’ USENIX Security Symposium. San Jose, CA. 31 July 2008. ‘

Reverse-Engineering a Cryptographic RFID Tag

Karsten Nohl and David Evans
University of Virginia
Department of Computer Science
{nohl,evans} @cs.virginia.edu

Starbug and Henryk P16tz
Chaos Computer Club
Berlin
starbug @ccc.de, henryk @ploetzli.ch

Abstract
The security of embedded devices often relies on the secrecy of proprietary cryptographic algorithms. These
algorithms and their weaknesses are frequently disclosed through reverse-engineering software, but it is
commonly thought to be too expensive to reconstruct designs from a hardware implementation alone. This
paper challenges that belief by presenting an approach to reverse-engineering a cipher from a silicon imple-
mentation. Using this mostly automated approach, we reveal a cipher from an RFID tag that is not known
to have a software or micro-code implementation. We reconstruct the cipher from the widely used Mifare
Classic RFID tag by using a combination of image analysis of circuits and protocol analysis. Our analysis re-
veals that the security of the tag is even below the level that its 48-bit key length suggests due to a number of
design flaws. Weak random numbers and a weakness in the authentication protocol allow for pre-computed
rainbow tables to be used to find any key in a matter of seconds. Our approach of deducing functional-
ity from circuit images is mostly automated, hence it is also feasible for large chips. The assumption that

algorithms can be kept secret should therefore to be avoided for any type of silicon chip.

1l faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre les mains de [’ennemi.
([A cipher] must not depend on secrecy, and it must not matter if it falls into enemy hands.)
August Kerckhoffs, La Cryptographie Militaire, January 1883 [13]

1 Introduction

It has long been recognized that security-through-obscur-
ity does not work. However, vendors continue to be-
lieve that if an encryption algorithm is released only as
a hardware implementation, then reverse-engineering the
cipher from hardware alone is beyond the capabilities of
likely adversaries with limited funding and time. The
design of the cipher analyzed in this paper, for example,
had not been disclosed for 14 years despite more than a
billion shipped units. We demonstrate that the cost of re-
verse engineering a cipher from a silicon implementation
is far lower than previously thought.

In some cases, details of an unknown cryptographic ci-
pher may be found by analyzing the inputs and outputs
of a black-box implementation. Notable examples in-
clude Bletchley Park’s breaking the Lorenz cipher during
World War II without ever acquiring a cipher machine
[5] and the disclosure of the DST cipher used in cryp-
tographic Radio Frequency Identification (RFID) tokens
from Texas Instruments [4]. In both cases, researchers
started with a rough understanding of the cipher’s struc-

ture and were able to fill in the missing details through
cryptanalysis of the cipher output for known keys and
inputs. This black-box approach requires some prior un-
derstanding of the structure of a cipher and is only appli-
cable to ciphers with statistical weaknesses. The output
of a sound cipher should not be statistically biased and
therefore should not leak information about its structure.

Other ciphers have been disclosed through disassem-
bly of their software implementation. Such implemen-
tations can either be found in computer software or as
microcode on an embedded micro-controller. Ciphers
found through software disassembly include the AS5/1
and A5/2 algorithms that secure GSM cell phone com-
munication [1] and the Hitag2 and Keeloq algorithms
used in car remote controls [3]. The cryptography on
the RFID tags we analyzed is not known to be available
in software or in a micro-code implementation; tags and
reader chips implement the cipher entirely in hardware.

In this paper, we focus on revealing proprietary cryptog-
raphy from its silicon implementation alone. Reverse-
engineering silicon is possible even when very little is
known about a cipher and no software implementation

exists. The idea of reverse-engineering hardware is not
new. Hardware analysis is frequently applied in indus-
try, government, and the military for spying, security as-
sessments, and protection of intellectual property. Such
reverse-engineering, however, is usually considered pro-
hibitively expensive for typical attackers, because of the
high prices charged by professionals offering this ser-
vice. The key contribution of this work is demonstrating
that reverse-engineering silicon is cheap and that it can
be mostly automated. This is the first published work
to describe the details of reverse-engineering a crypto-
graphic function from its silicon implementation. We
describe a mostly automated process that can be used
to cheaply determine the functionality of previously un-
known cipher implementations.

We demonstrate the feasibility of our approach by reveal-
ing the cipher implemented on the NXP Mifare Clas-
sic RFID tags, the world’s most widely used crypto-
graphic RFID tag [16]. Section 2 describes our reverse-
engineering method and presents the cipher. Section 3
discusses several weaknesses in the cipher beyond its
short key size. Weak random numbers combined with
a protocol flaw allow for rainbow tables to be computed
that reduce the attack time from weeks to minutes. Sec-
tion 4 discusses some potential improvements and de-
fenses. While we identify fixes that would increase the
security of the Mifare cipher significantly, we conclude
that good security may be hard to achieve within the de-
sired resource constraints.

2 Mifare Crypto-1 Cipher

We analyzed the Mifare Classic RFID tag by NXP (for-
merly Philips). This tag has been on the market for over
a decade with over a billion units sold. The Mifare Clas-
sic card is frequently found in access control systems and
tickets for public transport. Large deployments include
the Oyster card in London, and the SmartRider card in
Australia. Before this work, the Netherlands were plan-
ning to deploy Mifare tags in OV-chipkaart, a nation-
wide ticketing system, but the system will likely be re-
engineered after first news about a potential disclosure of
the card’s details surfaced [17]. The Mifare Classic chip
currently sells for 0.5 Euro in small quantities, while tags
with larger keys and established ciphers such as 3-DES
are at least twice as expensive.

The cryptography found in the Mifare cards is a stream
cipher with 48-bit symmetric keys. This key length has
been considered insecure for some time (for example, the
Electronic Frontier Foundation’s DES cracking machine

demonstrated back in 1998 that a moderately-funded at-
tacker could brute force 56-bit DES [6]) and the practical
security that Mifare cards have experienced in the past
relies primarily on the belief that its cipher was secret.
We find that the security of the Mifare Classic is even
weaker than the short key length suggests due to flaws in
its random number generation and the initialization pro-
tocol discussed in Section 3.

The data on the Mifare cards is divided into sectors, each
of which holds two different keys that may have different
access rights (e.g., read/write or read-only). This division
allows for different applications to each store encrypted
data on a tag—an option rarely used in practice. All se-
crets are set to default values at manufacturing time but
changed before issuing the tags to users. Different tags
in a system may share the same read key or have dif-
ferent keys. Sharing read keys minimizes the overhead
of key-distribution to offline readers. We find, however,
that the protocol level measures meant to prevent differ-
ent users from impersonating each other are insufficient.
Unique read and write keys should, therefore, be used for
each tag and offline readers should be avoided as much
as possible.

2.1 Hardware Analysis

The chip on the Mifare Classic tag is very small with
a total area of roughly one square millimeter. About a
quarter of the area is used for 1K of flash memory (a
4K version is also available); another quarter is occupied
by the radio front-end and outside connectivity, leaving
about half the chip area for digital logic including cryp-
tography.

The cryptography functions make up about 400 2-NAND
gate equivalents (GE), which is very small even com-
pared to highly optimized implementations of standard
cryptography. For example, the smallest known imple-
mentation of the AES block cipher (which was specif-
ically designed for RFID tags) requires 3400 GEs [7].
The cryptography on the Mifare tags is also very fast and
outputs 1 bit of key stream in every clock cycle. The AES
circuit, by comparison, takes 1000 clock cycles for one
128-bit AES operation (10 milliseconds on a tag running
at 106 kHz).

To reverse engineer the cryptography, we first had to get
access to sample chips, which are usually embedded in
credit card size plastic cards. We used acetone to dis-
solve the plastic card, leaving only the blank chips. Ace-
tone is easier and safer to handle than alternatives such
as fuming nitric acid, but still dissolves plastic cards in

=

10
Ty |

Figure 1: (a) Source image of layer 2 after edge detection; (b) after automated template detection.

about half an hour. Once we had isolated the silicon
chips, we removed each successive layer through me-
chanical polishing, which we found easier to control than
chemical etching. Simple polishing emulsion or sandpa-
per with very fine grading of 0.04um suffices to take off
micrometer-thick layers within minutes.

Although the polishing is mostly straightforward, the one
obstacle to overcome is the chip tilting. Since the chip
layers are very close together, even the smallest tilt leads
to cuts through several layers. We addressed this problem
in two ways. First, we embedded the millimeter-size chip
in a block of plastic so it was easier to handle. Second,
we accpeted that we could not completely avoid tilt using
our simple equipment and adapted our image stitching
tools to patch together chip layers from several sets of
pictures, each imaging parts of several layers.

The chip contains a total of six layers, the lowest of
which holds the transistors. We took pictures using a
standard optical microscope at a magnification of 500x.
From multiple sets of these images we were able to au-
tomatically generate images of each layer using tech-
niques for image tiling that we borrowed from panorama
photography. We achieved the best results using the
open source tool hugin (http://hugin.sourceforge.net/)
by setting the maximum variance in viewer angle to a
very small value (e.g., 0.1°) and manually setting a few
control points on each image.

The transistors are grouped in gates that each perform
a logic function such as AND, XOR, or flip-flop as il-
lustrated in Figure 1. Across the chip there are several
thousand such logic gates, but only about 70 different
types of gates. As a first step toward reconstructing the
circuit, we built a library of these gates. We implemented
template matching that given one instance of a logic gate
finds all the other instances of the same gate across the
chip. Our tools take as input an image of layer 2, which
represents the logic level, and the position of instances
of different logic gates in the image. The tools then use
template matching to find all other instances of the gate
across the image, including rotated and mirrored vari-
ants. Since larger gates sometimes contain smaller gates
as building blocks, the matching is done in order of de-
creasing gate sizes.

Our template matching is based on normalized cross-
correlation which is a well-known similarity test [14]
and implemented using the MATLAB image process-
ing library. Computing this metric is computationally
more complex than standard cross-correlation, but the
total running time of our template matching is still un-
der ten minutes for the whole chip. Normalized cross-
correlation is insensitive to the varying brightness across
our different images and the template matching is able
to find matches with high accuracy despite varying col-
oration and distortion of the structures that were caused
by the polishing.

We then manually annotated each type of gate with its
respective functionality. This step could be automated
as well through converting the silicon-level depiction of
each gate into a format suitable for a circuit simulation
program. We decided against this approach because the
overhead seemed excessive. For larger libraries that per-
haps intentionally vary the library cells in an attempt
to impede reverse-engineering, however, automation is
certainly possible and has already been demonstrated in
other projects [2].

Our template matching provides a map of the different
logic gates across the chip. While it would certainly have
been possible to reverse-engineer the whole RFID tag,
we focused our attention on finding and reconstructing
the cryptographic components. We knew that the stream
cipher would have to include at least a 48-bit register and
a number of XOR gates. We found these components in
one of the corners of the chip along with a circuit that
appeared to be a random number generator as it has an
output, but no input.

Focusing our efforts on only these two parts of the chip,
we reconstructed the connections between all the logic
gates. This step involved considerable manual effort and
was fairly error-prone. All the errors we made were
found through a combination of redundant checking and
statistical tests for some properties that we expected the
cipher to have such as an even output distribution of
blocks in the filter function. We have since implemented
scripts to automate the detection of wires, which can
speed the process and improve its accuracy. Using our
manually found connections as ground truth we find that
our automated scripts detect the metal connection and
intra-layer vias correctly with reasonably high probabil-
ity. In our current tests, our scripts detect over 95% of the
metal connections correctly and the few errors they make
were easily spotted manually by overlaying the source
image and the detection result. These results are, how-
ever, preliminary, as many factors are not yet accounted
for. To assess the potential for automation more thor-
oughly, we plan to test our tools on different chips, us-
ing different imaging systems, and having different users
check the results.

In the process of reconstructing the circuit, we did not
encounter any added obscurity or tamper-proofing. Be-
cause the cryptographic components are highly struc-
tured, they were particularly easy to reconstruct. Fur-
thermore, we could test the validity of different building
blocks by checking certain statistical properties. For ex-
ample, the different parts of the filter function each have
an even output distribution so that the output bits are not
directly disclosing information about single state bits.

The map of logic gates and the connections between
them provides us with almost enough information to dis-
cover the cryptographic algorithm. Because we did not
reverse-engineer the control logic, we do not know the
exact timing and inputs to the cipher. Instead of recon-
structing more circuitry, we derived these missing pieces
of information from protocol layer communication be-
tween the Mifare card and reader.

2.2 Protocol Analysis

From the discovered hardware circuit, we could not de-
rive which inputs are shifted into the cipher in what or-
der, partly because we did not reverse the control logic,
but also because even with complete knowledge of the
hardware we would not yet have known what data differ-
ent memory cells contain. To add the missing details to
the cipher under consideration, and to verify the results
of the hardware analysis, we examined communication
between the Mifare tags and a Mifare reader chip.

An NXP reader chip is included on the OpenPCD open
source RFID reader, whose flexibility proved to be cru-
cial for the success of our project. The OpenPCD in-
cludes an ARM micro-controller that controls the com-
munication between the NXP chip and the Mifare card.
This setup allows us to record the communication and
provides full control over the timing of the protocol.
Through timing control we can amplify some of the vul-
nerabilities we discovered as discussed in Section 3.

No details of the cipher have been published by the man-
ufacturer or had otherwise been leaked to the public prior
to this work. We guessed that the secret key and the tag
ID were shifted into the shift register sequentially rather
than being combined in a more complicated way. To
test this hypothesis, we checked whether a reader could
successfully authenticate against a tag using an altered
key and an altered ID. Starting with single bit changes
in ID and key and progressively extending our search to
larger variations, we found a number of such combina-
tions that indeed successfully authenticated the reader to
the tag. From the pattern of these combinations we could
derive not just the order of inputs, but also the structure
of the linear feedback shift register, which we had inde-
pendently found on the circuit level. Combining these in-
sights into the authentication protocol with the results of
our hardware analysis gave us the whole Crypto-1 stream
cipher, shown in Figure 2.

The cipher is a single 48-bit linear feedback shift register
(LFSR). From a fixed set of 20 state bits, the one bit of
key stream is computed in every clock cycle. The shift
register has 18 taps (shown as four downward arrows in

Challenge Response

Key stream

f(")

48-bit LFSR

I

|RNG|

ID

Figure 2: Crypto-1 stream cipher and initialization.

the figure) that are linearly combined to fill the first reg-
ister bit on each shift. The update function does not con-
tain any non-linearity, which by today’s understanding of
cipher design can be considered a serious weakness. The
generating polynomial of the register is (with x’ being the
ith bit of the shift register):

x48 +x43 +x39 +x38 +x36 +x34 +x33 +x31+x29
4 x24_|_x23+x21+x19+x13+x9+x7+x6+x5+1'

The polynomial is primitive in the sense that it is irre-
ducible and generates all (2*8 —1) possible outputs in
succession. To confirm this, we converted the Fibonacci
LFSR into a Galois LFSR for which we can compute any
number of steps in a few Galois field multiplications. We
then found that the cipher state repeats after (24 —1)
steps, but not after any of the possible factors for this
number. The LSFR is hence of maximum-length.

The protocol between the Mifare chip and reader loosely
follows the ISO 9798-2 specification, which describes an
abstract challenge-response protocol for mutual authenti-
cation. The authentication protocol takes a shared secret
key and a unique tag ID as its inputs. At the end of the
authentication, the parties have established a session key
for the stream cipher and both parties are convinced that
the other party knows the secret key.

3 Cipher Vulnerabilities

The 48-bit key used in Mifare cards makes brute-force
key searches feasible. Cheaper than brute-force attacks,
however, are possible because of the cipher’s weak cryp-
tographic structure. While the vulnerability to brute-
force attacks already makes the cipher weak, the cheaper
attacks are relevant for many Mifare deployments such

as fare collection where the value of breaking a partic-
ular key is relatively low. Weaknesses of the random
number generator and the cryptographic protocol allow
an attacker to pre-compute a codebook and perform key-
lookups quickly and cheaply using rainbow tables.

3.1 Brute-Force Attack

In a brute-force attack an attacker records two challenge-
response exchanges between the legitimate reader and a
card and then tries all possible keys for whether they pro-
duce the same result.

To estimate the expected time for a brute-force attack,
we implemented the cipher on FPGA devices by Pico
Computing. Due to the simplicity of the cipher, 6 fully-
pipelined instances can be squeezed into a single Xilinx
Virtex-5 LX50 FPGA. Running the implementation on
an array of 64 such FPGAs to try all 2*8 keys takes under
50 minutes.

3.2 Random Number Generation

The random number generator (RNG) used on the Mi-
fare Classic tags is highly insecure for cryptographic ap-
plications and further decreases the attack complexity by
allowing an attacker to pre-compute a codebook.

The random numbers on Mifare Classic tags are gener-
ated using a linear feedback shift register with constant
initial condition. Each random value, therefore, only de-
pends on the number of clock cycles elapsed between the
time the tag is powered up (and the register starts shift-
ing) and the time the random number is extracted. The
numbers are generated using a maximum length 16-bit
LFSR of the form:

2O x Bt 4.

The register is clocked at 106 kHz and wraps around ev-
ery 0.6 seconds after generating all 65,535 possible out-
put values. Aside from the highly insufficient length of
the random numbers, an attacker that controls the tim-
ing of the protocol controls the generated number. The
weakness of the RNG is amplified by the fact that the
generating LFSR is reset to a known state every time
the tag starts operating. This reset is completely un-
necessary, involves hardware overhead, and destroys the
randomness that previous transactions and unpredictable
noise left in the register.

We were able to control the number the Mifare random
number circuit generated using the OpenPCD reader
and custom-built firmware. In particular, we were able
to generate the same “random” nonce in each query,
thereby completely eliminating the tag randomness from
the authentication process. Moreover, we found the same
weakness in the 32-bit random numbers generated by the
reader chip, which suggests that a similar hardware im-
plementation is used in the chip and reader. Here, too,
we were able to repeatedly generate the same number.
While in our experiments this meant controlling the tim-
ing of the reader chip, a skilled attacker will likely be
able to exploit this vulnerability even in realistic scenar-
ios where no such control over the reader is given. The
attacker can predict forthcoming numbers from the num-
bers already seen and precisely chose the time to start
interacting with the reader in order to receive a certain
challenge. The lack of true randomness on both reader
and tag enable an attacker to eliminate any form of ran-
domness from the authentication protocol. Depending
on the number of precomputed codebooks, this process
might take several hours and the attack might not be fea-
sible against all reader chips.

3.3 Pre-Computing Keys

Several weaknesses of the Mifare card design add up to
what amounts to a full codebook pre-computation. First,
the key space is small enough for all possible keys to be
included. Second, the random numbers are controllable.
In addition, the secret key and the tag ID are combined
in such a way that for each session key there exists ex-
actly one key for each ID that would result in that session
key. The key and the ID are shifted into the register se-
quentially, but no non-linearity is mixed in during this
process. As explained in Section 2.2, for every delta of
ID bits, there exists a delta of key bits that corrects for
the difference and results in the same session key. There-

fore, given a key that for some ID results in a session
key, there exists a key for any ID that would result in the
same session key. This bijective mapping allows for a
codebook that was pre-computed for only a single ID to
be used to find keys for all other IDs as well.

A codebook for all keys would occupy 1500 Terabytes,
but can be stored more economically in rainbow tables.
Rainbow tables store just enough information from a key
space for finding any key with high probability, but re-
quire much less space than a table for all keys [9, 15].
Each “rainbow” in these tables is the repeated application
of slight variants of a cryptographic operation. In our
case, we start with a random key and generate the output
of the authentication protocol for this key, then use this
output as the next key for the authentication, generate its
output, use that as the next key, and so on. We then only
store the first and last value of each rainbow, but compute
enough rainbows so that almost all keys appear in one of
them. To find a key from such a rainbow table, a new
rainbow is computed starting at a recorded output from
the authentication protocol. If any one of the generated
values in this series is also found in the stored end values
of the rainbows, then the key used in the authentication
protocol can be found from the corresponding start val-
ues of that matching rainbow. The time needed to find a
key grows as the size of the tables shrinks.

Determining any card’s secret key will be significantly
cheaper than trying out all possible keys even for rain-
bow tables that only occupy a few Terabytes and can
be almost as cheap as a database lookup. The fact that
an attacker can use a pre-computed codebook to reveal
the keys from many cards dramatically changes the eco-
nomics of an attack in favor of the attacker. This means
that even attacks on low-value cards like bus tickets
might be profitable.

3.4 Threat Summary

To summarize the threat to systems that rely on Mifare
encryption for security, we illustrate a possible attack.
An attacker would first scan the ID from a valid card.
This number is unprotected and always sent in the clear.
Next, the attacker would pretend to be that card to a legit-
imate reader, record the reader message of the challenge-
response protocol with controlled random nonces, and
abort the transaction. Given only two of these messages,
the key of the card can be found in the pre-computed
rainbow tables in a matter of minutes and then used to
read the data from the card. This gives the attacker all
the information needed to clone the card.

4 Discussion

The illustrated attack is yet another example of security-
by-obscurity failing. Weaknesses in the exposed cipher
reveal the pitfalls of proprietary cipher design without
peer-review. A few changes in the design would have
made some of the discussed attacks infeasible and could
have increased the key size within the same hardware
constraints to make brute-force attacks less likely. Much
better security, however, can only be achieved through
better, more thoroughly analyzed ciphers.

4.1 Potential Fixes

The system is vulnerable against codebook attacks be-
cause of its weak random numbers and the linear combi-
nation of key and ID. Both can be fixed without adding
extra hardware or slowing down the operation.

Better, yet still not cryptographically sound, random
numbers can be generated by exploiting the fact that
memory cells are initially in an undetermined state [10].
The same behavior can be caused in flip-flops like those
that make up the state register of the stream cipher simply
by not resetting the flip-flops at initialization time. The
cipher state would start in a random state and then evolve
using the cipher’s feedback loop until a random number
is needed. At this point, the register contains a mostly
unpredictable number of the size of the state register.

Because this design generates random numbers within
the same registers that are used for the cipher states, it
eliminates the need for a separate additional PRNG cir-
cuit. The saved area could then be spent on increasing the
size of the cipher state. In the area of the 48-bit Crypto-1
and its 16-bit RNG, a 64-bit stream cipher that also pro-
duces significantly better pseudo-random number could
hence be implemented. This increases the size and qual-
ity of the random numbers and at the same time increases
the key size beyond the point where brute-force attacks
can be done cheaply.

To further improve the resistance against codebook at-
tacks, the non-linear feedback should be combined with
either key or ID when shifted into the register to break the
bijective mapping between different key-ID pairs. This
measure does not increase implementation costs, since
we only integrate the output of the filter function which
is already computed.

To improve the resistance of the cipher against statisti-
cal attacks, the update function must be made non-linear,

either by feeding some intermediate result of the filter
function into the linear register or by using a non-linear
feedback shift register instead.

None of the possible fixes will make the cipher appropri-
ate for high security applications, but they improve the
resistance against the most concerning attacks and can
be done without any additional implementation cost.

4.2 Possible Defenses

Possible ways to protect against the described attacks
include using standard, peer-reviewed, established cryp-
tography such as the 3-DES block cipher that is already
found on some of the more expensive cards including
some of the Mifare line of products. A cheaper alterna-
tive that can be implemented in about twice the size of
Crypto-1 is the Tiny Encryption Algorithm (TEA) [12,
18]. This established low-cost block cipher has pub-
licly been scrutinized for several years and is so far only
known to be vulnerable to some expensive attacks [11].
While TEA is far more secure than Crypto-1, it is also
much slower. A Mifare authentication takes little more
than one millisecond, while a minimum-size implemen-
tation of TEA would take about ten times as long. This
would still be fast enough for most applications where
Mifare cards are currently used.

Other known ways to protect against card cloning in-
clude fraud detection algorithms that are widely used in
monitoring credit card transactions. These algorithms
detect unusual behavior and can prevent fraudulent trans-
actions, but require storing and analyzing transaction
data, which runs contrary to the desire for privacy in
RFID applications. Fraud protection systems also re-
quire all readers to be constantly connected to a central
server, which is not the case in some of the current and
planned deployments of RFID tags where offline readers
are used.

Tamper-proofing can be used to protect secret keys
from attackers, but provides little help against hardware
reverse-engineering because the structure of the circuits
will always be preserved. The implementation, however,
could be obfuscated to increase the complexity of the cir-
cuit detection. While we believe that obfuscations will
not make our approach infeasible, we do not yet know
to what degree obfuscations could increase the effort and
cost required to reverse-engineer a circuit.

All low-cost cryptographic RFID tags are currently ill-
suited for high security applications because they lack
tamper-proofing and are vulnerable to relay attacks. In

these attacks, the communication between a legitimate
reader and a valid card is relayed through a tunnel
thereby giving the reader the false impression that the
card is in its vicinity. No level of encryption can pro-
tect against relay attacks and new approaches such as
distance bounding protocols are needed [8].

5 Conclusions

Reverse-engineering functionality from silicon imple-
mentations can be done cheaply, and can be automated
to the point where even large chips are potential targets.
This work demonstrates that the cost of finding the algo-
rithm used in a hardware implementation is much lower
than previously thought. Using template matching, algo-
rithms can be recovered whose secrecy has so far pro-
vided a base for security claims. The security of embed-
ded cryptography, therefore, must not rely on obscurity.
Any algorithm given to users in form of hardware can
be disclosed even when no software implementation ex-
ists and black-box analysis is infeasible. Once the de-
tails of a cryptographic cipher become public, its secu-
rity must rely entirely on good cryptographic design and
sufficiently long secret keys.

The cryptographic strength of any security system de-
pends on its weakest link. Besides the cryptographic
structure of the cipher, weaknesses can arise from pro-
tocol flaws, weak random numbers, or side channels.
When random numbers are weak and the user identifica-
tion is not properly mixed into the secret state, codebooks
can be pre-computed that lead to attacks that are much
more efficient than brute force. In the case of the Mifare
Classic cards, the average attack cost shrinks from sev-
eral hours to minutes. Their cryptographic protection is
hence insufficient even for low-valued transactions.

The question remains open as to whether security can be
achieved within the size of the Mifare Crypto-1 cipher.
The area of less than 500 gates may be too small to even
hold a sufficiently large state, regardless of the circuits
needed for the complex operations required for strong
ciphers.

Acknowledgments. This work was partially funded by
the National Science Foundation through the CyberTrust
program, award CNS 0627527. Any opinions, findings
and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily re-
flect those of the National Science Foundation.

References

[1] Ross Anderson. AS5. Post to sci.crypt, 17 June
1994.

[2] L. R. Avery, J. S. Crabbe, S. Al Sofi, H.
Ahmed, J. R. A. Cleaver, D. J. Weaver.
Reverse Engineering Complex
Application-Specific Integrated Circuits
(ASICs). In Diminishing Manufacturing
Sources and Material Shortages Conference,
2002.

[3] Andrey Bogdanov. Attacks on the Keel.oq
Block Cipher and Authentication Systems. In
RFIDSec, 2007.

[4] Stephen C. Bono, Matthew Green, Adam
Stubblefield, Ari Juels, Aviel D. Rubin, and
Michael Szydlo. Security Analysis of a
Cryptographically-Enabled RFID Device. In
USENIX Security Symposium, 2005.

[5] Harvey G. Cragon. From Fish to Colossus:
How the German Lorenz Cipher was Broken
at Bletchley Park. Cragon Books, 2003.

[6] Electronic Frontier Foundation. Cracking
DES. In Secrets of Encryption Research,
Wiretap Politics & Chip Design, O’Reilly &
Associates Inc., 1998.

[7] Martin Feldhofer, Sandra Dominikus, and
Johannes Wolkerstorfer. Strong
Authentication for RFID Systems using the
AES Algorithm. In Workshop on
Cryptographic Hardware and Embedded
Systems, 2004.

[8] Gerhard P. Hancke and Markus G. Kuhn. An
RFID Distance Bounding Protocol. In
SecureComm, 2005.

[9] Martin E. Hellman. A Cryptanalytic
Time-Memory Trade-Off. In /EEE
Transactions on Information Theory, 1980.

[10] Daniel E. Holcomb, Wayne P. Burleson, and

Kevin Fu. Initial SRAM state as a Fingerprint
and Source of True Random Numbers for
RFID Tags. In RFIDSec, 2007.

[11] Seokhie Hong, Deukjo Hong, Youngdai Ko,

Donghoon Chang, Wonil Lee, and Sangjin
Lee. Differential Cryptanalysis of TEA and
XTEA. In International Conference on
Information Security and Cryptology, 2003.

[12] Pasin Israsena. Securing Ubiquitous and

Low-cost RFID Using Tiny Encryption
Algorithm. In International Symposium on
Wireless Pervasive Computing, 2006.

[13] Auguste Kerckhoffs. La Cryptographie

Militaire. In Journal des Sciences Militaires,

1883.

[14] J. P. Lewis. Fast Normalized
Cross-Correlation. In Vison Interface, 1995.

[15] Philippe Oechslin. Making a Faster
Cryptanalytic Time-Memory Trade-Off. In
Crypto, 2003.

[16] NXP Semiconductors. Philips
Semiconductors leads contactless smart card
market, 2006.

[17] Andrew Tanenbaum. News Summary of
Broken Dutch Public Transit Card.
www.cs.vu.nl/ ast/ov-chip-card

[18] David J. Wheeler and Roger M. Needham.
TEA, a Tiny Encryption Algorithm. In Fast
Software Encryption, 1994.

