
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

133



Abstract— In this paper a modified differential evolution (DE)

algorithm trained Pi-Sigma network (PSN) is used for

classification. The used DE algorithm is a modification of

traditional DE/rand/1/bin algorithm and novel mutation as well

as crossover strategies are followed considering both exploration

and exploitation. The performance of proposed methodology for

pattern classification is evaluated through three well-known real

world classification problems from UCI machine learning data

library. The results obtained from the proposed method for

classification is compared with results obtained by applying the

two most popular variants of differential evolution algorithm

(DE/rand/1/bin and DE/best/1/bin) and Chemical Reaction

Optimization (CRO) algorithm. It is observed that the proposed

method provides better classification accuracy than that of other

methods.

Index Terms—Differential Evolution, Higher Order Neural

Network, Pi-Sigma Network, Classification.

I. INTRODUCTION

Classification is the process of assigning objects in a

collection to one of the predefined target categories or classes.

The goal of classification is to accurately predict the

categorical value of an object based on its number of observed

attributes (pattern). Many problems in engineering, business,

science, industry, and medicine can be treated as

classification problems. The classification task is a two-step

process such as: Classifier Building and Classifier Testing. In

the first step, a classifier is built describing a predetermined

set of data classes or concepts. This is the learning step (or

training phase), where a classification algorithm builds the

classifier finds relationships between the values of the

predictors and the values of the target by analyzing or

“learning from” a training set made up of attributes and their

associated class labels. These relationships are summarized in

a classifier. In the second step the obtained classifier is used

for classification on a different data set in which the class

assignments are unknown, to predict the class of the patterns.

Traditionally, statistical procedures were widely used for

pattern classification. However, the effectiveness of these

methods depends on various assumptions under which the

models are developed and prior knowledge regarding both

data properties and model capabilities. Considering the above

pitfalls several classifiers using various data mining and

computational intelligence methods like rule induction, fuzzy

rule induction, decision trees, neural networks (NNs) have

been developed.

Manuscript received November, 2013.

Sibarama Panigrahi, Department of Computer Science and

Engineering, MIRC Lab, MITS Engineering College, Rayagada, Odisha,

India.

Ashok Kumar Bhoi, Department of Computer Science and Engineering,

VSSUT, Burla, Sambalpur, India.

Yasobanta Karali, Department of Computer Science and Engineering,

VSSUT, Burla, Sambalpur, India.

Out of various types of classifiers neural network based

classifiers were predominantly found in the literature [1].

However, Compared to traditional NNs, higher order neural

networks (HONNs) have several unique characteristics,

including: 1) stronger approximation with faster convergence

property; 2) greater storage capacity; and 3) higher fault

tolerance capability. However, the major drawback of

HONNs is the exponential growth in number of weights with

the increase in order of the network. But, PSNs are special

type of feed forward HONN model which have the capability

of higher order neural networks and at the same time uses less

number of weights. Despite of advantageous features of PSNs

over traditional NN models and other HONN models, only

few papers were found in the literature for pattern

classification using HONN models [2]–[5]. Therefore, in this

paper the class of Pi-Sigma Networks (PSNs) has been

studied. The PSNs were introduced by Shin and Ghosh [4].

The PSNs have addressed several difficult tasks such as

zeroing polynomials [6] and polynomial factorization [7]

more effectively than traditional feed-forward neural

networks (FFNNs).

The rest of this paper is organized as follows. Section-2

briefly describes the background related to architecture and

mathematical model of PSN; and differential evolution. The

method used for classification using an evolutionary PSN is

explained in Section-3. Experimental results are presented in

section-4. And finally conclusions are described in Section-5.

II. PRELIMINARIES

A. Pi-Sigma Network

Pi–Sigma Network (PSN) is a feed forward higher order

neural network consisting of a single hidden layer. The hidden

layer has summing units where as the output layer has product

units. The weights connecting the input and hidden layer are

obtained during the training process and weights connecting

the neurons of the hidden layer to the output layer are fixed to

one. It has a linear activation function at hidden layer and

nonlinear transfer function at output layer. Thus the PSN

calculates the product of sum of the inputs and corresponding

weights and pass it through a nonlinear function. Such a

network topology with only one layer of trainable weights

drastically reduces the training time [2], [8]. The network

architecture of PSN is shown in Figure 1. Additionally, the

product units of PSN gives higher order capabilities by

expanding the input space into higher dimensional space, thus

easily separates nonlinearly separable classes to linear

separable. Thus, PSN provides nonlinear decision boundaries

offering a better classification capability than the linear

neuron.

Consider a PSN with NOIN (number of inputs), NOHN

(number of hidden neurons) and one output neuron. The

number of hidden neurons in the hidden layer defines the

order of a PSN. For a NOHNth order PSN the number of

A Modified Differential Evolution Algorithm trained

Pi-Sigma Neural Network for Pattern Classification

Sibarama Panigrahi, Ashok Kumar Bhoi, Yasobanta Karali

A Modified Differential Evolution Algorithm trained Pi-Sigma Neural Network for Pattern Classification

134

trainable weights is NOIN × NOHN considering each

summing unit is associated with NOIN weights. The output of

the PSN is computed by making product of the output of

NOHN hidden units and passing it to a nonlinear function,

which is defined as follows:

)(
1





NOHN

j

jhY 

Where  is a nonlinear activation function and hj is the

output of jth hidden unit which is computed by summing the

products of each input (xi) with the corresponding weight (wij)

between ith input and jth hidden unit. The output of hidden unit

is computed as follows:





NOIN

i

iijj xwh
1

)(

Figure 1: Architecture of a Typical Pi-Sigma Network.

B. Differential Evolution

The differential evolution (DE) algorithm is a simple and

efficient stochastic direct search method for global

optimization. It was introduced several years ago (1997) [9].

Since then it has been upgraded intensively in recent years

[10]. It has various advantages such as: ability to find global

minimum of a non-differentiable, nonlinear and multimodal

function, parallelizability and good convergence properties.

Compared to most other EAs, DE is much simpler to

implement. Although particle swarm optimization (PSO) is

also very easy to code, the performance of DE and its variants

outperforms the PSO variants over a wide variety of problems

as has been indicated by studies like [11]-[12] and the CEC

competition series. The two most popular variants of DE are

DE/best/1/bin and DE/rand/1/bin. The major difference

between these two lies in the selection of base vector for

perturbation. In DE/best/1/bin the base vector is the best

solution of the current population whereas in DE/rand/1/bin

the base vector is selected randomly. The conventions used

above is DE/a/b/c, where ‘DE’ stands for ‘differential

evolution’, ‘a’ represents the base vector to be perturbed, ‘b’

represents number of difference vectors used for perturbation

of ‘a’ and ‘c’ represents the type of crossover used (bin:

binary, exp: exponential). Interested reader may go through

[9]-[10] to have a detail description regarding DE algorithm

and its variants. Every differential evolution algorithm

operates in following steps:

Step 1: Problem and algorithm parameter initialization.

Step 2: Initialize the initial population and calculate the

fitness of each chromosome/individual.

Step 3: Apply Mutation operator to generate the mutant

vector.

Step 4: Apply crossover (binary or exponential) between the

target vector and mutant vector to generate the trial vector.

Step 5: Perform Selection between trial vector and target

vector.

Step 6: If termination criteria is satisfied go to step-7

otherwise go to step-3.

Step 7: Use the best individual as the solution of the problem.

III. METHODOLOGY

Being a supervised neural network, the objective of

Pi-Sigma network training is to minimize the error between

the approximation by the PSN and the target output. For this

the optimal weight set of a PSN must be obtained. The

optimal weight set of a PSN can be obtained by using either

gradient or evolutionary learning algorithms.

The objective of PSN is going to be a multimodal search

problem, the optimization techniques using evolutionary

methods is a better choice. There are many optimization

techniques such as differential evolution (DE) [9], genetic

algorithm (GA) [13], particle swarm optimization (PSO) [14],

ant colony optimization (ACO) [15], a bee colony

optimization (BCO) [16], an evolutionary strategy (ES) [17],

quantum inspired algorithms (QEA) [18], chemical reaction

optimization (CRO) [19]-[20] etc. can be used for PSN

training. In this paper a modified differential evolution

algorithm is been used.

The method used in this paper is explained in algorithm-1.

An attempt has been made to combine the advantage of

DE/rand/1 (diversification property) and DE/best/1

(intensification property) by overcoming the shortcomings of

both the algorithms. Taking these facts into consideration to

overcome the limitation of slow convergence but reliable

DE/rand/1 we use an explorative yet greedy variant of

DE/rand/1/bin mutation strategy with novel mutation and

crossover strategies. The crossover probability (Cr) is

generated randomly (within a range [0-1], and regenerated if

It is beyond the range) from a cauchy distribution with

location parameter=0.6 and scale parameter 0.1.

Algorithm 1

Set the gen-counter g=0

/*Randomly Initialize the population of PopSize

individuals: Pg={C1
g, C2

g , C3
g ……., CPopSize

g }, with Ci
g ={

Wi,1
g,…….,Wi,D

g} for i=1,2,3.....NP, D=length of each

chromosome, Wi,k
g=kth gene of ith individual in gth generation

representing a weight of PSN.

Evaluate the fitness of each individual

While (termination criteria is not satisfied)

 %for each individual chromosome (Ci
g) in the population

 for i=1 to PopSize

 Select three individuals (I1, I2, I3) and such that

 I1≠I2≠I3≠i

 Sort the three select individuals

 Set r1=best individual out of I1, I2, I3

 r2= second best individual out of I1, I2, I3

 r3= worst individual out of I1, I2, I3

 Generate a scale factors Fi with mean

 % Mutation Step

 % Generate scale factor Fi =gaussianrnd(0.5,0.1), is a

 random number generated randomly from gaussian

 distribution with mean 0.5 and standard deviation

 0.1.

 MVg= Cr1
g +Fi*(Cr2

g - Cr3
g)

 % Generate Cross over Probability

 Cri =cauchyrnd(0.6,0.1), is a

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-5, November 2013

135

random number

 generated randomly from Cauchy distribution with

 location parameter 0.7 and scale parameter 0.1. It is

 regenerated if the random number falls put of the

 range [0-1].

 for x=1 to D

 if rand(0,1)< Cri

 TVk,x
g = MVk,x

g

 else

 TVk,x
g = Wi,x

g

 end of if

 end of for

 % Selection Step

 % Fitness of a chromosome is -1×RMSE on train set

 if fitness(TV) > fitness(Cg
i)

 Ci
g+1= TV

 else

 Ci
g+1= Ci

g

 end of if

 end of for

 Set the generation counter g=g+1

end of while

Use the reactant having best fitness (least RMSE) as the

optimal weight set of PSN and perform classification.

For crossover probability instead of normal or uniform

distribution, Cauchy distribution is considered because it

diversifies the solution more as compared to traditional

normal or uniform distribution. The scale parameter (F) is

generated randomly from a Gaussian distribution with

mean=0.5 and standard deviation=0.1. If the number

generated is out of the range [0-2] it is regenerated.

IV. EXPERIMENTAL SETUP AND SIMULATION

RESULTS

The simulations in this paper were carried out on a system

with Intel ® core(TM) 2Duo E7500 CPU, 2.93 GHz with

2GB RAM and implemented using MATLAB. All ANNs are

trained using proposed CRO, DE/rand/1/bin and

DE/best/1/bin with population size (reactant size) 50 and

initial value of each chromosome (representing a ANN

weight-set) is initialized to uniform distributed random values

drawn from a range [-1, 1].

A. Performance Measure

Classification percentage is used as performance measure,

which is computed as follows:

NOP

C
(%)tionClassificaCorrect

NOP

1i i 

Where NOP is number of test patterns (NOP/2); Ci- the

coefficient representing the correctness of the classification of

the ith testing pattern which is determined as follows:















Otherwise 0,

1T and 1Y when 1,

1T and 1Y when ,1

C ii

ii

i

Where Yi and Ti are the output of PSN and target for ith test

pattern.

B. Datasets and Simulation Results

For experimental analysis three binary classification

problems such as: Sonar, Breast Cancer Wisconsin and

Haberman’s Survival which are widely used classification

problems.

Table I. Classification Accuracy (%) for Sonar problem.

Method Mean St.Dev. Min Max

Proposed 79.24 3.24 60.08 85.57

CRO 77.88 3.64 56.67 84.13

DE/rand/1 73.81 4.24 52.88 81.73

DE/best/1 73.35 4.34 53.36 80.77

The Sonar problem consists of 208 samples/patterns (111

samples obtained from mines and 97 samples obtained from

rocks.) with each pattern consists of 60 attributes representing

energy with in a particular frequency bands. The task is to

train a PSN to make a distinction between sonar signals

bounced off a metal cylinder (mine) and those bounced off a

roughly cylindrical rock based on the 60 observed attributes.

The trained PSNs have one unit in the middle layer with

60–1–1 architecture. For comparative performance analysis,

the results obtained from 100 independent simulations using

the proposed method, CRO algorithm [5], DE/rand/1/bin and

DE/best/1/bin methods are shown in Table 1 where mean,

St.Dev, Min and Max represents the mean, standard

deviation, minimum and maximum classification accuracy on

test set (50% of the total patterns) of the 100 independent

simulations.

For the breast cancer wisconsin problem the task is to train

a PSN to distinguish between benign and malignant based on

ten attributes. The dataset consists of 699 patterns 367

patterns and 332 patterns with class labels benign and

malignant respectively. 100 independent simulations were

carried out and the mean, standard deviation, min and max

values of the obtained results are shown in Table 2. Note that

PSNs with 10-1-1 architectures are trained with 50% of total

samples and tested with other 50%.

Table II. Classification Accuracy (%) for breast cancer

wisconsin problem.

Method Mean St.Dev. Min Max

Proposed 76.42 5.28 52.44 87.10

CRO 75.15 6.75 52.44 85.67

DE/rand/1 71.46 8.06 52.15 83.38

DE/best/1 73.59 7.94 49.86 84.53

Haverman’s survival dataset contains cases from study

conducted on the survival of patients who had undergone

surgery for breast cancer. The task is to predict whether the

patient will survive more than 5 years or not based on three

attributes. The dataset contains 306 patterns. 100 independent

simulations were carried out and the mean, standard

deviation, min and max values of correct classification on test

set (50% of total samples) are shown in Table 3.

Table III. Classification Accuracy (%) for Haverman’s

survival problem.

Method Mean St.Dev. Min Max

Proposed 72.92 2.32 56.21 73.20

CRO 70.66 4.51 43.14 73.20

DE/rand 68.99 9.71 30.72 72.55

DE/best 68.25 9.36 28.76 73.20

A Modified Differential Evolution Algorithm trained Pi-Sigma Neural Network for Pattern Classification

136

V. CONCLUSION

In this paper, we have studied differential evolution based

Pi–Sigma network for pattern classification. A modified

differential evolution algorithm trained PSN is used for

classification. For comparative performance analysis of the

proposed method three real world binary classification

problems are considered. It is found that the proposed method

provides better classification accuracy than chemical reaction

optimization and the two most popular variants of differential

evolution algorithm i.e. DE/rand/1/bin and DE/best/1/bin

trained PSN for all the three datasets considered.

REFERENCES

[1] G. P. Zhang, “Neural Networks for Classification: A Survey”, IEEE

Transaction on Systems, Man, and Cybernetics- Part C: Applications

and Reviews, vol. 30, no. 3, 2000, pp. 451-462.

[2] Y. Shin and J. Ghosh, “Efficient higher-order neural networks for

classification and function approximation”, In: International Journal

on Neural Systems, vol. 3, 1992, pp.323–350.

[3] M. G. Epitropakis, V. P. Plagianakos, M. N. Vrahatis,

“Hardware-friendly Higher-Order Neural Network Training using

Distributed Evolutionary Algorithms”, Applied Soft Computing, vol.

10, 2010, pp. 398-408.

[4] Y. Shin, J. Ghosh, “The pi–sigma network: An efficient higher-order

neural network for pattern classification and function approximation”,

International Joint Conference on Neural Networks, 1991.

[5] S. Panigrahi, S. Pandey, R. Singh, “A Novel Evolutionary Higher

Order Neural Network for Pattern Classification”, International

Journal of Engineering Research and Technology, vol. 2, no. 9, 2013,

pp.2561-2566.

[6] D. S. Huang, H. H. S. Ip, K. C. K. Law and Z. Chi, “Zeroing

polynomials using modified constrained neural network approach”,

IEEE Transactions on Neural Networks, vol. 16, no. 3, 2005, pp.

721–732.

[7] S. Perantonis, N. Ampazis, S. Varoufakis and G. Antoniou,

“Constrained learning in neural networks: Application to stable

factorization of 2-d polynomials”, Neural Processing Letter, vol.7, no.

1, 1998, pp. 5–14.

[8] Y. Shin and J. Ghosh, “Realization of Boolean functions using binary

pi-sigma networks”, in: C. H. Dagli, S. R. T. Kumara, Y. C. Shin

(Eds.), Intelligent Engineering Systems through Artificial Neural

Networks, ASME Press, 1991, pp. 205–210.

[9] R. Storn and K.Price, “Differential evolution- A simple and efficient

heuristic for global optimization over continuous spaces”, Journal of

Global Optimization, vol. 11, no.4, 1997, pp. 341-359.

[10] S. Das, P. N. Suganthanam, “Differential Evolution: A Survey of the

state-of-the-Art”, IEEE Transaction on Evolutionary Computation,

vol. 15, no.1, 2011, pp. 4-31.

[11] S. Das, A. Abraham, U. K. Chakraborty, A. Konar, “Differential

evolution using a neighbourhood based mutation operator”, IEEE

Transaction on Evolutionary Computation, vol. 13, no. 3, 2009, pp.

526-553.

[12] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama, “Opposition based

differential evolution”, IEEE Transaction on Evolutionary

Computation, vol. 12, no.1, 2008, pp. 64-79.

[13] D. Goldberg, “Genetic Algorithms in Search”, Optimization and

Machine Learning. Reading, MA:Addison-Wesley, 1989.

[14] J. Kennedy, R. C.Eberhart and Y.Shi, “Swarm intelligence”, San

Francisco, CA:Morgan Kaufmann, 2001.

[15] K. Socha and M. Doringo, “Ant colony optimization for continuous

domains”, Europian Journal of Operation Research, vol. 185, no. 3,

2008, pp. 1155-1173.

[16] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M. Zaidi,

“The bees algorithm- A novel tool for complex optimization

problems”, in IPROMS Oxford, U.K.: Elsevier, 2006.

[17] H.G. Beyer and H.P. Schwefel, “Evolutionary Strategies: A

Comprehensive introduction”, Nat. Comput., vol. 1, no. 1, 2002, pp.

3-52.

[18] K. H. Han and J.H. Kim, “Quantum-inspired evolutionary algorithm

for a class of combinatorial optimization”, IEEE Transactions on

Evolutionary Computation, vol. 6, 2002, pp. 580–593.

[19] A. Y. S. Lam and V. O. K. Li, “Chemical-Reaction-inspired

metaheuristic for optimization”, IEEE Transactionson on

Evolutionary Computation, vol. 14, no.3, 2010, pp. 381–399.

[20] A.Y.S. Lam, “Real-Coded Chemical Reaction Optimization”, IEEE

Transaction on Evolutionary Computation, vol. 16, no. 3, 2012,pp.

339-353.

	I. INTRODUCTION
	II. PRELIMINARIES
	A. Pi-Sigma Network
	B. Differential Evolution

	III. METHODOLOGY
	IV. Experimental Setup and Simulation Results
	A. Performance Measure
	B. Datasets and Simulation Results

	V. Conclusion
	References

