LIMIT-PERIODIC SCHODINGER OPERATORS WITH
UNIFORMLY LOCALIZED EIGENFUNCTIONS

DAVID DAMANIK AND ZHENG GAN

ABSTRACT. We exhibit limit-periodic Schrédinger operators that are uni-
formly localized in the strongest sense possible. That is, for these operators
there are uniform exponential decay rates such that every element of the hull
has a complete set of eigenvectors that decay exponentially off their centers of
localization at least as fast as prescribed by the uniform decay rate. Conse-
quently, these operators exhibit uniform dynamical localization.

1. INTRODUCTION

This paper is a part of a sequence of papers exploring the spectral properties
of discrete one-dimensional limit-periodic Schrédinger operators; see [7), 8] for the
earlier papers in this sequence. The overarching goal is to obtain a spectral picture
that is as complete as possible, that is, we explore which spectral phenomena can
occur in this class of operators and how often they do so. The present paper is
devoted to cases that display a strong form of localization.

Localization is a topic that has been explored in the context of Schrodinger
operators to a great extent. By now several mechanisms are known that lead
to localization, at least in suitable energy regions. The most important one is
randomness or, more generally, weak correlations. This aspect goes back to the
seminal paper [I] of Anderson. Another important mechanism is strong coupling
and, related to this, positive Lyapunov exponents. The latter approach can be used
to prove localization for strongly correlated potentials.

On the other hand, localization does not occur for periodic potentials. Limit-
periodic potentials are closest to periodic potentials (at least among the stationary
ones) and hence for them, one would expect either the absence of localization or
a difficult localization proof in the rare cases where it holds. Indeed, most of
the work on limit-periodic potentials up to this point has focused on establishing
continuous spectral type. There are two notable exceptions. The first is a pa-
per by Chulaevsky and Molchanov, [I8], which unfortunately does not contain a
proof of the theorem on the presence of pure point spectrum for some continuum
one-dimensional limit-periodic Schrédinger operators stated there. Moreover, their
examples have zero Lyapunov exponent and hence are not localized in the standard
sense. The other relevant paper is Poschel’s work [20], where he proves a general
theorem that provides a sufficient condition for uniform localization along with two
examples showing that the general result is applicable to limit-periodic potentials.
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Incidentally, the Chulaevsky-Molchanov paper uses features of randomness while
Poschel’s paper uses strong coupling.

Our goal in this paper is to explore the applicability of Péschel’s general theorem
in the realm of limit-periodic potentials. The setting we will use here was initially
suggested by Avila in [2] and has been consistently pursued in our previous papers
[7, 8]. The idea is to regard limit-periodic potentials as dynamically defined po-
tentials, where the base dynamics is a minimal translation of a Cantor group and
the sampling function is continuous. By separating base dynamics and sampling
function in this way, it becomes easy and natural to answer questions of the type
how often does phenomenon X occur? Here we will show that Poschel’s results can
be applied to a certain type of base dynamics and suitable sampling function.

This should be contrasted with our earlier results from [7, [§]: For every given
base dynamics, the spectrum is purely singular continuous for a dense G5 set of
continuous sampling functions and it is purely absolutely continuous for a dense set
of continuous sampling functions, with both statements holding uniformly in the
choice of the initial point (i.e., element of the hull). Thus, the generic spectral type
is singular continuous and from this perspective, the other spectral types must be
rare. It is an open problem whether pure point spectrum occurs for a dense set of
continuous sampling functions.

We would also like to emphasize that Poschel’s general theorem applies to sin-
gle Schrodinger operators and, whenever it applies, yields one such operator with
uniformly localized eigenfunctions. In the context of Schrédinger operators with
dynamically defined potentials, however, it is more natural to study the typical
behavior of a member of the family of operators that results by varying the initial
point. It is known that the spectral type is independent of it almost surely with re-
spect to any ergodic measure. Limit-periodic (or, more generally, almost periodic)
potentials in turn are uniquely ergodic, that is, there is a unique choice of such a
measure — the Haar measure on the hull. In our examples, we will even go beyond
that and prove uniform localization results that hold uniformly for all elements of
the hull. This is a novel phenomenon. Indeed, usually localization can be proved,
and in fact holds, only almost surely. For random potentials, this is obvious since
there are periodic realizations of the potential. For certain almost periodic poten-
tials, there are results to this effect due to Jitomirskaya-Simon [I7] and Gordon [14].
Regarding results establishing pure point spectrum for all elements of the family,
we are aware of the following: For the Maryland model, see [11], 12 [15, 21 23],
which has an unbounded potential (and hence is not almost periodic), pure point
spectrum was shown for the whole family but without uniform decay of eigenfunc-
tions. There is some unpublished work of Jitomirskaya establishing a similar result
for a bounded non-almost periodic model. To the best of our knowledge, in this
paper we exhibit the first almost periodic example that is uniformly localized across
the hull and the spectrum.

2. MODEL AND RESULT

We consider Schrédinger operators H,, acting on ¢?(Z) with dynamically defined
potentials V,, given by

(1) [Houl(n) = u(n+1) +u(n — 1) + Vo (n)u(n),
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where
(2) Vo(n) = f(T"w)), weQ neZ

with a homeomorphism 7" of a compact space 2 and a continuous sampling function
f: Q=R

Definition 2.1. We say that a family {uy} C (*(Z) is uniformly localized if there
exist constants r > 0, called the decay rate, and ¢ < 0o such that for every element
uy of the family, one can find my, € 7Z, called the center of localization, so that
lug(n)| < ce="I"=mxl for every n € Z. We say that the operator H,, has ULE if it
has a complete set of uniformly localized eigenfunctz'onsﬂ

The notion of uniformly localized eigenfunctions and related ones were intro-
duced by del Rio et al. in their comprehensive study of the question “What is
localization?” [0, [10]. As explained there, ULE implies uniform dynamical local-
ization, that is, if H, has ULE, then

(3) sup |<6n,e_“H“5m>| < Qe mwln=ml
teR

with suitable constants C,,,r,, € (0,00). While both properties are desirable, they
are extremely rare. To quote from [9], “the problem is that ULE does not occur”
and “it is an open question, in fact, whether there is any Schrédinger operator
with ULE.” Del Rio et al. may not have been aware of Poschel’s work [20] since it
predates theirs and provides some examples of Schrédinger operators with ULE.

The occurrence of pure point spectrum for the operators { H, },cq is called phase
stable if it holds for every w € Q. It is an unusual phenomenon since most known
models are not phase stable. It is known that uniform localization of eigenfunctions
(ULE) has a close connection with phase stability of pure point spectrum; compare
the following theorem.

Theorem 2.2. [10, Theorem C.1] If H, has ULE for w in a set of positive -
measure, then H, has pure point spectrum for every w € supp(p), where supp(iu)
is the complement of the largest open set S C Q for which u(S) = 0.

In what follows, we will further assume that € is a Cantor group that has a
minimal translation 7. Let us recall the necessary definitions.

Definition 2.3. We say that Q is a Cantor group if it is a totally disconnected
compact Abelian topological group with no isolated points. A map T : Q — Q s
called a translation if T(w) = w - wo for some wy € 2, and moreover, it is called
minimal if the orbit {T™(w) : n € Z} of every w € Q is dense in 2.

Jitomirskaya pointed out in [I6] that Theorem can be strengthened for a
minimal 7" in the sense that if there exists some wg such that H,,, has ULE, then
H,, has pure point spectrum for every w € supp(u).

As explained by Gan in [13], Cantor groups that have minimal translations are
procyclic groups. We can classify such Cantor groups by studying their frequency
integer sets. Every Cantor group with a minimal translation has a unique maximal
frequency integer set S = {ny} C Z, with the property that ngy1/n is prime for
every k. We will give more details concerning this issue in a later section.

IRecall that a set of vectors is called complete if their span (i.e., the set of finite linear combi-
nations of vectors from this set) is dense.
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Definition 2.4. For a Cantor group that has a minimal translation, we say that it
satisfies the condition < if its maximal frequency integer set S = {ny} C Z4 has
the following property: there exists some integer m > 2 such that for every k, we
have n, < ngy1 < ny’, that is, log ngt1/logng is uniformly bounded.

We can now state our main result:

Theorem 2.5. Suppose 2 a Cantor group that admits a minimal translation T
and satisfies the condition <. Then there exists some f € C(,R) such that for
every w € Q, the Schrédinger operator with potential f(T™(w)) has ULE with w-
independent constants. In particular, we have uniform dynamical localization
for every w with w-independent constants as well.

We will heavily use Pdschel’s results in [20], which will be recalled in Section
to obtain the above theorem. Pdschel used an abstraction of KAM methods, with
some of the basic ideas going back to Craig [6], Riissmann [22] and Moser [19]. In
this approach, there is an important concept, that of a distal sequence, which we
will discuss in Section [4] The first step in proving Theorem [2.5] is to construct a
distal limit-periodic potential in our framework. In Section 3] we will recall the con-
nection between hulls of limit-periodic potentials and Cantor groups, which makes
it possible to embed our constructed distal limit-periodic potential isometrically in
C(,R).

3. LimIiT-PERIODIC POTENTIALS AND CANTOR GROUPS

This section addresses the connection between hulls of limit-periodic potentials
and Cantor groups that have minimal translations, first introduced by Avila in [2],
discussed to the extent needed in [7, [§], and discussed in detail in [I3]. Since it will
play an important role in this paper, we present some aspects of it here.

Let o be the left shift operator on ¢*°(Z), that is, (o(d)), = dn4+1 for every
d € (>*(Z). Let orb(d) = {o*(d) : k € Z} and denote by hull(d) the closure of
orb(d) in £>°(Z). Let us recall the following standard definitions:

Definition 3.1. Consider a sequence d € {>*(Z). It is called periodic if orb(d)
is finite, it is called limit-periodic if it belongs to the closure of the set of periodic
sequences, and it is called almost periodic if hull(d) is compact.

Every periodic sequence is limit-periodic and every limit-periodic sequence is
almost periodic. For a limit-periodic d € ¢*°(Z), every d € hull(d) is still limit-
periodic. More precisely, we have the following result.

Proposition 3.2. [2 Lemma 2.1] Suppose d is limit-periodic. Then, hull(d) is
compact and has a unique topological group structure with identity o°(d) = d such
that

¢:Z —hull(d), kw— o"(d)
is a homomorphism. Also, the group structure is Abelian and there exist arbitrarily
small compact open neighborhoods of d in hull(d) which are finite index subgroups.

The last statement in the above proposition tells us that hull(d) is totally discon-
nected. So if d is not periodic, hull(d) is a Cantor group. The translation T defined
initially on orb(d) by T(c*(d)) = o'*1(d) and extended to hull(d) by continuity is
minimal. There may be other minimal translations in hull(d).
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Remark 3.3. Note that not every Cantor group admits a minimal translation. For

example,
Q=]]z.
j=0

where Zsy is a cyclic 2-group, is a Cantor group with the product topology, but it has
no minimal translations.

Proposition 3.4. [2| Lemma 2.2.] Given a Cantor group 2, a minimal translation
T, and f € C(Q,R), define F : Q — £°(Z), F(w) = (f(T™(w)))nez. Then we have
that F(w) is limit-periodic and F()) = hull(F(w)) for every w € Q.

The following lemma will play an important role below.

Lemma 3.5. [I13, Lemma 4.1] There exists some f € C(Q,R) such that
hull(F(e)) =2 Q (where we denote, as above, F(e) = (f(T™(€)))necz)-

Moreover, we have

Proposition 3.6. [3, Corollary A.1.5] If d € ¢>°(Z) is limit-periodic, then there
exists a set Sq = {n;};>1 C Z4 with nj|nj41 for every j such that

(4) d(k) = p;(k),

with n;-periodic p; € {>°(Z). This convergence is uniform.

A set Sg = {n;} associated with d as in this proposition will be called a frequency
integer set of d. Since one of the defining properties is that n; divides n;11 for every
7, the elements of frequency integer sets are always listed in increasing order.

Proposition 3.7. [13, Theorem 2.1] Given limit-periodic potentials d and d e

0°°(Z) with infinite frequency integer sets Sy and Sj respectively, hull(d) = hull(d)
if and only if for any n; € Sy there exists m; € Sy such that n;|m; and vice versa.

Since the expansion is not unique, one may have many frequency integer
sets for d. A union of frequency integer sets is still a frequency integer set of d.
There exists a unique maximal frequency integer set M, in the sense that every
frequency integer set Sy is contained in My, and the maximal frequency integer set
is of the form My = {n;}, where nj;1/n; are all primes. (We refer the reader to [3
Appendix 1] and [I3] Section 2] for more details about the frequency integer sets
of limit-periodic potentials.)

By Lemma we know that for every Cantor group {2 that has minimal trans-
lations, there exists a limit-periodic potential d such that hull(d) = . Thus, we
can also endow such an Q with a maximal frequency integer set Sg. Moreover, we
have

Lemma 3.8. [I3, Theorem 2.1] Given two Cantor groups € and Q that have mini-
mal translations, Q = Q if and only if they have the same maximal frequency integer
set.

We need the following lemma.

Lemma 3.9. Suppose we are given a Cantor group Q2 and a minimal translation T .
Ifhull(d) = Q with d € £>°(Z), then there is an f € C(Q,R) such that f(T%(e)) = d;
for every i € Z.
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1

Proof. By Lemma we have f € C(Q, R) such that hull((f(T%(e)))iez) = Q.

Since hull(d) = Q, we have a continuous isomorphism
R - hull((f(T%(€)))iez) — hull(d)

with h((f(T(e)))iez) = d. o
Clearly, for T (e) € Q we have h((f(T*(T™ (€))))icz) = o™ (d) since

(f(THT™ (e))))iez = o™ ((f(T"(e)))iez)-
If limp oo 7™ (€) = w, then A((f(T(w)))icz) = limg_o0 0™ (d), where the limit
exists since h and f are both continuous. Define f by f(T%(e)) = o’(d)o = d;. We
extend f to the whole Q by f(w) = limg_,o0 0™ (d)g if w = limg_.oo 7™ (e). By the
previous analysis, f is well defined and continuous. So there is an f € C(Q,R) such
that (f(T%(e)))icz = d. O

We see that, given a Cantor group €2 and a minimal translation 7', the elements
of C(Q,R) parametrize a class of limit-periodic potentials. Next, let us describe the
periodic elements of this class. Since €2 is Cantor, there exists a decreasing sequence
of Cantor subgroups € C Q with finite index ny such that (Q; = {e}. We say
that f € C'(,R) is a periodic sampling function (of period n) if f(T™(w)) = f(w)
for every w € Q. For f € C(Q,R), we define

frlw) = . flw+0) dug, (@),

where pio, is the Haar measure on €. Then fj is an ng-periodic sampling function.
Clearly, there exist compact subgroups with finite index contained in arbitrarily
small neighborhoods of e, and this shows that the set of periodic sampling functions
is dense in C(2,R). Let Py be the set of sampling functions which are defined on
Q/Q. Then P, C Pyi1, the elements of Py are ng-periodic, and P = | Py is the
set of all periodic sampling functions and it is dense in C(£2, R).

4. DISTAL SEQUENCES

In this section, we discuss approximation functions and distal sequences; compare
[20] and [22].
Definition 4.1. A function Q(z) : [0,00) — [1,00) is called an approzimation

function if both

q(t) =t *sup Q(z)e
x>0

and
oo i
(5) n(t) =it [ alt:)>
"o
are finite for every t > 0. In , Kt denotes the set of all sequences t > t1 > to >
>0 with St < t.

Definition 4.2. A sequence d € {*°(Z) is called distal if for some approximation
function @, we have

i . > -1
for every k € Z\ {0}.
Proposition 4.3. If d € (>°(Z) is distal, then every de hull(d) is also distal.
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Proof. This follows readily from the definition. O

The following lemma shows how to generate distal sequences in our framework.

Lemma 4.4. Given a Cantor group 2 satisfying the condition &/ and a mini-
mal translation T, there exists an f € C(Q,R) such that (f(T%(e)))icz is a distal
sequence.

Proof. Given a Cantor group € and a minimal translation 7', by Lemma [3.5] there
is a limit-periodic potential I such that hull(l) = Q. Since (2 satisfies the condition
o/, there exists m > 2 such that for the elements of its maximal frequency integer
set So = {ng}, we have ni_1 < ni < nj*, for every k.

Consider Sq. Here we let ny > 1. For n; € Sq, there must exist some
nk € [n3,n3™]. If not, we pick the largest n; € [n1,n3) and then n;y; will be
strictly larger than n$™. Then we have n;41 > n3™ > n” which contradicts the
assumption. So we can pick n such that n$ < ni < n3™. By induction, we can
pick a subset of Sq which we still denote by Iy = {ns} satisfying nj < np+1 < np™
for every k € Z*. Without any contradiction, we take ng = 1 for the following
computation.

Define a, (i) = j where 0 < j < n, and i = j (mod n,), so a, is n,-periodic. Let

d = (d;)icz and d® = (d*);cz, where

[e's) . k .
ay(7) (k) a, (1)
d; = d d" = .
Z n%—l”v a ’ Z n%—lnﬂ

v=1 v=1

By the divisibility property of any frequency integer set, d'®) is an ng-periodic
sequence. Since for every ¢ € Z and k € Z, we have

oo . o0
ay (1) 1
Pl D Bl
Ny—1Mv v=k+1 Ny—1

v=k+1
it follows that d®) converges to d uniformly. Thus, d is limit-periodic and one of
its frequency integer sets is Ij.
For any i1 # ia, fix k so that ng_1 < |iy —ia] < ng. If k=1, then \dgll) —d(1)| >

ip | =

a; — dV| =

n%. Also, we have

— 1
(diy — di) = (diy —d) <11 D —

v=2 My—1Mw
8
<
7TL17LQ
4
S -
7711
So it is easy to see that |d;, — d;,| > % > ?mf%

If £ > 2, we have

1 2(ny — 1)
2 ) )
Nj_oMk—1 N 1Mk

(6)
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since nf < n;y1 < nd™. Moreover, we have

iy — )| =

v=1 _1TLU

1 ) . . .
SR @i —aliz) | i

v=1 1M ny k|

k—1 (a,(i1)

—ay(i2)) | ;g 2(n—1)
b=l | is 0 or larger than Wy So

> k=l — 1 We also have
nk—lnk Ne_1Mgk

From we conclude that | >

‘dz('f) - d§§)| = ’Zi;i (ay(i1)—ay (i2)) I o >

P) p)
ny—1Mw Np—1Mk

(i, —d) = (di, — d)| =

5 (ay(ir) — av<22>>|

2
n’_in
v=k+1 v—1""

> 1
< ng Z I
v=k+1 v—17"

> 1
< -
- UZ:O nknk+14“
_ 4
3npngy1
Thus, we get
1 4
NENE—1  3NENE41
2
Z -
3ngpng_1
S 2
ey
2
- 3|i1 — 7;2|3m+1 '

|di1 - dlz‘ >

Therefore, d is a distal sequence with an approximation function

33m+1
Q<x):{"12 L 0<a<n;

gp3m+1
2 y T Z ni.

By Lemma we have hull(d) = hull(l) & Q. By Lemma there is an
f € C(,R) such that (f(T%(e)))iez = d. O

Remark 4.5. For any r > 0, let

It is not hard to see that
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by choosing t; = t27"1. The constant ¢ depends on r. It follows that G(x) is an
approximation function. In particular, this also shows that Q(x) above is indeed an
approzimation function.

5. POSCHEL’S RESULTS

In this section we rewrite some of Pdschel’s results from [20], tailored to our
purpose.

Let 7 > 1 be an integer and 21 a Banach algebra of real 7-dimensional se-
quences a = (a;);ez- with the operations of pointwise addition and multiplication
of sequences. In particular, the constant sequence 1 is supposed to belong to 91
and have norm one. Moreover, 9 is required to be invariant under translation: if
a € M, then || Tyallon = ||al|m for all k € Z7, where Tia; = a;tk.

We denote by M the space of all matrices A = (a; ;)i jez- satisfying Ay =
(@ii+x) € M, k € Z7, that is, Ay is the k-th diagonal of A and it is required to
belong to M. In M, we define a Banach space

M*={Ae M,|A|s <o}, 0<s<o0,
where

1Al = sup | Ax e,
kez

Obviously,

MECMY, s>l 0<t<s<oo.
In particular, M is the space of all diagonal matrices in M.
Theorem 5.1 (Theorem A, [20]). Let D be a diagonal matriz whose diagonal d is
a distal sequence for M. Let 0 < s < 0o and 0 < o < min{l,% . If P e M? and
[Plls <6-h(g)~", where § >0 depends on the dimension T only, then there exists
another diagonal matriz D and an invertible matriz V. such that

V YD+ P)V =D.
In fact, V,V=t e M*=7 and D — D € M with
IV =Ills=o, [V = Ills—0 < C-||P]ls,
ID =D+ [Pl < C*-||P2,

where C = 6~ - h(%), and [] denotes the canonical projection M* — M. If P

is Hermitian, then V can be chosen to be unitary on ¢*(Z7). Note that h is the
function associated with d.

An important consequence of the preceding theorem for discrete Schrodinger
operators is the following.

Theorem 5.2 (Corollary A, [20]). Let d be a distal sequence for some translation
invariant Banach algebra M of T-dimensional real sequences. Then for 0 < e <

~ ~ ~ 2
€0,€0 > 0 sufficiently small, there exists a sequence d with d—d € M, ||d—d|jox < 5,

0
such that the discrete Schrédinger operator
(lf[u)z =€ Z Uit + cziui, 1€ "
ll|=1

has eigenvalues {d; : i € Z™} and a complete set of corresponding exponentially
localized eigenvectors with decay rate 1 + log <2.
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Next let us discuss how to apply the above results.

Poschel’s Example. Fix 7 > 1, and let P be the set of all real 7-dimensional

sequences a = (a;) with period 2",n > 0, in each dimension; that is, a; = a;,i—j €

2"7Z7. The closure of P with respect to the sup norm | - ||« is a Banach algebra,

which we denote by L. It is a subspace of the space of all limit periodic sequences.
Let a,,,v > 1, be the characteristic function of the set

4 Unez[N -2, N -2 +2v71), v even;
"\ UnezlV 20 42071 N 220 +29), v odd.

Then, «, has period 2. Construct an 7-dimensional sequence d = (d;) such that

oo T
di= 3" e (i)2" I = iy, i) €7,

v=1p=1
belongs to £ and lies dense in [0, 1]. Tt is a distal sequence for £ with

[(d = Tid) oo <167IK]", 0#keZ.

Applying Theorem m to this distal sequence d, we find that there exists de
L and €9 > 0 such that for any 0 < ¢ < gg, the discrete Schrodinger operator
with potential (%)'ez has the pure point spectrum { % :1 €Z7} and a complete
set of exponentially localized eigenvectors with decay rate 1 + log =¢. Moreover,

the spectrum of this Schodinger operator as a set is {d? 1i€Z7} = [0,1] since

{d;iez) =0,1].

6. PROOF OF THEOREM [2.5]

We are now ready to give the proof of Theorem [2.5] Given a Cantor group
that admits a minimal translation 17" and satisfies the condition 27, we fix a metric
| - || compatible with the topology. We have already seen that there exists some
f € C(Q,R) such that d = (f(T%(e)))icz is a distal sequence; compare Lemma
Clearly, C(9,R) will induce a class of limit-periodic potentials. We denote it by
B, and one can check that this class is a translation invariant Banach algebra with
the ¢>°-norm. By Theorem [5.2] there exists a sufficiently small g > 0 such that
for 0 < € < &g, there is a sequence d € B with ||d — d||s < z—é so that the discrete
Schrédinger operator

d; .
(Hu)l = Uj—1 + Uj41 + ;ZUZ‘, 1 EL

has eigenvalues {%, i € Z} and a complete set of corresponding exponentially local-
ized eigenvectors with decay rate r = 1 + log =2. There exists a sampling function
f € C(Q,R) such that f(T(e)) = & since de B.

For the Schrédinger operator H associated with potential f(T%(e)), denote its
matrix representation with respect to the standard orthonormal basis of ¢?(Z),
{6n}nez, by the same symbol. Poschel’s theorem also implies that there exists
a unitary V : (2(Z) — (?(Z) (with corresponding matrix denoted by the same
symbol) such that

(7) H-V=V-D,
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where D is a diagonal matrix with the diagonal Dy = (%)z‘ez- We write V' =
(-, V_1,Vo, V1, -+) where V; is the i-th diagonal of V, and similarly, we write
H=(-,00H_1,Hy,H:,0,0,---) and D = (---,0,0,D0,0,0,---). Moreover,
by Theorem [5.1] we have that V' € M", where r > 0 and M" is a space of matrices
associated with the Banach algebra B (see Section [5| for the description of this
space). (Note that V' € M" follows from [20, Proof of Corollary A].) Since V €
M7, we have ||V, = sup,cy [|[Villoe€!!™ < C where C is a constant. So ||Vi|le <
Ce "l Vi € Z. Let V) be the j-th column of V, that is, V) is an eigenfunction
of H. Since VW (k) = V+U=R)(k), VU (k) is also an entry in Vj_, and so
VU ()| < Ce "=*I. C is independent of j, so the corresponding Schrodinger
operator H has ULE. This property is strong enough to imply that the pure point
spectrum of H is independent of w [16], that is, it is phase stable. In order to see
this more explicitly, we would like to prove it in our framework, and furthermore,
show that for other w, the associated Schrédinger operator still has ULE with the
same constant C. Note that the latter property does not follow from Theorem
We have the following lemma.

Lemma 6.1. Suppose we are given matrices A, B € RZ*Z, one of which has only
finitely many non-zero diagonals. Then, we have for the k-th diagonal of Z = AB,

Zr =Y AT (B,

leZ

where - is the pointwise multiplication (i.e., A;-T'(By_;) is still a sequence) and T
is the translation defined by (T'(Bk—1)); = (Bk—1)i+1 fori € Z.

Proof. Since for i,k € Z, we have

Ziitk = g @;,¢b¢ itk
tez

= E Qi iribiti itk
lez

= 5 @i 5101 i1k —1s
lez

the lemma follows. O

Now consider a given w € 2. By Proposition we have (f(T%(w)))icz €
hull((f(T%(€)))iez). If w is in the orbit of e, that is, w = T"%(e) for some ¢t € Z, ULE
with the same constants and eigenvalues follows from unitary operator equivalence
directly. However, we write this out in detail so that we see clearly what happens
in the case where w can only be approximated by elements of the form T*(e).

By the previous lemma, is equivalent to the following form:

VkeZ: ZHI-TI(Vk_l):ZI/Z~TZ(Dk_l).
€7 leZ
Since D; = 0 for j # 0 and H4; are both constant equal to one, this simplifies as
follows,
Vk € Z: T YWir + Hy- Vi + TVioy = Vi - TF(Dy).
If the potential is replaced by f (T***(e)), with the matrix H =
(‘ --,0,0,H_4,Hy, H1,0,0,-- ) such that H](Z) = HJ(Z + t),] S {7170, 1}, we
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still have
Vk e Z: T‘le+1+FIO~X7k+TVk,1 ka~Tk(D0),

where f/k(z) =Vi(i+1t), k € Z and Dy (i) = Dy (i + t). Reversing the steps above,
this means that

H-V=V.D.
We can conclude that H has the pure point spectrum {% i€l ={%:ieZ}.
Moreover, V = (--- ,V_1,Vp, Vi, ---) is the eigenfunction matrix of H, and for any

ik € Z, [Vi(i)] = |Vi(i +t)| < Ce~"I*l. So for the eigenfunction V) of H, we still
have |V 1) (i)] < Ce~"li=# and hence ULE with the same constants follows.

If lim,y, oo TP (e) = w, that is, f(T%(w)) = limy,_—oe f(T7Fm(e)), then for
f(Tttm (e)), we have already seen that

(8) Fm) . rm) — jr(m) . pm).

Let f/k(m) be the k-th diagonal of V(™ so that Vk(m) (i) = Vi(i + t,). There
exists some f, € C(€,R) such that f/k(m)(i) = Vili + tm) = fu(THtm(e)). So
limm, oo V™ (i) = limyn a0 fr(T 7 (€)) = fr(T%(w)), and we denote fi.(T%(w))
by f/k(oo)(z) Similarly, lim,, .o D™ exists and D§™ (i) = f(T%(w)), where D
is the 0-th diagonal of D(>). Thus, as we let m — oo, takes the following form:

) A0 (o) Z () L plee),

where H(*) is (the matrix representation of) the Schrédinger operator with po-
tential f (T*(w)). Equation @D implies that H(>) has the pure point spectrum
{% :i € Z}, and its eigenfunctions are uniformly localized since |(V(°)@) (k)| <
Ce~ "=kl for any j,k € Z, where (f/(oo))(j) is the j-th column of V(). This
completes the proof of Theorem O

7. OPEN PROBLEMS

We conclude this paper with a number of open problems concerning the spectral
properties of limit-periodic Schrédinger operators that we regard as interesting.

Given the results of [7, [§], it would be desirable to complete the topological
picture. Thus, given a minimal translation 7' of a Cantor group 2, consider for
f e C(,R) and w € 0 the spectral type of the associated Schrédinger operator
H,, with potential given by V,,(n) = f(T"(w)).

Problem 1. Is it true that for f from a suitable dense subset of C(Q,R), H,, has
pure point spectrum for (Haar-) almost every w € Q7

We already know that for generic f € C(Q2,R), H,, has purely singular continuous
spectrum for every w € €2, and also that for f from a suitable dense subset of
C(2,R), H, has purely absolutely continuous spectrum for every w € Q. Thus,
an affirmative answer to Problem 1 would clarify the effect of the choice of f on
the spectral type. Since the methods of Pdschel are essentially restricted to large
potentials, one should not expect them to yield an answer to Problem 1 and one
should in fact pursue methods involving some randomness aspect.

Note, however, the different quantifier on w in Problem 1, compared to the
results just quoted. In this paper, we exhibit (2,7, f) for which H, has pure point
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spectrum for every w € (). From this perspective, the following problem arises
naturally:

Problem 2. Is the spectral type of H,, always the same for every w € Q7

For quasi-periodic potentials, this is known not to be the case (cf. [I7]). However,
the mutual approximation by translates for two given elements in the hull is stronger
in the limit-periodic case than in the quasi-periodic case, so it is not clear if similar
counterexamples to uniform spectral types exist in the limit-periodic world.

Another related problem is the following:

Problem 3. Is the spectral type of H,, always pure?

Again, in the quasi-periodic world, this is known not to be the case: there
are examples that have both absolutely continuous spectrum and point spectrum
(cf. [4, 5]).

Returning to the issue of point spectrum, one interesting aspect of the result
stated (in the continuum case) by Molchanov and Chulaevsky in [I§] is the coexis-
tence of pure point spectrum with the absence of non-uniform hyperbolicity. That
is, in their examples, the Lyapunov exponent vanishes on the spectrum and yet
the spectral measures are pure point. This is the only known example of this kind
and it would therefore be of interest to have a complete published proof of a result
exhibiting this phenomenon. Especially since our study is carried out in a different
framework, we ask within this framework the following question:

Problem 4. For how many f € C(Q,R) does the Lyapunov exponent vanish
throughout the spectrum and yet H,, has pure point spectrum for (almost) every
w e ?

Given the existing ideas, it is conceivable that Problems 1 and 4 are closely
related and may be answered by the same construction. If this is the case, it will
then still be of interest to show for a dense set of f’s that there is almost sure pure
point spectrum with positive Lyapunov exponents.
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