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Abstract 

In biomedical research, interpretation of microarray data requires confrontation of data 
and knowledge from heterogeneous resources, either in the biomedical domain or in 
genomics, as well as restitution and analysis methods adapted to huge amounts of data. 
We present a combined approach that relies on two components: BioMeKE annotates sets 
of genes using biomedical GO and UMLS concepts, and GEDAW, a Gene Expression 
Data Warehouse, uses BioMeKE to enrich experimental results with biomedical concepts, 
thus performing complex analyses of expression measurements through analysis 
workflows. The strength of our approach has been demonstrated within the framework of 
analysis of data resulting from the liver transcriptome study. It allowed new genes 
potentially associated with liver diseases to be highlighted. 

1 Introduction 

New high throughput technologies used to study transcriptome, proteome or metabolome, 
produce large amounts of data. The exploitation of these data requires important database 
solutions to manage experiment results with relevant information, including functional 
annotations and gene-disorder relations, as well as data mining techniques to extract new 
knowledge[1, 2]. 

In the case of transcriptome study, a comprehensive interpretation of a single gene expression 
measurement requires the consideration of all available knowledge on this gene, including: i) 
its genomic annotations, i.e. he chromosomal localization of the gene and related sequences, 
ii) the biological knowledge, i.e. he biological processes in which the gene is involved and the 
target functions in these processes, and iii) the medical knowledge, i.e. the different 
symptoms, syndromes and diseases associated to the gene. A comprehensive representation of 
this knowledge can help scientists to address more complex questions and suggest new 
hypotheses, leading to a clearer identification of the molecular and biological mechanisms 
involved in the diseases.  

Interrelating the different kinds of information about genes is challenging as data are spread 
over the web, hosted in a large scale of independent, heterogeneous and highly focused 
resources [3, 4]. Moreover, within those sources, biological data are complex, often redundant 
and complementary. In this context, creating an infrastructure for a unified biological 
knowledge resource is a key to an effective and accurate analysis of transcriptomic data. 
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Integration of biological databases has been an ongoing research problem and several 
approaches have been proposed [4]. Among those approaches, data warehouse systems, by 
materializing the data from multiple sources into a local environment, allow to improve the 
efficiency of query optimization, as such corresponding to the most adapted systems to 
analyse large results sets as obtained by microarrays [5]. Several data warehouses devoted to 
transcriptome analysis have been developed. Examples are GIMS [6], M-Chips [7], 
GenMapper [8] and GeWare [9]. However, most existing methods do not combine medical 
knowledge with genomic and biological information.  

Standard biomedical vocabularies have been developed in both domains (biological and 
medical). Gene Ontology (GO1) is a controlled vocabulary for molecular biology and 
genomics [10] useful to annotate gene products in most public databanks. However, GO does 
not provide information on pathologic conditions and disorders that have been associated with 
genes and their products. The Unified Medical language System® (UMLS2) covers the whole 
biomedical domain and is intended to help health professionals and researchers by merging 
more than 100 vocabularies [11]. While GO is widely used to provide functional annotations 
of gene products the UMLS is mainly used in medical informatics. The UMLS appears to be a 
potential resource for providing associations between genes and medical knowledge, which 
may complement GO annotation. 

With regards to transcriptome, raw expression data are not sufficient to carry out an 
exhaustive analysis, since the result would be clusters of genes sharing expression profiles 
that need to be interpreted. To go beyond clusters, our challenge was to combine experimental 
data both with genomic data and biomedical knowledge and then to mine transcriptomic data 
under an expert supervision.  

We have combined: i) BioMeKE3 (Biological and Medical Knowledge Extractor), a system 
that supports the GO and the UMLS vocabularies to annotate any sets of genes with 
biomedical concepts and ii) GEDAW, a Gene Expression DAta Warehouse that integrates 
microarray experimental results enriched with multiple complementary information extracted 
from web sources, thus performing complex analyses of expression measurements through 
analysis workflows [12]. BioMeKE provides biomedical annotations based on GO and the 
UMLS for a set of genes and GEDAW integrates these biomedical annotations with genomic 
data. In this paper, we demonstrate that we were able to learn about the genes by mining 
combined data and concepts from both systems, in a context of biomedical research and 
expert supervision. 

After a presentation of BioMeKE and the data mining method used for enriching 
transcriptomic data in section 2, we describe, in section 3, its usage for generating biomedical 
knowledge on genes expressed in different physiopathological situations in the liver, within 
an expert guided data mining approach. We conclude in section 4 with a discussion 
demonstrating strong interest of our work in the context of liver diseases study and also its 
limits.  
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2 http://www.nlm.nih.gov/research/umls/ 
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2 Methods 

2.1 Biomedical annotation 

BioMeKE (Biological and Medical Knowledge Extraction system) is a system based on two 
standard terminologies, Gene Ontology (GO) that focuses on molecular biology and 
genomics, and the Unified Medical Language System (UMLS) that covers the whole 
biomedical domain. To deal with heterogeneity in naming genes, the system includes also the 
main gene nomenclature database, Genew. 

GO is the main biological controlled vocabulary widely used to describe the genes so to have 
a view of their main functions. GO contains 18,735 terms (May 2005) organized through a 
Direct Acyclic Graph (DAG) divided in three sub-hierarchies that are biological process, 
molecular function and cellular component. Gene Ontology Annotation@EBI (GOA4) [13] 
provides assignments of GO terms to gene products for all organisms with completely 
sequenced genome, including human, by a combination of electronic assignment and manual 
annotation. 

The UMLS is made of two major components, the Metathesaurus® (MTH), a repository of 
1,179,177 concepts (2005AA release), and the Semantic Network, a limited network of 135 
Semantic Types. The MTH is built by merging more than 100 vocabularies, including 
Medical Subject Headings (MeSH), GO and Genew. In the MTH, synonymous terms are 
clustered under a same concept, each concept having a unique Concept Unique Identifier 
(CUI). MTH concepts are related by a set of 22,623,179 relations, including: 

 hierarchical relations : ‘has parent’ and ‘has child’,  

 associative relations named ‘other relations’, for example - ‘has a broader relationship’, 
‘has relationship other than synonymous, narrower, or broader’, ‘unspecified source 
asserted relatedness, possibly synonymous’, ‘the relation is similar or “alike”’, ‘can by 
qualified by’ or ‘source asserted synonymy’-, 

 co-occurrences in Medline, with their frequencies. A co-occurrence relation in the MTH 
corresponds to terms indexing the same article in Medline.  

The Semantic Network provides a means to categorize all concepts represented in the MTH. 
Each MTH concept is assigned to at least one Semantic Type. The 135 Semantic Types can 
be aggregated into 15 Semantic Groups, e.g. the Semantic Types Disease or Syndrome and 
Pathologic Function belong to the Semantic Group Disorders [14]. 

Genew is a database that has been established by the HUGO Gene Nomenclature Committee 
(HGNC5) [15] to address heterogeneity in gene naming and identifiers. For each known 
human gene, the HGNC has approved a unique gene name and symbol. For a given gene, the 
Genew database provides this approved nomenclature, as well as various nomenclature 
information provided by other resources, including Uniprot and Entrez-gene Identifiers. 

The process of biomedical annotation via BioMeKE is made of three components : (1) an 
heterogeneity module that manages the gene naming heterogeneity using Genew, (2) a 
biological module that provides a biological annotation based on GO and (3) a medical 
module that provides a medical annotation based on UMLS (Figure 1).  

                                                 
4 http://www.ebi.ac.uk/GOA/ 
5 http://www.gene.ucl.ac.uk/nomenclature/index.html 
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Figure 1 – Architecture and annotation process of BioMeKE. 

2.1.1 Heterogeneity module 

The biomedical annotation process in BioMeKE starts with the heterogeneity module. For a 
given gene entry, it uses Genew for providing all its nomenclature elements (name, symbol, 
aliases) and its identifiers (e.g. Uniprot ID). The identifiers are fundamental to get a wider 
representation of the gene through existing cross-references in multiple data sources and 
different name appearances in literature. It is also a prerequisite step to the following 
annotation modules.  

2.1.2 Biological module 

The biological module uses the UniProt ID delivered by the heterogeneity module. Based on 
the UniProt ID, the list of terms associated with a gene product is extracted from GOA. The 
extracted terms are used as attributes to provide information about the molecular functions, 
the biological processes and the cellular components related to the gene product. 

2.1.3 Medical module 

The medical module uses all the nomenclature elements to provide a medical annotation by 
delivering a list of UMLS concepts associated to the gene. As the UMLS annotation process 
consists in first finding concepts corresponding to gene in the MTH and second finding its 
relations in the MTH, it is performed in two steps:  

1. Mapping gene or gene product names to MTH (step 1 in figure 1). The objective is to 
extract the MTH concepts corresponding to a gene. For a given gene, the heterogeneity 
module provides different nomenclature elements (s.a. name, symbol, aliases). They are 
successively searched for in the MTH. A filtering phase (Filter 1) is performed to select 
only the MTH concepts that correspond to the gene, i.e. classified under the five UMLS 
Semantic Types: - Gene or Genome; Amino Acid, Peptide or Protein; Nucleic Acid, 
Nucleoside or Nucleotide; Molecular Function; Disease or Syndrome –. For example, 
Ferritin corresponds to two MTH concepts, one of them (C0015879) is assigned to the 
Semantic Types Amino Acid, Peptide, or Protein, the other (C0373607) is assigned to the 
Semantic Types Laboratory Procedure. The latter is not relevant. The Semantic Types 
Laboratory Procedure is absent from the list of relevant Semantic Types (Filter 1). 
Therefore, C0015879 is selected whereas C0373607 is not.  
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2. Searching for MTH concepts to annotate the gene (step 2 in figure 1). This step explores 
MTH relations to perform the medical annotation. For a given MTH concept, the 
annotation process selects concepts that are related to it through one of the following 
relations: parent, other relations, and co-occurrence, and assigned to at least one of the 22 
relevant Semantic Types (Filter 2) that may be of interest for the interpretation of post 
genomic data. For example, Cell or Molecular Dysfunction belongs to that list whereas 
Geographic Area does not. These 22 Semantic Types are members of seven distinct 
Semantic Groups. 10 of these Semantic Types are classified under the Semantic Group 
Disorders and 4 under the Semantic Group Physiology. An example of a biomedical 
annotation provided by BioMeKE is illustrated in table 1 with the HFE gene product 
(UniProt:Q30201). 
Table 1 – Biomedical annotation of HFE provided by BioMeKE. The top part of the table 
presents the HFE nomenclature provided by the heterogeneity module. The left part of the table 
presents the HFE GO annotations provided by the biological module, grouped under the three 
GO sub-hierarchies. The right part of the table shows some of the HFE UMLS annotations 
provided by the medical module and grouped by Semantic Types. 

Nomenclature Genew 
Approved Symbol HFE 
Approved Name hemochromatosis 
HGNC ID 4886 
Entrez Gene ID 3077 
Uniprot ID Q30201 

GO annotations UMLS annotations 
Molecular Function Genetic Function 

MHC class I receptor activity Genetic Markers 
Biological Process Multifactorial Inheritance 

protein complex assembly Neoplastic Process 
transport Bile Duct Neoplasms 

iron ion transport Cholangiocarcinoma 
iron ion homeostasis Liver neoplasms 

receptor mediated endocytosis Primary carcinoma of the liver cells 
immune response Organ or Tissue Function 

antigen presentation, endogenous antigen Intestinal Absorption 

antigen processing, endogenous antigen via 
MHC class I Pathologic Function 

Cellular Component Insulin Resistance 
cytoplasm Tachycardia, Ventricular 

integral to plasma membrane Hypertrophy, Right Ventricular 
  Hyperpigmentation 

BioMeKE is implemented as a Java Swing application that relies on JTree, JTable and other 
GUI components. We have wrapped BioMeKE as a Java Web Start application which 
provides the advantage to check before any download if a new version of the application is 
available. BioMeKE is freely available at http://www.med.univ-rennes1.fr/biomeke/. 

2.2 Data mining of enriched transcriptomic data 

Data mining of enriched transcriptomic data is performed in the data warehouse GEDAW 
(Gene Expression DAta Warehouse) [12]. 

2.2.1 Data warehouse architecture and schema 

GEDAW is an object oriented data warehouse devoted to transcriptomic data analysis. 
GEDAW schema includes three data domains : 1) experimental division, i.e. gene expression 
measurements through several physiopathological conditions 2) genomic division, i.e. gene, 
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mRNA, protein sequences and their annotations and 3) biomedical knowledge, i.e. biological 
and medical concepts that annotate the genes.  

Data sources used for the integration process are local or spread world wide and hosted on 
different representation systems, each having its own schema. 

A local relational database is used to populate the experimental domain of the warehouse. It is 
a MIAME [16] compliant database locally built as a repository of array data storing as many 
details as possible on methods used, the protocols and the results obtained. 

XML records from GenBank6 [17] have been used to instantiate the genomic domain of 
GEDAW. 

GO and UMLS concepts delivered by BioMeKE as a XML document are used to integrate the 
biomedical knowledge. 

A unique global schema has been designed to conciliate experimental, genomic and 
biomedical genes information. Java is used for the description and the instantiation of the 
classes. The ODBMS (Object DataBase Management System) Versant FastObjects7 is used to 
make the Java Objects persistent.  

We have developed an automatic integration process through the use of mapping. Through 
mapping rules at the schema level, elements and concepts of GenBank, GO and UMLS are 
selected, extracted and integrated. Through mapping rules at the instance level, problems of 
heterogeneity in gene identification occurring in GEDAW are resolved. In fact, in GEDAW, 
to several GenBank accession numbers can correspond a same gene product. These rules (at 
the instance level) use the output of the heterogeneity module provided by BioMeKE that 
corresponds to the full Genew nomenclature associated to a gene. Approved symbols and 
names are used to identify the identical GenBank identifiers in GEDAW. 

2.2.2 Data analysis procedure 

With the overall integrated knowledge, the warehouse provides an analysis environment 
where experimental data can be mined through workflows that combine successive analysis 
steps. 

GEDAW supports several functions for microarray data analysis, consisting of either internal 
or external analyses applied to the group of genes of interest – these genes resulting from a 
database selection query according to one or more criteria. Internal analyses retrieve 
information about the selected genes thanks to APIs that use OQL (Object Query Language) 
and Java. External analyses use external bioinformatics tools applied to integrated data. These 
two kinds of analyses may be combined to create successive steps, thus forming a workflow.  

Many specific workflows have been designed in the context of microarray analysis. One of 
them has been designed according to the hypothesis that genes sharing an expression pattern 
should be associated. It has been used in order to find out new genes associated to a disease. 

More specifically, the strategy consists in selecting a group of genes that are associated with 
the same disease and a typical expression pattern, and then extrapolating this group to more 
genes involved in the disease by searching for expression pattern similarity. The genes are 
then characterized by the corresponding biological processes and cellular components using 
integrated GO annotations. The strategy is divided in four steps:  

                                                 
6 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide 
7 http://www.versant.com/ 
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• Selection of objects: A group of genes sharing the same UMLS annotation is selected, by 
querying the integrated objects in GEDAW using OQL and Java.  

• Visualization: The obtained gene names and associated expression ratios are then 
visualized. This is done by searching for genes attributes in the warehouse with specific 
queries using OQL and Java. 

• External analyses: Gene expression ratios are then analysed using the J-Express Pro 
software package8 (2.7 version) [18]. The K-Means clustering analysis method, applied to the 
group of genes, provides clusters of genes presenting different expression patterns. The 
Closest Neighbours analysis method is then performed to identify the genes represented on 
the microarray that have similar patterns to those obtained by K-Means clustering. Genes 
found by the Closest Neighbours analysis extend the initial clusters. 

• Internal analysis: the genes of these extended clusters are then characterized, by searching 
for the most represented GO biological processes. This is performed by specific OQL queries 
on the GO terms integrated in GEDAW. 

3 Application 

3.1 Data set 

The workflow described above is used in combination with BioMeKE to identify new genes 
that could be associated to liver diseases and to characterize their expression patterns and the 
biological processes in which they are involved. 

Liver diseases, including those from infectious, alcoholic, metabolic, toxic and vascular 
etiologies, are a major public health problem [19]. Indeed, they are frequently complicated by 
the occurrence of liver failure or the development of cirrhosis or liver cancer. Despite such a 
strong impact, molecular mechanisms involved in the occurrence of these diseases and of 
their complications are not fully understood. Therefore, studies are conducted in order to 
identify new molecular mechanisms, and thus to develop new diagnostic and therapeutic tools 
which will allow a better care of patients. 

In this study, we used a human liver devoted cDNA microarray on which 2472 cDNAs are 
deposited and we studied gene expression modulation during the hepatic HepaRG cell line 
differentiation process [20]. This human cell line has the originality, under controlled culture 
condition, to evolve from a bipotent proliferative population towards both differentiated 
hepatocyte-like and biliary-like cells [21, 22]. Therefore, HepaRG cell line is a valuable 
model for studying the shift between differentiated functional hepatocytes and biliary cells to 
altered proliferative cells, as observed in some liver diseases.  

The integration process was performed to store all the annotations of the genes spotted on the 
microarray. The data unification process, using gene nomenclature identified 584 distinct 
genes on the 2472 deposited cDNAs. We then used the analysis workflow, described in figure 
2, to find and characterize genes associated to liver diseases (figure 2). More specifically, we 
focused on studying the genes known to be associated to liver diseases and relating their 
expression patterns to genes of the array.  

 

 

                                                 
8 http://www.molmine.com/frameset/frm_jexpress.htm 
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Figure 2 –Analysis Workflow for liver disease group. It is divided in 5 successive tasks: 1) The 
genes are annotated thought BioMeKE, 2) Selection of genes that are annotated by liver disease 
terms, they constitute the Liver Disease Associated Genes Group, 3) Data about the Liver 
Disease are visualized, 4) K-Means and then Closest neighbours algorithms are applied creating 
a new group: the Potential Liver Disease Associated Genes Group, 5) The genes of the Potential 
Liver Disease Associated Genes Group are characterized by a GO analysis to find the biological 
processes and the cellular components mostly represented. 

3.2 Results 

Here, we present the results that we have obtained for the data set presented in section 3.1. 

1. Biomedical annotation through BioMeKE - BioMeKE provided GO annotation for 437 
(74.8%) genes. 381 (65.2%) genes have been found in the UMLS. Among these 381 genes, 
173 (45.4%) have relations in the UMLS (i.e. have UMLS annotation). The UMLS annotation 
corresponds to three types of relations in the MTH: i) 85 genes have annotations under the 
relation parent, ii) 129 genes have annotations under the relation other relations and iii) 33 
genes have annotations under the relation co-occurrence. For example, the gene Beta-2 
microglobulin has been annotated by ‘Alpha-Globulins’ as parent relation, by ‘incomplete 
anencephaly, hemicrania’ as other relations and by ‘Hepatitis B, Chronic’ as co-occurrence 
relation. Most of the genes have annotations under the Semantic Group Chemical and Drug. 
Among the 173 annotated genes, 42 genes have annotations under the Semantic Groups 
Disorders and Physiology.  

2. Selection of objects in GEDAW: creation of a Liver Disease Associated Genes Group – 
Genes of the array that are annotated by “liver disease” and their descendants in the UMLS 
are selected. This group is called Liver Disease Associated Genes Group. 

3. Visualization of the Liver Disease Associated Genes Group – Characteristics of the genes 
that belong to the Liver Disease Associated Genes Group are visualized by the user, including 
the gene name. We found 42 concepts corresponding to liver diseases including liver cirrhosis 
(CUI:C0023890), hepatitis B (CUI:C0524909) or hemochromatosis (CUI:C0018995) and 18 
genes annotated by at least one of those 42 concepts (see Table 2). 

Selection / Management of objects in GEDAW

Internal analysis

External analysis
K-Means Clustering and Closest Neighbours

Liver Disease Associated
Genes Group

Visualization of Liver Disease
Associated Genes Group

Potential Liver Disease
Associated Genes Group

Internal analysis

GO characterization of Potential Liver
Disease Associated Genes Group

3

4

BioMeKE

Biological and Medical annotations1

2

5

http://journal.imbio.de/


Journal of Integrative Bioinformatics 2006                                                    http://journal.imbio.de/ 

Table 2– Genes annotated by at least one child concept of “liver disease” concept. The table 
shows a part of the nomenclature of the genes that are annotated by at least one child concept of 
“liver disease” concept. 

 

4. External analyses: K-Means and Closest Neighbours – Two successive external analyses 
are performed on the set of genes that belong to the Liver Disease Associated Genes Group in 
order to propose new genes associated to liver diseases: K-Means clustering analysis of their 
expressions and then Closest neighbours analysis. In the context of HepaRG differentiation 
experiments, four differentiation stages have been studied through six comparisons (Figure 3). 
Therefore six expression ratios per gene have been delivered to the K-Means program, for the 
14 genes among the 18 for which we had valid and normalized expression ratios. 

Four distinct patterns have been found by the K-Means analysis. The first pattern is that of 
AFP, EPO and G6PD, the second one is that of CAT, CXCR4, CYP2E1 and PLG, the third 
one is that of ALB, HP and TF and the last one is that of the remaining genes of the Known 
Liver Disease Marker Group: B2M, C16orf5, FN1 and HFE. The Closest Neighbours analysis 
created four gene clusters associating genes of the array that have similar patterns of those 
found by the K-Means clustering (Figure 4).  

 

 

 

 

 
 

Figure 3 – Experimental design of HepaRG differentiation hybridizations. HepaRG 
differentiation process is studied through four stages: (P) proliferating cells, 3 days post-
spreading, (C) confluent cells, 5-6 days post-spreading, (SC) super confluent cells, 12-15 days 
post-spreading and finally (D) stabilized differentiated cells, 30 days post-spreading with the last 
15 days in basal medium supplemented with 2% of DMSO (dimethyl sulfoxyde). The six 
comparisons that have been made for the study are represented by the arrows. 

 

 

Proliferating cells (P) Confluent cells (C)

Super confluent cells (SC)Stabilized differentiated 
cells (D)

Approved Symbol Approved Name RefSeq ID Entrez Gene ID
AFP alpha-fetoprotein NM_001134 174
ALB albumin NM_000477 213
B2M beta-2-microglobulin NM_004048 567
C16orf5 chromosome 16 open reading frame 5 NM_013399 29965
CAT catalase NM_001752 847
CFHL5 complement factor H-related 5 NM_030787 81494
CXCR4 chemokine (C-X-C motif) receptor 4 NM_003467 7852
CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1 NM_000773 1571
EPO erythropoietin NM_000799 2056
FN1 fibronectin 1 NM_212482 2335
FNDC3A fibronectin type III domain containing 3A NM_014923 22862
G6PD glucose-6-phosphate dehydrogenase NM_000402 2539
HFE hemochromatosis NM_139011 3077
HP haptoglobin NM_005143 3240
PIK3AP1 phosphoinositide-3-kinase adaptor protein 1 NM_152309 118788
PLG plasminogen NM_000301 5340
TF transferrin NM_001063 7018
TGFA transforming growth factor, alpha NM_003236 7039
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Figure 4 – Pattern characterization of the Potential Liver Disease Associated Genes Group. For 
each cluster, the expression pattern is represented with the list of genes associated to the cluster. 
The patterns are composed of six points that correspond to the six comparisons of the HepaRG 
differentiation study. The genes are defined with their respective HGNC approved symbols. Red 
symbols correspond to the genes that belong to the Liver Disease Associated Genes Group, 
whereas the black symbols correspond to genes of the Potential Liver Disease Associated Genes 
Group that have been identified by the Closest Neighbours analysis.  

Each cluster contains 17 genes. Cluster 1 was created from the pattern of AFP, EPO and 
G6PD, cluster 2 from that of CAT, CXCR4, CYP2E1 and PLG, cluster 3 from ALB, HP and 
TF, and cluster 4 from B2M, C16orf5, FN1 and HFE. The patterns of clusters 1 and 2 
correspond to genes highly expressed during the late stage of differentiation (D/SC). The 
patterns of the clusters 1 and 2 are different in the last comparison that is made between 
stabilized differentiated cells and proliferating cells (D/P) (Figures 3 and 4). The pattern of 
cluster 3 corresponds to genes highly expressed in the early stage of differentiation (SC/C). 
The pattern of cluster 4 corresponds to genes under expressed during the whole process of 
differentiation. 

The genes found in the four clusters are considered as potential genes of interest during liver 
diseases, and belong to a new group called the Potential Liver Disease Associated Genes 
Group. Starting from the 14 genes known to be involved in liver metabolism (red symbols in 
table 3), this new group represent a set of 59 genes of interest (black symbols in table 3). 
Some of those 59 genes are known by the experts to be involved in liver metabolism, such as 
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the apolipoprotein H (APOH in cluster 3) [23], the alcohol deshydrogenase (ADH1B in 
cluster 3) [24] and the cytochromes (CYP4F2 and CYP2A6 in cluster 2) [25]. However, some 
are not clearly associated to hepatic function, such as the apolipoprotein L3 (APOL3 in 
cluster 3) [26] and some have not yet been described [GenBank: AF119890, AF119840 and 
AL137534, corresponding to mRNA sequences; AX198366 and AC099731 corresponding to 
DNA sequence]. 

5. Internal analysis: Gene Ontology characterization of Potential Liver Disease Associated 
Genes Group – We studied the GO biological processes and the GO cellular components 
represented in these four clusters of genes belonging to the Potential Liver Disease Associated 
Genes Group, to characterize the genes. The results are presented in Table 3.  

Table 3 - Biological characterization of the four clusters of Potential Liver Disease Associated 
Genes Group. The biological characterization of the four clusters has been performed using 
Gene Ontology. The results concerning the frequency of annotated genes per the five most 
frequent Biological processes are represented in A. The results concerning the frequency of 
annotated genes per the three most frequent Cellular components are represented in B. The 
same color code has been used for tables A and B: red corresponds to - more than 66% of genes -
, green corresponds to - less than 33% of genes -, and white corresponds to - between 33 and 
66% of genes.  

 

 

 

 

 

 

 

 

 
 

Five GO biological processes are frequently represented among the four clusters: signal 
transduction [GO:0007165], transport [GO:0006810], cellular metabolism [GO:0044237], 
response to stimulus [GO:0050896], regulation of cellular process [GO:0048522]; and three 
GO cellular components: intracellular [GO:0005622], membrane [GO:0016020] and 
extracellular region [GO:0005576]. 

The proportions of genes per cluster annotated by these terms have been calculated. In cluster 
1, 2 and 4 the biological process mostly represented is cellular metabolism; in cluster 3, the 
over-represented biological process is response to stimulus. In cluster 3 the cellular 
component mostly represented is extracellular region. In cluster 4, the over-represented 
cellular component is intracellular. There is no over or under-represented cellular component 
in cluster 1 and 2. 

Therefore, it seems that the clusters 1, 2 and 4 are mainly composed of genes involved in 
cellular metabolism whereas the cluster 3 is mainly composed of genes involved in immune 
response and coding for secreted products. This results show that genes having different 
expression patterns or biological processes involvements could be associated with liver 
diseases. This suggests that the mechanisms of involvement of these genes in liver diseases 
and their ways of action are different. These genes need to be biologically investigated to 
have a better understanding of their involvement in liver diseases.  

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Signal transduction
Transport
Cellular metabolism
Response to stimulus
Regulation of cellular process

A

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Intracellular
Membrane
Extracellular region

B
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4 Discussion and conclusion 

This paper has presented our experience in combining experimental and genomic data with 
biomedical knowledge, using BioMeKE a biomedical annotation system and GEDAW a gene 
expression data warehouse. This has been applied to extract relevant knowledge from liver 
microarray experiments. 

BioMeKE is a system whose originality is to be based on a medical vocabulary, the UMLS. If 
most of the systems use Gene Ontology to annotate sets of genes with information on their 
functions, few similar efforts have been made to provide clinical and medical information on 
genes. Like BioMeKE, GenesTrace™ [27] uses the UMLS but provides a list of genes related 
to a disease whereas our system provides medical concepts associated to a gene. GenesTrace 
uses the relationship existing between UMLS diseases and other UMLS concepts, restricted to 
GO. Among the 200,000 MTH diseases concepts, they found 1,407 diseases concepts that are 
associated with at least one GO term, and among these 1,407, they found 142 distinct genes 
that are related to their specific disease concept. 

In addition, issues related to heterogeneity in gene nomenclature among different sources are 
addressed in BioMeKE. By integrating not only the GO and the UMLS “ontologies” but also 
the Genew resource, BioMeKE is able to provide a biomedical annotation associated to a 
gene as well as the full information about its nomenclature. This aspect has been particularly 
primordial for the data conciliation in GEDAW: approved HGNC symbols and names have 
been used to unify the various GenBank identifiers corresponding to a same gene product. 
BioMeKE provides more cleansed, conciliated and non redundant data to mine. 

However, BioMeKE does not extract information from OMIM [28], which associates 
mutations of one given gene with the corresponding genetic diseases. Indeed, OMIM provides 
textual description of the genetic diseases related to gene mutations and BioMeKE does not 
include natural language processing nor text mining modules. However, OMIM terminology 
is integrated in the UMLS. Therefore, some annotating UMLS concepts correspond to OMIM 
terms, e.g. an annotating UMLS concept for Transferrin, is ‘Insulin-Like Growth Factor II’, 
whose sources include OMIM terminology.  

Since the 2004AA version of the UMLS, GO has been part of the MTH [29, 30]. This 
merging is based on exact matching and normalized matching. During the merging of GO in 
the UMLS, they have shown that 23.03% of the GO terms ‘match’ with a concept that is 
represented by another source vocabulary. Among the 23.03% of these concepts, 19.74% 
correspond to the MeSH vocabulary and 11.05% correspond to SNOMED [31]. 

Biomedical annotation provided by BioMeKE is based on co-occurrence relations among the 
three above cited groups of relations (cf. section 2.2.1). Concepts related by a co-occurrence 
relation in the MTH correspond to terms indexing the same article in Medline. For each pairs 
of MeSH descriptors, the frequency of co-occurrence in Medline citations is recorded in the 
UMLS. In contrast to the relationships asserted within source vocabularies, the co-occurrence 
relationships in the MTH can connect very different concepts, such as genes and diseases. In 
further development of BioMeKE, text mining methods could be added to extract genes 
related to biomedical concepts. 

Even if GO is merged in the UMLS, it is important to keep two different annotation 
processes. In fact, among the 173 annotated genes by UMLS, only 17 genes are annotated by 
UMLS concepts whose source is GO (UMLS-GO annotation), and only 7 genes exhibit 
redundant annotations, i.e. equivalent UMLS-GO annotations and GO annotations (through 
GOA). The major limitation of BioMeKE is that only few genes are related to biomedical 
concepts in the UMLS. Nevertheless, by using both GO and UMLS, BioMeKE provides 
complementary and valuable biological and medical information on genes.  
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The strength of our approach is to combine biomedical concepts with gene expression data 
enriched with genomic data from GenBank in an environment where complementary data are 
conciliated and locally available for retrieval and analysis. Thereafter, efficient analyses on 
experimental data can be done, taking advantage of the integrated biomedical knowledge 
through workflows of successive internal and external analyses.  

Nevertheless, lessons have been learned during the development of GEDAW and current 
works are ongoing on quality issues of the biomedical data before their integration and 
mining: duplicates, errors, contradictions, inconsistencies for correcting and ensuring 
information quality when data come from different sources with different degrees of quality 
and trust. 

The work presented in this paper has also demonstrated the finality of the warehousing 
approach applied to bioinformatics: bio-data integration, supervised analyses, and knowledge 
extraction. Being conscious that analysis requirements evolve with constant emergence on the 
Web of new complex data types like protein structures, gene interactions or metabolic 
pathways, workflows in GEDAW are evolving as well. 

The effectiveness of our combined approach has been evaluated in the context of liver 
transcriptome study. Starting from a group of genes annotated in GEDAW by UMLS terms 
associated to liver disease, we have been able to identify new genes potentially associated to 
occurrence and/or development of liver diseases. Some of those genes were known to be 
associated to liver metabolism, whereas some others not. They have been biologically 
characterized and are associated to different biological processes. Their impact in biological 
pathways as well as their use as biological markers or therapeutic targets remain to be 
evaluated. This work will be conducted by researchers using molecular biology techniques, 
including gene expression study in physiopathological conditions in patients and in animal 
models. 
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