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Abstract— In this paper a modified differential evolution (DE) 

algorithm trained Pi-Sigma network (PSN) is used for 

classification. The used DE algorithm is a modification of 

traditional DE/rand/1/bin algorithm and novel mutation as well 

as crossover strategies are followed considering both exploration 

and exploitation. The performance of proposed methodology for 

pattern classification is evaluated through three well-known real 

world classification problems from UCI machine learning data 

library. The results obtained from the proposed method for 

classification is compared with results obtained by applying the 

two most popular variants of differential evolution algorithm 

(DE/rand/1/bin and DE/best/1/bin) and Chemical Reaction 

Optimization (CRO) algorithm. It is observed that the proposed 

method provides better classification accuracy than that of other 

methods. 

 

Index Terms—Differential Evolution, Higher Order Neural 

Network, Pi-Sigma Network, Classification.  

I. INTRODUCTION 

Classification is the process of assigning objects in a 

collection to one of the predefined target categories or classes. 

The goal of classification is to accurately predict the 

categorical value of an object based on its number of observed 

attributes (pattern). Many problems in engineering, business, 

science, industry, and medicine can be treated as 

classification problems. The classification task is a two-step 

process such as: Classifier Building and Classifier Testing. In 

the first step, a classifier is built describing a predetermined 

set of data classes or concepts. This is the learning step (or 

training phase), where a classification algorithm builds the 

classifier finds relationships between the values of the 

predictors and the values of the target by analyzing or 

“learning from” a training set made up of attributes and their 

associated class labels. These relationships are summarized in 

a classifier. In the second step the obtained classifier is used 

for classification on a different data set in which the class 

assignments are unknown, to predict the class of the patterns.  

Traditionally, statistical procedures were widely used for 

pattern classification. However, the effectiveness of these 

methods depends on various assumptions under which the 

models are developed and prior knowledge regarding both 

data properties and model capabilities. Considering the above 

pitfalls several classifiers using various data mining and 

computational intelligence methods like rule induction, fuzzy 

rule induction, decision trees, neural networks (NNs) have 

been developed.  
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Out of various types of classifiers neural network based 

classifiers were predominantly found in the literature [1]. 

However, Compared to traditional NNs, higher order neural 

networks (HONNs) have several unique characteristics, 

including: 1) stronger approximation with faster convergence 

property; 2) greater storage capacity; and 3) higher fault 

tolerance capability. However, the major drawback of 

HONNs is the exponential growth in number of weights with 

the increase in order of the network. But, PSNs are special 

type of feed forward HONN model which have the capability 

of higher order neural networks and at the same time uses less 

number of weights. Despite of advantageous features of PSNs 

over traditional NN models and other HONN models, only 

few papers were found in the literature for pattern 

classification using HONN models [2]–[5]. Therefore, in this 

paper the class of Pi-Sigma Networks (PSNs) has been 

studied. The PSNs were introduced by Shin and Ghosh [4]. 

The PSNs have addressed several difficult tasks such as 

zeroing polynomials [6] and polynomial factorization [7] 

more effectively than traditional feed-forward neural 

networks (FFNNs).  

The rest of this paper is organized as follows. Section-2 

briefly describes the background related to architecture and 

mathematical model of PSN; and differential evolution. The 

method used for classification using an evolutionary PSN is 

explained in Section-3. Experimental results are presented in 

section-4. And finally conclusions are described in Section-5.  

II. PRELIMINARIES 

A. Pi-Sigma Network 

Pi–Sigma Network (PSN) is a feed forward higher order 

neural network consisting of a single hidden layer. The hidden 

layer has summing units where as the output layer has product 

units. The weights connecting the input and hidden layer are 

obtained during the training process and weights connecting 

the neurons of the hidden layer to the output layer are fixed to 

one. It has a linear activation function at hidden layer and 

nonlinear transfer function at output layer. Thus the PSN 

calculates the product of sum of the inputs and corresponding 

weights and pass it through a nonlinear function. Such a 

network topology with only one layer of trainable weights 

drastically reduces the training time [2], [8]. The network 

architecture of PSN is shown in Figure 1. Additionally, the 

product units of PSN gives higher order capabilities by 

expanding the input space into higher dimensional space, thus 

easily separates nonlinearly separable classes to linear 

separable. Thus, PSN provides nonlinear decision boundaries 

offering a better classification capability than the linear 

neuron.  

Consider a PSN with NOIN (number of inputs), NOHN 

(number of hidden neurons) and one output neuron. The 

number of hidden neurons in the hidden layer defines the 

order of a PSN. For a NOHNth order PSN the number of 
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trainable weights is NOIN × NOHN considering each 

summing unit is associated with NOIN weights. The output of 

the PSN is computed by making product of the output of 

NOHN hidden units and passing it to a nonlinear function, 

which is defined as follows: 
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Where   is a nonlinear activation function and hj is the 

output of jth hidden unit which is computed by summing the 

products of each input (xi) with the corresponding weight (wij) 

between ith input and jth hidden unit. The output of hidden unit 

is computed as follows: 
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Figure 1: Architecture of a Typical Pi-Sigma Network. 

B. Differential Evolution 

The differential evolution (DE) algorithm is a simple and 

efficient stochastic direct search method for global 

optimization. It was introduced several years ago (1997) [9]. 

Since then it has been upgraded intensively in recent years 

[10]. It has various advantages such as: ability to find global 

minimum of a non-differentiable, nonlinear and multimodal 

function, parallelizability and good convergence properties. 

Compared to most other EAs, DE is much simpler to 

implement. Although particle swarm optimization (PSO) is 

also very easy to code, the performance of DE and its variants 

outperforms the PSO variants over a wide variety of problems 

as has been indicated by studies like [11]-[12] and the CEC 

competition series. The two most popular variants of DE are  

DE/best/1/bin and DE/rand/1/bin. The major difference 

between these two lies in the selection of base vector for 

perturbation. In DE/best/1/bin the base vector is the best 

solution of the current population whereas in DE/rand/1/bin 

the base vector is selected randomly. The conventions used 

above is DE/a/b/c, where ‘DE’ stands for ‘differential 

evolution’, ‘a’ represents the base vector to be perturbed, ‘b’ 

represents number of difference vectors used for perturbation 

of ‘a’ and ‘c’ represents the type of crossover used (bin: 

binary, exp: exponential). Interested reader may go through 

[9]-[10] to have a detail description regarding DE algorithm 

and its variants. Every differential evolution algorithm 

operates in following steps: 

Step 1: Problem and algorithm parameter initialization.  

Step 2: Initialize the initial population and calculate the 

fitness of each chromosome/individual. 

Step 3: Apply Mutation operator to generate the mutant 

vector. 

Step 4: Apply crossover (binary or exponential) between the 

target vector and mutant vector to generate the trial vector. 

Step 5: Perform Selection between trial vector and target 

vector. 

Step 6: If termination criteria is satisfied go to step-7 

otherwise go to step-3. 

Step 7: Use the best individual as the solution of the problem. 

III. METHODOLOGY 

Being a supervised neural network, the objective of 

Pi-Sigma network training is to minimize the error between 

the approximation by the PSN and the target output. For this 

the optimal weight set of a PSN must be obtained. The 

optimal weight set of a PSN can be obtained by using either 

gradient or evolutionary learning algorithms.  

The objective of PSN is going to be a multimodal search 

problem, the optimization techniques using evolutionary 

methods is a better choice. There are many optimization 

techniques such as differential evolution (DE) [9], genetic 

algorithm (GA) [13], particle swarm optimization (PSO) [14], 

ant colony optimization (ACO) [15], a bee colony 

optimization (BCO) [16], an evolutionary strategy (ES) [17], 

quantum inspired algorithms (QEA) [18], chemical reaction 

optimization (CRO) [19]-[20] etc. can be used for PSN 

training. In this paper a modified differential evolution 

algorithm is been used. 

The method used in this paper is explained in algorithm-1. 

An attempt has been made to combine the advantage of 

DE/rand/1 (diversification property) and DE/best/1 

(intensification property) by overcoming the shortcomings of 

both the algorithms. Taking these facts into consideration to 

overcome the limitation of slow convergence but reliable 

DE/rand/1 we use an explorative yet greedy variant of 

DE/rand/1/bin mutation strategy with novel mutation and 

crossover strategies. The crossover probability (Cr) is 

generated randomly (within a range [0-1], and regenerated if 

It is beyond the range) from a cauchy distribution with 

location parameter=0.6 and scale parameter 0.1.  

 

Algorithm 1 

Set the gen-counter g=0  

/*Randomly Initialize the population of PopSize 

individuals: Pg={C1
g, C2

g , C3
g ……., CPopSize

g }, with Ci
g ={ 

Wi,1
g,…….,Wi,D

g} for i=1,2,3.....NP,  D=length of each 

chromosome, Wi,k
g=kth gene of ith   individual in gth generation 

representing a weight of PSN.   

Evaluate the fitness of each individual 

While (termination criteria is not satisfied) 

       %for each individual chromosome (Ci
g) in the population 

   for i=1 to PopSize   

      Select three individuals (I1, I2, I3) and such that  

      I1≠I2≠I3≠i  

      Sort the three select individuals 

      Set r1=best individual out of I1, I2, I3 

               r2= second best individual out of I1, I2, I3 

                  r3= worst individual out of I1, I2, I3 

           Generate a scale factors Fi with mean  

      % Mutation Step 

      % Generate scale factor Fi =gaussianrnd(0.5,0.1), is  a  

           random number generated randomly from gaussian  

          distribution with mean 0.5 and standard deviation  

          0.1.  

      MVg= Cr1
g +Fi*( Cr2

g - Cr3
g) 

     % Generate Cross over Probability  

          Cri =cauchyrnd(0.6,0.1), is a 



International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-3, Issue-5, November 2013 

135 

 

random number  

          generated randomly from Cauchy distribution with  

          location parameter 0.7 and scale parameter 0.1. It is  

          regenerated if the random number falls put of the  

          range [0-1]. 

     for x=1 to D 

          if  rand(0,1)< Cri 

               TVk,x
g = MVk,x

g 

          else 

               TVk,x
g = Wi,x

g 

          end of if 

      end of for 

      % Selection Step 

      % Fitness of a chromosome is -1×RMSE on train set  

    if fitness(TV) > fitness(Cg
i)     

        Ci
g+1= TV 

    else 

        Ci
g+1= Ci

g 

      end of if 

 end of for 

 Set the generation counter g=g+1 

end of while 

Use the reactant having best fitness (least RMSE) as the 

optimal weight set of PSN and perform classification. 

 

For crossover probability instead of normal or uniform 

distribution, Cauchy distribution is considered because it 

diversifies the solution more as compared to traditional 

normal or uniform distribution. The scale parameter (F) is 

generated randomly from a Gaussian distribution with 

mean=0.5 and standard deviation=0.1. If the number 

generated is out of the range [0-2] it is regenerated. 

IV. EXPERIMENTAL SETUP AND SIMULATION 

RESULTS 

The simulations in this paper were carried out on a system 

with Intel ® core(TM) 2Duo E7500 CPU, 2.93 GHz with 

2GB RAM and implemented using MATLAB. All ANNs are 

trained using proposed CRO, DE/rand/1/bin and 

DE/best/1/bin with population size (reactant size) 50 and 

initial value of each chromosome (representing a ANN 

weight-set) is initialized to uniform distributed random values 

drawn from a range [-1, 1]. 

A. Performance Measure 

Classification percentage is used as performance measure, 

which is computed as follows: 

NOP

C
(%)tionClassificaCorrect

NOP

1i i 
 

Where NOP is number of test patterns (NOP/2); Ci- the 

coefficient representing the correctness of the classification of 

the ith testing pattern which is determined as follows: 
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Where Yi and Ti are the output of PSN and target for ith test 

pattern. 

B. Datasets and Simulation Results 

For experimental analysis three binary classification 

problems  such as: Sonar, Breast Cancer Wisconsin and 

Haberman’s Survival which are widely used classification 

problems.  

 

Table I. Classification Accuracy (%) for Sonar problem. 

Method Mean St.Dev. Min Max 

Proposed 79.24 3.24 60.08 85.57 

CRO 77.88 3.64 56.67 84.13 

DE/rand/1 73.81 4.24 52.88 81.73 

DE/best/1 73.35 4.34 53.36 80.77 
 

The Sonar problem consists of 208 samples/patterns (111 

samples obtained from mines and 97 samples obtained from 

rocks.) with each pattern consists of 60 attributes representing 

energy with in a particular frequency bands. The task is to 

train a PSN to make a distinction between sonar signals 

bounced off a metal cylinder (mine) and those bounced off a 

roughly cylindrical rock based on the 60 observed attributes. 

The trained PSNs have one unit in the middle layer with 

60–1–1 architecture. For comparative performance analysis, 

the results obtained from 100 independent simulations using 

the proposed method, CRO algorithm [5], DE/rand/1/bin and 

DE/best/1/bin methods are shown in Table 1 where mean, 

St.Dev, Min and Max represents the mean, standard 

deviation, minimum and maximum classification accuracy on 

test set (50% of the total patterns) of the 100 independent 

simulations. 

For the breast cancer wisconsin problem the task is to train 

a PSN to distinguish between benign and malignant based on 

ten attributes. The dataset consists of 699 patterns 367 

patterns and 332 patterns with class labels benign and 

malignant respectively. 100 independent simulations were 

carried out and the mean, standard deviation, min and max 

values of the obtained results are shown in Table 2. Note that 

PSNs with 10-1-1 architectures are trained with 50% of total 

samples and tested with other 50%. 
 

Table II. Classification Accuracy (%) for breast cancer 

wisconsin problem. 

Method Mean St.Dev. Min Max 

Proposed 76.42 5.28 52.44 87.10 

CRO 75.15 6.75 52.44 85.67 

DE/rand/1 71.46 8.06 52.15 83.38 

DE/best/1 73.59 7.94 49.86 84.53 

  

Haverman’s survival dataset contains cases from study 

conducted on the survival of patients who had undergone 

surgery for breast cancer. The task is to predict whether the 

patient will survive more than 5 years or not based on three 

attributes. The dataset contains 306 patterns. 100 independent 

simulations were carried out and the mean, standard 

deviation, min and max values of correct classification on test 

set (50% of total samples) are shown in Table 3.  

 

Table III. Classification Accuracy (%) for Haverman’s 

survival problem. 

Method Mean St.Dev. Min Max 

Proposed 72.92 2.32 56.21 73.20 

CRO 70.66 4.51 43.14 73.20 

DE/rand 68.99 9.71 30.72 72.55 

DE/best 68.25 9.36 28.76 73.20 
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V. CONCLUSION 

In this paper, we have studied differential evolution based 

Pi–Sigma network for pattern classification. A modified 

differential evolution algorithm trained PSN is used for 

classification. For comparative performance analysis of the 

proposed method three real world binary classification 

problems are considered. It is found that the proposed method 

provides better classification accuracy than chemical reaction 

optimization and the two most popular variants of differential 

evolution algorithm i.e. DE/rand/1/bin and DE/best/1/bin 

trained PSN for all the three datasets considered. 
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