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Abstract
In many software systems, properties necessary for dependable operation are only a small subset of all

desirable system properties. Assuring properties over the simpler subset can provide assurance of critical
properties over the entire system. This work provides a method for constructing systems to be dependably
reconfigurable. A system’s primary function can have less demanding dependability requirements than the
overall system because the system can reconfigure to some simpler function. Reconfiguration thus controls
the effective complexity of the system without forcing that system to sacrifice desired, but unassurable,
capabilities.

Focusing a system’s dependability argument on reconfiguration means that reconfiguration must pro-
ceed correctly with very high assurance. The system construction approach in this work also provides a
method through which system dependability properties can be shown. To illustrate the ideas in this work,
we have built part of a hypothetical avionics system that is typical of what might be found on an unmanned
aerial vehicle.
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1. Introduction

Ultradependable systems have made extensive use of software for some time, and they have a

very good overall dependability record. The size and complexity of these systems is increasing,

however, and while software development technology is advancing, it is unclear that the pace is

rapid enough to match the increase in complexity. While construction of systems of the quality

produced in the past might be feasible, the engineering foundation on which the dependability

record of those systems rests is weak. The lack of a rigorous dependability argument suggests that

the system dependability levels currently achieved are due, at least in part, to the care taken by

experienced developers during the design of the software. Careful, but informal, development and

review are likely to become less effective as the complexity of the developed software grows

beyond the limits of straightforward human comprehension.

In this paper, we present a method for constructing systems whose central design paradigm is

assured reconfiguration, in which assurance is achieved by proof. A system with reconfiguration

at the center of its assurance argument can allow its primary function to fail and then reconfigure

to some simpler function, mitigating any unacceptable failure consequences. Reconfiguration

thus controls the effective complexity of the system without forcing that system to sacrifice

desired, but unassurable, capabilities.

Current software development practices do provide assurance arguments. While it is unclear

that such arguments are convincing for ultradependable software, it is reasonable to assume that

engineers can continue to build systems of current complexity with similarly low failure rates.

Assurance of complex systems thus reduces to showing that additional functionality will not

make future systems less dependable than past ones.

The idea of providing backup systems in case a primary system fails has been employed

before in various contexts [5]. Design practices often take into account differences in criticality

and exploit them, particularly in the form of simpler software backups or electromechanical back-

ups. Examples include the Simplex architecture described by Sha et al. [25] and the Boeing 777

flight control system [31].
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Previous research has begun with an existing system and added the capability to reconfigure

to the system’s original architecture. Our work assumes that construction of complex non-recon-

figurable systems which must meet very high levels of assurance cannot be achieved routinely.

Thus, reconfiguration should be the driving principle of the system’s architecture, and the driving

principle of the system’s assurance argument. This makes dependable systems both easier to

build, since there is no need for extensive replication in functionality that is allowed to fail; and

easier to assure, since the reconfiguration architecture is explicitly designed to support assurance.

 This work differs from previous work on reconfigurable systems because it presents a com-

prehensive approach to assured reconfiguration. Previous research and the techniques employed

in operational systems either have not addressed the issue of assurance of critical reconfiguration

properties, or they have been developed in an ad-hoc manner to meet the needs of specific sys-

tems. While some systems lend themselves to elegant application-specific solutions, this is not the

general case, and so a general mechanism is needed to enable reconfiguration to be a general solu-

tion. Furthermore, even when an application-specific solution is available, designers can benefit

from the improved support for verification and validation provided by a more general approach.

This work sets forth an approach to system construction that ensures dependability properties

by ensuring critical functional properties and critical reconfiguration properties. The approach

accomplishes this by: (1) introducing a formal definition of reconfiguration and an associated set

of high-level, general properties; (2) constructing an architecture that guarantees the high-level

reconfiguration properties; and (3) making non-crucial functionality fail-stop [23], so that a fail-

ure in one application does not cause a failure in others. Showing that a specific system complies

with the architecture’s properties provides assurance of reconfiguration for that system.

This paper is organized as follows. Section 2 elaborates the advantages of reconfiguration in

dependable systems. Section 3 discusses related work. Section 4 presents an informal discussion

of reconfiguration, and Section 5 describes a candidate architecture for implementing reconfigu-

ration. Section 6 presents an argument for reconfiguration assurance. Section 7 presents an exam-

ple avionics system that instantiates the architecture. Section 8 concludes the work.
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2. Reconfiguration as an Architectural Driver

Software has many advantages, such as flexibility and economy, that make its use tempting to

application designers. Adding automation to safety-critical embedded systems can sometimes

increase the safety of the overall system: embedded systems can often assist or replace human

operators, who are naturally error-prone [21]. Such automation can effectively make the system

more dangerous, however, because of a consequent reduction in the margin for error that would

normally be included. Furthermore, as the software functionality becomes more extensive and

complex, its overall function and safety implications become much more difficult for system

designers to comprehend. Lack of comprehension introduces opportunities for error, and in sys-

tems that must be dependable, those errors could well have unacceptable consequences.

Managing complexity by limiting the functionality included in a system is a poor choice eco-

nomically and thus is likely to be ignored in the business world. The most practical solution is to

make the task of program comprehension manageable. While this strategy does not solve the

problem, it helps the humans who build and analyze ultradependable software understand their

systems well enough to determine whether the systems satisfy their dependability criteria.

2.1 Bounding the dependability problem

In many cases, much of the functionality included in a system is not essential for system

safety. For example, the autopilot system on a commercial aircraft could contribute to an accident,

but cessation of its function is unlikely to have catastrophic consequences as long as the pilot is

informed. Such a system may not need to be ultradependable but, rather, fail-stop [23]: the auto-

pilot must either work correctly or stop and alert the pilot. The complete avionics system needs to

be able to operate without the autopilot so that safety is not compromised if the autopilot fails. In

some cases, the remaining subsystems will alter their modes of operation to compensate for the

failed subsystem. In this way, system reconfiguration can compensate for subsystem faults.

Dependability is often achieved through fault masking, but masking becomes increasingly dif-

ficult with rising complexity. Reconfiguration can reduce the effective complexity of critical

function and limit the amount of software that is crucial to dependable operation.
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2.2 Reconfiguration for embedded systems

Building reconfiguration into the basic design of a system allows the distinction between cru-

cial and noncrucial function to be made clearly at the requirements level and set forth in the sys-

tem’s specification. Thus, designers can specify the properties they want, rather than employing

individual mechanisms that work towards those properties (e.g., fault-tolerant components).

The reconfiguration protocols currently used in practice are system-specific and are built, in

large measure, using whatever architectural facilities are already provided by the system. Our

reconfiguration framework is unique (to the best of our knowledge) in that it is designed explicitly

to facilitate formal system analysis based on a system’s reconfiguration capability.

2.3 Reducing resource requirements

Achieving hardware dependability through pure replication is currently nontrivial and will be

increasingly difficult in the future because hardware component failures become more common as

the number of components increases. Although lower component cost means that components can

be more easily replicated, hardware replication—and the environmental shielding, power, and

cooling facilities that must accompany it—adds weight and takes up space, leading to higher

operational costs, and might be impractical in many circumstances.

In a system where hardware faults are masked, there has to be sufficient equipment available

to provide full service if the anticipated number of component failures occurs during the maxi-

mum time planned for continuous operation. The total number of required components is thus the

sum of the maximum number expected to fail during the longest planned mission and the number

needed to provide full service. Though possible, loss of the maximum number expected to fail in

a system with significant replication is an extremely unlikely occurrence. Thus, the vast majority

of the time, the system will be operating with far more computing resources than it needs.

Reconfiguration offers a trade-off between functionality and hardware resources. This

tradeoff is exploited by building system hardware with less provision for coping with hardware

faults than normally might be included. In a system with a reconfigurable architecture, the total

number of hardware components can be as low as the sum of the maximum number expected to
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fail during the longest planned mission and the minimum number needed to provide the most

basic acceptable service. If the system were designed so that this number equals the number of

components needed to provide full service, then during routine operation (the vast majority of the

time), the system would operate with no excess equipment. This saves power, weight and space.

2.4 Replacing Ad-Hoc Solutions

For many years, reconfiguration has been an effective solution to problems of complexity and

uncertainty in a variety of systems. These systems’ reconfiguration mechanisms generally rely on

properties of the applications that make them amenable to reconfiguration. While our architecture

was not created to benefit these systems specifically, in many cases it can still contribute to their

development because of the verification potential it provides. We believe it will be more cost-

effective to use our proofs than to create high-level proofs for specific systems, and the proofs can

contribute to assurance in a way that complements system testing.

3. Related work

3.1 Other work in reconfiguration

Other researchers have used reconfiguration to increase system dependability in a variety of

contexts. Graceful degradation, for instance, provides fine-grained control of functionality during

degradation. It could be accomplished by reconfiguring to some other operational specification

when a failure occurs. Generally, however, our reconfiguration architecture advocates more

coarse-grained use of remaining components, sacrificing some of graceful degradation’s postu-

lated utility in order to permit rigorous and practical analysis of reconfigurable software. Quality

of service is similar to graceful degradation but is generally used to refer to specific performance

aspects of a system, e.g., video quality. Our architecture permits reconfiguration to impact system

function much more broadly, changing the function more dramatically or replacing it altogether.

Shelton and Koopman have studied the identification and application of useful alternative

functionalities that a system might provide in the event of hardware component failures [26].

Their work is focused on reconfiguration requirements and can therefore be used in the design of

reconfigurable systems, but does not address assurance explicitly. Sha has studied the implemen-
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tation of reconfiguration in fault tolerance for control systems [24], although his work does not

focus on assurance. Likewise, Garlan et al. [9] have proposed the use of software architectural

styles as a general method of error detection, and reconfiguration execution to improve depend-

ability, but they do not present a method of assuring their styles.

In large networked systems, reconfiguration in response to failures is known as information

system survivability. Informally, a survivable system is one that has facilities to provide one or

more alternative services in a given operating environment [11]. For networked systems, the loss

of a moderate number of randomly-distributed components must be expected. Reconfiguration is

employed only in the case of large numbers of failures, or if a common cause is likely. The main

challenge of networked system reconfiguration is managing system scale.

Our work is part of a framework for using reconfiguration in embedded real-time systems.

Embedded system reconfiguration requirements are similar to networked system requirements,

with three key differences: (1) embedded systems are much smaller and thus can be tightly con-

trolled; (2) they often have hard real-time reconfiguration requirements; and (3) a failure of any

application to carry out a reconfiguration can have a much greater impact on the system, leading

to assurance requirements of a functional transition that are much more demanding.

The notion of reconfiguration to deal with faults has also been used extensively in production

safety-critical and mission-critical embedded systems. For example, the Boeing 777’s primary

flight computer contains two sets of control laws: the primary control laws of the 777 and a set of

simpler, less efficient control laws as a backup [24]. It also has a mechanical backup. The Airbus

A330 and A340 employ a similar strategy [27], as have embedded systems in other critical

domains. Existing approaches to reconfigurable architectures are, however, ad hoc; although the

system goals are achieved, the result is inflexible and not easily assured.

Finally, reconfiguration has been used in the construction of software systems where the sys-

tem must be dependable but reconfiguration does not support this explicitly. Such systems include

spacecraft, where the main goal of the mission can only be carried out once the craft has reached

its destination, and reaching that destination is a challenge in itself [16]. A significant body of
 6 



work exists in analysis of space system hardware component reconfiguration, but little research in

software aspects of their reconfiguration has been completed (a notable exception in the literature

is the Corot mission software [8]). Reconfiguration also appears in “intelligent” control systems

(such as described by Bateman et al. [4]), and in adaptive reconfigurable computing [17].

3.2 Fail-stop software

Halting a system to allow it to reconfigure is unlikely to pose challenges that are significantly

more difficult than those posed by construction of the system’s function, if that system is operat-

ing normally. If part of the system has failed, however, its failure semantics must be guaranteed to

support the needs of the reconfiguration structure. Work on assuring failure semantics of software

systems is discussed in this section.

Schlichting and Schneider documented the concept of a fail-stop computer as a building block

for safety-critical systems, and they introduced a programming approach based on fault-tolerant

actions (FTAs) in which software design takes advantage of the computer’s fail-stop

semantics [23].1 They define a fail-stop computer to consist of one or more processing units, vol-

atile storage, and stable storage. The failure semantics of a fail-stop computer are [23]:

FS1: It stops executing.

FS2: The internal state and contents of the volatile storage connected to it are lost.

Stable storage must not be affected by a failure.

An embedded system of the type assumed in this work is made up of a collection of fail-stop

computers. If one computer fails, the others poll its stable storage to determine the state it was in

when it failed.

The software analog of fail-stop machines is the concept of safe programming introduced by

Anderson and Witty [2]. Safe programming requires (in part) modification of the postcondition

for a program by adding an additional clause that allows the program to terminate without modi-

1. Schlichting and Schneider’s work discusses fail-stop processors; we use the term fail-stop computer instead, to
represent the set of physical components required to provide the semantics they describe.
7



fying the state and signal a failure. A safe program in this sense is one that satisfies its (modified)

postcondition. The problem of assurance has thus been reduced to one of assuring comprehensive

checking of the program’s actions—a much simpler task than assuring overall functionality.

Related to safe programming is the idea of a safety kernel. The idea has been studied by sev-

eral researchers. Leveson et al. use this term to describe a system structure where safety-relevant

functionality is gathered in a centralized location [14]. Rushby has defined the term more gener-

ally as a small component that guarantees the enforcement of a specific class of properties [22].

Wika and Knight characterize classes of safety policies that might be enforced [30]. Burns and

Wellings define a safety kernel as a safe nucleus and a collection of safety services [6].

Knight has introduced the term protection shell to describe a policy enforcement mechanism

that checks program outputs rather than inputs to particular function calls. Protection shells guar-

antee software component properties by checking that properties of those components’ outputs

hold. Shell analysis is much simpler than system analysis because the shell for each component is

(1) simpler than the component itself and (2) designed explicitly to facilitate analysis [30].

3.3 The PVS proof system

We used the Prototype Verification System (PVS) to construct and check the formalisms and

proofs in this work, so we include a brief introduction here. We will refer to the concepts pre-

sented here in Sections 5 and 6.

3.3.1. The PVS language. The PVS language is a higher-order logic based on type theory. Sub-

types are defined by adding a predicate to a supertype. A subtype Sub of supertype Super with

property P could be defined as {s: Super | P(s)}. P would then have to hold over any instance

of Sub. In functions, if the function takes a parameter s of type Sub, then it can assume P(s)

holds. In some cases, the consistency of a specification’s type system is undecidable; this leads to

the generation of type-correctness conditions (TCCs), theorems that must be proven in order for

the system to be considered type-correct.

PVS is a functional language that provides a mechanism to construct record types. Each ele-

ment of the record must have a declared type, and any element of any instance of the record must
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be a member of the corresponding type. Again, if type predicates of the instance are undecidable,

TCCs will be generated.

3.3.2. The PVS system. The PVS system allows a developer to create specifications, state theo-

rems over those specifications, write proof scripts for the theorems, and then mechanically check

the scripts to see whether they do indeed prove the properties. Proof scripts consist of a series of

LISP-like commands that mechanically manipulate proof sequents. A valid proof script is a

sequence of commands that will, when applied to a putative theorem, transform that theorem to

“true”. The theorem starts out as the only statement in the proof consequent, so that the proof of

a theorem T is a proof that “true ⇒ T.” Intermediate lemmas and other theorems, as well as axi-

oms (which require no proof themselves) can be imported into a proof, and are listed as state-

ments in the proof’s antecedent. Type predicates can also be imported into a proof antecedent.

4. An informal model of reconfiguration

If a system’s dependability argument is centered on its reconfiguration properties, those prop-

erties must be stated clearly and must meet very strict dependability criteria. This section

describes the intuitive properties that a reconfigurable system must exhibit, and an informal dis-

cussion of an architecture that guarantees those properties. Section 5 formalizes these concepts.

4.1 Reconfigurable fail-stop systems

Fault-tolerant actions (FTAs), introduced by Schlichting and Schneider, are a building block

for programming systems of fail-stop computers. Briefly, an FTA is a software operation that

either: (1) completes a correctly-executed action A on a functioning computer; or (2) experiences

a hardware failure that precludes the completion of A and, when restarted on another computer,

completes a specified recovery protocol R. Thus, an FTA is composed of either a single action, or

an action and a number of recoveries equal to the number of failures experienced during the FTA’s

execution. Using FTAs, Schlichting and Schneider show how to construct application software to

mask the effects of a failure and how to construct proofs that state is properly maintained.

In the original framework, an FTA’s recovery protocol may complete only the original action,

either by restarting the action or by some alternative means. Our framework takes a broader view
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of the recovery protocol, where R might be the reconfiguration of the system so that the next A

will complete some useful, but often different, function. An FTA in this framework, then, requires

that the system either carries out the function requested, or puts itself into a state where the next

action can execute some appropriate function (although possibly not the one requested).

4.2 Informal definition and applicability conditions

Our extensions to Schlichting and Schneider’s framework are driven by the needs of reconfig-

urable systems. Informally, we define reconfiguration to be the process through which a system

halts operation under its current source configuration ci and begins operation under a different

target configuration cj. This is a very broad definition, and could mean many different things in

classes of systems with broadly varying requirements. In order to refine this definition, we con-

sider the class of systems with the following properties:

• The system is made up of a set of periodic applications A = {a1, a2, ..., am}. Each ai in A pos-

sesses a set of possible functional specifications Si = {si1, si2, ..., sin} and always operates in

accordance with one of those specifications unless engaged in reconfiguration. Any functional

dependencies among the applications in A must be acyclic.

• Applications are synchronized so that the execution of all applications is periodic at the sys-

tem level. Each application may execute one or more times during the system period. Syn-

chronization may occur over a sparse time base [12].

• Worst-case execution times, including worst-case time to initialize data in a new configura-

tion, can be determined for each function in a specification.

• It is possible to know in advance all of the desired potential system configurations C = {c1, c2,

..., cp} and how to choose among them. The system will have at least one “safe” configura-

tion, which is built with high enough dependability that failures at the rate anticipated for the

safe configuration do not compromise the dependability goals of the system.

• The software is running on fail-stop or fail-silent computers, as in the Delta-4 project [20],

and commits to stable storage are atomic, as in the Fault Tolerant Multiprocessor [15].
 10 



These requirements describe most critical embedded systems. They are, in a sense, a relaxation of

the requirements on any system operating in real time. The periodicity and execution time

requirements are required for any real-time system, and in traditional systems only one specifica-

tion and one configuration are available to the system.

• System function can be restricted during system reconfiguration. Time bounds on function

restriction are discussed in section 4.4.

• There is a reconfiguration trigger; the source of the trigger might be a hardware failure, a soft-

ware functional failure, a failure of software to meet its timing constraints, or a change in the

external environment that involves no failure at all. We neither provide nor assume any spe-

cific error detection mechanisms.

The above properties are those required for our work to apply to a system in general, and they are

assumed in our architecture. In our specific formal model, we also assume:

• All applications operate with the same period.

• The system period is equal to the application period.

• Each application completes one unit of work in each real-time frame (where that unit of work

can be normal function, halting an application and restoring its state, preparing an application

to transition to another specification, or initialization of data such as control system gains).

• Each application commits its results to stable storage at the end of each real-time frame.

• Any dependencies between applications require only that the independent application be

halted before the dependent application computes its transition condition.

These assumptions limit the class of systems to which the specific formal model we have built

will apply. We added them to create a manageable starting point for the proofs we constructed—

not only are they intellectually difficult to manage, the mechanical checking of the proofs

(described below) presented here on the fastest machines available to the authors takes approxi-

mately 24 hours. We plan to relax them in future work, as part of an overall program to take the

starting point presented here and make it more accessible to industrial developers.
11



In our formal model, we assume that an application is composed of a set of modules, and

application properties of interest can be constructed through conjunction of module properties of

interest. Similarly, system properties of interest can be constructed through conjunction of appli-

cation properties of interest. This assumption could easily be relaxed through a small change in

the formal model that would actually simplify the model. We included it here to show how exist-

ing work on error detection could be incorporated into the formal architecture; it could be

removed in a system where it was not needed.

Using these assumptions to refine the informal notion, reconfiguration between two configu-

rations ci and cj is the process R for which:

• R begins at the same time the system is no longer operating under ci;

• R ends at the same time the system meets the precondition for cj;

• cj is the proper choice for the target specification at some point during R;

• R takes no more than the maximum time for which the application can be nonoperational; and

• a transition invariant holds during R (disallowing random state changes during R).

These conditions will be formalized below.

4.3 Reconfigurable fault-tolerant actions

4.3.1. Fault-tolerant actions. The timing model we use to describe system reconfiguration is an

expanded version of the timing model Schlichting and Schneider used in their characterization of

fail-stop computing. In the approach presented here, the basic software building block is a recon-

figurable application, referred to as an application in the remainder of this work. An application

has a predetermined set of specifications with which it can comply (as described above) and, cor-

respondingly, a predetermined set of fault-tolerant actions that are appropriate under each specifi-

cation. Which recovery protocol is appropriate for use when an application fails cannot be

determined by the application alone since the application’s function exists in a system context.

Furthermore, applications may depend on one another, so that the initial failure of an action in one

application could lead to the failure of actions in other applications. These issues did not arise in
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the previous formulation of FTAs since failures were masked. Adding the possibility of reconfig-

uration necessitates a distinction between application FTAs (AFTAs) and system FTAs (SFTAs).

4.3.2. Application Fault Tolerant Actions. An AFTA is an action encompassing a single unit of

work for one application. This maps to one standard execution cycle in a periodic application that

is functioning normally. If the application is reconfiguring, an AFTA consists of the execution

cycle in which the reconfiguration is signaled and the sequence of steps carried out to effect the

reconfiguration. This sequence is:

• An error is detected or some other reconfiguration signal is generated.

• The application postcondition is met. The postcondition for an application is defined to be the

precondition for a transition to a new configuration.

• A new configuration is selected.

• The application state is modified so that the new configuration can be put into effect.

• The application is set to operate under the new configuration (may occur automatically).

• State (e.g., control loop gains) is initialized to be consistent with the new specification.

4.3.3. System Fault Tolerant Actions. An SFTA is composed of a set of AFTAs. Because of sys-

tem synchrony, there is some time span in which each application will have executed a fixed num-

ber of AFTAs. The AFTAs that are executed during that time span make up the SFTA. If an

application experiences a failure but recovers from that failure without affecting any other appli-

cations, then the SFTA includes that application’s action and subsequent recovery, as well as the

standard AFTAs for the other applications.

Because a reconfiguration can affect several applications, a mechanism to determine which

application reconfigurations are necessary to complete an SFTA is required. We introduce the

System Control Reconfiguration Analysis and Management (SCRAM) kernel to implement the

external reconfiguration [19] portion of the architecture. Possible configurations to which the sys-

tem might move to complete its SFTA are defined by a statically-determined set of valid system

transitions. A function to determine which transitions must be taken under the different operating
13



circumstances that might arise is included. The SCRAM kernel will: (1) accept reconfiguration

signals; (2) determine the configuration to which the system should move; and (3) send appropri-

ate signals to the individual applications to cause them to reconfigure, if needed.

Our approach differs slightly from the approach taken by Schlichting and Schneider. In their

approach, if a failure occurs, the recovery for the FTA is executed after the failure. The recovery

for an SFTA during which a reconfiguration signal is generated consists of three parts:

1. Each executing AFTA establishes a predetermined postcondition so that the corresponding

application can reconfigure, if necessary.

2. Each application that must reconfigure establishes the condition to transition to operation

under the new state, and all other applications execute an additional standard AFTA.

3. Each application that must reconfigure establishes its precondition, meaning that all state asso-

ciated with the AFTA has been initialized and the application is functioning normally, and all

other applications execute an additional standard AFTA.

A software system composed of reconfigurable applications can be reconfigured to meet a

given specification, provided appropriate configurations exist for all applications. Existence of

the necessary transition specifications can be guaranteed by including a coverage requirement

over environmental transitions, potential failures, and permissible reconfigurations.

4.4 Real-time guarantees on fault-tolerant actions

Schlichting and Schneider’s work includes a discussion of system temporal properties in the

event of multiple successive failures, including a method to guarantee liveness. We extend their

framework to cover the timing elements of reconfiguration for systems that must operate in hard

real time. Depending on system requirements, any reconfiguration signals that are generated

while a system reconfiguration is in progress can be either addressed immediately or buffered

until the next stable storage commit of all applications. In the worst case, failures cannot be dealt

with until the end of the current reconfiguration. In this case, the longest restriction of system

function is equal to the sum of the maximum time allowed between each reconfiguration in the

longest sequence of transitions to some safe system configuration Cs. In other words, for the long-
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est configuration sequence C1, C2, ..., Cs, the maximum restriction time is Σi=1 to s-1 Ti, i+1, where

Ti, j is the maximum time to transition from Ci to Cj. This time can be reduced in various ways,

such as interposing a safe configuration Cs in between any transition between two unsafe configu-

rations. With this addition, the maximum time to successful action completion over all possible

system transitions would be max{Ti, s}.

Cyclic reconfiguration is possible due to repeated failure and repair or rapidly-changing envi-

ronmental conditions, and in this case the time between two successful actions could be infinite.

Potential cycles can be found through a static analysis of permissible transitions. They can be

dealt with by forcing a check that the system has been functional for a minimum period of time (in

a safe or universally appropriate configuration) before a subsequent reconfiguration takes place.

5. Candidate reconfiguration architecture

This section describes one possible architecture that facilitates the refinement of the properties

listed above into a set of properties that can be shown of an individual system. If a system is built

using this architecture and shows the properties required of the architectural elements, the devel-

oper will know that the properties that assure reconfiguration have been met. We have formally

modeled the architecture in PVS [29], although for brevity, our discussion here is mostly infor-

mal. The proofs that the architecture implies the properties are discussed in Section 6.

5.1 Application architecture

In the candidate architecture, a system is composed of a set of applications of the sort charac-

terized in Section 4.2. Each application implements a set of specifications and provides an inter-

face for internal reconfiguration [19].

5.1.1. State. To guarantee properties over the architecture’s state, the state is represented explic-

itly as a set of mappings from data identifiers to data values. In a fail-stop computer, these data

elements would be kept in the system’s stable storage.
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5.1.2. Modules. The internal structure of an

application is depicted in Figure 1. Each

application is built of a set of modules. A

module represents some set of functions

that operate over a particular set of data ele-

ments and guarantee certain properties over

those data elements. Each module includes

predicates defining the invariant, precondition, transition condition, and postcondition for that

module’s state. Each function in a module interface presents a set of functional service levels.

Functions within a module carry out different computations based on the module’s service level,

and the guarantees they provide are also service level-specific.

5.1.3. Application reconfiguration. Application configurations are constructed from combina-

tions of module services. Configuring the modules to provide the correct services for a specific

application configuration can be done in at least two ways. First, the application can contain a

mapping from each application configuration to the module service level appropriate for that con-

figuration. The top-level execution loop would take the configuration mapping from modules to

appropriate service levels as a parameter. Alternatively, each module’s state could include a mod-

ule-specific service level parameter. In this case, a call to foo(x) would effectively become a

function call to foo(x, svclvl_parm), where foo(x, svclvl_parm) is the proper version of

foo(x) for the module configuration corresponding to svclvl_parm. Our formal model provides

for either configuration method. The example in Section 7 uses the function mapping to choose

reconfiguration functions, and the service level parameter to choose application functionality.

Properties of the application are decomposed into properties of the modules, so that the con-

junction of module properties (e.g., postconditions) gives the corresponding application property.

Dividing properties in this way creates a clear interface in the architecture for the use of existing

work on guaranteeing software properties (e.g., safe programming, safety kernels, and protection

Figure 1. Application Structure

Monitoring Layer Reconfiguration Mechanism

Module Function Foo(x)
Foo(x, a) Foo(x, b) Foo(x, c)

Application

Module
Protected State

calls calls

depends 
on

Module
Protected State
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shells, as described in Section 3.2). Application-level errors that span several modules could be

detected by creating a protection shell that encompasses the individual modules.

The functions that are called to effect reconfiguration are defined at the application level to

change modules’ internal state in a coordinated way. Each application contains operations specific

to each service level that carry out the following functions:

• Normal execution

• Execution in preparation for a possible reconfiguration

• Halting when a reconfiguration has been signaled

• Preparing to transition to a new configuration

We refer to these functions collectively as the application’s monitoring layer, the architectural

component responsible for (1) overall supervision and control of application function, and (2)

coordination of AFTAs in the context of their SFTAs.

Any reconfiguration signal that is generated or recognized by an application during computa-

tion of a module function causes control to be returned to the monitoring layer. The monitoring

layer then relays the signal to the SCRAM and reconfigures the application as directed by the

SCRAM. At the beginning of each non-reconfiguration execution cycle, the monitoring layer

checks for any reconfiguration signals that have been sent to the application from the SCRAM

during the previous cycle. If it sees that one has been sent, it executes a modified version of the

functionality for the current configuration that saves any state that might be necessary for a possi-

ble upcoming reconfiguration to take place. In the following cycle, the monitoring layer would

then compare the old and new configurations; if the two are the same, it simply switches back

over to normal execution, and if the two are different, then reconfiguration proceeds.

5.1.4. System reconfiguration. Each period, the SCRAM checks to see whether some applica-

tion is waiting to be told its new configuration. Since reconfiguration proceeds in lock-step, this

means that they are all waiting. If no other signal has been generated (a signal occurring at this

stage is the only case where the applications’ reconfiguration status might not be synchronized),

the SCRAM tells each application its new configuration. The delay from signal generation to new
17



configuration updates allows an implementation time to choose the new configuration. After the

new configuration is assigned, the applications will prepare for a transition if one is needed.

If no application is waiting to be told its new configuration, then the reconfiguration status of

each application is updated to reflect the last cycle’s completed computation. The applications

then carry out their execution for the current cycle.

5.2 Reconfiguration Specification

Domain experts will define system configurations that provide acceptable system-level ser-

vices. System reconfiguration is the transition from one configuration to another. The details of

application interaction at the system level are captured in the reconfiguration specification. The

reconfiguration specification includes:

• Operating environment.  Which configuration is most useful to the user at the point when

reconfiguration is required might depend on many factors; examples include aspects of the

operating state, time of day, and stage of flight. Also, the failure status of some system compo-

nents can be modeled as part of the environment since that status is given rather than effected.

• System configurations.  The reconfiguration specification includes information on dependen-

cies among applications, overall system configurations, system transitions, and how to choose

a transition appropriate to circumstances that hold when a reconfiguration is signaled.

• System transitions.  The type representing a system transition is parameterized over the set of

possible system configurations and the set of possible environmental states for the system. It

contains the source and target configuration of a system transition, and the environmental

states under which that transition would be appropriate. The reconfiguration specification

includes a function to choose among potential transitions.

5.3 State traces and the SCRAM

The PVS formalization of the architecture sets out time as an explicit element of state, and

temporal predicates are written as predicates that restrict the value of time in conjunction with

restrictions on the value of state. In order to specify state-change restrictions over time, the model
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defines possible system traces that can be legally generated by a system which complies with a

particular reconfiguration specification.

The assumptions on synchrony and equal execution times mean that reconfiguration either:

(1) takes 4 cycles to complete successfully, including the cycle during which the reconfiguration

signal is generated; (2) takes 2 cycles to complete successfully because no change is needed (an

unlikely but possible case); or (3) takes less than 4 cycles because a second signal is generated

and serviced before the first reconfiguration is complete. In the latter case, the first reconfigura-

tion is simply ignored. The different stages of reconfiguration are shown in detail in Table 1. In

the table, i denotes the application that generates a reconfiguration signal, all applications will

reconfigure, and the new system configuration will be Ct. 

System reconfiguration is effected by the SCRAM kernel, which ensures that state traces hap-

pen in an appropriate sequence. The SCRAM has a standard interface so that applications can be

easily added to or removed from the system from a reconfiguration point of view. The standard

interface enables the SCRAM to be reused across many different systems. The reconfiguration

specification contains all of the system-specific information that must be provided to the SCRAM

to ensure that appropriate reconfigurations occur when necessary.

5.3.1. Application execution. Application execution is modeled by specifying the actions of the

monitoring layer for an application. The monitoring layer chooses each cycle whether to carry out

an application’s normal function, or to execute one of the reconfiguration stages for the applica-

tion. Its choice is determined by the system reconfiguration state value for that application.

Table 1: Reconfiguration Stages

Frame Stage Action Predicate

1 (start) Application i: interrupted
All other applications: normal

None None

2 Application i: halting
All other applications: exec_halting

Applications execute functions 
that anticipate reconfiguration

Application postcondi-
tions

3 SCRAM:
prepare(Ct) → all apps

Applications prepare to transi-
tion to Ct

Application transition 
conditions for Ct

4 (end) SCRAM:
initialize → all apps

Applications initialize, estab-
lish operating state for Ct

Application precondi-
tions for Ct
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Failures are modeled as an undefined function that can either return the same reconfiguration

state or indicate that a reconfiguration signal has been generated. Failures can be introduced at

any time when the system is not in a safe configuration. Concurrent execution of all system appli-

cations must leave the system in a state equivalent to that which would result from executing the

applications in a sequence that does not violate their dependencies.

5.3.2. State trace. A reconfigurable system has a number of elements of system state that do not

belong to any application. These elements include the reconfiguration state of the system and the

time that the system state is true of the system. All elements of system state are collected in the

sys_state type. State traces are sequences of instances of this type. We have created a set of

functions that define rules for state traces that satisfy the specification constraints. Essentially, the

state trace functions will map to the SCRAM’s execution, with the help of bus characteristics and

processor clock synchronization.

A valid sequence of system states is one where: (1) the beginning state is a non-reconfigura-

tion state; (2) the system always eventually reaches a non-reconfiguration state; (3) any state is

equal to the previous state updated by the SCRAM and then updated by the sequence of applica-

tion executions; and (4) the system state is synchronized with the environment. The sys_trace

type formalizes these requirements. We use it in Section 6.2 to express reconfiguration properties.

The temporal structure in our model allows additional reconfiguration signals to be generated

during a reconfiguration. In this case, the reconfiguration is simply restarted. If a new specifica-

tion has been chosen, the reconfiguration is completed with the new specification’s conditions as

its starting conditions; otherwise, the old specification’s conditions are used. Also, the SCRAM’s

synchronization mechanism can easily be extended as needed to support richer dependencies

among applications, as long as those dependencies are acyclic and enough time is available.

Given a specification of dependencies, the SCRAM could preserve the dependencies by checking

each cycle to see if the independent application has completed its current configuration phase.

Only if that phase were complete would the SCRAM signal the dependent application to begin its

next stage. Unnecessary dependencies permitted here could also be relaxed, and thus time to
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reconfigure shortened, by removing any unnecessary intermediate stages or allowing the applica-

tions to complete multiple sequential stages without signals from the SCRAM.

5.4 Example implementation platform

To illustrate a potential use of the archi-

tecture, we briefly describe a possible

implementation platform, illustrated in Fig-

ure 2. The platform includes a set of pro-

cessing elements that communicate via an

ultra-dependable, real-time data bus. Each

processing element consists of a fail-stop

computer that executes an ultradependable real-time operating system. An example fail-stop com-

puter might be a self-checking pair; an example data bus might be one based on the time-triggered

architecture [13]; and an example operating system might be one that complies with the ARINC

653 specification [3]. Sensors and actuators are connected to the bus via interface units that

employ the bus protocol.

Each application operates as an independent process mapped to some processing element.

Applications communicate by sharing state through stable storage. The SCRAM executes on a

fail-stop computer, and its functionality is implemented as a set of fault-tolerant actions in the

original sense of Schlichting and Schneider so that any failures are masked.1 It communicates

with applications through variables in stable storage. When reconfiguration is necessary, it sets

the configuration_status variable of each application to a sequence of values on three successive

real-time frames. The three values are halt, prepare, and initialize, reflecting the AFTA stages

described in Section 4.3.2. At the beginning of each real-time frame, each AFTA reads its

configuration_status variable and completes the required action during that frame.

1. Note that this means the worst-case time to transition must be added to the worst expected time for the SCRAM
to complete its FTA.

System Control Reconfiguration 
Analysis and Management Kernel

Figure 2. Logical System Architecture
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The above is only one possible platform for implementing the architecture. The architecture

specification is a set of application characteristics and interactions. An implementation of a sys-

tem that has the architecture need only exhibit the properties set out in the architecture specifica-

tion. The specifics of an argument that the system exhibits those characteristics will vary widely

across different implementations. A system where all applications run on a single processor, for

instance, need not address network communication reliability; and if the applications are written

in Ada, then the Ada runtime executive can be used and so no operating system is needed. With a

mechanism to ensure atomicity of stable storage commits and a mechanism to verify the Ada code

against the PVS system specification, the assurance argument would be complete.

6. Proof Structure

We have created a reconfiguration assurance argument that includes: (1) a formal model of a

reconfigurable system architecture; (2) a set of formal properties, stated as putative theorems over

the model, that we use as a definition of system reconfiguration; and (3) proofs of the theorems.

These proofs constitute a proof that the architecture satisfies the definition. With this verification

framework in place, any instance of that architecture will be a reconfigurable system with the

stated formal properties, as long as the TCCs of the formal model’s type system can be proven.

The reconfiguration architecture is specified in PVS, proofs of the putative theorems have

been constructed, and the proofs have been checked with the PVS system. We have also formally

specified the essential interfaces of an example reconfigurable system (see Section 7) and shown

that this example has the necessary properties of the formal architecture. The result is an assur-

ance argument based on proof. Figure 3 depicts the relationship among formal elements discussed

here, and how they fit into the broader picture of assured software development.

6.1 Reconfiguration proof structure

We have constructed a set of types in PVS that defines a reconfigurable system specification

and architecture. Any specification that instantiates the type system will thus possess the proper-

ties of the formal model. Conformance can be checked by writing the system as an instance of the

specification record type. If PVS is unable to determine whether the system has the appropriate
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type (and thus, has the appropriate properties), it will issue TCCs that the specifier must prove. If

the instance does not type-check, it might not have the architecture’s high-level properties.

The proofs of high-level properties are proofs over state traces that can be generated, given a

specific reconfiguration specification. Properties for individual applications, and the system-spe-

cific data that must be input to the SCRAM, are all encoded in the type system. We proved the

properties over the combination of: (1) the state trace functions; and (2) the type predicates from

the reconfiguration specification and its constituent application specifications.

The property proofs we have created are quite lengthy, since mechanical proofs must often be

much more detailed than logical proofs. They have been mechanically checked with the PVS sys-

tem, thereby ensuring that what is stated has been proven, given that either: (1) PVS does not con-

tain any faults that are activated by the checking of the proofs; or (2) errors that can be generated

by faults in PVS do not cause unprovable theorems to be provable. The proof scripts are not

included here, but can be found elsewhere [29].

6.2 Reconfiguration definition

We define reconfiguration as a set of required high-level properties. Defining reconfiguration

properties in an abstract sense allows us to argue that the general requirements of reconfiguration

have been met. The model was constructed and refined to enable proof of these properties.

Reconfiguration
specification type

Figure 3. Software Products for a Specific System

Application type

System reconfiguration 
specification

System application 
specifications

High-level properties

System-specific
SCRAM data

Reusable SCRAM implementation

SCRAM specification 
(system interactions)

Verified application implementations

Provided in this work

Reusable but not 
provided in this work

System-specific

Architecture property proofs
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We begin by expanding our previous informal description of reconfiguration to:

the operation by which a function f: A → S of interacting applications A that operate

according to certain specifications in a set S of specifications transitions to a function

f': A → S of interacting applications A that operate according to possibly different

specifications in S.

An action thus comprises the correct execution of all applications ai ∈ A under their respec-

tive specifications f(ai). System reconfiguration is only necessary if ai cannot mask the failure, but

must transition to an alternative specification in order to complete its application fault-tolerant

action. If only ai must reconfigure, then ∀aj ≠ ai, f'(aj) = f(aj).

Formally, we characterize reconfiguration as five properties, shown in Figure 4, that must

hold over any sequence of states that is a subsequence of a valid sys_trace and whose reconfig-

uration status is not normal. The sequence of states is represented by the reconfiguration type,

which consists of two natural numbers that represent the beginning and ending system execution

cycle for that reconfiguration. All other state for the reconfiguration is represented in the sequence

of system states that make up the reconfiguration. The sequence is bounded at the beginning by a

signal generated by some application; and at the end, by either a second signal generated from

some application, or by all applications’ having finished initialization and returned to normal sta-

tus. This is defined formally in the get_reconfigs function.

CP1 defines what makes up a reconfiguration, and is essentially a repetition of the

get_reconfigs function, included for clarity in the discussion of abstract properties.

CP2 states that either: (1) a signal was generated before applications were notified of the new

configuration, and so the reconfiguration ends with the system in the same configuration it was in

when the reconfiguration began; or (2) the reconfiguration reached the notification stage, and so

at the end of the reconfiguration (regardless of whether the reconfiguration were interrupted), the

system will be in a new configuration which is consistent with the system configuration and envi-

ronmental conditions in effect when the new configuration was selected.
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CP1: THEOREM
FORALL (s: sys_trace, r: (get_reconfigs(s))) :

r`start_c < r`end_c AND reconfig_start?(s, r`start_c) AND
reconfig_end?(s, r`end_c) AND
FORALL (c: cycle) : (r`start_c < c AND c < r`end_c => NOT reconfig_end?(s, c))

CP2: THEOREM
FORALL (s: sys_trace, r: (get_reconfigs(s))) :

(r`end_c - r`start_c = 1 AND s`tr(r`end_c)`svclvl = s`tr(r`start_c)`svclvl) OR
EXISTS (c: cycle) : r`start_c <= c AND c <= r`end_c AND

s`tr(r`end_c)`svclvl = s`sp`choose(s`tr(c)`svclvl, s`env(c*cycle_time))
CP3: THEOREM

FORALL (s: sys_trace, r: (get_reconfigs(s))) :
(r`end_c - r`start_c + 1)*cycle_time <=

s`sp`T(s`tr(r`start_c)`svclvl, s`tr(r`end_c)`svclvl)
CP4: THEOREM

FORALL (s: sys_trace, c: cycle) :
% The function invariant holds
inv(s`sp, s`tr(c)`svclvl, s`tr(c)`st) OR
(c > 0 AND
 FORALL (app: (s`sp`apps)):

% The application generated a signal during the
% preparation stage and still meets the last configuration's invariant
(s`tr(c)`reconf_st(app) = interrupted AND

(s`tr(c-1)`reconf_st(app) = halting OR
s`tr(c-1)`reconf_st(app) = exec_halting) AND

(s`sp`SCRAM_info`configs(s`tr(c-1)`svclvl)(app) /=
s`sp`SCRAM_info`configs(s`tr(c)`svclvl)(app)) AND

inv(app`modules, app`svcmap(s`sp`SCRAM_info`configs
(s`tr(c-1)`svclvl)(app)), s`tr(c)`st)) OR

% The application did not receive a signal during the
% preparation stage and meets the new invariant
inv(app`modules, app`svcmap

(s`sp`SCRAM_info`configs(s`tr(c)`svclvl)(app)), s`tr(c)`st))
CP5: THEOREM

FORALL (s: sys_trace, r: (get_reconfigs(s))) :
% the reconfiguration was not interrupted and some application reconfigured
(r`end_c - r`start_c = 3 AND FORALL (app: (s`sp`apps)) :

(s`sp`SCRAM_info`configs(s`tr(r`start_c)`svclvl)(app)
/= s`sp`SCRAM_info`configs(s`tr(r`end_c)`svclvl)(app) AND
pre(app`modules, app`svcmap(s`sp`SCRAM_info`configs

(s`tr(r`end_c)`svclvl)(app)), s`tr(r`end_c)`st) OR
(s`sp`SCRAM_info`configs(s`tr(r`start_c)`svclvl)(app)

= s`sp`SCRAM_info`configs(s`tr(r`end_c)`svclvl)(app) AND
inv(app`modules, app`svcmap(s`sp`SCRAM_info`configs

(s`tr(r`end_c)`svclvl)(app)), s`tr(r`end_c)`st))))OR
% the reconfiguration was not interrupted but no application reconfigured
(r`end_c - r`start_c = 2 AND FORALL (app: (s`sp`apps)) :

(s`sp`SCRAM_info`configs(s`tr(r`start_c)`svclvl)(app)
= s`sp`SCRAM_info`configs(s`tr(r`end_c)`svclvl)(app) AND

inv(app`modules, app`svcmap
(s`sp`SCRAM_info`configs(s`tr(r`end_c)`svclvl)

(app)), s`tr(r`end_c)`st))) OR
% the reconfiguration was interrupted
EXISTS (app: (s`sp`apps)) : s`tr(r`end_c)`reconf_st(app) = interrupted

Figure 4. Properties That Define Assured Reconfiguration
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CP3 requires that all reconfigurations complete within their required time bound.

CP4 states that the invariant holds if no application generates a signal while preparing to tran-

sition, and that if the latter is the case, a mix of the old invariant and the new invariant holds.

CP5 sets out three alternatives for predicates that can be true at the end of a reconfiguration:

(1) the reconfiguration was not interrupted and some application reconfigured; (2) the reconfigu-

ration was not interrupted but no application reconfigured; or (3) the reconfiguration was inter-

rupted—in which case, no guarantees are made apart from those stated above.

As the reconfiguration architecture has been written and refined, we have found a significant

number of flaws when we have been unable to prove certain properties. The different cases that

must be addressed in CP4 are an example of this. Generally, one would expect that the invariant

for the current configuration will hold at the end of each execution cycle. This is impossible to

guarantee during reconfiguration unless: (1) additional signals generated by any application that

must reconfigure cannot be addressed between the time the applications are told of the new con-

figuration and the time the transition condition has been met; (2) any possible signals will not dis-

rupt transition; or (3) an explicit rollback or rollforward mechanism exists for the system: a

rollback mechanism must be applied to all reconfiguring applications if one generates a signal, or

a rollforward mechanism must be applied to the application generating the new signal to ensure

that its state is consistent with the new configuration.

7. UAV Example

7.1 Introduction

In order to demonstrate the concepts that constitute our approach and assess their feasibility,

we have specified an example reconfigurable system. This section presents an overview of the

example; the full specification, TCCs, and proofs can be found elsewhere [29]. The example is a

hypothetical avionics system that is representative, in part, of what might be found on a modern

unmanned aerial vehicle (UAV). The example system includes four applications:

• A collection of sensors generates simulated values of altitude and heading that would nor-

mally be read from the aircraft’s environment.
 26 



• The flight control system (FCS) receives directions on changes in altitude and heading from

either the pilot or the autopilot, and computes appropriate commands to send to the control

surface actuators to effect the changes.

• The autopilot can be programmed with a target altitude or a target heading to maintain, and

it will send commands to the FCS based on the aircraft’s deviation from the target.

• The pilot_interface simulates pilot commands and transmits them to the autopilot.

For each application, only minimal versions of functionality have been implemented since the

system is not intended for operational use. However, each application has a complete reconfigura-

tion interface, including the capability to provide multiple functionalities where appropriate.

The system also models three aspects of the environment that can trigger a reconfiguration:

• Electrical power: the hypothetical aircraft’s electrical power generation system contains an

alternator and a battery. Failure of the alternator causes the aircraft to switch to its backup bat-

tery power source, and at that point some computations are curtailed to preserve battery life.

• Rudder: the aircraft’s rudder can become stuck in a hard-over position, requiring the FCS to

compensate for its inappropriate position.

• Autopilot: the autopilot can experience a failure of the heading control subsystem or a failure

of the entire system. While the failure comes from within one of the applications, it is mod-

eled as a part of the environment because it is something that the system itself is unable to

control (otherwise the originating fault would be masked). 

7.2 System configurations

The example system is designed to operate in nine different configurations. The sensors and

pilot interface each have only one configuration and are assumed to be dependable enough that

they are not the limiting factor in system dependability. Other applications can be in different con-

figurations, according to the possible failures described above. The system configurations are

shown in Table 2 (the sensors and pilot interface configurations are not listed because they are the

same in all system configurations, as described below).
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7.3 Environmental states and transitions

There are three relevant environmental factors in the system:

• Electrical power generation system (electrics): Power can be either generated by the alter-

nator or supplied by the battery.

• Rudder status (rudder): The rudder can be working properly, stuck hard-over to the left, or

stuck hard-over to the right.

• Autopilot status (autopilot): The autopilot is able to provide all services, able to provide

altitude hold only, or not able to function.

Environmental transitions are limited to only those that degrade aircraft capabilities. No assump-

tions are made about coincidence of failures.

7.4 System transitions

Permissible system transitions are defined by two predicates: degraded, which reflects the

environmental transition restriction that repair will not occur during flight; and appropriate,

which ties specific reconfigurations to specific environmental states.

7.5 Applications

The modular structure of the system applications is as follows:

Sensors and Pilot Interface

The sensors application and the pilot_interface application have only one configuration

each. Because they only represent system functionality, each includes only one simple module.

Table 2: UAV System Configurations

Configuration Power Rudder Autopilot FCS

Full Service alternator working fully functional normal function

Altitude Hold Only alternator working altitude hold only normal function

Flight Control Only alternator
battery

working
working

nonfunctional
disabled

normal function
normal function

Rudder Hard-Over Left/Right alternator hard-over left/right fully functional compensating for rudder

Rudder Hard-Over Left/
Right, Altitude Hold Only

alternator hard-over left/right altitude hold only compensating for rudder

Rudder Hard-Over Left/
Right, Flight Control Only

alternator
battery

hard-over left/right
hard-over left/right

nonfunctional
disabled

compensating for rudder
compensating for rudder
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Autopilot

The autopilot has only one module, but this module has three service levels. The first executes the

full autopilot function, including both heading and altitude hold capabilities. The second executes

altitude hold function only. The third disables the autopilot.

Flight Control System (FCS)

The FCS application has three modules. The first performs the basic calculation of values that will

be passed to the actuators, based on inputs from either the pilot or the autopilot. The second mod-

ifies the output to compensate for a rudder hard-over condition, if one exists. The third transmits

the (modified or unmodified) output to the actuators.

The reconfiguration interfaces for the four applications described above, the nine acceptable

configurations, and the configuration transitions are specified in PVS. The instantiation has been

type-checked against the specification described in Section 5, and the TCCs have been proven.

7.6 An example system fault-tolerant action

In the example instantiation, each AFTA and each SFTA execute as described in Sections 4.3

and 5.3. Consider, for example, an SFTA that is executing in the Full Service configuration when

the rudder becomes stuck in a hard-over left position. The sequence of reconfiguration steps for

this case is shown in Table 3. First, the system sensors note the failure and generate a signal for

the system to reconfigure during Frame 1 of the SFTA. The signal is passed (logically) from the

SCRAM to all applications at the beginning of Frame 2. During this frame, the sensors applica-

tion executes its halt function, which does not change the application state in case the signal

Table 3: Example Reconfiguration Stages

Frame Stage Action Predicate

1 (start) Sensors: interrupted
All other apps: normal

Sensors: signal generated
All other apps: normal execution

Sensors: invariant
All other apps: invariant

2 Sensors: halting
All other apps: exec_halting

Apps anticipate possible reconfigu-
ration

App postconditions

3 SCRAM:
prepare(Ct) → all apps

FCS: prepare to adjust for rudder
All other apps: normal execution

FCS: transition condition
All other apps: invariant

4 (end) All applications: normal All applications: normal execution All applications: invariant
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occurred due to an application software fault. The other applications execute their exec_halt

functions during this frame, computing normal results but preparing for a possible reconfigura-

tion. Concurrently, the SCRAM computes the configuration to which the system will transition.

At the beginning of Frame 3, the SCRAM notifies the applications that they will transition to

meet their application configurations that correspond to the new system configuration, Rudder

Hard-over Left. Because the FCS will compensate for the hard-over condition, it is the only appli-

cation that must reconfigure. Thus, the other applications will execute four AFTAs during the sin-

gle SFTA described here, where three of the four AFTAs are standard AFTAs under the old/new

configuration, and the fourth is slightly modified because the application will have computed

exec_halt or halt instead of execute in Frame 2. The autopilot’s outputs will be ignored by the

FCS until the FCS has finished reconfiguring.

During Frame 3, the FCS sets the service level parameters of its modules to calculate output

values that are adjusted for the hard-over condition. Our example does not model control gains

explicitly and so the FCS meets its precondition at the end of Frame 3; otherwise, it would initial-

ize data during Frame 4.

7.7 Compliance properties

As explained above, the architecture specification is set up so that compliance is proven if the

example is type correct. PVS generated 71 TCCs for the example system. Most TCCs were

proven with a single command, since the conditions in the example are relatively simple.

The TCC requiring the most complex proof is shown in Figure 5. Its only nontrivial conjunct

is the covering_txns requirement. This function returns true if a specification defines transi-

tions for any possible combination of environmental state and system configuration in which a

reconfiguration signal might be generated. The proof required instantiation of a number of sub-

goals, which was simple but time-consuming because PVS does not handle instantiation particu-

larly well. This difficulty could be overcome easily with a simple enumeration tool to choose

appropriate instantiations. In general, assurance of a reconfigurable system requires a detailed
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analysis of system execution under all possible failure scenarios, and so formalizing this require-

ment has not added an analysis burden to the developer; it has only made that burden explicit.

7.8 Implementation

An implementation of an earlier version of this example [28] exists, although the implementa-

tion has not been verified since the emphasis of our work is on specification properties rather than

verification. The platform upon which the example instantiation operates is a set of personal com-

puters running Red Hat Linux. Real-time operation is modeled using a virtual clock that is syn-

chronized to the clocks provided by Linux. A time-triggered, real-time bus and stable storage are

% Subtype TCC generated (at line 297, column 16) for proto_SCRAM_table
    % expected type

% SCRAM_table(
% proto_apps,
% extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
% (restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]
%                  (proto_speclvl)),
% proto_valid_env, proto_reachable_env)

  % proved - incomplete
prototype_reconf_spec_TCC2: OBLIGATION

FORALL (x: speclvl):
proto_speclvl(x) IFF

   extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
         (restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]
                   (proto_speclvl))(x)

AND FORALL (x: speclvl):
proto_speclvl(x) IFF

extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
(restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]

                   (proto_speclvl))(x)
AND covering_txns(proto_apps,

extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
(restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]

                              (proto_speclvl)),
proto_valid_env, proto_reachable_env, proto_SCRAM_table`txns,
proto_SCRAM_table`primary, proto_SCRAM_table`start_env)

AND FORALL (x: speclvl):
         proto_speclvl(x) IFF
          extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
              (restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]
                   (proto_speclvl))(x)

AND extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
           (restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]
                (proto_speclvl))(proto_SCRAM_table`primary)

AND FORALL (x: speclvl):
         proto_speclvl(x) IFF
          extend[speclvl, {sp: speclvl | NOT sp = indeterminate}, bool, FALSE]
              (restrict[speclvl, {sp: speclvl | NOT sp = indeterminate}, boolean]
                   (proto_speclvl))(x);

Figure 5. TCC from the Example System
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simulated. This example instantiation has been operated in a simulated environment that includes

aircraft state sensors and a simple model of aircraft dynamics. Its potential reconfigurations have

been triggered by simulated failures of the electrical system and executed by the application and

SCRAM instantiations.

The implementation was created only as a feasibility check of the reconfiguration strategy. No

experiments were run on the implementation, because experimental evaluation of ultradependable

properties is infeasible [7].

8. Conclusion

The complexity of many current safety-critical applications, the scope of the environments in

which they must operate, and the strictures placed on them by their dependability requirements

are increasing the prominence of reconfigurable system designs. This increase in prominence is

due to the opportunity those designs present to meet system functionality and dependability goals.

With reconfiguration at the core of a system’s architecture, only a small number of functions must

be ultradependable, and the rest can be ultradependably fail-stop. In the latter case, only error-

detection mechanisms have to be assured, reducing the complexity and cost of software analysis

in many systems. At the hardware level, fail-stop computers and transactional semantics can be

used to ensure reliability of critical functionality, but some processors can be allowed to fail.

Allowing some failures can significantly reduce the power, weight, and space requirements of the

system—which, for many embedded systems, results in significant cost savings.

Reconfiguration introduces questions of correct operation and assurance of that correct opera-

tion, however. For many systems, meeting functional and timing constraints during reconfigura-

tion as well as during standard operation is critical. This work has demonstrated a means through

which general properties of reconfiguration can be assured via proof.

Existing approaches to achieving dependability through reconfiguration involve building the

main system and then adding the capability to transition to a separate backup. We advocate build-

ing a system with the intent of making it reconfigurable, so that reconfiguration is supported by

the high-level system structure. The combination of the approach and the supporting infrastruc-
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ture for applying it has the potential to change the way designers think about critical software. By

distinguishing between desirable functionality and necessary functionality, they can build systems

with significantly higher assurance of dependability, while retaining complex functionality that

can increase comfort and efficiency.

Architecting a system to be reconfigurable also presents developers with a method to target

their analysis efforts. If formal verification against a specification is to be used, for instance, it is

clearly most effective to analyze critical functions completely but analyze only error detection

mechanisms for noncritical functions. Safe programming and protection shells are examples of

techniques for such analysis. The modular structure of the reconfiguration architecture provides

an explicit mechanism for application and composition of these more basic analysis methods.

Finally, our approach provides a method to show clearly the overall picture of a dependability

argument for a reconfigurable embedded system. Systems can be built using fault tolerance mech-

anisms, but these mechanisms show only that certain faults can be tolerated by certain pieces of

the system. Writing a specification that describes the system’s response to specific classes of

errors allows a designer to determine whether the overall dependability requirements of that sys-

tem have been met. Documenting these requirements at a high level of abstraction in the specifi-

cation also allows experts to determine more easily whether the properties guaranteed by the

software are the properties needed to show system dependability.
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