dom-

inating densityf,. This methodology performs a non-

linear transformation on the data samglg, producing

a transformed data samp}g,, and constructs a graph,

called thek-minimal spanning treek¢MST), on a min-

imal k-point subset,, ;. of the transformed data. The

k-MST is a graph which connects out of n of the

approximation ratia) (k).
Letv € (0,1) be defined by = (d—
the statistic

v)/d and define

A

H,( ;,k) =

In (n""L(Xy ) + B(v,d)  (4)

— VUV

where 8 is a constant equal to theeRyi antropy of

data points in a manner that minimizes the total length the uniform density orf0, 1]. In [5] Hero and Michel

of the graph, where length is defined as the sum of the presented al-dimensional extension of the planar
interconnection distances (called edges) raised to a userMST approximation of Ravi et al, called the greekly
specified powery € (0,d). This results in a strongly ~ MST approximation. In that paper we proved that when
consistent and unbiased estimate/pfwhich has de- k& = an, a € [0,1], and the lengttL(X;; ;) of this ap-
sirable properties including: the estimator does not re- proximation is substituted into (4) one obtains a strongly
quire performing the difficult step of density estimation; consistent and robust estimator of therigi entropy (1):
estimates of various ordersof I,, can be obtained by

/ fY(z)dz (a.s.)

varying teh edge power exponent; the sequence of trees H, (
where the minimization is performed over adl

Yn2, ... Ynn = Y provides a natural extension of rank
order statistics for multidimensional data.
dimensional Borel subsets {ff, 1]¢ having probability
= [, f(z)dz > a. This result was used in [4]

To illustrate our results we will show ROC curves for
the MST estimates of &iyi information divergence and

to speC|fy robust estimators ofRYi entropy which per-
form outlier rejection for the case thdtis a mixture

give an application to robust clustering for the case that
density of the form (3) withf, uniform.

X —  min
n.k) APA)>a1—V

f is a planar mixture density of the form

f=Q0=efi+efo, 3

wheref, is a known outlier density anfi, € € [0, 1] are

3. Extension: I-Divergence Estimation
unknown.

Let g(z) be a reference density on “Rwhich
dominates the density(z) of a sample pointz =
[z1,...,2%T in the sense that for ali such that

2. MST's and Entropy Estimation

A spanning tre¢J” through the sampld, is a con-  g(x) = 0 we havef(r) = 0. For anyz such that
nected acyclic graph which passes through all the g(z) > 0 let g(a;) have the product representation
points {z;}; in the sample. T is specified by an or-  g(z) = g(z')g(a?|z!)...g(z¥=?",..., ") where

dered list of edge (Euclidean) lengthg connecting g(z¥|z*~1, ... z') denotes the conditional density as-
certain pair(z;,z;), i # j, along with a list of edge  sociated withg(x) of the k-th component. In what fol-
adjacency relations. The power weighted length of the lows we will ignore the se{z : g(z) = 0} since, as
tree 7 is the sum of all edge lengths raised to a power f(x) = 0 over this set, it has probability zero. Now con-

+ € (0,d), denoted by>",_ e|". The minimal span-  sider generating the vectgr= [y*,...,y‘" € R? by
ning tree (MST) is the tree which has the minimal length the following vector transformation
L(X,) = miny ) . |e”. For any subset, ; of k L L
points inX,, defineTy, , thek-point MST which spans y = G) ()
Xy Thek-MST is defined as that-point MST which v’ = G(2%|2")
has minimum length. Thus thleMST spans a subset
X, , defined by :

) y! = Gzz?L,. .. 2t

L(X;,) = min L(X, 1)

ok where Gzt .. 2t =

The planark-MST problem was shown to be NP- ff:o g(@*|z*=1, ..., 2Y)dz* is the cumulative con-

complete in [6]. Raviet al proposed a greedy polyno- ditional distribution of thek-th component, which is



monotone increasing except on the zero probability In a first sequence of experiments the estimates
set{z : g(x) = 0}. Thus, except for this probability ~H,(X,) and H,(),) of the respective quantities
zero set, the conditional distribution has an inverse I(f, fo) and I(f, f1) were thresholded to decide be-
ok = G yk|lek 2t = G R R Y tween the hypothesdd, : e = 0vs. H, : ¢ # 0 and
and it can be shown (via the standard Jacobian formulaH, : € = 1 vs. H; : € # 1, respectively. The receiver
for transformation of variables) that the induced joint operating characteristic (ROC) curves are indicated in

density,h(y), of the vectory takes the form:

G Y G )
9@ D), G Ty, yh)

Let L(Y; ) denote the length of the greedy approx-
imation to thek-MST constructed on the transformed
random variableg, where);, , is the set ofk points
spanned by thig-MST approximation. Then, from the
results of [5] cited in the previous section, we know that

h(y) (6)

1

B,070 1yl [ MWy @s) ()
Making the inverse transformation— z specified by
(5) in the above integral, noting that, by the Jacobian
formula,dy = g(z)dz, and using the expression (6) for
h, it easy to see that the integral in the right hand side o
(7) is equivalent to the &iyi information divergence of

f(z) with respect tgy(z)

1
1—v

1
_l / f(x)
1-v 9(z)
Hence we have established tHag ( 1) IS astrongly
consistent estimator of thegRyi information divergence

ln/h”(y)dy >Ug(x)dx.

above. The results of [5] can thus be easily be extended

to classification against angrbitrary distribution f,,
and not just the uniform distribution studied in [4].

4. Applications

256 samples were simulated from a triangle-uniform
mixture densityf = (1 — €)f1 + efo wheref,(z) =
(3 — |zt = i|)(% — |2% — 1|) is a (separable) triangular
shaped product density arnfg = 1 is a uniform den-
sity, both supported on the unit square= (z!,z?%) €
[0, 1]2. The Rényi information divergenceX f, f,) and
I(f, f1) were estimated by, (X,,) and H,(),), re-
spectively, forv 1 (y = 1 in the k-MST con-
struction). ),, was obtained by applying the mapping
y = (y',9y?) = (Fi(a!), Fi(2?)) to the data sample
Xn, WhereF (u) is the marginal cumulative distribution
function associated with the triangular density.

Figures 1 and 2. Note that, as expected, in each case
the detection performance improves as the difference be-
tween the assumell; and H; densities increases.

In a second sequence of experiments we selected two
realizations of the triangle-uniform mixture model for
the values = 0.1 ande = 0.9. For the former case
the triangular is the dominating density and for the latter
case the uniform is the dominating density. In each case
the k-MST was implementedi(= 90) as a robust clus-
tering algorithm to identify data points from the dom-
inating densities - in the former case theMST was
applied directly taX,, while in the latter case it was ap-
plied to),,. The resultinge-MST quantitiesH,, (X, )
and I?[,,(yn,k) can be interpreted as robust estimates
of the uncontaminated i information divergences
I(f1, fo) andI(fo, f1). respectively. Figure 3-5 illus-

¢ trate the effectiveness of these estimates as “outlier re-
jection” algorithms.
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Figure 1. ROC curves for the &yi informa-
tion divergence test for detecting triangle-uniform
mixture density f (1 — e)fi + efo (H1)
against the uniform hypothesig = f, (Hp).
Curves are decreasing in over the range:s €
{0.1,0.3,0.5,0.7,0.9}.
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Figure 2. Same as Figure 4 except test is against
triangular hypothesisf = f; (Hy). Curves are
increasing ine.
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Figure 3. A scatterplot of a 256 point sample
from triangle-uniform mixture density with =
0.1. Labels '0’ and '* mark those realizations
from the uniform and triangular densities, respec-
tively. Superimposed is theMST implemented
directly on the scatterplat;, with & = 230.

N=256, kIN=0.9, f =unif, f, =triang
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Figure 4. A scatterplot of a 256 point sample
from triangle-uniform mixture density with =

0.9 in the transformed domaig®y,,. Labels '0’
and ™ mark those realizations from the trian-
gular and uniform densities, respectively. Super-
imposed is th&-MST implemented on the trans-
formed scatterplod),, with & = 230

N=256, k/N=0.9, fD:unif, flztviang
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Figure 5. Same as Figure 4 except displayed in
the original data domain.
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