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ABSTRACT

We have developed a method for recommending items that
combines content and collaborative data under a single prob-
abilistic framework. We benchmark our algorithm against
a naive Bayes classifier on the cold-start problem, where
we wish to recommend items that no one in the commu-
nity has yet rated. We systematically explore three testing
methodologies using a publicly available data set, and ex-
plain how these methods apply to specific real-world appli-
cations. We advocate heuristic recommenders when bench-
marking to give competent baseline performance. We in-
troduce a new performance metric, the CROC curve, and
demonstrate empirically that the various components of our
testing strategy combine to obtain deeper understanding
of the performance characteristics of recommender systems.
Though the emphasis of our testing is on cold-start recom-
mending, our methods for recommending and evaluation are
general.
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1. INTRODUCTION

Recommender systems suggest items of interest to users
based on their explicit and implicit preferences, the pref-
erences of other users, and user and item attributes. For
example, a movie recommender might combine explicit rat-
ings data (e.g., Bob rates Shrek a 7 out of 10), implicit
data (e.g., Mary purchased The Natural), user demographic
information (e.g., Mary is female), and movie content in-
formation (e.g., Scream is marketed as a horror movie) to
make recommendations to specific users.

Pure collaborative filtering methods [3, 12, 15, 23, 30] base
their recommendations on community preferences (e.g., user
ratings and purchase histories), ignoring user and item at-
tributes (e.g., demographics and product descriptions). On
the other hand, pure content-based filtering or information
filtering methods [17, 24] typically match query words or
other user data with item attribute information, ignoring
data from other users. Several hybrid algorithms combine
both techniques [1, 4, 6, 8, 21, 29]. Though “content” usu-
ally refers to descriptive words associated with an item, we
use the term more generally to refer to any form of item at-
tribute information including, for example, the list of actors
in a movie.

One difficult, though common, problem for a recommender
system is the cold-start problem, where recommendations
are required for items that no one (in our data set) has yet
rated.! Pure collaborative filtering cannot help in a cold-
start setting, since no user preference information is avail-
able to form any basis for recommendations. However, con-
tent information can help bridge the gap from existing items
to new items, by inferring similarities among them. Thus
we can make recommendations for new items that appear
similar to other recommended items. In this paper, we eval-
uate the performance of two machine learning algorithms
on cold start prediction. We present our own probabilistic
model that combines content and collaborative information

IThe phrase cold start has also been used to describe the sit-
uation when almost nothing is known about customer pref-
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attribute (e.g., demographic) data. The new-user problem
without attribute data essentially falls within the framework
of pure information filtering or information retrieval [24].



by using expectation maximization (EM) learning to fit the
model to the data. We perform benchmarking on movie rat-
ings data and compare against a naive Bayes method that
has also been proposed for this task [16].

Some key questions in evaluating recommender systems
on testbed data are: what to predict, how to grade per-
formance and what baseline to compare with. We identify
three useful components to predict on our data set, and show
where past work has focussed. In deciding what metric to
use in evaluating performance, we have borrowed heavily
from the literature in addition to developing our own tool:
the CROC curve. For baseline measures of performance
we advocate the use of heuristic recommenders: algorithms
that are trivial to implement yet give performance that is
well above random. We find that heuristic recommenders do
surprisingly well: in some cases outperforming more sophis-
ticated methods. Our testing goal is to uncover the most
informative characterization of performance for our method
and the naive Bayes algorithm.

2. BACKGROUND AND RELATED WORK

Early recommender systems were pure collaborative fil-
ters that computed pairwise similarities among users and
recommended items according to a similarity-weighted av-
erage [22, 30]. Breese et al. [3] refer to this class of al-
gorithms as memory-based algorithms. Subsequent authors
employed a variety of techniques for collaborative filtering,
including hard-clustering users into classes [3], simultane-
ously hard-clustering users and items [31], soft-clustering
users and items [14, 21], singular value decomposition [26],
inferring item-item similarities [27], probabilistic modeling
[3, 6, 10, 20, 21, 29], machine learning [1, 2, 18], and list-
ranking [5, 7, 19]. More recently, authors have turned to-
ward designing hybrid recommender systems that combine
both collaborative and content information in various ways
[1, 4, 6, 8, 21, 29]. To date, most comparisons among al-
gorithms have been empirical or qualitative in nature [11,
25], though some worst-case performance bounds have been
derived [7, 18], some general principles advocated [7], and
some fundamental limitations explicated [19]. Techniques
suggested in evaluating recommender system performance
include mean average error, receiver operator characteristic
(ROC) curves, ranked list metrics [3, 11] and variants of
precision/recall statistics [25].

In this work we extend the hybrid recommender system
of Popescul et al. [21] to average content data in a model
based fashion. In evaluating our method we introduce novel
testing strategies and metrics that can discover fine-grain
characterization of performance leading to actionable con-
clusions.

3. THE TWO-WAY ASPECT MODEL

In predicting an association between person p and movie
m, we employ a latent class variable framework called the
aspect model that has been designed for contingency ta-
ble smoothing [13]. Figure 1 (a) shows a graphical model
description of the aspect model for a person/movie contin-
gency table and Table 1 explains our notation used in the
graphical model as well as in other descriptions of the movie
recommendation task.
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Figure 1: Graphical model of the person/movie as-
pect model (a) and the person/actor aspect model
(b). These graphs can be interpreted precisely as
belief networks.

b)

Random Variable Object Interpretation
P P person
M m movie
A a actor
Z z latent class

Table 1: Notation used in our model descriptions.

3.1 Pure Collaborative Filtering Model

The aspect model of Figure 1 (a) encodes a probability
distribution over each person/movie pair. Observations con-
sist of tuples (p,m) recording that person p has seen/rated
movie m. We store observations in a count matrix or con-
tingency table with rows ranging over people and columns
ranging over movies (or vice versa). Often our data may
include multiple observations that are identical (e.g., Lyle
saw Memento twice). With each observation we increment
by one the count of the appropriate contingency table cell
(or matrix entry). A naive probability estimate for each
cell is simply the observed frequency of events in that cell.
However, notice that using this method of assigning proba-
bilities, an empty cell implies that there is zero probability
of the corresponding person seeing the corresponding movie,
clearly an unrealistic inference.

An aspect model hypothesizes the existence of a hidden
or latent cause z (e.g., an affinity for a particular style of
movies) that motivates person p to watch movie m. Accord-
ing to the generative model semantics, person p chooses a la-
tent class z, which in turn determines the movie m watched.
The choice of movie m is assumed independent of p given
knowledge of z. Since z is hidden, we sum over possible
choices to define the distribution over (p,m):

Plp,m) = 3 P(p)P(zlp)P(ml2). (1)

Parameters P(z|p) and P(m|z) correspond to the processes
of p stochastically choosing a latent class z, and z stochas-
tically choosing m. The P(p,m) values can be thought of
as smoothed estimates of the probability distribution of the
contingency table. The latent variables perform the smooth-
ing in a manner that maximizes the model likelihood (by
keeping estimates of P(p,m) close to the empirical distri-
bution). The model also creates smoothed estimates for
the values P(p) and P(m), both taking their interpretations
from contingency table analysis. The parameters are calcu-
lated using the tempered EM algorithm as described in [13].



We choose the number of latent classes using performance
on a partition of training data as the criterion. Recom-
mendations to person p are made using: P(m/|p) o< P(p,m).
Our own source code for fitting the two-way aspect model
is available online [28]. We have found training to take only
a few minutes using a Pentium II computer with 512 mb
of RAM. Once trained, the method can generate a user’s
recommendations in a fraction of a second.

3.2 Adding Content Information

The recommender system described so far is a pure col-
laborative filtering algorithm developed by Hofmann and
Puzicha [14]. We will not use the pure collaborative filter-
ing aspect model since we wish to experiment on the cold
start problem. The person/actor aspect model of Figure 1
(b) combines collaborative with content data in one model:

P(p,a) = 3 P(p)P(zIp)P(alz). ()

In using this model, we hope that casts of actors can act
as surrogates for movies. We recommend movies to a user
based on how similar the cast is to movies the user has
already rated. We generate a dataset from the collabora-
tive filtering model by taking the collaborative observations
(p,m) and creating a set of observations (p, a;) for each ac-
tor ¢ in movie m. These newly formed observations are no-
longer independent, breaking an assumption of the aspect
model. We have found in our own experiments that the
person/actor aspect model has strengths to offset potential
disadvantages of broken independence assumptions (for an
example, see [21]).

3.3 Folding In

Notice that the person/actor aspect model does not have
a movie object in the event space. In order to recommend a
movie, we must create a new movie object out of the set of
actors that appear in that movie. This pseudo-movie is then
placed in the latent space based on the content information.
We use Hofmann’s [13] folding-in algorithm (originally used
to fold term-queries into a document-word aspect model).
For example, suppose we have fit a person/actor model and
want to fold-in a new movie. We create a new set of pa-
rameters P(z|m) and use the actors in the movie {(a,m)}
as evidence for placing the movie in latent space in a man-
ner that maximizes the likelihood of the movie. All of the
original parameters from (2) are held constant during the
process. The exact EM algorithm operates as follows:
E-Step:

P(z|a,m) x P(a|z)P(z|m)
M-Step:
P(zlm) x Zn(a7 m)P(z|a, m)

Recommendations are made using:
P(plm) = P(p|2)P(z|m)

If we desire an estimated value of P(p, m), we will first need
to estimate P(m). We are currently experimenting with
Bayesian weighting of movie-queries that computes an aver-
age of P(a) for the various actors in the movie.

4. NAIVE BAYES RECOMMENDER

As an alternative to the aspect model, we use the bag-of-
words naive Bayes text classifier developed in [17] applied to
person/actor data. For each person a separate naive Bayes
classifier is trained so that no collaborative information is
used. Hence, this is a pure content-based method capable
of cold-start recommendation. The model is trained using
Laplace smoothing.

Ratings prediction is computed with the probability func-
tion:

P | M|

PeM) = i []Plade) 3)

where the class ¢; is a rating. Embedded in formula (3) is
the belief that all movies in the data set are rated. In other
words, the naive Bayes generative model does not predict
that an item will or won’t be rated. We have tried to be
consistent with the experiments of Melville et al. [16] who
applied this classifier to a movie dataset similar to our own;
we duplicate some of their testing strategies while adding
our own.

5. TESTING METHODOLOGY

Our data primarily comes from the MovieLens data set as-
sembled by the GroupLens project [11] consisting of actual
ratings from a group of users. The core of this data set is a
list of movie ratings grouped by person. Each person rates
at least twenty movies. All MovieLens observations consist
of a rating between 1 and 5 inclusive. In order to obtain ac-
tor and director information, we downloaded relevant pages
from the Internet Movie Database (http://www.imdb.com).
We speed up model fitting by considering only actors billed
in the top ten and eliminating any actors who appear in only
one movie.

In our experiments we randomly split the movies into a
training set and a test set. In this manner we create a set
of movies that have no observations in the training set. We
test only using the 331 movies in the test set (out of 1682
total movies in the data set). There are 943 people we make
recommendations for, with an average of 85 observations
per person in the entire training set. There are 19,192 ob-
served events for the test set movies out of a possible total
of 312,133. 10,640 of the test set observations have rating of
4 or higher. All results reported below come from the same
test set in order to facilitate comparison.

In testing various recommender systems on a static data
set such as the MovieLens data, it is important to place test
results in their proper context for those who may want to
implement such systems. We have identified three modes
of testing on our data set that correspond to different real-
world applications. Statements about the performance of a
recommender system should be based on what sort of rec-
ommendation task is simulated in testing. The differences in
our testing modes are linked to the role of rating versus pur-
chase data in the recommendation problem. We may wish
to predict that a customer will purchase an item or that a
customer will both purchase and like an item. A final task
is to impute (guess) a customer’s rating on an item that was
purchased. These testing modes are elaborated below.

1. Implicit Rating Prediction

Implicit rating prediction refers to prediction of data



such as purchase history; a purchase is not necessar-
ily an indication of satisfaction, but a purchase is an
indication of some implicit need or desire for an item.
For MovieLens data we predict that a person has rated
a movie, a task that is analogous to predicting a cus-
tomer purchase. When evaluating performance, we do
not consider the rating itself or events that occur in the
training set (for domains where we don’t recommend
what a user already owns or has rated). implicit rat-
ing prediction is most appropriate for domains where
explicit rating information is not available and we are
satisfied to recommend products that the user is likely
to purchase on their own. Past implicit evaluation
work includes [21, 29]. We will refer to MovieLens ob-
servations stripped of a rating component as implicit
rating data throughout this paper.

2. Rating Prediction

In rating prediction we wish to predict both implicit
rating and rating components of an observation simul-
taneously. In our MovieLens benchmarking we classify
each person/movie pair that doesn’t occur in the train-
ing observations into two groups:

a) p; rated m; > 4.
b) p; did not rate m; > 4.

Condition b could imply that person i did not rate
movie j at all.

3. Rating Imputation

Rating imputation is prediction of ratings for items
where we have implicit rating observations. In con-
crete terms, we ask “given that a person has seen movie
x, how likely are they to rate it > 4?” Our prior knowl-
edge that the person has seen z means we have a im-
plicit rating observation to this effect. Our goal is to
guess the best rating. We implement rating imputa-
tion testing by taking held out observations from the
MovieLens data and predicting ratings on this set.

In real-world applications we may have data sets where
implicit rating observations are available in large quan-
tities, but the rating component is missing at random.
Rating imputation measures success at filling in the
missing values. Rating imputation has been used pre-
viously in [3, 11, 16] to evaluate recommender system
performance.

6. EVALUATION METRICS

Before deploying an actual recommender system we would
need to decide how often to recommend and to whom. For
instance, in one application we may need to recommend k
products to each customer in a database, where k is a num-
ber we may choose according to a desired false-positive rate.
In other applications we may be permitted to recommend a
greater number of products to customers who we understand
better. In this section, we identify metrics that measure suc-
cess in either mode of recommending and show in the results
section how using both metrics on the same data uncovers
fine grain recommender system characteristics.

Herlocker et al. [11] suggest using receiver operator char-
acteristic (ROC) curves as one measure to evaluate recom-
mender systems. We call the method of Herlocker et al. a
global ROC (GROC) curve in order to distinguish it from

the customer ROC (CROC) variation presented shortly. A
ROC curve is a curve showing hit/miss rates for different
classification thresholds. Currently, machine learning re-
searchers use ROC curves to evaluate binary classification
algorithms. We will employ ROC curves in this context (e.g.,
“our algorithm says a person will have rated a movie” is a
predicted positive outcome). The area under a ROC curve is
a performance measure with perfect performance indicated
by area of one and random guessing indicated by area 0.5.
ROC curves are nearly equivalent to precision/recall curves
in the information retrieval community and lift curves of
the marketing literature. The terms precision and recall are
analogous to specificity and sensitivity respectively, where
the latter terms are found on ROC curves. Sensitivity (or
hit rate) is equal to the percentage of all positive values
found above some threshold. 1 - Specificity (or miss rate) is
equal to the fraction of all negative values found above some
threshold. Miss rate and hit rate are plotted on the z and
y axis respectively. Varying the threshold generates a series
of points forming a curve. We will not actually connect the
points of our plots to form the curve in order to make the
figures more readable.

We use a global ROC (GROC) curve to measure perfor-
mance when we are allowed to recommend more often to
some users than others. GROC curves are constructed in
the following manner:

1. Order the predictions pred(p;,m;) in a list
by magnitude, imposing an ordering: (p,m)s.

2. Pick n, calculate hit/miss rates caused by
predicting the top n (p,m)r by magnitude, and
plot the point.

By selecting different n (e.g. incrementing n by a fixed
amount) we draw a curve on the graph.

Customer ROC (CROC) curves measure performance of
a recommender system when we are constrained to recom-
mend the same number of items to each user. Unlike the
GROC curve, the CROC curve is not a special case of the
ROC curve, though it is constructed in an analogous man-
ner:

1. For each person p;, order the predictions
pred(p;,m;) in a list by magnitude imposing an
ordering: (m)g.

2. Pick n, calculate global hit/miss rates
caused by recommending the top predicted n
movies to each person and plot the point.

We vary n as in the GROC case.

In a GROC curve, the perfect recommender will gener-
ate a curve with area one, but for the CROC curve this is
not the case. To see why, imagine using an omniscient rec-
ommender on a data set with three people: person a sees
four movies, person b sees two movies, and person c sees six
movies. When we recommend four movies to each person,
we end up with two false-positives from person b, lowering
the area of the curve. However, for any particular data set,
we can plot the curve and calculate the area of the omni-
scient recommender in order to facilitate comparison.

Whether using GROC or CROC curves it is important to
focus attention on the left hand side of the graph. This is the
portion of the graph focusing on a low false positive rate. In



most applications of recommender systems it is desirable to
obtain the best possible performance in the low false positive
region of the curve.

7. RESULTS

We test the person/actor aspect model against the naive
Bayes method of [17]. We conduct implicit rating and rat-
ing imputation since these two methods are most commonly
used to evaluate the two recommender systems in the pre-
vious literature [16, 29]. Our preliminary experiments with
naive Bayes confirmed earlier observations [16] that naive
Bayes is sensitive to sparsity below 40 rated movies on this
type of data (results not shown). In order to better du-
plicate the prior work in rating imputation [16] as well as
present naive Bayes in the best possible light, we perform
rating imputation only for users who have rated 40 or more
movies in the training set. We train the models separately
according to precedent: the aspect model is trained on im-
plicit rating data, while the naive Bayes method is trained
on the corresponding ratings data.

Implicit in the GROC and CROC curve is the performance
of a random recommender: a 45 degree line with area 0.5
underneath. We feel that in many applications a superior
baseline can be developed. For instance, we can recommend
first to users that on average rate movies higher in order to
obtain better-than-random rating imputation GROC perfor-
mance. We call such recommendation algorithms heuristic
recommenders since they use simple tricks to obtain above-
random performance. Where possible we propose and in-
clude heuristic recommenders in the analysis.

7.1 Implicit Rating Testing

Figure 2 shows GROC and CROC plots comparing the
person/actor aspect model, the naive Bayes recommender
and (for the GROC case) a heuristic recommender on the
implicit rating prediction task. The heuristic recommender
for the GROC plot is created by substituting the total num-
ber of movies seen by person ¢ for the recommender output
for pair: (p;, m;). In other words we list users by their rela-
tive activity in rating on the MovieLens site and recommend
all movies to these users in that order. Note that the heuris-
tic recommender performs nearly as well as the aspect model
in the region of interest (the far left-hand side of the graph).

Figure 2 (b) shows CROC plots comparing the person/actor
aspect and naive Bayes methods on the implicit rating pre-
diction task without a heuristic recommender. There is no
obvious heuristic recommender to use here other than ran-
dom recommendation due to the cold-start problem. Note
that both machine learning methods perform noticeably bet-
ter than the area 0.5 indicative of random prediction by both

CROC and GROC metrics.

7.2 Rating Imputation Testing

Figure 3 shows GROC and CROC plots comparing the
person/actor aspect model, the naive Bayes recommender
and (for the GROC case) a heuristic recommender on the
rating imputation task. Here we predict that a user rates
a movie 4 or higher. This technique of evaluation has been
called ROC-4 [25]. The heuristic recommender is created
by using the mean rating for each person i as the predicted
rating for (p;, m;), for all m;. Surprisingly, the mean rating
method outperforms all other methods by GROC standards.
As in the implicit rating prediction task, there is no obvious

heuristic recommender to deploy in the CROC plot other
than the implicit random recommender with area 0.5.

8. DISCUSSION

The aspect model performs better than the naive Bayes
method on the implicit rating prediction task, but the re-
verse is true on the rating imputation task. This is not
surprising since the aspect model is trained solely on im-
plicit rating data, and the naive Bayes recommender is not
designed for implicit rating prediction. Both methods need
to be altered in order to optimize performance on the alter-
native test. Re-designing the aspect model training and test
procedure for rating imputation and rating prediction will
be a subject of future work. The current experiments test
the degree to which implicit rating observations are sufficient
for prediction in the rating imputation task by benchmark-
ing the aspect model against naive Bayes. In addition we
test whether rating classification recommenders as embod-
ied by the naive Bayes method can predict implicit rating
observations as well as our proposed aspect model.

Our empirical evaluation methods point out some inter-
esting subtleties that occur in benchmarking recommender
systems. On both GROC plots, some very simple methods
are competitive with the more sophisticated aspect model
and naive Bayes methods. In the rating imputation case,
the mean rating of a user is the single best predictor for
rating imputation according to the GROC criteria. Like-
wise, the number of movies a person has rated is a very
good method on the implicit rating prediction GROC plot.
The use of intelligent heuristic recommenders like the ones
described above are a key ingredient to interpreting the per-
formance of a GROC curve. Past performance results using
the MovieLens and similar datasets that employ the GROC
curve including [11, 16, 29] should be evaluated with this
observation in mind.

A natural question to ask is whether both the GROC and
CROC curve are needed in evaluation. One hypothesis is
that once a suitable heuristic recommender is chosen, rel-
ative performance on a GROC curve graph is sufficient to
tell the whole story of recommender system performance
characteristics. Our results show that this is not the case;
in particular our empirical results demonstrate that GROC
and CROC curves can often have no predictive power over
each other: e.g., they often give conflicting measures. To
see why, compare the relative performance of the user activ-
ity recommender and the aspect model recommender on the
implicit rating prediction task (Figure 2). On the GROC
plot, the two methods have nearly identical characteristics.
If GROC and CROC metrics were necessarily correlated, we
would expect similar behavior in the CROC graph for the
implicit rating prediction task. Note that the CROC graph
of the implicit rating prediction task does not include the
user activity recommender because this method produces
perfectly random performance (area 0.5) by CROC stan-
dards. In contrast, the aspect model performance has area
0.64: well above random. The GROC and CROC graphs to-
gether point out that the aspect model has nearly identical
global (GROC) performance to the heuristic recommender
while actually recommending to a more diverse group of peo-
ple. A similar situation is visible in the rating imputation
GROC and CROC plots.

Let’s say we are deciding between the heuristic recom-
mender and the aspect model for implicit rating prediction.
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Figure 2: GROC (a) and CROC (b) plots comparing person/actor aspect model, naive Bayes and a heuristic
recommender on the implicit rating prediction task. To generate GROC plot points we increment the number
of predictions by 7800. To generate CROC plot points we increment the number of movies predicted for each

person by 15.
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Figure 3: GROC (a) and CROC (b) plots comparing person/actor aspect model, naive Bayes and a heuristic
recommender on the rating imputation task. To generate GROC plot points we increment the number of
predictions by 420. To generate CROC plot points we increment the number of movies predicted for each
person by 1.



If greater customer coverage is a priority, then we will choose
the aspect model based on its CROC plot, even though the
two methods perform equivalently on the GROC plot. We
will then return to the GROC plot to determine what deci-
sion threshold to use based on false positive rate (calculated
from miss rate on a GROC plot).

9. CONCLUSIONS

We have proposed the aspect model latent variable method
for cold-start recommending. Our aspect model combines
both collaborative and content information in model fitting.
The folding in algorithm allows us to make predictions for
unrated items by using content data: averaging the set of
content data (e.g. actors) that associate with an item (e.g.
movie). Our method is tested against naive Bayes and sev-
eral heuristic recommenders on publicly available movie rat-
ing data. We have tested these methods on implicit rating
and rating imputation tasks while evaluating performance
under two different methods of recommending embodied by
GROC and CROC curve metrics.

A surprising outcome of the empirical evaluation is the

performance of so-called heuristic recommenders on the GROC

curves. These methods are so effective that we feel that all
future work using GROC curve plots should include appro-
priate heuristic predictors in order to give perspective on
actual gain in performance caused by using sophisticated
machine learning or other techniques. In many cases it is
feasible to include heuristic recommenders for CROC curves
as well. For instance we could use average rating of a movie
in the training set as our rating prediction. However, when
operating from a cold start we do not have this sort of infor-
mation. Fortunately, GROC and CROC curves each have
built-in baselines: the random recommender with area 0.5.

The combination of GROC/CROC testing and heuristic
recommenders tells us when it makes sense to deploy the
aspect model on the cold-start task. On the implicit rating
prediction task, we recommend the aspect model over the
heuristic recommender for applications when it is important
to recommend to as many users as possible. If real-world
success is embodied exactly by the GROC curve, we feel
that the heuristic recommender is up to the job and easiest
to implement. On the rating imputation task, we draw the
same conclusion regarding the effectiveness of naive Bayes
method over the corresponding heuristic recommender.

Our results demonstrate the value of using both GROC
and CROC curves in evaluating recommender system perfor-
mance. We can show when our aspect model recommender
outperforms and underperforms alternatives and link test-
ing performance to real-world problems. GROC and CROC
curves each measure performance in a specific real world
task. However, in situations where the evaluation goal is
to characterize the performance of a recommender system
generally, both GROC and CROC curves are needed since
they are often conflicting measures of recommender system
performance.
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Errata

In describing the GROC and CROC curve we use the phrase
miss rate where we mean false alarm rate. Miss rate has

a common usage that is different from false alarm rate
and regrettably this was not corrected before publication
at SIGIR 2002.



