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Abstract—The main performance bottleneck of modern digital
subscriber line (DSL) networks is the crosstalk among different
lines (i.e., users). By deploying dynamic spectrum management
(DSM) techniques and reducing excess crosstalk among users, a
network operator can dramatically increase the data rates and ser-
vice reach of broadband access. However, current DSM algorithms
suffer from either substantial suboptimality in typical deployment
scenarios or prohibitively high complexity due to centralized com-
putation. This paper develops, analyzes, and simulates a new suite
of DSM algorithms for DSL interference-channel models called au-
tonomous spectrum balancing (ASB). The ASB algorithms utilize
the concept of a “reference line,” which mimics a typical victim line
in the interference channel. In ASB, each modem tries to minimize
the harm it causes to the reference line under the constraint of
achieving its own target data-rate. Since the reference line is based
on the statistics of the entire network, rather than any specific
knowledge of the binder a modem operates in, ASB can be imple-
mented autonomously without the need for a centralized spectrum
management center. ASB has a low complexity and simulations
using a realistic simulator show that it achieves large performance
gains over existing autonomous algorithms, coming close to the
optimal rate region in some typical scenarios. Sufficient conditions
for convergence of ASB are also proved.

Index Terms—Digital subscriber lines (DSLs), distributed al-
gorithm, dual decomposition, interference channel, multicarrier,
power allocation, spectrum management.

I. INTRODUCTION

A. Motivation

DIGITAL SUBSCRIBER LINE (DSL) technologies trans-
form traditional voice-band copper channels into broad-

band access systems, which are typically capable of delivering
data rates of several Mb/s per twisted-pair over a distance of 10
kft in the basic asymmetric DSL (ADSL). Despite over 160 mil-
lion DSL lines worldwide as of 2006, the major obstacle for per-
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formance improvement in modern DSL systems remains to be
crosstalk, which is the interference generated among different
lines in the same cable binder. The crosstalk is typically 10–20
dB larger than the background noise, and direct crosstalk cance-
lation (e.g., [1], [2]) is difficult in many cases, due to complexity
(both amount of computation needed and the requirements for
new chip sets) or unbundling requirement (i.e., incumbent ser-
vice providers must rent certain lines to their competitors).1

Recently, various dynamic spectrum management (DSM)2 al-
gorithms have been proposed to address this frequency-selec-
tive interference problem by dynamically optimizing transmis-
sion power spectra of different modems in DSL networks. DSM
algorithms can significantly improve data rates over the cur-
rent practice of static spectrum management, which mandates
spectrum mask or flat power backoff across all frequencies (i.e.,
tones).

This paper develops, analyzes, and simulates a suite of DSM
algorithms for power allocation (or, equivalently, bit loading),
called autonomous spectrum balancing (ASB). Overcoming the
bottlenecks in the state-of-the-art DSM algorithms, ASB is a set
of algorithms that, simultaneously, is autonomous (distributed
algorithm across the users without explicit real-time informa-
tion exchange), has low complexity, is provably convergent
under certain sufficient conditions, and achieves rate region
close to the global optimum. The methods of “static pricing”
and “frequency-selective waterfilling” developed in ASB may
also be of interest to the general problems of decoupling cou-
pled objective function and of multicarrier interference channel.

B. Related Work on DSM Algorithms

One of the first DSM algorithms is the Iterative Water-filling
(IW) algorithm [3], where each line maximizes its own data rate
by waterfilling over the noise and interference from other lines.
The IW algorithm is autonomous, has a linear complexity in the
number of users and number of frequency tones, and has been
shown to converge in typical DSL deployments, e.g., [3], [4].
Although IW can achieve near optimal performance in weak in-
terference channels, it is highly-suboptimal in the widely-en-
countered near–far scenarios (which will be described in detail
in Section II), such as mixed central office and remote terminal

1Although in an unbundled network DSM can be applied to in-domain lines,
in many cases out-of-domain lines cannot be coordinated, leading to some sub-
optimality. Similarly the network management center can be used to coordinate
lines in a centralized fashion, however such a network management center would
require full knowledge of the network topology, which is often difficult to im-
plement in practice. Further discussion can be found in Section I-B.

2The DSM algorithms discussed in this paper are different from the “dynamic
spectrum sharing” algorithms, which are used to refer to opportunistic sharing
of the spectrum resources in wireless communications.

1053-587X/$25.00 © 2007 IEEE
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TABLE I
COMPARISON OF VARIOUS DSM ALGORITHMS

deployments of ADSL and upstream VDSL. This is in part due
to the greedy and selfish nature of the algorithm.

Recently two optimal but centralized DSM algorithms were
proposed, the Optimal Spectrum Balancing (OSB) algorithm
[5] and the Iterative Spectrum Balancing (ISB) algorithm [6],
[7]. The OSB algorithm addresses the spectrum management
problem through the maximization of a weighted rate-sum
across all users, which explicitly takes into account the damage
done to the other lines when optimizing each line’s spectra.
OSB has an exponential complexity in the number of users,
making it intractable for DSL network with more than five
lines. As an improvement over the OSB algorithm, ISB was
proposed to implement the weighted-rate sum optimization in
an iterative fashion over the users. This leads to a quadratic
complexity in the number of users, which makes the ISB
feasible for networks with a relatively large number of users.

However, an even more critical issue is that both OSB and
ISB are centralized algorithms, which rely on a centralized net-
work management center (NMC) to optimize the power spectral
density (PSD) for all modems. The NMC requires knowledge
of the crosstalk channels among all lines and all background
noise. Identification and transmission of crosstalk channel mea-
surements back to the NMC are not supported in existing stan-
dards either. The operation of NMC requires a lot of overhead,
in terms of both bandwidth and infrastructure. Furthermore, reg-
ulatory requirements on unbundling service make it impossible
to perform a centralized optimization. Finally, many lines in the
same binder terminate on different quad cards in the DSL Ac-
cess Multiplexer because customers in the same neighborhood
sign up for service at different times, which makes it hard to
have central coordination even if one can tolerate the costs.

A semi-centralized DSM algorithm called SCALE is pro-
posed in [8]. SCALE algorithm achieves better performance
than IW with comparable complexity. However, the algorithm
is not autonomous since explicit message passing among users
is required. Such explicit real-time message passing in an un-
coordinated fashion requires modems to have sophisticated
processing capabilities not available in DSL modems, including
blind synchronization, blind identification of the crosstalk
channel, blind detection of the transmit constellation used by
the crosstalk, and blind detection of the crosstalk signal.

The band preference method is a practical way of imple-
menting an optimized DSM PSD in a distributed fashion [9].

While the band preference method calculates the bitloading in
a distributed fashion, the band-preference coefficients (which
correspond to a spectral mask imposed on the waterfilling al-
gorithm) need to be calculated in some way, centralized or dis-
tributed. This often requires the use of a centralized spectrum
management center. The performance of the band preference
method depends on the choice of the specific spectrum man-
agement algorithm used.

IW, OSB, ISB, and SCALE mentioned above all assume syn-
chronous transmissions of the modems, which allows crosstalk
to be modeled independently on each tone. This synchroniza-
tion is rarely true in practice. Instead, the signal transmitted on
a particular tone of one modem will appear as crosstalk on a
broad range of tones on the other modems. This inter-carrier-
interference (ICI) complicates the DSM problem further. The
state-of-the-art results for asynchronous transmissions are the
two centralized greedy algorithms proposed in [10], bit-sub-
tracting and bit-adding algorithms. Both algorithms start from
the power spectral density (PSD) obtained with the ISB algo-
rithm in the synchronous case, and search for local optimal solu-
tions in the neighborhood by taking ICI into account. But again
these are centralized algorithms.

C. Summary of Contributions

The advantages of ASB algorithms are summarized as fol-
lows. First of all, ASB is autonomous: it can be applied in a
distributed fashion across users with no explicitly information
exchange in real-time. Furthermore, the algorithm has low com-
plexity in both the number of users and tones, and is proved to
be convergent under certain sufficient conditions on the channel
gains. In the synchronous case, the ASB algorithm has a sim-
ilar complexity as IW, but in the near–far scenario achieves a
performance much better than IW and very close to ISB and
OSB. In the asynchronous case, the ASB algorithm reduces the
complexity from those in [10], and achieves significant better
performance than the ASB algorithm that does not consider the
ICI. These features are obtained despite the convexity and cou-
pling in the optimization problem of DSM. The comparisons be-
tween ASB algorithms and other existing algorithms are listed
in Table I. It compares various aspects of different DSM algo-
rithms, where ASB attains the best tradeoff among distributive-
ness, complexity, and performance. Here we use to denote
the number of tones and to denote the number of users.
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Fig. 1. Mixed CO/RT distribution.

The key idea behind ASB is to leverage the fact that DSL
interference channel gains are very slowly time-varying, which
enables an effective use of the concept of “reference line” that
represents a typical victim line. Roughly speaking, the reference
line represents the statistical average of all victims within a typ-
ical network, which can be thought as a “static pricing”. This
differentiates the ASB algorithm with power control algorithms
in the wireless setting, where pricing mechanisms have to be
adaptive to the change of channel fading states and network
topology, or Internet congestion control, where time-varying
congestion pricing signals are used to align selfish interests for
social welfare maximization. By using static pricing, no explicit
message passing among the users is needed and the algorithm
becomes autonomous across the users. When adapting its PSD,
each line attempts to achieve its own target rate while mini-
mizing the damage it does to the reference line. We show such
mechanisms can attain the balance between selfish and socially
responsible operation. At the same time, each user in ASB still
keeps a local “dynamic pricing” of the individual power con-
straint, which enables its own optimization problem to be de-
coupled across the tones within each user. We prove the con-
vergence of ASB under an arbitrary number of users, for both
sequential and parallel updates. Since IW can be recovered as
a special case of ASB in the synchronous case, our proof tech-
niques extend those in previous work on IW [3], [11].

The rest of the paper is organized as follows. We intro-
duce the system model in Section II, for both synchronous
and asynchronous transmission cases. The spectrum manage-
ment problem and a general framework of ASB are outlined
in Section III. ASB algorithms for the synchronous and
asynchronous cases will be given in Sections IV and V, respec-
tively. We provide convergence proofs and simulation results
in Sections VI and VII. The complexity properties of the ASB
algorithm and the IW algorithm are given in Section VIII, and
we conclude in Section IX.

II. SYSTEM MODEL

ASB can be applied to many network topologies. In this
paper we will often examine a typical near–far deployment for
downstream ADSL transmissions with a frequency band up to
1.1 MHz,3 as shown in Fig. 1, since it is one of the scenarios
where DSM techniques can give significant performance im-
provement. In this scenario there are at least two twisted-pair

3The near–far problem does not occur in the upstream ADSL case, where the
transmission frequency band is below 138 kHz and crosstalk is minimal at such
low frequencies.

copper lines in the network. The first line is from the central
office (CO) to customer 1. Since customer 2 is far away from
CO, the service provider deploys a remote terminal (RT)
near the edge of the network, which connects with customer
2 through a relatively short copper line. In the downstream
transmission case shown in the figure, the transmitting modems
(TX) are located at the CO and RT, and the receivers (RX)
are at the customer homes. Each DSL modem transmits over
multiple frequency tones (carriers). Multiple lines sharing the
same binder generate crosstalk (interference) to each other on
all frequency tones. Although the RT extends the footprint of
the DSL network, it also generates excessive interference to
the CO line due to the physical proximity between the RT TX
and the CO RX and since the two lines are in the same binder.
However, CO TX generates little crosstalk to RT RX due to the
long distance between them.

A similar near–far problem also occurs in the upstream trans-
mission for VDSL, which operates at a frequency band up to
12 MHz, and line lengths are typically limited to less than 1.2
km [12], [13]. As a result, VDSL modems are typically de-
ployed at one point in the network (e.g., a RT node), thus do not
have the mixed CO/RT problem in the downstream transmis-
sions. However, due to the difference in customer home loca-
tions, shorter lines exhibit strong crosstalks into the longer lines
receivers in the upstream transmissions. Furthermore, in mixed
VDSL/ADSL deployments, RT-deployed VDSL will interfere
with the CO-deployed ADSL signals in the downstream.

Next we introduce the mathematical models for both the syn-
chronous and asynchronous transmission cases, following the
notation in [5], [6], and [10].

A. Synchronous Transmission

Consider a DSL network with a set of users
(i.e., lines, transmitting modems) and tones
(i.e., frequency carriers). Assuming the standard synchronous
discrete multi-tone (DMT) modulation, transmissions can be
modeled independently on each tone as follows:

The vector contains transmitted signals
on tone , where is the signal transmitted by user at tone

. Vectors and have similar structures: is the vector
of received signals on tone ; is the vector of additive noise
on tone and contains thermal noise, alien crosstalk and radio
frequency interference. We denote the channel gain from trans-
mitter to receiver on tone as . We denote the transmit

Power Spectral Density (PSD) , where
denotes expected value, and denotes inter-carrier spacing.

The vector containing the PSD of user on all tones as
.

When the number of interfering users is large, the interference
can be well approximated by a Gaussian distributed random
variable. The achievable bit rate of user on tone is defined
as

(1)
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where is the normalized crosstalk

channel gain from user to user , and
is the normalized noise power density. Here de-

notes the SINR-gap to capacity, which is a function of the de-
sired BER, coding gain and noise margin [14]. For notational
simplicity, we absorb into the definition of and . The
bandwidth of each tone is normalized to 1. Each user is typ-
ically subject to a total power constraint , due to the limita-
tions on each modem’s analog frontend: . The
data rate on line is thus .

B. Asynchronous Transmission

In practice, it is often difficult to maintain perfect syn-
chronization between different DMT blocks due to different
transmission delays on different lines. Compared with the
synchronous transmission case, here the received PSD of user

on tone , , also depends on other users’ transmit
PSD on tones other than tone ,

Here is the ICI coefficients estimated in the worst case [10],

and has the symmetric and circular properties, i.e.,
. Then the achievable bit rate of user on tone

in (1) needs to be revised as (with set to 1)

(2)

where . All the other system parame-
ters and constraints are the same as the synchronous case.4

III. SPECTRUM MANAGEMENT PROBLEM AND THE GENERAL

FRAMEWORK OF ASB

We consider the following spectrum management problem

(3)

4While windowing [15] at the transmitter and receiver can be used to lower
the DMT sidelobes and help reject ICI, in our experience a high level of ICI still
remains, leading to significant performance degradation. Thus it is an important
problem to mitigate ICI through DSM techniques.

Here denotes the target rate of user , and we can
pick an arbitrary user to be user 1. Due to interference between
users, Problem (3) is nonconvex. Furthermore, it is highly cou-
pled across users (due to crosstalk) and tones (due to total power
constraint as well as ICI in the asynchronous case), making it a
very difficult optimization problem to solve.

The rate region achieved by all users is convex in the asymp-
totic case when number of tones becomes large [5]. Thus by
changing the values of of all users , the solu-
tions of Problem (3) can trace out the Pareto optimal boundary
of the rate region.

It appears that any algorithm that globally solves (3) must
have knowledge of all crosstalk channels and background noise
spectra, forcing it to operate in a centralized fashion. In order to
overcome this difficulty, we observe that for optimal solutions
of (3), each user adopts a PSD that achieves a fair compromise
between maximizing their own data-rate and minimizing the
damage they do to other users. Based on this insight, we intro-
duce the concept of reference line, a virtual line that represents
a typical victim user within the DSL system. One choice, but
not the only one, for the reference line is to set it as the longest
line seen within a network, which tends to have the weakest di-
rect channel and see the worst crosstalk spectrum. Then, instead
of solving (3), each user tries to maximize the achievable rate
on the reference line, subject to its own rate and total power
constraints.

Note that the reference line is a fictitious line, and is used
to represent a typical victim in a DSL network. This is inde-
pendent of a particular binder, as no specific knowledge of a
binder’s configuration is assumed. As such no centralized con-
trol is necessary, and the algorithm can be implemented in an
autonomous fashion. The only knowledge a modem needs is its
direct channel, background noise and the distance from the CO
to the RT if it is RT distributed. All of this information can ei-
ther be measured locally, or, in the case of the CO to RT distance,
can be programmed at the time that the RT is installed. This al-
lows ASB to be implemented in an autonomous fashion during
run-time, with the PSD and bitloading calculated locally.

Since the main purpose of introducing the reference line is to
characterize the damage that each user does to other interfering
users, we will make the achievable rate of the reference line
user-dependent. In other words, from user ’s point of view, the
reference line’s rate is , where the achievable
bit rate on tone in the synchronous case is defined as

(4)

and, in the asynchronous case, as

(5)

Intuitively, the reference line serves as a penalty term in each
user’s optimization problem to align selfish behavior with social
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welfare maximization, and eliminates the need of explicit mes-
sage passing among users. Thus, instead of solving Problem (3)
which requires global information, we let each user solve the
following problem in ASB algorithm:

(OPT1)

We want to emphasize that the each user autonomously solves
a different version of Problem (OPT1). For user , Problem
(OPT1) only involves optimization over its own PSD , which
determines the achieved rates of itself and the reference
line . The interference generated by other users are con-
sidered as fixed background noise in the optimization, and the
achieved rates of other users in the network do not need to be
considered. After each user solves its own version of Problem
(OPT1), the crosstalk values change accordingly. Then each
user has to solve Problem (OPT1) again, repeating the process
until the PSD converges. The complete ASB algorithms will be
given the Sections IV and V, where each version of ASB de-
ploys a unique way of solving Problem (OPT1). In Section VII,
we will use “area of the rate region” as the performance metric
when comparing ASB algorithms with other existing DSM al-
gorithms (e.g., [3], [5]–[7], [10]).

To facilitate the analysis in the following sections, we also
consider a variation of Problem (OPT1), where we relax user

’s target rate constraint and replace the optimization objective
by a weighted rate sum of user ’s own rate and the reference
line’s rate seen by user , i.e.,

(OPT2)

Here the weight parameter , where means
user performs a pure selfish optimization, and means
the reference line’s rate will be maximized.5 In the synchronous
case, it has been shown in [5] that the rate region of Problem
(OPT1) (in terms of and ) is convex in the asymptotic
case with large number of tones. We can always find a value
of such that the optimal result of Problem (OPT2) is the
same as that of Problem (OPT1) (i.e., find a such that the
solution of Problem (OPT2) satisfies ) as long
as the latter is feasible. Thus the key challenge of the ASB
algorithm is to efficiently solve Problem (OPT2). The above
correspondence is not necessarily true in the asynchronous
case. In that case, we can still use Problem (OPT2) as an
approximation of Problem (OPT1) to derive an algorithm that
achieves good performance.

Remark 1: The crosstalk channels into the reference line
and are modeled using the empirical models that have been
developed within the standards [12], [13], [16]. These are based

5Problem (OPT2) can be derived from Problem (OPT1) using standard
Lagrangian relaxation of user n’s target rate constraint, where the dual
variable is chosen to be w =(1 � w ), which ranges from 0 to 1. This
weighted rate maximization representation was also used in [6] and [8].

on extensive field measurements and give a good representa-
tion of the typical crosstalk channels seen in practice. Alter-
natively, it is also possible for the operator to use their own
crosstalk channel models based on measurements made within
their specific network, or with more advanced channel models
which take into account both the inter-pair distance and non-
ideal twisting of the twisted pairs within a binder [17]. For the
empirical models used in standards, the only information needed
to calculate the crosstalk channel is the length of the reference
line, and the distance from the CO to the RT if a modem is
RT distributed. All this information can be pre-set by the net-
work operator at the time that a modem is installed. Although
it may be possible to update this information periodically over
the timescales of months or longer, such procedures are not re-
quired for the operation of the ASB algorithm.

Remark 2: The ASB algorithms use a static background noise
spectrum for the reference line , which is set to the line noise
seen by the reference line in the absence of self-crosstalk, i.e.,
crosstalk from other DSL systems. In our experience, using this
choice for the reference noise leads to good performance in
a broad range of scenarios. We believe the reason for this is
that in most typical DSL deployments, the shorter lines, which
could potentially cause severe crosstalk to the weaker lines in
the system, will be configured such that they reduce their PSDs
in the frequencies where the weaker lines are active. As a result,
in a DSL deployment with a reasonable distribution of rates,
each line should expect to see only a marginal increase in its
background noise spectrum due to crosstalk from the other lines
in the system. This provides an intuitive explanation why the
choice of self-crosstalk-free reference noise yields good perfor-
mance. Mathematically, it means that the specific engineering
problem structures in this non-convex and coupled optimization
problem can be leveraged to provide a very effective approxima-
tion solution algorithm.

Remark 3: The reference line transmit PSD is also static,
and is set to the PSD adopted by the reference line in the absence
of self-crosstalk, and with a background noise of . This PSD
will be set based on the spectrum adaptation algorithm running
on the modem when it operates in a fully selfish mode. In the
simulations later in this paper, we use conventional single-user
waterfilling to set , although in principle any static spectrum
management algorithm could be used. Although this choice of
reference noise and reference line transmit PSD is suboptimal,
it allows for an autonomous implementation, and as shown in
Section VII, leads to a significant performance improvement
over state-of-the-art autonomous algorithms, and in some sce-
narios leads to near-optimal performance.

IV. ASB ALGORITHMS IN SYNCHRONOUS TRANSMISSION

In this section, we develop an ASB algorithm for the syn-
chronous case, where the achievable bit rates of user and the
reference line (from user ’s perspective) are given by (1) and
(4), respectively. Since the transmissions on different tones are
orthogonal to each other here, we can use dual decomposition
[18] to solve Problem (OPT2), defined for each user . Al-
though Problem (OPT2) is nonconvex, we know from [5] that
the corresponding duality gap of Problem (OPT2) is zero in the
asymptotic case where the total number of tones is large, thus
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solving the dual problem can lead to optimal primal solution.
We name the algorithm in this section as ASB-S1, where we
solve Problem (OPT2) through a dual decomposition. Each user

solves Problem (OPT2) by solving a nonconvex problem on
each of the tones and choosing the dual variable (i.e., dy-
namic price) such that the total power constraint is tight. Then
users take turns to perform this optimization until the PSDs
converge.

By incorporating the total power constraint into the objective
function, we have the following relaxation of Problem (OPT2):

Here and needs to be chosen such that
. Then Problem (OPT2) can be solved by the fol-

lowing unconstrained optimization problem:

(6)

where denotes the PSD
of all users except user . Further define

(7)

then it is clear that can be decomposed into a sum across
tones of , . As a result, Problem (6) can be
decomposed into subproblems, one for each tone . The op-
timal PSD that maximizes is

(8)

where . Although is
nonconvex in , the maximization is over a scalar variable only,
and the optimal value can be easily found as follows. First
solve the first order condition, , which is equiva-
lent to

(9)

Equation (9) can be simplified into a cubic equation which has
three roots that can be written in close form. Then comparing
the value of at each of these three roots, as well as checking
the boundary solutions and , we can find out
the corresponding value of .6

6If an integer bitloading constraint is applied, then we can simply calculate
the PSD required to support each integer bitloading, and then evaluate the ob-
jective function L at the PSD corresponding to each integer bitloading value.
The optimal choice is then selected. This allows integer bitloading constraints
to be incorporated without increasing complexity. Furthermore, spectral mask
constraints can also be applied in a straightforward fashion by disregarding any
solution to the cubic equation that lies above the spectral mask, and adding the
spectral mask level itself to the set of points evaluated in the optimization.

User then updates to enforce the total power constraint,
and updates to enforce the target rate constraint. Both pa-
rameters can be found by a simple bisection search. Users then
iterate until all PSDs converge. The complete ASB-S1 algorithm
is given in Algorithm I.

Algorithm 1: ASB Synchronous Model Version 1 (ASB-S1)

1: Initialize PSDs: , , .
2: repeat
3: for all user do
4: Initialize ,
5: while do
6:
7: Initialize ,
8: while do
9:

10: , .
11: if then
12:
13: else
14:
15: end if
16: end while
17: if then
18:
19: else
20:
21: end if
22: end while
23: end for
24: until all users’ PSDs converge

Remark 4: The ASB algorithm leverages strong design
points from both OSB and IW. Like OSB, ASB uses a weighted
rate-sum to account for the damage done to other lines within
the network when optimizing each line’s spectra. This weighted
rate-sum leads to a significant performance improvement over
IW and in some scenarios leads to near-optimal performance.
Like IW, ASB uses an iterative approach, optimizing the PSD
of each user in turn.

Remark 5: The concept of a reference line has been em-
ployed extensively in heuristic-based DSM algorithms in the
industry, including the reference PSD method that is currently
mandated in the VDSL standards [12], [13], [16]. The reference
PSD method is used in upstream VDSL transmissions to mit-
igate the near–far problem. A similar technique has also been
recommended for downstream transmissions in order to pro-
tect existing ADSL services from RT distributed VDSL [19].
There is a strong connection between ASB and the reference
PSD heuristics adopted in standards. Although the technique
for optimizing the PSD in ASB is different to that in the ref-
erence PSD method, both algorithms use representative “refer-
ence line” that shows what a typical line in the network looks
like, and how it should be expected to behave. In this paper, we
also develop proofs for convergence properties of ASB.
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Remark 6: In considering only a single reference line, the
ASB algorithm makes an implicit assumption that, by protecting
the typical victim line in the binder, a user will indirectly pro-
tect other shorter lines (i.e., stronger lines). The ASB algorithm
could be extended in a straightforward way to include multiple
reference lines, which does not impact the convergence proper-
ties and only leads to a small increase in complexity. For each
extra reference line introduced into ASB, an extra local maxima
will appear in the optimization of (8). ASB algorithm evalu-
ates the objective function at each local maxima and chooses
the global maximum. As the frequency increases, we observe
that the global optimal solution chosen by the ASB algorithm
jumps from a lower local optimal solution to a higher one. This
is because, as frequency increases, the longest reference lines
becomes inactive due to weak direct channel in the high fre-
quency band, thus it is no longer necessary to protect this line.
A higher PSD is then chosen that corresponds to a higher local
optima. This new PSD will protect the second longest reference
line, which is now the weakest line in the system for that par-
ticular frequency. When there are reference lines, the ASB
objective function exhibits up to local maxima. The first

local maxima correspond to protecting each of the reference
lines, while the st local maxima corresponds to the com-
pletely selfish waterfilling solution, which is employed in the
very highest frequencies when all reference lines have switched
off due to weak direct channels. To simplify presentation, in this
paper we only focus on the approach of using a single reference
line.

V. ASB ALGORITHMS IN ASYNCHRONOUS TRANSMISSION

In this section, we propose an ASB algorithm for the asyn-
chronous case, where the achievable bit rates of user and
the reference line (from user ’s perspective) are given by
(2) and (5). In this case, Problem (OPT2) is still non-convex
and highly coupled due to crosstalk. Different from the syn-
chronous case, a dual-based decomposition is not even appli-
cable here since the PSD across different tones are coupled
due to ICI.

We will introduce a greedy power shuffle algorithm into the
ASB framework, where each user first initializes the PSD level
by solving Problem (OPT2) assuming synchronous transmis-
sion (i.e., temporarily ignoring the ICI), then shuffle its PSD

(i.e., subtract a small amount from one tone and add it back
to another tone) to reach a locally optimal solution of Problem
(OPT2). Each user takes turns to perform this power shuffling
until the PSDs converge.

Let’s denote the objective function of Problem (OPT2) as

For notational simplicity, in the above expression we ignore
the dependence of on (which is assumed to be
fixed during user ’s PSD optimization). Define as the

incremental amount of power a user can change on a tone at
a time. In other words, represents the granularity of the
power shuffle, which trades off performance and convergence
speed.

For each user with fixed , each search iteration consists
of two phases: subtraction phase and addition phase. In the
subtraction phase, user reduces its PSD by on the tone
that yields the maximum increase in (or the smallest
decrease if decreasing on any tone leads to a decreased
objective). In the addition phase, user increases its PSD by

on the tone that yields the maximum increase in
(or smallest decrease similar as in the subtraction phase). This
iteration repeats until the net change of in the last
iteration (i.e., the sum of changes in both phases) is zero.
Note that the net change of objective function will never be
negative in a single iteration, since in the addition phase a
user can always add back to the same tone chosen in the
subtraction phase and recover the PSD level as in the previous
iteration.

The complete ASB-A1 algorithm is given in Algorithm 2.
Line 7 computes user ’s PSD similar as in the synchronous
case, given fixed transmission PSDs of other users, . Lines
8 to 10 refine the value of several times by taking ICI into
explicit consideration. For each value of granularity , we
apply the power shuffle (PS) subroutine (Algorithm 3) to up-
date until convergence is reached, which occurs once no fur-
ther greedy power swap can increase the objective. In a similar
fashion to the barrier method [20], we use the optimal solution
from the previous refinement as the initial position in the cur-
rent refinement. By using diminishing values of , we achieve
a much faster convergence rate and higher accuracy than can be
achieved with a single PSD granularity. Finally, user updates

in lines 11 to 15 using bisection search to make the target
rate constraint tight.

Algorithm 2: ASB Asynchronous Model Version 1 (ASB-A1)

1: Initialize PSDs: , , .
2: repeat
3: for all user do
4: Initialize ,
5: while do
6:
7: Compute as Lines 7 to 16 in ASB-S1
8: for all do
9: .

10: end for
11: if then
12:
13: else
14:
15: end if
16: end while
17: end for
18: until all users’ PSDs converge
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Algorithm 3: Power Shuffle (PS) subroutine

1: procedure
2: repeat
3: .
4: for all do
5:
6:
7:
8: end for
9:

10:

11: for all do
12:
13:
14:
15: end for
16:
17:

18:
19: until
20: return
21: end procedure

The PS subroutine is specified in Algorithm 3. Line 3 finds the
set of tones on which a decrease of PSD will not lead to a nega-
tive PSD. Lines 4 to 10 perform the subtraction phase, and lines
11 to 17 perform the addition phase. If a spectral mask constraint
is applied, then in the addition phase we exclude from consider-
ation any tones where addition would result in a spectral mask
violation. Each user always achieves a better objective
at the end of the PS subroutine, compared with the one achieved
by using ASB-S1 algorithm before the PS subroutine. This is
due to the monotonic increase of during the iterations
of the subroutine. Therefore, it is clear that the following is true.

Proposition 1: The PS subroutine always converges.
The convergence of the ASB-A1 algorithm is difficult to show

in general, due to the nonconvexity of Problem (OPT2) and the
fact that the PS subroutine can only reach a local optimal solu-
tion. In our simulations, however, the ASB-A1 algorithm always
converges.

Note also that, at the end of each iteration of the PS subroutine,
the power constraint of user is always tight. This is because
we take away from one tone in the subtraction phase, and
put it back into one tone in the addition phase. Thus the resource
is always fully utilized and no power violation occurs. This is
different from the bit-addition and bit-subtraction algorithms
in [10], where the power constraints are either loose or violated
during the whole process of the algorithm before convergence.

VI. CONVERGENCE ANALYSIS

In this section we prove convergence for various versions of
ASB. We will only consider the rate adaptive (RA) mode, where

users fix their weights and aim at maximizing their rates under
a total power constraint [14].7 We notice that previous DSL lit-
erature (e.g., [3], [5]–[8], [10], [11]) also focus on the RA mode
when discussing convergence. Even when adapts to enforce
target rate constraints, extensive simulations show that the algo-
rithms proposed in this paper still converge.

We first discuss the convergence of ASB-S1 in a two-user
case. The convergence of ASB-A1 has been briefly mentioned
in Proposition 1 for PS subroutine. We then consider the high
signal-to-noise ratio (SNR) regime for the reference line, under
which we prove stronger convergence results in both the syn-
chronous and asynchronous cases.

A. Convergence of ASB-S1 Algorithm

Here we discuss the convergence of the ASB-S1 algorithm,
where the nonconvexity of (9) makes it difficult to prove con-
vergence. In the two-user case, we can still show the following.

Theorem 1: Consider a two-user system with fixed and .
There exists at least one fixed point of ASB-S1, and the algo-
rithm converges if users start from initial PSD values

or on all tones.
The proof of Theorem 1 uses supermodular game theory [21]

and strategy transformation similar to [22], and is omitted here
due to space limitation. Supermodular game theory can be used
to deal effectively with nonconvexity problems, and the conver-
gence result in Theorem 1 does not require any condition on the
crosstalk channels. However, it is only for the case of fixed ,
and users have to initialize their PSD at particular values.

B. Convergence Under High SNR Regime of the
Reference Line

To reduce the computation complexity and gain more insight
into the solution structure, we simplify the problem under high
SNR approximation of the reference line as shown below.

1) Synchronous Transmission Case: The data rate of the ref-
erence line can be written as a linear function of the transmis-
sion power of user under additional assumptions. First, from
(4) we know that the reference line’s rate is a decreasing and
concave function in user ’s transmission power , and we can
approximate with the following linear lower bound:

(10)

In other words, this gives the upperbound on the rate loss of the
reference line due to the interference from user . Second, if we
assume that the reference line operates in the high SNR regime
whenever it is active, i.e., if then , then (10) can
be further simplified as

(11)

7The other categories of the spectrum balancing operation include Fixed
Margin (FM) mode and Margin Adaptive (MA) mode, In FM, users try to
minimize their power consumption under a target rate constraint. In MA, the
users maximize their margins after achieving the target data rate.
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where is the indicator function and equals to one when
event is true. Under (11), Problem (OPT2) becomes a convex
optimization problem. In particular, user ’s maximization ob-
jective function on tone in (7) is approximated by

thus the corresponding optimal PSD can be found in close form
as

(12)

where . This is a water-filling type of solu-
tion, with different water-filling levels for different tones. We
name it frequency selective waterfilling. Solution (12) is intu-
itively satisfying. The PSD for user should be smaller when
the power constraint is tighter (i.e., is larger), or the crosstalk
channel to the reference line is higher, or the noise level on
the reference line is smaller, or there is more interference
plus noise on the current tone.

This leads to a second version of the ASB algorithm in the
synchronous case, ASB-S2 algorithm as shown in Algorithm 4.

Algorithm 4: ASB-S2: ASB-S1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

The ASB-S2 algorithm turns out to be a special case of the
ASB-A2 introduced next for the asynchronous case, of which
the convergence results will be presented in Section VI-B-3.

2) Asynchronous Transmission Case: Due to the coupling
induced by ICI, it is very difficult to find the global optimal so-
lution of Problem (OPT2) in the asynchronous case. However,
if we also assume the high SINR regime and a linear approxi-
mation of the bit per tone formula on the reference line as in the
synchronous case, we have

Then, Problem (OPT2) becomes not only convex but also with
a objective function that is separable across tones., i.e.,

and the corresponding optimal PSD that solves Problem (OPT2)
is given as

(13)

where is chosen to make the total power constraint tight
. This is a generalization of the frequency selective

waterfilling solution of ASB-S2. The complete ASB-A2 algo-
rithm is given in Algorithm 5.

Algorithm 5: ASB-A2: ASB-A1 under high SNR regime

1: Replace Line 10 in Algorithm 1 with

3) Convergence of Algorithms ASB-S2/A2: We first consider
the convergence in the two-user case where users sequentially
optimize their PSD levels.

Theorem 2: The ASB-A2 algorithm globally converges to
the unique fixed point in a two-user system under fixed , if

.
Proof of Theorem 2 is given in Appendix A. The key idea be-

hind the proof is that the ASB-A2 algorithm leads to a contrac-
tion mapping in the PSD updates, when the maximum product
of the crosstalk channel gains is small enough. One extreme
case is in a practical CO/RT mixed deployment case, where the
crosstalk from CO to RT is negligible (i.e.,

.
Corollary 1: The ASB-S2 algorithm globally and geometri-

cally converges to the unique fixed point in a two-user system
under fixed , if .

Corollary 1 recovers the convergence results for iterative
water-filling in the two-user case [3] as a special case (by
deactivating the reference line).

We further extend the convergence results to a system with an
arbitrary number of users. We consider both sequential
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and parallel PSD updates of the users. In the more realistic but
harder-to-analyze parallel updates, time is divided into slots, and
each user updates its PSD simultaneously with other users in
each time slot according to (13) based on the PSDs from the
previous time slot, and the is adjusted such that the power
constraint is tight.

Theorem 3: Assume
, then the ASB-A2 algorithm globally and geometri-

cally converges to the unique fixed point in an -user system
under fixed , with either sequential or parallel updates.

Proof of Theorem 3 is given in Appendix B. For ASB-S2
algorithm, we have the following.

Corollary 2: If , then the
ASB-S2 algorithm globally and geometrically converges to the
unique fixed point in an -user system under fixed , with ei-
ther sequential or parallel updates.

Corollary 2 recovers the convergence results for iterative
water-filling in an -user case with sequential updates (proved
in [11]) as a special case. Interestingly, the convergence proof
for the parallel updates turns out to be simpler than that for
sequential updates. Although convergence proofs are given for
the case with a time-invariant update order, in our experience
the algorithm always converges even if the modems are updated
in a random fashion. Because of this, no centralized coordina-
tion is necessary for the updating of the individual modems, and
this can instead be triggered locally when a modem notices a
change in its local conditions, e.g., an increase in the measured
noise spectrum as a new modem comes online.

4) Physical Meaning of Convergence Conditions: The con-
vergence conditions in Theorems 2 and 3 and Corollaries 1 and
2 can be translated into constraints on the DSL network topolo-
gies. In downstream ADSL, the constraint can be translated into
the maximum distance between the transmitters of RT and the
CO, which limits the degree of crosstalk the RT transmitter can
generate to CO receiver. In upstream VDSL, this means that
lines cannot have lengths that are too different from one another,
otherwise the near–far effect from the short lines into the long
lines will cause severe crosstalk.

To make the physical meaning more concrete, we consider a
detailed DSL channel model that relates the channel gain to the
network topology. The magnitude of the direct channel can be
modeled as , where is the line propagation con-
stant, which depends on tone index , and is the line length.
The value of is well understood, and very accurate models
exist based on frequency, and the line diameter, construction,
materials, etc. The crosstalk channel, on the other hand, is not
as well understood.8 However, worst 1% case models for the
crosstalk channel have been developed, with which we can de-
velop bounds that will guarantee convergence in 99% of lines.
To be specific, the channel gain from transmitter to receiver

in the worst 1% case crosstalk model is ([12], [13])
. The constant ,

is the length (in kilometers) over which line and

8Significant progress has been made in developing more advanced crosstalk
channel models that take interpair distance and twisting imperfections into ac-
count [17], however this work requires detailed knowledge of the twisted pair
geometry in order to estimate the crosstalk channels, something that is not avail-
able in an autonomous algorithm.

Fig. 2. Physical parameters of the DSL network.

come into close contact in the same binder and electromagnetic
coupling can occur, is the frequency on tone (in megahertz),
and is the distance from the transmitter of to the re-
ceiver of line (in kilometers). A graphic illustration of the no-
tations is shown in Fig. 2.

The convergence conditions for ASB-S2 is based on
normalized channel gains . First con-
sider the two user downstream ADSL case. For the channel
from the CO TX to the RT RX, ,
where is the length from the CO TX to the RT
TX, and is the length of the RT line. In this case, we
have

. For ADSL, the maximum de-
ployment length is typically 5 km, so we can use this
to bound , i.e.,

. For any particular value of ,
the upperbound of can be maximized across , which is
typically achieved at which corresponds to the highest
frequency at 1.1 MHz (i.e., interference is most severe on high
frequencies). Next, consider the channel from the RT into the
CO,

, where

. We can again maximize across (up to 1.1
MHz) for any particular value of . To satisfy the conver-
gence condition in Corollary 1, we need to find such that

in the synchronous
case. Using an SNR-gap of 12 dB, which includes a coding
gain of 4.2 dB and a noise margin of 6 dB, it turns out that all
values of satisfy the convergence conditions as
shown in Fig. 3, which means ASB-S2 always converges in the
2-user case for all deployment scenarios. In the user case,
we find that, in the sufficient condition for convergence, the
constraint on the maximum distance between the CO TX and
RT TX is too loose to be useful in practice. In our experience we
find that ASB converges for a broad range of typical scenarios
seen in DSL deployments.

VII. SIMULATION RESULTS

In this section, we show the performance of the ASB algo-
rithms, using a realistic simulator based on empirical channel
models developed in standards and used extensively in the in-
dustry [12], [13], [16]. In these simulations we use continuous
bitloading and do not apply a bitcap. This is done since it results
in PSDs that allow a more intuitive interpretation. It is also pos-
sible to apply integer bitloading constraints, a bitcap, and PSD
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Fig. 3. Convergence conditions always satisfied in the two-user case since
max � max � < �2:2 dB.

Fig. 4. A four-user mixed CO/RT deployment topology (CP denotes customer
premises).

masks to ASB with negligible increase in complexity. We only
simulate the performances of the ASB-S1 and ASB-A1 algo-
rithms, which do not involve any high SNR assumptions.

A. Synchronous Transmission Case

Here we summarize a typical numerical example, represen-
tative of a large set of experiments we conducted, comparing
the performance of the ASB-S1 algorithms with IW, OSB, and
ISB in the synchronous transmission case. A four-user mixed
CO/RT scenario has been selected to make a comparison with
the highly complex OSB algorithm possible. As depicted in
Fig. 4, user 1 is CO line, while the other three users are RT lines.
ANSI noise model A [23] has been used, which consists of 16
ISDN, 4 HDSL and 10 conventional (non-DSM capable) ADSL
disturbers.

Due to the different distances among the corresponding trans-
mitters and receivers, the RT lines generate strong interference
into the CO line, while experiencing very little crosstalk from
the CO line. The target rates of users 2 and 3 have both been set
to 2 Mb/s. User 4 changes its target rate from 0 to 8 Mb/s, and
user 1 (the CO line) does not have a target rate constraint and
always sets its weight coefficient equal to unity in ASB-S1
(i.e., maximizes its own rate without protecting the reference
line). The reference line is chosen to match the longest line in
the network in terms of background noise and crosstalk channel
gains with users in the network. The reference line transmit PSD

Fig. 5. Rate regions obtained by various DSM algorithms.

is chosen according to single-user waterfilling without consid-
ering the interference from other users. Based on this reference
line, we get the rate regions9 shown in Fig. 5. Observe that ASB
achieves a near-optimal performance, almost identical to rate
regions attained by the globally optimal OSB and ISB, and sig-
nificant gains over IW. As a typical example, with a target rate
of 1 Mb/s on user 1, the rate on user 4 reaches 7.3 Mb/s under
ASB algorithm, which is a 143% increase (more than double)
compared with the 3 Mb/s achieved by IW.

Compared with IW, ASB exploits the special structure of the
DSL channel and thus achieves much better performance. Since
the direct channel gets worse with increasing frequency and
length, long lines cannot effectively utilize high frequencies.
The crosstalk channel strength, on the other hand, increases with
frequency. In the ASB algorithm, the RT lines transmit with
high power in the low frequencies where there is little crosstalk,
reduce power in the middle frequencies to protect the reference
line, and switch to high power again in the high frequencies
where reference line is not active. In the IW algorithm, how-
ever, the power allocation is as follows:

where the adjustable part is the same on all fre-
quencies. User first adjusts such that its total power con-
straint is tight. If the achieved rate is larger than the target
rate , it performs equal power-backoff at all frequen-
cies (i.e., increase the value of ), which unnecessarily reduce
the power at the very low (where little crosstalk is generated to
the CO line) and high frequencies (where the CO line is inac-
tive). As a result, the IW algorithm leads to highly suboptimal
performance, especially in near–far scenarios. As an example,
we plot the PSD allocations under the ASB, IW and ISB/OSB
algorithms in Fig. 6, with the achievable rates of four users as

, , for IW and
7.3 Mb/s for ASB-A1/ISB/OSB.

We also summarize a typical simulation of the ASB and IW
algorithms in a network with 10 lines, with the line length equal
to 5 km for the CO line, and 2 km to 4.5 km for the RTs in

9Note that only ASB uses the reference line idea.



4252 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 8, AUGUST 2007

Fig. 6. Transmit spectra with synchronous transmission. (a) ASB-S1; (b) IW;
(c) ISB/OSB.

steps of 0.3125 km. The RTs are correspondingly located 2 km
to 4 km from the CO. The target rate for the CO modem was

Fig. 7. Mixed CO/RT distribution.

specified as 1.6 Mb/s. With this in mind, the target rates for
the RT modems, which are set equally on all RTs, are reduced
until the CO modem achieves its target rate. With IW, the RTs
are forced to reduce their rates to 0.8 Mb/s in order for the CO
to achieve it’s target. With ASB, due to the more intelligent
allocation of the RT transmit spectra, the RTs can maintain a
rate of 2.0 Mb/s while still ensuring that the CO modem achieve
1.6 Mb/s. The ASB algorithm achieves a gain of 122% in the RT
rate with respect to IW.

B. Asynchronous Transmission Case

Now consider the case of asynchronous transmission. Here
we summarize a typical numerical example comparing the per-
formances of the ASB-A1 and ASB-S1 algorithms. As depicted
in Fig. 7, the scenario consists of downstream transmission with
two ADSL modems, one 5 km CO line, and one 3 km RT line.
The RT TX is deployed 4 km downstream from the CO TX.

Figs. 8 and 9 show an example of the PSDs generated by
ASB-A1 and ASB-S1. The target rate for the RT is set to
3.85 Mb/s. Using ASB-S1, which does not take the effects of
the ICI into account when optimizing the transmit spectra, the
CO achieves 1.3 Mb/s. Using ASB-A1, the CO rate increases to
1.6Mb/s. With ASB-A1, the transmitpower is shifted further into
thehigh-frequencies topreventexcessiveICI to theCOline.Also,
since the ICI creates an unavoidable “noise” floor of at around

90 dBm/Hz, it is possible to increase the transmit PSD between
340 KHz and 680 KHz with minimal degradation to the CO line.

Fig. 10 shows the increase in performance relative to IW
achieved by ASB-S1 and ASB-A1, respectively, in an asyn-
chronous environment. As we see, even when the modems are
not synchronized, ASB-S1 achieves significant gains over IW.
Furthermore, if the transmit spectra are further refined through
the application of ASB-A1, even further performance gains are
possible. For example, if the CO rate is set at 1.4 Mb/s, ap-
plying ASB-S1 increases the RT rate by 48% over IW. Applying
ASB-A1 leads to a further increase in the RT rate of 186%,
leading to a total gain of 234% over IW.

C. Sensitivity Analysis of the Reference Line Choices

In previous simulation examples, we choose the reference
line to match the longest line in the binder. Here we study the
robustness of the performance to the choice of reference line
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Fig. 8. Transmit spectra with asynchronous transmission: ASB-S1.

Fig. 9. Transmit spectra with asynchronous transmission: ASB-A1.

Fig. 10. Performance gains of ASB-S1 and ASB-A1 over IW under asyn-
chronous transmission.

length. We run simulations in a two user scenario as in Fig. 7, as-
suming that the modems operate synchronously. For these sim-
ulations, we vary the length of the reference line, but hold the
length of the CO line in the binder at 5 km.

Fig. 11. Sensitivity of ASB-S1 to choice of reference line length.

Fig. 11 shows the achievable rate regions with the different ref-
erence line length. Obviously, optimal performance is achieved
by setting the reference length to 5000 m, the length of the weaker
CO distributed line. We notice that the performance is relatively
insensitive to the choice of the reference line length, especially
during a broad range of 4050 m to 6000 m. Only when the ref-
erence line becomes extremely inaccurate (i.e., around 4020 m
or less), which seldom happens in practice, performance starts to
degrade rapidly. This is because with a 4020 m reference line, the
ASB algorithm assumes that the RT TX is located only 20 m from
the reference line RX (recall that the RT RX is actually 4000 m
from the CO RX). This will lead to a huge crosstalk channel from
the RT to the reference line, and the RT is forced to reduce power
in the entire frequency band within which the CO transmits. As
can be seen, the performance of ASB is quite insensitive to the
mismatch between the length of the reference line and the length
of the longest line in the binder. And even for quite big errors in
reference line settings, the attainable rate region by ASB is still
much larger than IW.

Mathematically, this means that the dependence of the values
of the local maxima of this nonconvex optimization problem on
the crosstalk channel coefficients is sufficiently insensitive for
the observed robustness to hold.

VIII. COMPLEXITY ANALYSIS

Here we compare the complexity of ASB-S1 algorithm with
the IW algorithm, which is summarized in Table II.10 Running
time is measured based on the results of Matlab programs run-
ning on an MS-windows machine with a P4-2.8 GHz processor.
Real time operations based on hardware implementation would
be several orders of magnitude faster. The example we simu-
lated includes a total of tones and lines. Cy-
cles till convergence is number of outer-cycles required through
all of the users before convergence occurs. We typically see that
only three outer-cycles are necessary for the rates to converge
within 1% of the previous cycle.

10The complexity result of ASB-A1 algorithm was summarized in Table I,
and the corresponding analysis details are omitted due to space limitation. The
complexities of OSB, ISB, and SCALE are too high to be comparable to ASB
or IW, and are omitted here.
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TABLE II
ALGORITHM COMPLEXITY

A. Complexity Analysis for IW

Iterative waterfilling consists of an outer cycle that iterates
through users, and an inner loop that adjusts the total power of
the current user until the target data rate is achieved. For each
user , we use a bisection on within the inner loop, which
is both efficient and robust. In the inner loop, each user needs
to find the power required to hit its target rate constraint. Typi-
cally achieving a precision of in the total power setting is
sufficient to hit the target rate with high accuracy. This requires

iterations of bisection search.
For each iteration within the inner loop under a fixed value of
, a standard waterfilling algorithm must be applied with the

following complexity11:
1) Find the optimal water level such that the total power con-

straint is satisfied and allocated power is positive on all ac-
tive tones: operations [24].

2) Calculate based on the optimal water level:
operations.

3) Calculate the corresponding bitloading: operations.
Hence the total complexity of a single waterfilling is oper-
ations, where one operation is either an addition or a multipli-
cation. Considering the 34 iterations of the bisection search, the
iteration through all of the users, and the iteration of the whole
process until convergence, the total complexity of IW is then:

, where is the number of cycles
required until convergence.

B. Complexity Analysis for ASB-S1

ASB-S1 consists of three levels of iterations, with the out-
ermost cycle iterating through users. Within each cycle, each
users runs an outer loop where it updates until the target data
rate is achieved, and an inner loop where it updates until the
total power constraint is satisfied. The bisection search is used
in both loops. To achieve a precision of in both and

, we need a total of iterations. Within each it-
eration, the complexity is dominated by finding the roots of a
cubic equation [e.g., solving (9)], which requires 44 operations
in total [25]. This has to be repeated on all tones, leading to a
total complexity of . Hence the total complexity of ASB-S1
is . High SNR approximation
would further reduce the operations count.

It is important to realize that the order of complexity for ASB
is the same as IW: , and the actual running time of ASB
is still well within the bounds for practical implementation. This
implementation viability is in sharp contrast to the higher com-

11Also, the inverse Channel-Signal-to-Noise-Ratio (CSNR) must be calcu-
lated, and the tones sorted according to the CSNR. However this only needs to
be done once for each outer cycle, and can be re-used for all inner-loop itera-
tions. Hence this has a minimal impact on complexity.

plexity order and centralized schemes of OSB and ISB, which
do not offer much rate region gains over ASB.

IX. CONCLUSION

This paper developed a suite of DSM algorithms referred to
as ASB, which are autonomous, have a low complexity and
achieves significant performance gains over the prior state-of-
the-art autonomous algorithms such as Iterative Waterfilling. In
typical scenarios ASB also achieves near-optimal performance,
which was previously only possible with the centralized, and
highly complex Optimal Spectrum Balancing algorithm.

The convergence of the ASB is proven for an arbitrary
number of users in rate-adaptive mode. In particular, ASB
includes IW as a special case, thus the convergence proof of
our algorithm extends and generalizes the convergence proof
of IW. ASB can improve system performance with both syn-
chronous and asynchronous transmission, where the latter is a
particularly under-explored research area where only limited,
high-complexity heuristics were previously available.

The key concept that enables ASB to successfully tackle
the non-convex, coupled, and high-dimensional optimization
problem is the reference line, which allows each user to opti-
mize its transmit spectra independently. Each user attempts to
achieve its own target rate whilst minimizing the degradation
caused to the reference line, which represents a typical victim
line within the DSL network. ASB applies this approach of
“static pricing” coordination in a rigorous manner with prov-
able theoretical properties, leading to a significantly enlarged
rate region compared with IW. The reference line idea can be
readily implemented using the reference lines already devel-
oped within standards. Although we have focused primarily on
ADSL in this paper, ASB is also applicable in VDSL systems.

APPENDIX

A. Proof of Theorem 2

The following Lemma is useful for proving Theorem 2.
Lemma 1: Consider any non-decreasing function and

non-increasing function . If there exists a unique such
that , and the functions and are strictly
increasing and strictly decreasing at respectively, then

.
Proof of Lemma 1: For any ,

. Similarly for any ,
. It then can be

verified that .
Denote as the PSD of user on tone after iteration ,

where is satisfied at the end of any iteration for
any user . One iteration is defined as one round of updates of
all users. The PSD update in the two-user case can be written as
follows:

(14)
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where , ,
and , and . Also define

. Without loss of generality, we assume that the total
power constraint is always satisfied at the end of any iteration.
In general, the total power constraint needs not to be tight, e.g.,
when summation of (which is determined by (12)) over all
tone is less than the power constraint even when .
This might happen in the case where is small enough (i.e.,
user ’s target rate is small). However, we can make the power
constraint tight in this case by defining an extra “virtual tone”.
The data rate achieved by user on the virtual tone is ,
where is a very small number and is the PSD allocated
to the virtual tone. Furthermore, the reference line is chosen to
be inactive on the virtual tone (i.e., ). Now from the
perspective of any actual line, loading power on the virtual tone
has very small yet positive impact on its own total rate (with very
small value ), and has no impact on the reference line’s rate.
Hence the user will always take any left over power and load
onto the virtual tone, and always operate at full power. Then it
is clear that

(15)

Also define

and

where , and . It is clear that
( , respectively) is non-decreasing (non-in-

creasing) in , and strictly increasing (strictly decreasing)
at (unless ,
which means the PSD converges). From (15) we always have

. Now we can show that

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

where (16) follows from the definition of and , (17) fol-
lows by using Lemma 1 and letting , (18) follows from
the definition of and , the expression of in (14), and
the fact that and
for any and , (19) follows by exchanging indexes and
, (20) follows by using for all

and , (21) follows by using the circulant property
of , i.e., , (22) by applying the argu-
ments from (16) to (21) again, and finally (23) follows by the
condition in Theorem 2. This shows that the ASB-A2 algorithm
is a contraction mapping form an initial PSD values. It can be
shown that is a norm, thus ASB-A2
globally converges to a unique fixed point [26, p. 183].

B. Proof of Theorem 3

We first prove the convergence in the parallel update case.
The PSD of user in tone after iteration is

The rest of the proof can be obtained similar as in Theorem 2
with the following: (see the equation at the top of the next page).

For the sequential update case, the convergence can be proved
by combining Lemma 1 and proof of Theorem 3.4.1 in [11].
First, define
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, and . Using induction, we
can find an matrix such that .
The final step is to show the maximum eigenvalue of matrix

is less than 1, which guarantees that ASB-A2 algorithm is
an contraction mapping in the sequential updates. Details are
omitted due to space limitations.
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