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Abstract. We introduce a query language over sensors, streams and re-
lations and formally describe its semantics. Although the language was
specifically designed for sensor network querying, where data is pulled
into streams, the semantics contributed in the paper also encompasses
the case in which data is pushed onto streams or else lies stored in classi-
cal relations. The approach taken is that continuous queries over streams
are an extension of classical queries over stored extents. Apart from the
fact that query evaluation over streams is reactive, or periodic, the main
difference is the conception of windows as an additional collection type
with the consequent use of type converter operations to and from streams
and windows (which, as bounded collections of tuples, can be operated
on in a relational-algebraic setting). The language and the semantics we
provide for it advance on previous work in being more comprehensive
with respect to the collection types allowed and in being more flexible as
to the number and content of the windows contributing to the result at
each evaluation event of a continuous query. The formalization advances
on previous work in clarifying the implementation onus.

Keywords: Stream/Sensor Network Data, Query Language Semantics.

1 Introduction

Data streams [4,9] have become an important information resource in both com-
mercial and scientific contexts. In the last ten years, many query languages and
stream data management systems have been designed and implemented [1, 2, 5,
6,7,13]. This burst of activity stems, at least in part, from the fact that certain
characteristics of data streams challenge some foundational assumptions under-
pinning classical database management systems. Among the many issues raised
in [4], this paper focusses on the issue of assigning a semantics to continuous
queries over extents with unbounded size in the presence of blocking opera-
tors. One of the issues arising is that blocking operations such as cross-product
(and hence, in general, joins) and group-by aggregation are not well-defined over
unbounded extents.
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While systems and languages that constrain themselves to operating on un-
bounded extents exist (e.g., [7]), most rely on one or more mechanisms to cope
with the unbounded cardinality of data streams. Broadly, one may resort to data
reduction techniques (e.g., filtering, data merging and data dropping, synopses
and sketches) or one may characterize bounded subsets of the stream that one
can operate upon using either punctuation (thereby relying on stream semantics)
or sliding windows. A variation on the latter relies on materializing bounded sub-
sets of the stream as views. A survey of most of these techniques is given in [12].
We focus on windows as the mechanism to cope with unbounded cardinality.

The remainder of the paper is structured as follows. Sec. 2 briefly describes the
background for the paper, its motivation and the contributions reported, which
centre on a query language over sensors, streams and relations called SNEEql.
Sec. 3 describes the SNEEql data model; Sec. 4, its syntax; Sec. 5, its translation
to a logical algebra; and Sec. 6, the formal definition of the algebraic operators.
Sec. 7 draws contrasts with related work, Sec. 8 concludes the paper.

2 Background, Motivation, Contributions

Two of the questions raised in [4] as providing directions for future work implic-
itly touch on the issue of the semantic relationship between streams and classical
relations as they impact on the data modelling and query language traditions.
Semantic issues have been explored informally by most system-description pa-
pers [1,2,5,6,7,13], but formal accounts [1,3,11] are comparatively fewer, often
not exhaustive, and not as informative as could be wished by an implementer.

We explore the relationship of window-based continuous query semantics
over streams and relations. In particular, our treatment encompasses push-based
streams (which have been predominant in the literature so far) and pull-based
streams (as arise in sensor network query processing [10,14]). Our treatment as-
signs a semantics to queries over unbounded streams and over bounded subsets
of unbounded streams. While this paper does not provide a detailed account
of it, the semantics for continuous queries we describe can accommodate clas-
sical queries as the special case of one-off queries over stored extents only. In
this way, the paper contributes a wide-ranging account that is distinctive in
encompassing (1) streams and relations, (2) push- and pull-based streams, and
(3) blocking and non-blocking operators, and that clarifies the relationship with
classical relational-algebraic semantics. Our approach is inspired by CQL [2] in
that we also view windows as a collection type resulting from a conversion op-
eration that maps from unbounded extents (i.e., streams) to bounded ones (i.e.,
relations, as bags of tuples), thereby allowing both non-blocking and blocking
operators to be supported. The account given here advances on previous work in
providing a formal, unified account for more expressive queries than previously
done. Thus, the reactive, or periodic, nature of result production is explained in
terms of tuples that either simply arrive in push-based streams, or are acquired
from sensors, or are scanned from stored tables. If windows are used, slide events
may be triggered by new inputs and evaluation may produce new results.
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Secs. 3-6 describe (briefly, due to the space constraints) the underlying data
model used in SNEEql and the syntax and semantics of the language. Discussion
of related work then follows.

3 SNEEql Data Model

The primitive types are integer, float, string and time. The compound types
are tuple and tagged tuple. A tuple type consists of a set of typed attributes,
a1 : t1, . . . , an : tn, where each ai is an attribute name and each ti is a prim-
itive type. A tagged tuple type is a tuple type including two distinguished
attributes: one, named tick, of type integer, and another, named index, of
type integer. Values of type tick are drawn from a system-wide ordinal do-
main, those of type index are ordered inside the collection in which they appear.
A tick value denotes the timestamp in which a tagged tuple was created, an
index value denotes its position in a sequence where it was placed. The collection
types are window and stream. A window type is a pair whose first element is a
distinguished attribute, named tick, of type integer, denoting the timestamp
in which the window was created, and whose second element is of type bag of
tuples of the same tuple type. A stream is a potentially infinite, append-only
sequence of values of the same tagged tuple or window type.

As an example SNEEql schema, consider a system with access to (1) road
sensors that detect temperature and vibration levels every minute at four sites
(named 1,2,3, and 4); (2) a push stream that reports, at a frequency of its
choosing, the weight and class of passing traffic; and (3) a table of temperature
classes. The schema could be expressed as follows:

road: sensed (site:integer, time:integer, temp:integer, vibration:integer)
traffic: pushed (site:integer, time:integer, weight:integer, vehicle:integer)
tempClass: stored (temp:integer, category:string)

Sensed extents are pull-based, i.e., associated with a declared acquisition rate
(one tuple per minute per site, in this example), and for this reason can also be
referred to as acquisitional. Streamed extents are push-based, i.e., associated with
an unknown, presumed variable, arrival rate. From the viewpoint of continuous
SNEEql queries, both sensed and pushed extents, like road and traffic, are streams
of tagged tuples, whereas stored extents, like tempClass, are streams of windows,
as described further below. Note that tick and index are implicitly-defined
attributes of tagged tuples, as is tick for windows.

4 SNEEql Syntax

This section introduces the kinds of SNEEql queries whose semantics is described
in later sections, viz., stream queries and windows queries. Stream queries are
of the form SELECT a1 . . . an FROM s WHERE p where a1 . . . an is a project list, s
denotes a stream of tagged tuples (i.e., either the name of a sensed or pushed



90 C.Y.A. Brenninkmeijer et al.

extent, or a subquery of type stream), and p is a predicate. Restrictions on
stream queries that are relaxed for window queries (described below) include:
the FROM clause must reference a single stream because cross product is not
well defined over infinite collections; and the projection list elements ai cannot
apply aggregate operations over values from s. Evaluating a stream query yields
a stream of tagged tuples. Let Q1 be the following acquisitional stream query:

SELECT road.time, road.site, road.vibration
FROM road
WHERE road.temp < 50 AND road.vibration > 20

Window queries are of the form:
SELECT a1 . . . an FROM w1 . . . wm WHERE p

where a1 . . . an is a project list, w1 . . . wm is a list of window definitions, and p is a
predicate. Window queries can be extended with GROUP BY and HAVING clauses:
these are not described here due to space constraints. Evaluating a window query
yields a stream of windows. Each wi in the FROM clause refers to either a streamed
(sensed or pushed) or a stored extent, as follows.

A window on a stream is of the form s[FROM t1 TO t2 SLIDE int unit], where
s denotes a stream of tagged tuples (i.e., either the name of a sensed or pushed
extent, or a subquery of type stream), and both ti are either of the form NOW or
NOW− int, where NOW denotes the current tick or index, int is a positive integer,
and unit ∈ {SEC, MIN, HOUR, ROWS}. The FROM and TO parameters define a window
that selects all tuples in s in the range relative to when the window is created,
while the SLIDE parameter determines how often a new window is created.

A window on a table is of the form t[SCAN int timeUnit], where t is a table,
int is a positive integer, and timeUnit ∈ {SEC, MIN, HOUR}. The SCAN parameter
indicates how often the table t is scanned and a window created that contains
the result of the scan.

Let Q2 be a window query in SNEEql that requests the minimum temperature
and maximum vibration from the road sensors over the last 10 minutes, but only
for sites and times where the traffic stream reported a vehicle passing. Q2 returns
a stream of windows and can be written as follows:

SELECT MIN(temp), MAX(vibration)
FROM road [FROM NOW-10 TO NOW SLIDE 1 MIN],

traffic [FROM NOW-10 TO NOW SLIDE 1 ROW]
WHERE road.site=traffic.site AND road.time=traffic.time

The result of a SNEEql window query can be converted into a stream using the
CQL [2] type-conversion functions RSTREAM, ISTREAM and DSTREAM (see Section
6.3). The next query, Q3, shows how SNEEql allows data acquired from sensors
to be combined with stored data scanned from a table. Q3 returns a stream of
tuples and can be written as follows:

ISTREAM( SELECT road.site, tempClass.category
FROM road [FROM NOW-5 TO NOW SLIDE 5 MIN],

tempClass [SCAN 10 MIN]
WHERE tempClass.temp = road.temp)
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5 SNEEql Translation to a Logical Algebra

The SNEEql semantics contributed in this paper is defined in terms of a mapping
to a logical algebra, whose operators are defined using Haskell1. This section
both introduces the algebra and describes the mapping from SNEEql. Stream
queries are mapped to the algebra as follows:

SELECT a1 . . . an FROM s WHERE p
⇒ evaluateStream (StreamProject [a1 . . . an] (

StreamSelect (p) (
StreamAcquire (s, s.acquisitionInterval, s.sites) )))

where, given an instance of an operator on streams, evaluateStream returns the
stream that results from evaluating that operator. The operators are further de-
scribed in Sec. 6, but their arguments are now briefly explained. StreamProject
takes a list of projection expressions and the stream from which their values are
obtained. StreamSelect takes a predicate expression and the stream over which
it is applied as a filter. StreamAcquire takes the name, the acquisition interval
and the sensing sites from which the desired stream of data is obtained. For
example, Q1 from Sec. 4 maps to the following algebraic expression:

evaluateStream (
StreamProject [Attr ”road.time”, Attr ”road.site”, Attr ”road.vibration”] (
StreamSelect (Predicate ”road.temp>50 and road.vibration>20”) (
StreamAcquire ”road” (Tick 60) [1,2,3,4])))

Window queries are mapped to the algebra as follows:

SELECT a1 . . . an FROM w1 . . . wm WHERE p
⇒ evaluateWindow (WindowProject [a1 . . . an] (

WindowSelect (p) (
WindowCrossProduct (w1), . . ., (wm) )))

where, given an instance of an operator on streams of windows, evaluateWindow
returns the stream of windows that results from evaluating that operator. The
operators are further described in Sec. 6, but their arguments are now briefly
explained. WindowProject takes a list of projection expressions and the stream
from which their values are obtained. WindowSelect takes a predicate expression
and the stream over which it is applied as a filter. WindowCrossProduct takes
the operators that yield the windows to which the cross product is applied.
The translation of a window operator, whose argument is a window definition,
depends on the form of the latter. For example, a time window definition over
an acquisitional stream is mapped to the algebra as follows:

s[FROM t1 TO t2 SLIDE int timeUnit]
⇒ evaluateWindow (TimeWindow ( TimeScope(t1.offset ,t2.offset), slide) (

evaluateStream (StreamAcquire (s, s.acquisitionInterval, s.sites))))

1 In the Haskell notations used, lower case is used to name variables and functions;
upper case is used to name types and constructors.
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where TimeWindow takes two offsets relative to NOW, which define the endpoints
of the window on s; the slide value, which indicates how frequently windows are
created; and the stream from which tuples are obtained for creating the window.
For example, Q3 from Sec. 4 maps to the following algebraic expression:

evaluateStream(IStream (
WindowProject [Attr ”road.site”, Attr ”tempClass.category”] (

WindowSelect (Predicate ”tempClass.temp=road.temp”) (
WindowCrossProduct (
TimeWindow (TimeScope ((Tick (-300)) (Tick 0)) (Tick 300)) (
StreamAcquire ”road” (Tick 60) [1,2,3,4])) (

Scan (Tick 600) ”tempClass”)))))

where most of the operators have been introduced except IStream, which returns
an output stream of tagged tuples containing the tuples most recently added to
its input; and Scan, which, given the name of a stored extent and a time interval,
returns the stream of windows that results from scanning the given table with
a frequency governed by the scanning interval.

6 Semantics of the SNEEql Logical Algebra

The semantics of the algebra introduced in Sec. 5 is defined in this section using
Haskell. Because Haskell is a lazy, pure functional programming language, the
computation of a value is deferred until it is needed. This allows us to represent
streams as unbounded lists and operators as functions which take as input and
return unbounded lists. The Haskell definitions of the operators aim at clarity,
not space- and time-efficiency. Note that even though SNEEql was designed to run
over sensor networks as a distributed query evaluation system [8], the semantics
does not take distributed execution into account because, in practice, in-network
query evaluation is carried out through the translation of the logical algebra
into a parallel algebra, in which the semantics of operators in the logical algebra
is preserved. The semantics is organized as follows: Sec. 6.1 defines operators
that return streams of tuples, and which together support stream queries;
Sec. 6.2 defines operators that return streams of windows, and which together
with the operators from Sec. 6.1 support window queries; and Sec. 6.3 describes
operators for converting from windows to tuple streams.

In the Haskell notations, a declaration e :: t asserts the expression e to
be of type t. For example, the increment function may be declared as inc ::
Integer -> Integer. The expression h:t denotes the list with head h and tail
t. List concatenation is denoted by ++, list difference by \\. The expression e ==
ee is true iff e and ee are equal. The expression id = e binds the expression e
to the name id. If h = 1 and t = 2:3:[], then h:t == [1,2,3] is true. Local
definitions use let e in ee blocks. Given a function f and a list L, map returns
the list that results from applying f to each l ∈ L. Given a function f from type
a to type Bool and a list L of elements of type a, filter returns l ∈ L such
that f is true of l.
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evaluateStream :: StreamOp->[TaggedTuple]

evaluateStream (StreamAcquire sourceName tick sites) =

acquire sourceName tick sites (Tick 0) (Index 1)

evaluateStream (StreamReceive source) = receive source

evaluateStream (StreamSelect predicate streamOp) =

filter (predicateOnTaggedTuple predicate) (evaluateStream streamOp)

evaluateStream (StreamProject projectList streamOp) =

map (projectOnTaggedTuple projectList) (evaluateStream streamOp)

evaluateStream (RStream windowOp) =

rStream (Index 1) (evaluateWindow windowOp)

evaluateStream (IStream windowOp) =

iStream (Index 1) [] (evaluateWindow windowOp)

evaluateStream (DStream windowOp) =

dStream (Index 1) [] (evaluateWindow windowOp)

Fig. 1. Definition of evaluateStream

6.1 Tuple Stream Operators

A tuple stream is represented as a lazily evaluated list of tagged tuples. Oper-
ations that return tuple streams fall into the following groups: input operators,
which obtain data from sensors and from pushed streams; filtering operators,
which select or project tuples, and conversion operators, which generate a tuple
stream from a stream of windows (and whose definition is postponed to Sec. 6.3).
The definition of evaluateStream is in Fig. 1.

Input. The leaf operators in tuple stream queries either acquire data from sensors
or receive data from pushed streams. StreamAcquire is defined using acquire
(in Fig. 2). Given the name of a sensed extent, the acquisition interval, the list
of associated sites, the tick at which to take a reading and the index of the next
value to be read, acquire returns a potentially infinite list of tagged tuples. The
function lookupAttributes returns the list of attribute names for a sensed ex-
tent. The function getData abstracts away from low-level calls to physical sen-
sors. In Haskell, this can be simulated by generating readings of individual tuples
at the specified points in time. StreamReceive is defined using receive::String
-> [TaggedTuple]. Given the name of a pushed extent, receive returns a poten-
tially infinite list of tagged tuples. Unless a tuple arrives timestamped, it is tagged
with the current tick at its arrival, and assigned an index. The function abstracts
away from a port onto which an external source can write. In Haskell, this can
be simulated by generating a variable number of tuples at variable intervals. The
semantics of other operators accommodates multiple tuples with the same times-
tamp, as well as timestamps for which there are no tuples.

Filtering. Filtering operators are applied to each tuple independently. Stream-
Project is defined using map (see Fig. 1) to apply projectOnTaggedTuple (in
Fig. 3) to each tuple in the stream. Given an attribute list and a tagged tuple,
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acquire::String->Tick->[Int]->Tick->Index->[TaggedTuple]

acquire sourceName acquisitionInterval sites now index =

let attributeNames = lookupAttributes sourceName

in let tuples = acquireTuples attributeNames now index sites

in let nextTick = (now + acquisitionInterval)

in let nextIndex = index + Index (length sites)

in tuples ++ acquire sourceName

acquisourceNamerval sites nextTick nextIndex

acquireTuples::[AttributeName]->Tick->Index->[Int]->[TaggedTuple]

acquireTuples _ _ _ [] = []

acquireTuples attributeNames tick index (site:sites) =

let tupleData = map (getData tick site) attributeNames

in [TaggedTuple tick index (Tuple attributeNames tupleData)]

++ acquireTuples attributeNames tick (inc index) (sites)

Fig. 2. Definition of acquire

projectOnTaggedTuple :: [AttributeName]->TaggedTuple->TaggedTuple

projectOnTaggedTuple attributeNames(TaggedTuple tick index tuple)=

TaggedTuple tick index (projectOnTuple attributeNames tuple)

projectOnTuple :: [AttributeName]->Tuple->Tuple

projectOnTuple attributeNames tuple =

Tuple attributeNames (map (getAttribute tuple) attributeNames)

Fig. 3. Definition of projectOnTaggedTuple

projectOnTaggedTuple returns a tagged tuple that retains from the input tuple
the tick, the index and the attributes named in the list. StreamSelect is
directly defined using filter (see Fig. 1).

6.2 Window Stream Operators

A window stream is represented as a lazily evaluated list of windows. Operations
that return window streams fall into the following groups: input operators that
obtain windows from stored tables, creation operators that generate windows
from streams, single-window operators that are applied to the individual windows
in a stream independently, and multiple-window operators that act on windows
from more than one stream. The definition of evaluateWindow is in Fig. 4.
Input. Most window streams are obtained from tuple streams, as described
below. However, tables can be scanned at regular intervals, thereby allowing
SNEEql queries to access stored data (e.g., in normal databases, or in persistent
memory or in data loggers in sensor networks). Scan is defined using the function
scan (see Fig. 5) which, given the name of a stored extent, the scanning interval
specified in the query, and the current tick, returns the stream of windows that
results from scanning the table. The function scanTable abstracts away from
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evaluateWindow :: WindowOp->[Window]

evaluateWindow (Scan tick tableName) = scan tableName tick (Tick 0)

evaluateWindow (TimeWindow windowScope tick streamOp) =

createTimeWindow windowScope tick (Tick 0) (evaluateStream streamOp)

evaluateWindow (RowWindow windowScope index streamOp) =

createRowWindow windowScope index index (evaluateStream streamOp)

evaluateWindow (WindowSelect predicate windowOp) =

map (selectOverWindow predicate) (evaluateWindow windowOp)

evaluateWindow (WindowProject attributeNames windowOp) =

map (projectOnWindow attributeNames) (evaluateWindow windowOp)

evaluateWindow (WindowAggregation attributeNames windowOp) =

map (aggregateOverWindow attributeNames) (evaluateWindow windowOp)

evaluateWindow (WindowCrossProduct leftWindowOp rightWindowOp) =

crossProduct (evaluateWindow leftWindowOp)

(evaluateWindow rightWindowOp)

Fig. 4. Definition of evaluateWindow

scan :: String->Tick->Tick->[Window]

scan tableName scanInterval now =

let window = Window now (scanTable now tableName)

in [window] ++ scan tableName scanInterval (now+scanInterval)

Fig. 5. Definition of scan

the access to an external table. In Haskell, this can be simulated by generating
bags of tuples at the specified points in time.
Creation. Window creation operators take as input a stream of tuples and
output a stream of windows. Window creation involves determining when to
create a new window and which tuples to include in the window. RowWindow
is defined using createRowWindow (see Fig. 6), which, given the offsets, the
slide, the current index and the input tuple stream, returns a window stream
in which windows are created containing tuples from the tuple stream with a
frequency that respects the slide and a size that reflects the number of tuples
that satisfy the offsets. As the offsets that characterize window membership are
expressed relative to the current index, getWindowTuples simply drops tuples
whose index is less than currentIndex adjusted by the FROM offset or greater
than currentIndex adjusted by the TO offset. Note that since SNEEql was de-
signed to query sensor networks, windows are not created at every tick as in [2].
Instead, windows are created at the frequency requested, through the specified
slide. There can be zero, one or many windows created at each tick. TimeWindow
differs from RowWindow only in that the window membership test is applied to
timestamps rather than to indexes, so the definitions are omitted due to space
constraints.
Single- and Multiple-Window Operators. The operators WindowSelect,
WindowProject and WindowAggregation are evaluated over each window in a
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createRowWindow :: WindowScope->Index->Index->[TaggedTuple]->[Window]

createRowWindow windowScope slide index taggedTuples =

let tuples = takeWhile (lessEqualsIndex index) taggedTuples

in let(TaggedTuple now lastIndex lastTuple) = last tuples

in [Window now (getWindowTuples windowScope now index tuples)]

++ createRowWindow windowScope slide (index+slide) taggedTuples

getWindowTuples::WindowScope->Tick->Index->[TaggedTuple]->[Tuple]

getWindowTuples _ _ _ [] = []

getWindowTuples windowScope@(RowScope from to)now currentIndex input =

let passedFrom=dropWhile (lessThanIndex (currentIndex + from))input

in let window=filter (lessEqualsIndex(currentIndex + to))passedFrom

in map getTuple window

Fig. 6. Definition of createRowWindow

crossProduct :: [Window]->[Window]->[Window]

crossProduct left right =

let ticks = getTickUnion left right

in tickCrossProduct ticks left right

tickCrossProduct :: [Tick]->[Window]->[Window]->[Window]

tickCrossProduct (tick:ticks) left right =

let leftTick = findLastTick tick left

in let rightTick = findLastTick tick right

in let leftWindows = getWindowsAtTick leftTick left

in let rightWindows = getWindowsAtTick rightTick right

in let windowPairs = mapMap windowCrossProduct leftWindows rightWindows

in windowPairs ++ tickCrossProduct ticks left right

windowCrossProduct :: Window->Window->Window

windowCrossProduct (Window leftTick leftTuples)

(Window rightTick rightTuples) =

let windowTick = maxTick leftTick rightTick

in let tuples = mapMap concatTuples leftTuples rightTuples

in Window windowTick tuples

Fig. 7. Definition of windowCrossProduct

stream of windows individually, as if each were a relation (see Fig. 4). The tick
of a window is not changed by the application of a single-window operator.

Multiple-window operators relate windows from more than one stream. Only
WindowCrossProduct is considered here (see Fig. 7), but, in our sensor network
implementation [8], we rely on the optimizer to rewrite selections over cross
products into joins. Many stream systems, such as CQL, map one window per
stream to every tick, so that the cross product of two streams of windows is the
cross product of the two windows mapped to each tick. Because in SNEEql, there
may be zero, one or many windows at each tick, the cross product operator has
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been extended to deal with ticks for which there is not necessarily exactly one
window in each stream. To avoid unnecessary work, cross product only occurs
at ticks where at least one of the streams contains a window. Given two window
streams, crossProduct identifies these ticks and executes a cross product at
each such tick. At each identified tick, the most recent window(s) in each stream
at or before this tick are identified. Every such window identified in each stream
is combined with those from the other stream, thereby creating a new window
for each pair. The windowCrossProduct function takes two windows as input,
removes their tick, concatenates every tuple from one window with every tuple
from the other window, and uses the most recent timestamp found as the tick
of the new window. A mapMap function (i.e., a map on a list of lists) applies
windowCrossProduct to every pair of windows identified in tickCrossProduct
as having timestamps that should be matched.

6.3 Window-to-Stream Converters

A SNEEql query can specify that a stream of windows is to be converted into
a stream of tuples using the keywords RSTREAM, ISTREAM and DSTREAM from
CQL [2]. In combination with the TimeWindow and RowWindow operators, the
corresponding conversion operators enable window queries to be nested within
the FROM clauses of stream queries, and vice versa. RStream is defined using the
function rStream (see Fig. 8), which, given the index of the next tuple to be
returned and the window stream from which tuples are obtained, appends to
the output stream all the tuples in each window. In common with the other
window to stream operators, each tuple in the output stream receives its tick
from its source window and a running index unique to the stream. IStream is
defined using iStream (see Fig. 8), which, given the index of the next tuple to be
returned, the tuples in the previous window, and the window stream from which
tuples are obtained, appends tuples into the output stream that were not in the

rStream :: Index->[Window]->[TaggedTuple]

rStream index ((Window tick tuples):windows) =

(append tuples tick index) ++

rStream (index + Index (length tuples)) windows

append :: [Tuple]->Tick->Index->[TaggedTuple]

append [] _ _ = []

append (tuple:tuples) tick index =

[TaggedTuple tick index tuple]++(append tuples tick (inc index))

iStream :: Index->[Tuple]->[Window]->[TaggedTuple]

iStream index previousTuples ((Window tick tuples):windows) =

let insertTuples = tuples \\ previousTuples

in (append insertTuples tick index) ++

iStream (index + Index (length insertTuples)) tuples windows

Fig. 8. Definition of rStream and iStream
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previous window. DStream, which returns the tuples deleted from the window is
similar to IStream except for the swapped arguments in the list difference line.

7 Related Work

The literature on stream data management is quite large: we focus on window-
based accounts. With respect to sensor network query languages, no formal de-
scription of either TinyDB [10] or Cougar [14] has been published. The TinyDB
query language uses materialization points to offer limited support for blocking
operators, does not allow window specifications (other then for aggregates) and
is, therefore, less expressive than SNEEql in these respects. The Cougar query
language has not been sufficiently described to allow a meaningful contrast to
be drawn. With respect to query languages on pushed streams, CQL [2] was
given a denotational semantics [3]. While being the major inspiration behind
it, CQL is less expressive than SNEEql. For example, in assuming that there is
exactly one window associated with every tick (whereas in SNEEql, there can
be zero, one or many), and in not supporting bag of tuples (i.e., relations) as
a primitive collection type. While the denotational semantics given to CQL is
exemplary, it is, by its nature, less informative from an implementer’s viewpoint
than the one contributed in this paper, in that query language implementation
tends to build on algebras. The other previous formal treatments fail to be as
exhaustive and systematic as the one given here, in that the account in [11] only
applies to pushed, punctuated streams, while the account in [1] only applies to
pushed streams and to a significantly more constrained notion of window.

8 Conclusions

This paper has shown that a query language over streams and relations can be
given a formal semantics that clarifies the relationship between stream query
processing and classical query processing. Building on the pioneering work on
CQL [2], the paper shows that taking windows as a collection type obtained
by type-conversion operations on streams suffices to encompass more cases of
interest in the same semantic account than previously done. Thus, the paper has
shown how streams and relations, as well as push- and pull-based streams, relate
to one another in the presence of both non-blocking and blocking operators. As
shown, SNEEql advances on previous work in supporting windows without the
requirement to do so in every query. By defining a window stream as a stream
of zero, one or even many windows per tick, rather than exactly one for each
tick, SNEEql avoids having to drop windows if too many tuples arrive at once
and having to contend with repeated evaluations that produce repeated results

The semantics of SNEEql, as described in this paper, has been implemented
in Haskell, with the resulting code, using simulated inputs, acting as a SNEEql

interpreter. The subset of SNEEql that pertains to sensed extents has been fully
implemented (as was TinyDB) over a nesC/TinyOS software environment, as
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described in [8]. Work is in progress to accommodate, as informed by the seman-
tics contributed in this paper, pushed streams and stored extents.
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