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Abstract— We propose a short time min-max feature for 

improving fall detection performance based on the specific 

signatures of critical phase fall signal, acquired using a tri-axial 

accelerometer on a torso. Our proposed feature has been 

validated by a Support Vector Machine with two-fold 

cross-validation. Fall and scripted activities were tested in the 

experiment. Performance was evaluated by comparing the 

short time min-max with a maximum peak feature. The results 

obtained from 420 sequences show that the performances of 

short time min-max feature can approach 98.2% sensitivity and 

100% specificity for a radial basis function kernel, which are 

better than those from the maximum peak feature for all testing 

kernels. The short time min-max feature also uses one sensor 

for the body’s position without a fixed threshold for 100% 

sensitivity or specificity, and without additional processing of a 

posture after a fall. The simplicity and high performance of our 

proposed feature makes it suitable for implementation on a 

microcontroller for use in practical situations. 

 
Index Terms— Fall detection, Critical phase, Short time 

min-max feature, Support Vector Machine.  

I. INTRODUCTION 

The number of elderly (i.e. people aged over 60 years) is 

estimated to reach almost two billion by 2050 [1]. One 

major public health problems for the elderly are falls and 

consequential injures, which will only get worse as the 

numbers of elderly increases. Major causes for fall-related 

hospital admissions are hip fractures, traumatic brain 

injuries, and upper limb injuries, resulting in a significant 

increase in the health care costs [2]. For example, the 

average cost of hospitalization for fall-related injuries for 

people aged 65 years and older range from US$ 6,646 in 

Ireland to US$ 17,483 in the USA [3, 4]. However, if the 

elderly could get help as soon as possible after the fall, the 

severity of the injury could be reduced. Also, it results in 

decreasing the risk of paralysis, the rate of sickness, death 

and the medical cost. 

Image processing and sensors are two most popular 

techniques for fall detection [5]. Image processing performs 
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very well [6]-[9] in controlled environments for the lighting 

and frame. Also, sensor methods are promising [10]-[18]. 

Nine micro mercury switches and an optical sensor attached 

to ten places around a coat were used for Lin‟s study [10]. 

By his fall after impact detection, the results show 

sensitivities of 98-100%. Using a tri-axial accelerometer 

attached to the waist or head for Kangas‟ study [11], two or 

more phases of a fall event were employed: the beginning of 

the fall, falling velocity, fall impact, and subsequent posture 

of the person. Using a simple threshold with three different 

detection algorithms (impact + posture, start of fall + impact 

+ posture, and start of fall + velocity + impact + posture), his 

study reported 97-98% sensitivity and 100% specificity (by 

setting thresholds) for three middle aged subjects. The same 

algorithms with more subjects were investigated in his recent 

study, which obtain a sensitivity of 97.5% and a specificity 

of 100% (by setting thresholds) [12]. A tri-axial 

accelerometer was also employed by Chao‟s study [13]. A 

cross-product (AC) was proposed as a parameter, and 

compared to the acceleration magnitude (AM). AC leads to a 

larger area under a receiver operating characteristic curve 

than AM. Moreover, including post-fall posture (PP) 

recruitment leads to lower false alarm ratios for both AC- 

and AM-based methods. Sitting-to-lying motion was 

reported to produce false alarms in his study. A biaxial 

gyroscope, a tri-axial accelerometer, and an inertial sensor (a 

tri-axial + a gyroscope) were employed for Bourke‟s studies 

[14]-[16]. He reported 100% sensitivity (by setting 

thresholds) and 100% specificity using a threshold-based 

algorithm. However, our study [17] with the same algorithm 

used in Bourke‟s study [15] found that some false positives 

occur for quick movements. This was confirmed in his 

recent work with scripted and unscripted activities [16], 

which utilized thresholds for velocity, impact, and posture to 

achieve 100% sensitivity (by setting thresholds) and 100% 

specificity. His study [16] needs signals from both an 

accelerometer and a gyroscope to find the velocity.  

Addition of posture after a fall [11]-[12], post-fall posture 

recruitment [13] and posture after a fall [16] are needed to 

improve their fall detection performance. Moreover, some 

studies need fixed thresholds, which are obtained from the 

experiment, for 100% sensitivity or specificity. 

A fall can be described as the rapid change from the 

upright/sitting position to the reclining or almost lengthened 

position, but is an uncontrolled movement. A fall has been 

defined to have four distinct phases [5]: 

(1) Pre-fall phase, comprising usual/normal activities of 

daily living (ADL), but may contain some instability; 
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(2) Critical phase, when the body experiences a sudden 

movement towards the ground, ending with a vertical shock; 

(3) Post-fall phase, when the body remains inactive, 

frequently lying on the ground; 

(4) Recovery phase, when the person stands up on his 

own, or with the help of others. 

 During a critical phase fall, the body moves suddenly 

towards the ground, ending with a vertical shock. Therefore, 

a resultant from 3-axis acceleration, here the resultant 

acceleration of a torso is suddenly changed to a high 

negative and a positive peak in a short time interval. The 

high negative occurs when the body moves suddenly towards 

the ground. The high positive occurs when the body contacts 

the ground. 

This article proposes a short time min-max feature for fall 

detection. This feature employs specific characteristics of 

high negative and positive resultant acceleration peaks in 

short time, which occurs during critical phase fall signals. 

This feature distinguishes falls from ADL, that usually have 

a low negative and/or positive resultant acceleration peaks. 

The aims of this study are 

(1) to show that the minimum and maximum resultant 

accelerations observed during a critical phase fall of a torso 

can distinguish falls from ADL using a Support Vector 

Machine, without a fixed threshold for 100% sensitivity or 

specificity,  

(2) to propose a short time min-max feature, which is 

evaluated from the minimum and maximum resultant 

accelerations in a defined window for fall detection, and 

(3) to compare performances for a short time min-max 

and a maximum peak feature and show that the short time 

min-max feature can approach the better performance. 

The rest of this article is organized as follows: Section 2 

describes materials and methods, Section 3 presents results, 

Section 4 contains discussion, and conclusions are given in 

Section 5. 

II. MATERIALS AND METHODS 

A. Materials 

As in our previous study [18], a tri-axial accelerometer 

was constructed using two dual-axis MEMS accelerometers 

(Analog Devices ADXL321) mounted at right angles to each 

other, and attached to a person‟s torso as shown in Figure 1. 

The X axis is anterior-posterior, the Y axis is left-right, and 

the Z axis is superior-inferior. Signals from each axis were 

transmitted by wires connected to each accelerometer, 

transformed from analog to digital by NI-USB6008, and 

recorded for later offline processing. All signals were 

acquired at 12-bit resolution with a 1-kHz sampling 

frequency, and processed by a second-order low-pass 

Butterworth digital filter with a cut-off frequency of 20 Hz. 

The trial protocols were approved by the Research Ethics 

Committee of the Electrical Engineering Department of 

Prince of Songkla University. Written informed consents 

were obtained from all subjects prior to the experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Position of the tri-axial accelerometer. 

 

B. Fall and ADL Experiments 

Data from our previous study [18] were used, and added 

more subjects. A predefined set of falls and ADL common to 

the elderly were evaluated for performance. Young subjects 

were performed simulated falls onto a mattress for safety 

and health concerns. 14 young and 14 elderly subjects were 

involved in the experiments (7 male and 7 female for young, 

age 25.14 ± 5.26 years, 7 male and 7 female for elderly, age 

68.28 ± 4.37 years). Four categories of fall: forward fall 

(FF), backward fall (BF), left side fall (LF), and right side 

fall (RF), and six categories of ADL: sit-stand (ST), stand-sit 

(TS), sit-lie on a bed/floor (SL), lie-sit (LS), bend down to 

pick up an object when standing (BD), and walk (WA) were 

performed. Each fall and ADL type was repeated three times 

for each subject, so the data comprised 420 sequences, made 

up from 168 fall and 252 ADL sequences. 

 

C. Features  

Resultant acceleration ( resA ) can be evaluated from the 

representatives of the 3-axis acceleration. If xA , yA , and 

zA  are accelerations (g) along the x , y , and z  axes, then 

the resultant acceleration can be expressed as: 

 

2 2 2( ) ( ) ( )res x y zA A A A         (1) 

An example of a left side fall signal, displayed in terms of 

x , y , and z  accelerations is shown in Figure 2a, while the 

resultant acceleration corresponding to Figure 2a is shown in 

Figure 2b. Two features, a maximum peak and a short time 

min-max feature were tested in the experiment. 

 

Maximum peak feature  

A fall produces high resultant acceleration as impact, so a 

maximum resultant acceleration peak, max( )resA , was 

used as a feature for a fall. Figure 2c shows max( )resA  of 

the example of left side fall signal. 
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Figure 2: a) Example of general 3-axis acceleration for a left 

side fall. b) Example of the resultant acceleration 

corresponding to 2a. c) Part of the resultant acceleration 

including the critical phase signal of 2b. This part shows an 

example of 1.5 s sliding window, minS  , maxS  , and 

max( )resA . 

 

Short time min-max feature  

The short time min-max feature is separated from our 

previous algorithm [18]. High negative and positive peak 

resultant accelerations in critical phase fall signals are used 

for fall detection. To obtain the feature, the resultant 

acceleration signal is processed using a 1.5 s sliding window 

with 50% overlap. The 1.5 s window covers the critical 

phase fall signal. For the segmentation of data in each 

window, maximum resultant acceleration of the segmented 

signal ( maxS ) and minimum resultant acceleration of the 

segmented signal ( minS ) are computed.  minS  and maxS for 

a 1.5 s sliding window act as a short time min-max feature. 

An example of a sliding window, minS , and  maxS  are 

shown in Figure 2c. 

 

D. Support Vector Machines   

A Support Vector Machines (SVM) was employed as the 

classifier to separate falls from ADL [19]. It is composed of 

either an input for max( )resA or two inputs for minS  and  

maxS . Three tested kernel functions follow: linear, 

polynomial with a default order of 3, and radial basis 

function (rbf) with a default scaling factor of 1. Data are 

normalized for training and testing. max( )resA of all the 

sequences, and minS   and maxS of all the segments of all the 

sequences, were divided into two groups for training and 

testing. The groups depended on the subjects, with balanced 

scenarios:  

1) 7 sets of young/elderly subjects were numbered 1-7, 

2) 7 sets of young/elderly subjects were numbered 8-14. 

During training, the max( )resA  for falls are set to fall 

events, while others are set to non-fall events for the 

maximum peak feature. For the short time min-max feature, 

only segments involving critical phase of falls for  minS  and  

maxS  are set to fall events, while others are set to non-fall 

events. Outputs (for the maximum peak feature) or segment 

outputs (for the short time min-max feature), which are 

greater than 0 denote falls. Otherwise, they are labeled as 

non-falls. Training and testing data were swapped for 

two-fold cross-validation. 

E. Performance Evaluation   

The performance is evaluated by sensitivity and 

specificity given by (2) and (3) 

(%) *100
TP

Sensitivity
TP FN




   (2) 

 

(%) *100
TN

Specificity
TN FP




   (3) 

 

where  TP  (true positive): a fall occurs, the algorithm 

detects it;  FP (false positive): the algorithm announces a 

fall, but it did not occur; TN (true negative): a normal (no 

fall) movement is performed, the algorithm does not declare 

a fall; FN (false negative): a fall occurs but the algorithm 

does not detect it. This event must be avoided because the 

elderly may receive serious injuries. 

III. RESULTS 

A. Fall characteristics   

 An example of a left side fall acquired using a tri-axial 

accelerometer is illustrated in Figure 2. The left side fall is 

displayed in terms of x , y  and z  accelerations in Figure 

2a. It is partitioned into three phases, a pre-fall phase, a 

critical phase, and a post-fall phase. In the pre-fall phase, or 

stand-still period, the z  acceleration is about 1 g, while the 

x  and y  accelerations are about 0 g. As the body falls 

during the critical phase, there is a reduction of z  

acceleration below 1 g for a short period (or a high negative 

peak), and then increase until the body impacts the mattress 

with a high positive peak acceleration. In the post-fall phase, 

more than one peak usually occurs for several reasons, such 

as the knee impacting before the trunk for a forward fall, or 

the bottom impacting before the trunk in a backward fall, or 

due to rebounding of the body after impact. After impact, the 

acceleration direction reverses due to the rebound, and the 

body may impact/rebound several times until all the kinetic 

energy is exhausted. For the example, the z  direction 

changes to be parallel with the ground and the y  direction 
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switches to the vertical at the same time. At the end of a fall, 

the x  and z  accelerations are about 0 g while the y  

acceleration is about 1 g. Figure 2b shows the resultant 

acceleration for all the axis accelerations in Figure 2a. The 

resultant acceleration is about 1 g during the pre-fall phase, 

then drops below 1 g for a short period (or a high negative 

peak), before increasing to a peak. Figure 2c shows a part of 

the resultant acceleration, including critical phase, with an 

example of a 1.5 s sliding window, minS ,  maxS , and  

max( )resA . 

B. Fall and ADL resultant accelerations 

Figure 3 shows examples of resultant accelerations for 

different fall signals. These specific signatures appear in the 

critical phase for all falls, i.e. forward fall, backward fall, 

left and right side falls. The high positive peaks of the 

resultant accelerations from falls are generally several times 

the gravitational acceleration, and higher than those for ADL 

resultant accelerations, except for soft impacts. Figure 4 

shows examples of ADL resultant accelerations. Even 

though ADL resultant accelerations have positive and 

negative peaks like fall resultant accelerations, their peaks 

are lower. They are usually in the interval (0.75–2 g), except 

for quick movements. 
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Figure 3: Example of resultant acceleration waveforms for 

different categories of fall. 
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Figure 4: Example of resultant acceleration waveforms for 

different categories of ADL. 

C. Maximum peak feature  

The maximum peaks for the falls are usually greater than 

those for ADL for the first and second data groups as shown 

by quartile box plots in Figures 5a and 5b, respectively. 

Even though most falls are separate from ADL, several 

scenarios such as „BF‟, „LF‟, „SL‟, and „TS‟ have 

overlapping trend between falls and ADL using only a 

threshold.  

For two-fold cross-validation with the SVM for each 

kernel, the first data group hyperplanes obtained from 

training were tested on the second data group, and the 

second data group hyperplanes were tested on the first data 

group. The sensitivities and specificities of each kernel for 

the maximum peak are shown in Table 1. 
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(a) First data group 
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(b) Second data group 

 

Figure 5: Quartile box plots of the maximum peak resultant 

accelerations of all sequences. 

 

 

Kernel 
Maximum peak 

Sensitivity Specificity 

linear 91.1 99.2 

polynomial 88.7 99.2 

rbf 91.1 99.2 

 

Table 1: Sensitivities and specificities for each kernel for the 

maximum peak. 
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Kernel 
Short time min-max 

Sensitivity Specificity 

linear 97.0 100.0 

polynomial 95.2 100.0 

rbf 98.2 100.0 

 

Table 2: Sensitivities and specificities for each kernel for the 

short time min-max feature. 

 

D. Short time min-max feature  

Scatter plots of  minS and maxS of all sequences between 

critical phase fall and minimum before maximum ADL 

resultant acceleration for the first and second data groups are 

shown in Figure 6a and 6b, respectively. „Red-o‟ symbols 

represent falls, while „blue-x‟ symbols represent ADL. The 

maxS  for the falls are usually greater than those for ADL, 

while minS  in the critical phase falls are usually lower than 

the minimum before maximum from ADL. These scatter 

plots show a trend for getting better rates of fall detection 

when the 1.5 s sliding window with 50% overlap slides 

among the critical phase fall. 
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Figure 6: Scatter plots of minS  and maxS  between critical 

phase fall and minimum before maximum ADL of all 

sequences. 

For all segment data, most segment data for ADL have 

low minS and maxS . Segment data for non-critical phase 

falls have both low and high minS / maxS , because there are 

several changes of fall event influencing fall detection. For 

example, the pre-fall phase of a fall offers low  minS  and 

maxS  (about 1 g) and should be detected as a non-fall. The 

critical phase of a fall offers very low minS , which is usually 

lower than the minimum before maximum from ADL, and 

may offer high/maximum maxS  depending on the reach of 

the sliding window to the maximum peak. Also, the post-fall 

phase, or the „impacting and rebounding‟ period, may offer 

low/high  minS and maxS because of the alternative resultant 

acceleration. Therefore, the output segments of a fall 

sequence can be detected as a fall for segments of critical 

phase or some segments of post-fall phase, which have high 

negative and positive peaks like those from critical phase. 

These characteristics occur for segments involving critical 

phase before post-fall phase, so they are first detected in 

critical phase.  However, if any segments of a fall sequence 

are predicted to be a fall, then the entire fall sequence is 

labeled as a fall.  

Using the SVM for each kernel and two-fold 

cross-validation, the sensitivities and specificities of each 

kernel for the short time min-max are shown in Table 2. 
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Figure 7: Resultant acceleration example of BF with false 

negative. 
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IV. DISCUSSION 

A number of BF produce FNs and a number of SL 

produce FPs for the maximum peak feature, as an example 

of BF and SL which produce FN and FP in Figures 7 and 8, 

respectively. The FN event of BF can be viewed as a body 

that sometimes impacts a mattress with acceleration lower 

than general, producing a soft impact, which gives a 

maximum peak like that from ADL. However, this case can 

be reduced by the short time min-max feature because the 

characteristic of minimum resultant acceleration in a critical 

phase can distinguish falls from ADL, as the results shown 

in Table 2. The FP event of SL can be described that a body 

sometimes impacts a mattress with acceleration greater than 

general, which produces a maximum peak like that from 

falls. This result is the same as in Chao‟ s study [13]. 

Although these cases of SL produce high maximum peaks, 

they do not produce high negative peaks for the elderly 

because of slow movement at a beginning of a descent onto 

a mattress. Thus, these cases of SL can be detected by the 

short time min-max feature. Chao‟ s study [13] shows that 

his method including AC- and PP-based algorithms, 

depending on a lying posture, cannot completely avoid FP. 

Our proposed method is not dependent on a posture after a 

fall, so it is a good choice for distinguishing SL from falls. 

V. CONCLUSION 

This paper presents a short time min-max feature for fall 

detection for the elderly. Our proposed feature employs the 

specific signatures of high negative and positive peak 

resultant acceleration in critical phase fall signals, to 

distinguish falls from ADL using a Support Vector Machine. 

The results show a performance comparison between the 

maximum peak and the short time min-max feature. For tests 

involving 420 sequences, we found that the sensitivities and 

specificities of short time min-max feature are greater than 

that of the maximum peak feature for all kernels. The kernel 

function of rbf offers the best performance for both features, 

which are 91.1% sensitivity and 99.2% specificity for the 

maximum peak feature and 98.2% sensitivity and 100% 

specificity for the short time min-max feature. The short 

time min-max feature gives better performance, uses only 

one sensor for a body‟s position, does not require a fixed 

threshold for 100% sensitivity or specificity, and does not 

involve additional processing for a posture after a fall. The 

simplicity and high performance of our proposed feature 

makes it suitable for implementation on a microcontroller 

for use in practical situations. 
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