
Melange: Creating a “Functional” Internet

Anil Madhavapeddy†‡, Alex Ho†♥, Tim Deegan†‡,
David Scott‡ and Ripduman Sohan†

†Computer Laboratory, University of Cambridge ‡XenSource Inc. ♥Arastra Inc.

Abstract
Most implementations of critical Internet protocols are written in
type-unsafe languages such as C or C++ and are regularly vulner-
able to serious security and reliability problems. Type-safe lan-
guages eliminate many errors but are not used to due to the per-
ceived performance overheads.

We combine two techniques to eliminate this performance penalty
in a practical fashion: strong static typing and generative meta-
programming. Static typing eliminates run-time type information
by checking safety at compile-time and minimises dynamic checks.
Meta-programming uses a single specification to abstract the low-
level code required to transmit and receive packets.

Our domain-specific language, MPL, describes Internet packet pro-
tocols and compiles into fast, zero-copy code for both parsing and
creating these packets. MPL is designed for implementing quirky
Internet protocols ranging from the low-level: Ethernet, IPv4, ICMP
and TCP; to the complex application-level: SSH, DNS and BGP;
and even file-system protocols such as 9P.

We report on fully-featured SSH and DNS servers constructed us-
ing MPL and our OCaml framework MELANGE, and measure greater
throughput, lower latency, better flexibility and more succinct source
code than their C equivalents OpenSSH and BIND. Our quantita-
tive analysis shows that the benefits of MPL-generated code over-
comes the additional overheads of automatic garbage collection and
dynamic bounds checking. Qualitatively, the flexibility of our ap-
proach shows that dramatic optimisations are easily possible.

1. INTRODUCTION
The rate of attacks against Internet hosts from malware continues
to rise steadily, annually costing millions of dollars in damage and
recovery costs. Remarkably, many of the vulnerabilities are still
caused by low-level errors in buffer management and marshalling
code, despite decades of research into compiler technology which
can protect programs from this class of fault.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 $5.00.

Table 1 shows recent vulnerabilities in OpenSSH, a widely-used
implementation [46] of the SSH protocol written in C. Almost half
of these vulnerabilities are in the packet parsing and marshalling
code. OpenSSH is especially noteworthy since it is a security ser-
vice and so was written with particular care for safety [45]; de-
spite the best efforts of the developers it has been undone by the
sheer complexity of implementing the full protocol in an unsafe
language.

It is well known that many low-level errors in buffer management
and marshalling code could be eliminated if the software was rewrit-
ten in a language which is type-safe [43]. For example, the FoxNet [4,
5] project implemented an entire TCP/IP stack in the language
Standard ML. Although undeniably elegant, FoxNet ultimately did
not deliver in terms of performance; they reported a 10x perfor-
mance loss over a conventional TCP/IP stack, and required com-
piler modifications to handle low-level bit-shifting.

In this paper we demonstrate how it is possible to combine two
techniques, strong static typing and generative meta-programming
in a way which both shields Internet servers from these low-level
vulnerabilities and which, unlike FoxNet, introduces no perfor-
mance penalty. Our MELANGE framework1 comprises the Meta
Packet Language (MPL), together with a compiler and suite of li-
braries which target the Objective Caml (OCaml) [29] language.

MPL is a high-level, domain-specific language that describes bi-
nary network protocols in a succinct specification and compiles
into type-safe, efficient code to manipulate network payloads. The
MPL compiler relieves the programmer of the tedious and error-
prone task of writing verbose marshalling and unmarshalling code
by hand. The generated code exposes a safe external interface while
still exploiting techniques such as zero-copy packet handling and
in-place update for efficiency. Crucially, the generated code is care-
fully designed to interact well with automatic garbage collectors
like the generational collector in the OCaml system.

We report on fully-featured SSH and DNS servers constructed us-
ing MELANGE, and measure greater throughput, lower latency, bet-
ter flexibility and more succinct source code than their C equiv-
alents OpenSSH and BIND. Our quantitative analysis shows that
the benefits of MPL-generated code overcomes the additional over-
heads of automatic garbage collection and dynamic bounds check-
ing, producing a net performance gain. Qualitatively, the flexibility
of our approach shows that dramatic optimisations are easily pos-
sible.

1The full source code is available online at:
http://melange.recoil.org/

http://melange.recoil.org/

VU# Description
40,327 OpenSSH UseLogin allows remote root execution

945,216 CRC32 attack detection integer overflow
655,259 OpenSSH allows arbitrary file deletion
797,027 OpenSSH allows PAM restrictions to be bypassed
905,795 OpenSSH fails to properly apply access control
157,447 OpenSSH UseLogin permits privilege escalation
408,419 OpenSSH contains overflow in channel handling
369,347 OpenSSH vulnerabilities in challenge-response
389,665 SSH transport layer vulnerabilities in kexinit
978,316 Vulnerability in OpenSSH daemon (sshd)
209,807 OpenSSH server PAM auth stack corruption
333,628 OpenSSH contains buffer management errors
602,204 OpenSSH PAM challenge authentication failure

Table 1: Recent CERT vulnerabilities for OpenSSH, with
packet parsing security issues in bold (source: kb.cert.org)

2. ARCHITECTURE
In this section we define the details of the MELANGE application
framework. It adopts Objective Caml (OCaml) [29] as our imple-
mentation language and supports the Meta Packet Language (MPL),
which adds support for control of low-level data layout and efficient
marshalling and handling of protocol data.

2.1 Objective Caml
OCaml is a modern programming language from the ML family
and supports automatic memory management and strong static typ-
ing while allowing a mix of functional, imperative and object-oriented
programming styles in the same program. Dynamic type-casting is
forbidden, and all normal string or array accesses employ bounds-
checking at run-time.

Provided a program has no external C bindings and uses none of
the small set of built-in OCaml unsafe functions then the program
is guaranteed to be type- and memory-safe; it cannot be made to
overwrite its stack or any unallocated part of memory. OCaml
supports concurrency via system threads, although it has a single-
threaded garbage collector. The tool-chain is well-developed and
supports both interpreted byte-code and fast native-code output on
multiple CPU architectures (e.g. i386, Alpha, Sparc, PowerPC and
AMD64).

OCaml has steadily gained popularity in the systems research com-
munity with projects like CIL [40], Ensemble [22] and Microsoft’s
Terminator [11] all using it. It is not just static type-safety that
makes it an attractive language for systems programming, but also
its simplicity. The lack of dynamic type information results in a
very lightweight run-time with a consistent block-based heap struc-
ture that greatly simplifies writing foreign-language bindings com-
pared to (for example) the Java native code interface. The compiler
itself performs only relatively simple code optimisations, leading
to greater levels of stability and predictability in the tool-chain.

2.1.1 Garbage Collection
The OCaml run-time includes a fast garbage collector (GC) [14]
to manage the heap of OCaml programs automatically. The GC is
generational and splits the heap into a minor heap for small and
short-lived objects and a major heap for larger or longer-lived ob-
jects. When a small object is allocated it is placed first into the mi-
nor heap. When the minor heap is full, a mark-and-sweep garbage
collection frees any unreferenced objects. Remaining objects are
copied to the major heap, and the minor heap is left completely

empty. The major heap is also regularly collected and compacted,
but this operation can take significantly longer than the minor heap
due to the larger size of objects. The collections happen incremen-
tally to minimise pauses, and new large objects (over 1K in size)
are put directly in the major heap in the hope that they will be long
lived.

This generational collector handles a typical network server design
well. The minor heap, containing small new objects, is ideal for
allocating temporary data in the control plane. The major heap,
containing older and larger objects, is an ideal place to store the
network packet buffers which are re-used by the application layer
and thus longer-lived. To tune performance, OCaml provides an
API to trigger garbage collection. This is ideal for network servers;
it allows MPL to perform memory management between packets.

2.1.2 Network Code
Writing network packet parsing code directly in OCaml is tedious,
error-prone and verbose and does not leverage any of the advanced
features of the language. Hand-written parsing code in OCaml
looks rather like the equivalent C only with more type-conversion
functions. Some projects such as Ensemble [22] (discussed further
later in §4) adopt a type-unsafe approach to network communica-
tion since they trust other network nodes, but this is not an option
for Internet-facing network servers. Our Meta Packet Language
(MPL) fixes this deficiency by auto-generating the required low-
level OCaml from a simple high-level specification and exposes
the results as high-level native OCaml types.

2.1.3 Quicker Bounds Checking
OCaml automatically introduces fast bounds checking code before
every buffer or array access. However, it is possible for bounds
checks to be selectively disabled through the use of an unsafe func-
tion; e.g. the String.set function has the bounds checks while
the String.unsafe set does not. Unsafe functions should only
be used when there is some way of statically guaranteeing their
safety, otherwise the program could suffer a memory fault. To en-
sure safety, none of our hand-written control-plane code uses these
functions. However, the MPL compiler is able to analyse the packet
specifications, determine at compile-time when some of the bounds
checks may be removed, and emit calls to unsafe functions in the
output code. This technique gives a large performance boost with-
out compromising safety or requiring C bindings, as reported later
in our evaluation.

2.2 Meta Packet Language
The Meta Packet Language (MPL) is a domain-specific language
used to specify the wire format of existing binary network proto-
cols. The specifications contain sufficient information to create bi-
directional parsers that can transmit and receive well-formed net-
work protocol packets. MPL specifications define a protocol wire
format, and the compiler generates appropriate code and interfaces
for that protocol; this is the opposite of conventional interface de-
scription languages such as CORBA IDL. Figure 1 illustrates how
the use of MPL enforces a separation between the concerns of state-
fully manipulating packets (the control plane) and of the low-level
parsing required to convert to and from a stream of network traffic
(the data plane).

Crucially, rather than emitting machine code, the MPL compiler
acts as a meta-compiler and outputs optimised code in high-level,
garbage collected languages (currently only OCaml is fully sup-
ported, although we have designed experimental backends for Java

Network

MPL
Basis

Library

IPv4 IPv6 Ethernet

DNS BGP SSH

ARP ICMP TCP

MPL

Code

MPL
Protocol

Code

tcpdump

MPL
Compiler

Data Plane

Protocol
Logic

Simulator Control Plane

OCaml Server

Figure 1: Architecture of an MPL-driven OCaml server

and Erlang in the past). The generated code itself is not designed to
be human-readable and uses the capabilities of the target language
to minimise memory allocation and bounds-checking overhead to
maximise performance. The interfaces to the code are high-level
and “zero-copy” so that accessing the contents of a packet provides
a reference where possible and only copies data when necessary.

For example, the OCaml interfaces make use of language features
such as polymorphic variants [19], functional objects [47], and ML
pattern matching in order to provide a high level of flexibility and
safety to the control logic. Internally, the OCaml code makes se-
lective use of imperative, impure constructs to improve efficiency,
but hides this from the external interface.

Text-based protocols such as HTTP or FTP are specified as BNF
grammars and can mostly be parsed using existing tools such as
yacc. MPL eases the process of implementing complex binary
protocols such as SSH, DNS, or BGP. We use a non-lookahead
decision-tree parsing algorithm that is simple enough to capture
many binary Internet protocols while retaining a simple set of rules
to ensure that specifications remain bijective.

MPL cannot express context-free grammars by design, since it has
no stack. This has not proven to be a limitation, since most real-
world binary Internet protocols are, perhaps due to their roots in
early resource-constrained software stacks, simple (albeit quirky)
grammars due to the evolutionary nature of Internet protocol de-
sign. When greater expressivity is required, MPL supports custom
field types which can be written directly in the language backend,
as we explain later in our DNS protocol implementation (§3.2.1).

2.2.1 Language
Figure 2 lists the Extended BNF grammar for MPL, and the rest of
this section explains it in more detail. The simplest MPL specifi-
cations consist of an ordered list of named fields, each with three
possible types: (i) wire types for the network representation of the
field; (ii) MPL types used within the specification for classifica-
tion and attributes (represented as strings in the grammar); and (iii)
language types that are the native types of the field in the target
programming language.

Internet protocols often use common mechanisms for representing

main→ (packet-decl)+ eof
packet-decl→ packet identifier [(packet-args)] packet-body
packet-args→ { int | bool } identifier [, packet-args]
packet-body→ { (statement)+ }
statement→ identifier : identifier [var-size] (var-attr)* ;

| classify (identifier) { (classify-match)+ } ;
| identifier : array (expr) { (statement)+ } ;
| () ;

classify-match→ ‘|’ expr : expr [when (expr)] -> (statement)+
var-attr→ variant { (‘|’ expr {→ |⇒} cap-identifier)+ }

| { min | max | align | value | const | default } (expr)
var-size→ [expr]
expr→ integer | string | identifier | (expr)

| expr { + | - | * | / | and | or } expr
| { - | + | not } expr
| true | false
| expr { > | >= | < | <= | = | .. } expr
| { sizeof | array length | offset } (expr-arg)
| remaining ()

Figure 2: EBNF grammar for MPL specifications

values (e.g. 4 octets in big-endian byte order for a 32-bit unsigned
integer), and this is captured by wire type definitions. Built-in MPL
wire types include bit-fields, bytes, and unsigned fixed-precision
integers and can be extended on a per-protocol basis. Section 3.2
containts an illustrative example for DNS. Each wire type is stat-
ically mapped onto a corresponding MPL type so the contents of
the field may be manipulated within the specification (e.g. for clas-
sification). The MPL types are fixed-precision integers, strings,
booleans, or “opaque” where the payloads are not parsed. Every
wire type also has a corresponding language type—an unsigned
32-bit integer is mapped into the OCaml int32 type, and a com-
pressed DNS hostname (§3.2) is an OCaml string list.

The classify keyword permits parsing decisions to depend on the
contents of a previously defined field. The packet classification
syntax is similar to ML-style pattern-matching with the exception
that each match has a text label attached that is used in the output
interface to identify the packet type (e.g. “Ethernet-IPv4-ICMP-
EchoReply”). Every field can include a set of attributes specifying
constraints such as a default value, a constant value, or alignment
restrictions. Since most network protocols use a set byte-order, the
endian-ness is set via a flag to the basis library routines. It only
needs to be changed for host-specific protocol parsing (e.g. our
libpcap [24] file parser) or protocols which are specifically little-
endian (e.g. the Plan 9 filesystem protocol [23]).

Figure 3 lists three MPL specifications for subsets of the Ethernet,
IPv4, and ICMP protocols2. The examples illustrate how variable-
length buffers are bound to previous fields in the header that spec-
ifies their length. For example, in IPv4, the ihl field is later used
to calculate the length of the options variable-length buffer dur-
ing packet parsing, and is automatically calculated when generating
IPv4 packets using the MPL interfaces. We have also created MPL
specifications for a number of additional protocols, including BGP,
DNS, SSH, and DHCP (available on-line).

The variant attribute maps values to human-readable labels that
are exposed in the external code interface; this is not only more
readable but often more type-safe as they become variant algebraic
types in ML or enumerations in Java. Many fields also define de-
fault attributes to make the code for packet creation more succinct
2We do not reiterate the network formats for Ethernet, IPv4 and
ICMP for space reasons.

packet ethernet {
dest mac: byte[6];
src mac: byte[6];
length: uint16 value (offset (eop)-offset (length));
classify (length) {

|46..1500:”E802 2” →
data: byte[length];

|0x800:“IPv4” →
data: byte[remaining ()];

|0x806:“Arp” →
data: byte[remaining ()];

|0x86dd:“IPv6” →
data: byte[remaining ()];

};
eop: label;

}

packet ipv4 {
version: bit[4] const (4);
ihl: bit[4] min (5) value (offset (options) / 4);
tos precedence: bit[3] variant {

|0 ⇒ Routine |1 → Priority
|2 → Immediate |3 → Flash
|4 → Flash override |5 → ECP
|6 → Inet control |7 → Net control

};
delay: bit[1] default (false);
throughput: bit[1] default (false);
reliability: bit[1] default (false);
reserved: bit[2] const (0);
length: uint16 value (offset (data));
id: uint16;
reserved: bit[1] const (0);
dont fragment: bit[1] default (0);
can fragment: bit[1] default (0);
frag off: bit[13] default (0);
ttl: byte;
protocol: byte variant {

|1→ICMP |2→IGMP |6→TCP |17→UDP};
checksum: uint16 default (0);
src: uint32;
dest: uint32;
options: byte[(ihl × 4) - offset (dest)] align (32);
header end: label;
data: byte[length-(ihl×4)];

}

packet icmp {
ptype: byte;
code: byte default (0);
checksum: uint16 default (0);
classify (ptype) {
|0:“EchoReply” →

identifier: uint16;
sequence: uint16;
data: byte[remaining ()];

|5:“Redirect” →
gateway ip: uint32;
ip header: byte[remaining ()];

|8:“EchoRequest” →
identifier: uint16;
sequence: uint16;
data: byte[remaining ()];

};
}

Figure 3: MPL specifications for subsets of the Ethernet, IPv4
and ICMPv4 protocols

in the common case and afford the MPL compiler the opportunity
to create “fast-path” unmarshalling code.

More complex protocols such as DNS or SSH also make use of ad-
ditional MPL features such as the support for state variables, which
are necessary to deal with protocol irregularities and compatibility
issues, and boolean/string classifications. This paper does not seek
to provide a rigorous definition of MPL, but instead to convey a
feel for the succinctness and clarity of a typical real-world proto-
col specification. A complete user manual is available with more
details [32].

2.2.2 OCaml Interface
The OCaml code generated by the MPL compiler does not commu-
nicate with the network directly; instead it makes a series of calls
to a basis library that includes both I/O and buffer management
functions. The library internally represents each packet as a single
string to reduce data copying, and provides a light-weight packet
environment record to represent fragments of packet data:

type env = {
buf: string;
len: int ref;
base: int;
mutable sz: int;
mutable pos: int;

}

This structure uses the OCaml facility for references (essentially
type-safe non-NULL pointers) and mutable data that can be de-
structively updated. A packet environment can be cloned to create
a more restrictive view into the packet (e.g. during classification),
which cheaply copies the meta-data in the packet environment and
not the actual payload. The payload data is always represented by
a single large string that, together with its length, is shared across
all of the packet environments.

The style of programming found in the generated code is imperative
and C-like and, if it were written by hand, could easily result in
corrupted packet data. In this system, all the code is generated by
the MPL compiler from the MPL specification, ensuring the code
is both safe and efficient. The external OCaml interface exposes
functional objects to represent each packet, with each classification
branch being assigned a unique name based on the labels in the
MPL specification.

The example below assumes the presence of checksumming func-
tions that operate on ICMP, TCP or UDP packets and shows how
ML pattern-matching can be used to manipulate network data in an
elegant functional style with minimal overhead.

let ipv4 = IPv4.unmarshal env in
let checked = match ipv4 with
|‘ICMP icmp → icmp checksum icmp#data
|‘TCP tcp → tcp checksum tcp#data
|‘UDP udp → udp checksum udp#data
|‘Unknown data → false in
output (if checked then “passed” else “failed”)

If necessary, low-level code can be written directly using the basis
library; the example below iterates over the payload of an ICMP
packet environment to calculate the ICMP protocol checksum. Note
that the code is 100% OCaml—no C bindings are required.

let ones checksum sum =
0xffff - ((sum lsr 16 + (sum land 0xffff)) mod 0xffff)

let icmp checksum env =
let header sum = Uint16.unmarshal env in
Stdlib.skip env 2;
let body sum = Uint16.dissect (+) 0 env in
ones checksum (header sum + body sum)

Finally, data copying is minimised while creating packets through
the use of packet suspensions—closures that capture the arguments
required for a packet and delaying the act of writing data to a packet
environment. These suspension functions can be nested; higher-
level protocol suspensions can contain references to lower-level
protocol suspensions. Finally, when an output buffer is available,
it is applied to the packet suspension, which writes out its contents
to the buffer as one operation. The example below shows how an
ICMP echo reply packet can be constructed when supplied with
an incoming packet that has previously been classified into two
views—ip for the IPv4 header and body and icmp for the ICMP
subset.

(! env represents the packet environment !)
let icmp fn env =

(! Create ICMP packet suspension !)
let reply = Icmp.EchoReply.t
∼identifier:icmp#identifier
∼sequence:icmp#sequence
∼data:(‘Frag icmp#data frag) env in

(! Compute overall ICMP checksum !)
reply#set checksum (icmp checksum reply)

in
(! Create the IPv4 suspension !)
let ipr = Ipv4.t ∼id:ip#id ∼ttl:255 ∼proto:‘ICMP
∼src:ip#dest ∼dest:ip#src ∼options:‘None
∼data:(‘Sub icmp fn) in

(! Apply IPv4 packet suspension to environment !)
let reply = ipr env in
let csum = ip checksum (reply#header end / 4) env in
reply#set checksum csum

A packet suspension icmp fn is created with information about
the ICMP identifier, sequence number, and payload taken from the
incoming ICMP packet. The identifier and sequence number are
copied since they are integers, but the larger payload is preserved
as a reference to the incoming packet. The ICMP suspension is
then passed to an IPv4 creation function that copies some data from
the incoming packet (e.g. the source and destination addresses)
and calculates the checksum. The packet is evaluated “backwards”
with the IPv4 closure marshalled, which evaluates the ICMP clo-
sure at the appropriate location in the packet. This makes packet
creation composable; an Ethernet layer could be added by passing
the IPv4 function as another packet suspension; all of the packet
offsets would automatically be adjusted by the auto-generated MPL
code.

The OCaml interface also supports modifying packets in place, as
seen in the set checksum example above. This permits proxies
such as IPv4 routers or NAT software to unmarshal packets, safely
modify fields in place and transmit the result without re-creating
the entire packet. Further details are available separately [32].

2.2.3 Performance
We now evaluate the performance of the MPL/OCaml backend us-
ing ICMP, which allows hosts to transmit “ping” packets to other
hosts, which send back echo responses. The transmitting host en-
codes in the request a timestamp that is checked when the response

ICMP Payload Size (bytes)

0 1000 2000 3000 4000 5000 6000

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP

OCaml Copy

OCaml Normal

Figure 4: Latencies for lwIP vs OCaml “functional” version
(OCaml Copy) which copies data and a normal MPL version
(OCaml Normal) (lower gradient is better).

ICMP Payload Size (bytes)

0 1000 2000 3000 4000 5000 6000

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 lwIP

Reflect (normal)

Reflect (MPL optimised)

Figure 5: Latencies for lwIP vs the OCaml “reflector” with
MPL bounds optimisation off (Reflect normal) and on (Re-
flect MPL optimised). The MPL optimised version is type-safe
OCaml and as fast as lwIP.

is received and used to determine the time-of-flight of the packet.
This simple protocol requires little more than packet parsing, and
the size of pings can be varied making it an excellent test for gaug-
ing how well MPL code performs.

The tests were run on a stock OpenBSD 3.8/i386 (GENERIC) kernel,
on a 3.00GHz Pentium IV with 1GB of RAM, and all non-essential
services disabled. The applications use the tuntap interface that
allows userland applications to send and receive raw Ethernet in
the tap mode or IPv4 packets in the tun mode. As a reference, we
benchmark against the popular lwIP user-level networking stack3,
which is written in C and does not use automatic garbage collection
or dynamic bounds checking. This is a good way to measure the
throughput of our OCaml implementation versus a C equivalent.

Pings are transmitted on the same machine to eliminate variable
network overhead. The Ethernet tap interface routes requests to
the stack being tested. Our implementation uses the MPL specifi-
cations from Figure 3 to process the Ethernet, IPv4, and ICMP pro-
tocols, and is completely written in OCaml. The results are plotted
over varying ICMP payload sizes; lwIP has a maximum MTU of
1500 so no larger results are available. Each test was repeated 150
times and the mean times plotted against the payload size. The 95%
confidence interval is too small to show on the graphs. The gradi-
ent of the lines are of primary interest, as this reflects the amount of
3See http://savannah.nongnu.org/projects/lwip.

http://savannah.nongnu.org/projects/lwip

Key Negotiation
Key Exchange

(Diffie-Hellman Group1
Diffie-Hellman Group14

Diffie-Hellman Gex)
Switch to New Keys

Debug Message
Ignore Message

Disconnect Message

Transport Layer
Auth

None
Password
PublicKey
HostKey

Channel

Open Session
Port Forward
X11 Forward

Agent Forward

Chan #1

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Chan #2

Request Pty
Request Shell
Request Env

Window Adjust
Send Data

Send Stderr
Send Signal
Exit Status
End of Data

Figure 6: Various layers of the Secure Shell v2 protocol: a
global transport, authentication and channel layer, and local
channel states.

work done per byte and thus reveals how well the implementations
scale with data size.

Figure 4 shows lwIP against two versions of the OCaml ICMP
responder: (i) the copying version that copies the ICMP payload
when parsing the packet, and again every time it encapsulates data
in a new protocol layer (i.e. ICMP and IPv4), just as a conven-
tional functional implementation would; and (ii) the normal ver-
sion that uses the MPL (internally zero-copy) API and creates a
new ICMP packet to respond with; it copies the payload exactly
once. The copying server (performing 3 payload copies) clearly
performs more work per byte than lwIP as reflected in the steeper
gradient. The normal version is nearly parallel to the lwIP gra-
dient; it is slightly slower as it re-calculates the ICMP checksum,
whereas lwIP takes advantage of the IPv4 checksum algorithm and
adjusts it in place. We conclude that minimising data copying—by
using the MPL zero-copy API in this case—increases the network
performance of the application.

In order to match the performance of lwIP, we implemented a “re-
flecting” OCaml version that matches its behaviour—the echo re-
quest packet is modified in-place and directly re-transmitted as an
echo reply. The packet payload is thus read only once (to verify the
IPv4 checksum) and not copied at all.

Figure 5 shows the performance of the reflecting OCaml server
with every payload access bounds checked, as a manual implemen-
tation would, and another that uses the MPL auto-generated code
with optimised bounds checks. The MPL-optimised version is as
efficient as lwIP, while the version with redundant bounds checks
is much slower. This test confirms that the MPL bounds checking
optimisations make a significant different to the performance of the
data plane code.

This optimisation could potentially be handled by the OCaml com-
piler itself, but the general case is still an active and complex area
of type-theory research (e.g. dependent types [48]). Instead, we
choose to solve it by integrating a domain-specific language in
which the extra constraints are enforced, to generate optimised OCaml
using unsafe constructs in a safe way; this approach is also used by
the Coq theorem prover [30].

3. EVALUATION
We now describe two complex servers written using MELANGE:
(i) a secure shell server, and (ii) a domain name server. We dis-
cuss the challenges of parsing the respective protocols and evaluate
the throughput and latency of each server. We also show that us-

encrypted
header +

encrypted initial
data

decrypted
header +

decrypted initial
data

decryption
function

decrypted header +
compressed

unverified data +
MAC + padding

decryption
function

M
A

C
fu

n
c
ti
o
n

decrypted header +
compressed data +

verified MAC +
padding

decompression
function

OCaml MPL
data structure

decrypted
header + data +
verified MAC +

padding

MPL
unmarshal

Figure 7: Illustrating the complex data flow of SSH wire traffic
to plain text payload that can be parsed using MPL.

ing MPL/OCaml results in more compact code than C. Finally, we
analyse the execution profiles and code sizes of the various DNS
implementations.

3.1 Secure Shell (SSH)
SSH is a widely used protocol for providing secure login over a
potentially hostile network. It uses strong cryptography to provide
authentication and confidentiality, and to multiplex data channels
for interactive and bulk data transfer. The protocol has recently
been standardised by the IETF4; Figure 6 illustrates the various lay-
ers: (i) a transport layer deals with establishing and maintaining en-
cryption and compression via key exchange and regular re-keying;
(ii) an authentication layer establishes credentials immediately af-
ter the transport layer is encrypted; and (iii) a connection protocol
that provides data channels for interactive and bulk transfer.

The connection protocol has both global messages (e.g. for TCP/IP
port forwarding) and channel-specific messages for individual ses-
sions. Channels can be created and destroyed dynamically over a
single connection, and data transfer can continue while new keys
are established at the transport layer. The protocol also supports
different cryptographic algorithms for the transmission and receipt
of data. Extensions such as the use of DNS to store host keys and
new authentication methods have also been published5.

We have implemented a fully-featured SSH library—dubbed MLSSH—
that supports both client and server operation. The library supports
all the essential features of an SSH session including key exchange,
negotiation and re-keying, various authentication modes (e.g. pass-
word, public key and interactive) and dynamic channel multiplex-
ing. The OCaml Cryptokit library is the only external component,
and no extra C bindings were used except for the small addition
of pseudo-terminal functions (lacking from the OCaml standard
UNIX library). Since C bindings are a source of type-unsafety, their
complexity and size is kept as minimal as possible—the MLSSH C
bindings are 140 lines.

In the remainder of this section, we discuss the challenges of pars-
ing SSH traffic using MPL and evaluate the performance of MLSSH
versus OpenSSH.

3.1.1 Packet Format
Constructing a control and data plane abstraction for the SSH pro-
tocol is rather more complex than our earlier ICMP case study.
Packets are constructed in two stages: (i) a secure encapsulation
layer for all packets that includes encryption, message integrity
4RFC 4251, 4252, 4253, and 4254
5RFC 4255, 4256, and 4344

Transfer size (MB)
100 150 200 250 300 350

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
e

c
)

0

5

10

15

20

25

30

35

40

mlssh

OpenSSH 4.3

Figure 8: Throughput of OpenSSH vs MLSSH with encryption
and message hashing disabled (higher is better).

Transfer size (MB)
100 150 200 250 300 350

Tr
an

sf
er

 r
at

e
(M

B/
se

c)

0

5

10

15

20

25

30

35

40
mlssh (arcfour)
O penSSH 4.3 (arcfour)
mlssh (aes−192)
O penSSH 4.3 (aes−192)

Figure 9: Throughput of OpenSSH vs MLSSH using stream and
block ciphers (higher is better).

hashes and random padding to foil traffic analysis; and (ii) clas-
sification rules for the decrypted packet payloads. Figure 7 illus-
trates the data flow; firstly a small chunk of data is read and de-
crypted from which the length of the rest of the packet is obtained.
The remaining payload is read and decrypted, followed by an unen-
crypted message authentication code and random padding. Finally,
this plain-text payload is passed onto the MPL classification func-
tions for conversion into a packet object and processing by the con-
trol logic. The early implementations of MLSSH [33] did not use
MPL and required a payload data copy at every stage of this com-
putation. The latest (and much faster!) version using MPL requires
only a single copy across all the stages.

The SSH protocol places high demands for flexibility on parsing
tools. MPL-generated code be interfaced easily with hand-written
code in order to: (i) handle protocol quirks (which exist due to
specification errors or historical precedent); and (ii) call external li-
brary functions (e.g. encryption algorithms) without excessive data
copying. MPL permits protocol quirks to be handled using state
variables that are driven from the control plane logic. For exam-
ple, a global SSH channel response can optionally include a “port”
field, but only if it is replying to a TCP/IP port-forwarding request;
an MPL state variable permits the control plane to instruct the data
plane on which parsing action to follow.

!"#$%!&'()$#*+%%,-'.*/,0$*123
456 4567 8 8547 858

9
:
0
:
.'
#,
-
$
*;
%$
<
:
$
"
(
=
*1
>
3

4

?4

@4

A4

B4

844
0.22C

D&$"EEF*@5G

Figure 10: Cumulative Distribution Function of inter-packet
arrival times of OpenSSH and MLSSH.

3.1.2 Performance
We measure the sustained throughput of an SSH session by re-
peatedly transferring large files through a single connection. The
OpenSSH client is used to connect to either an MLSSH or OpenSSH
server, with all logging and debug code disabled. A file of variable
size (ranging from 100MB to 350MB) is transferred via the estab-
lished SSH connection. This is repeated 100 times across the same
connection by dynamically creating new channels, ensuring that at
least 10GB of data are sent through every session to highlight any
bottlenecks due to memory or resource leaks. Since the SSH pro-
tocol also mandates regular re-keying, our benchmarks reflect that
cost as part of the overall results.

Figure 8 shows a plot of transfer rate (in MB/sec) versus the transfer
size of the individual data chunks with encryption disabled. Each
data point and error bar reflects the average time and 95% confi-
dence interval over the 100 repeated invocations. MLSSH is slightly
faster than OpenSSH and interestingly also has a smaller varia-
tion of transfer rates. In general, OpenSSH was more “jittery” as
seen in the anomalously high transfer rate when transferring files
in 220MB chunks (this was reproducible and attributed to cache
behaviour).

Figure 9 shows the same experimental setup applied with encryp-
tion enabled and using HMAC-SHA1-160 as the message digest
algorithm. Both servers have equivalent performance when using
the Arcfour stream cipher, but due to the less optimised AES im-
plementation MLSSH is slower when used with the AES-192 block
cipher. Comparison of the different cryptographic libraries used
(OpenSSL and Cryptokit) reveals that the OCaml AES implemen-
tation is less optimised and has potential for improvement.

We also measured the latency of established SSH connections to
test if automatic garbage collection was introducing long pauses in
MLSSH. The server is first heavily loaded with bulk data transfers
as in the previous test, and then a “character generator” alternately
transfers a single byte and sleeps for a second. The times between
receiving these characters are plotted in Figure 10 as a cumulative
distribution function.

The arrival times recorded through MLSSH are extremely consis-
tent and clustered around the one second mark with little variance.
In contrast, OpenSSH exhibits jitter within a range of ±100ms; de-
lays are being introduced within the server which cause it to disrupt
the arrival times. This is surprising since: (i) OpenSSH is perform-

7 example 3 com 0

P 193 www

3 foo 3 bar 010

19

32

Figure 11: DNS label compression example, with
www.example.com being encoded by a pointer. The dashed
boxes are the offset from the start of the packet.

ing manual memory management which should be faster than au-
tomatic garbage collection; and (ii) MLSSH ought to have a wider
distribution to reflect the cost of the occasional garbage collection
introducing a delay.

Examination of the internals of the OpenBSD malloc(3) and free(3)
routines reveal that modern memory management is as complex as
the OCaml garbage collector routines. Allocation in OCaml is a
simpler process than malloc(3) since only a single pointer needs
to be incremented [14], as opposed to the more complex free-list
management required by the libc functions. The presence of an
incremental garbage collector which performs predictable slices of
memory management at regular intervals is also better than the
more ad-hoc caching of pages (to reduce the number of system
calls) performed by free(3). The minimised memory allocation of
MPL means that the OCaml major heap is not over-used, and ex-
pensive compaction of the major heap is avoided, resulting in faster
performance than the manual memory management routines.

3.2 Domain Name System (DNS)
The Domain Name System is a distributed database used to map
textual names to information such as network addresses. The DNS
consists of three components: (i) the Domain Name Space and
Resource Records (RRs), which form a tree-structured namespace
with associated data; (ii) name servers, which hold information
about portions of the namespace and either act as authoritative sources
or proxies; and (iii) resolvers in client network stacks, which man-
age the interface between client DNS requests and the local net-
work name server. Surveys of DNS name server deployment on
the Internet have revealed that BIND [1] serves over 70% of DNS
second-level .com domains and over 99% of the servers are written
in C [3, 38].

BIND has a long history of critical security vulnerabilities despite
several complete re-writes. A statically type-safe and flexible DNS
server would be useful not only for immediate deployment, but also
to aid research into novel name systems (e.g. centralised name ser-
vices [12]). Our authoritative server—dubbed DEENS—is written
entirely in MPL and OCaml. DEENS also features a BIND-style
zone file parser, and we have also written several variants such as a
multicast DNS server, a dig client, and caching proxies.

3.2.1 DNS Packet Format
DNS was designed to be a low-latency, low-overhead protocol for
resolving domain names. In order to avoid the time required to per-
form a 3-way TCP handshake, most DNS requests and responses
can be encoded in a single UDP packet, normally 512 bytes or less.
Due to tight resource restrictions, the original DNS specification
employed a compressed binary packet format6.
6RFC 1034, 1035

Number of Resource Records loaded

0 5000 10000 15000 20000 25000 30000

D
N

S
 q

u
e

ri
e

s
 p

e
r

s
e

c
o

n
d

12000

12500

13000

13500

14000

14500
BIND 9.3.1

Deens

Figure 12: Throughput of BIND vs DEENS with random Zipf-
distribution query sets (higher is better).

The compression scheme works as follows. An uncompressed host-
name is separated into a list of labels by splitting at each dot char-
acter. Each label is represented by a byte indicating its length fol-
lowed by the contents. A length of 0 indicates the end of the host-
name. To save space, duplicate labels are stored just once with
pointers used to reference the shared copy; this duplication is com-
mon within response packets since the top-level portions of host-
names are often shared.

Figure 11 illustrates this compression—two hostnames foo.bar
and example.com are defined in different areas of a DNS response
(the dashed boxes indicate absolute offsets within the packet). When
the hostname www.example.com is inserted later, the www label is
inserted as normal, but the tail of the hostname is replaced by a
pointer to the previous definition of example.com.

This compression scheme is challenging to implement securely and
safely, and has been the cause of several serious bugs in other
servers (e.g. from recursively following pointers while parsing DNS
traffic). Recall that MPL supports custom field types in order to ex-
tend protocol descriptions. We define two new custom types for
DNS: (i) dns label; and (ii) dns label comp, where the latter
indicates a compressible hostname. The custom types are imple-
mented directly in OCaml as extensions to the basis library, and
use a stateful symbol table to track the locations of pointers and
labels. This permits DNS packets to be processed (for both cre-
ation and parsing) in a single pass, and the logic for handling these
special labels is contained in a small MPL module.

3.2.2 Performance
We generated a large random data set using the freely available
BIND DLZ tools7, which generate both the source zone files for an
authoritative server and also an appropriate query set that can be fed
into the queryperf measurement tool from the BIND 9.3.1 distri-
bution. The data was configured in a Zipf power-law distribution to
match real-world DNS data sets [26].

Figure 12 measures the performance of BIND against DEENS in
terms of queries per second against the data set size. The OCaml
implementation is around 10% faster, and both servers exhibit level

7Available online at http://bind-dlz.sf.net/

http://bind-dlz.sf.net/

Latency (ms)

0 0.5 1 1.5 2

C
u

m
u

la
ti
v
e

 F
re

q
u

e
n

c
y
 (

%
)

0

20

40

60

80

100
BIND 9.3.1

Deens (memoisation off)

Figure 13: Cumulative Distribution Function of BIND vs
DEENS latencies with loaded servers (lower is better).

performance as the data set size increases. Figure 13 shows the cu-
mulative distribution function for response latency. DEENS is con-
sistently slightly faster than BIND, but the stair-step shape of the
graph shows that the depth of the query dominates the implemen-
tation language.

However, the real benefit of using OCaml becomes obvious when
we observe that the results of DNS queries are purely a function
of the tuple qclass × qname × qtype of a DNS question, where
qclass is the DNS class (most often “Internet”), qname is the do-
main name and qtype is the request record type. The exception
to this rule is servers that perform arbitrary processing when calcu-
lating responses (e.g. DNS load balancing8), but this is a specialist
feature we are not concerned with for the moment. The only vari-
ation is that the first two bytes in the response must be modified to
reflect the DNS id field of the request.

As an optimisation, we add a memoisation query cache that cap-
tures a query answer in a string containing the raw DNS response
and use the cached copy when possible. This requires changes to
just 4 lines of code in DEENS, and to test the effectiveness we im-
plemented two separate caching schemes: (i) a normal hash-table
mapping the query fields to the marshalled packet; and (ii) a “weak”
hash-table (using the standard Weak.Hashtbl functor) of the query
fields to the packet bytes.

The normal hash table simulates an ideal cache when large amounts
of memory are available, since it performs no cache management
and will continue to grow. The weak hash table lies at the other ex-
treme and is a cache that can be garbage collected and data may dis-
appear at any time. Weak references are special data structures that
do not count towards the reference counts of objects they point to
for the purposes of reclamation and are often used as a safe mecha-
nism to construct efficient purely functional data structures (known
as “hash consing”). In our case we are using the weak data struc-
ture in isolation without any strong references pointing to it, and so
it is cleared on every garbage collection cycle. Furthermore, it does
not require any traditional cache management (e.g. least-recently-
used checks) and can safely grow to any size—if the heap grows
too large, a garbage collection will erase the cache.

Figure 14 shows a dramatic performance increase from our mem-
oisation cache as DEENS is now twice as fast as BIND as a re-

8RFC 1794

Number of Resource Records loaded

0 5000 10000 15000 20000 25000 30000

D
N

S
 q

u
e

ri
e

s
 p

e
r

s
e

c
o

n
d

10000

15000

20000

25000

30000

BIND 9.3.1

Deens (memoisation on)

Deens (memoisation off)

Deens (weak memoisation on)

Figure 14: BIND vs DEENS throughput with the strong
and weak memoisation optimisations with random Zipf-
distribution query sets (higher is better).

sult of a small change in our OCaml code. This flexibility high-
lights the gains from re-implementing protocols using high-level
languages—we can experiment with various data structures with
relatively little effort, while maintaining type-safety.

3.3 Code Structure
In this section we analyse the code structure of MPL/OCaml appli-
cations, firstly via instruction profiling, and secondly by looking at
the code size.

3.3.1 Profiling Analysis
Applications constructed using MPL/OCaml have very different
run-time behaviour from applications written in C using manual
memory management. In this section we present the results of de-
tailed profiling of DEENS and BIND in order to understand these
differences. The performance tests (§3.2.2) were repeated on a
cluster of dual-CPU 2.4GHz (no-HT) Xeon machines, running Linux
2.6.17.9 and oprofile.

Using a combination of function call-graphs and cumulative-time
profiling, we categorised the time spent by each application into:
(i) System calls; (ii) Network packet handling code; (iii) Libraries
(e.g. libc); (iv) Memory management (e.g. garbage collection);
(v) OCaml run-time library; (vi) Data structure management (e.g.
looking up a query); and (vii) Other code (e.g. thread manage-
ment). For the OCaml applications, we assigned standard library
functions depending on their invocation in the call graph where
possible, and only into the more generic “OCaml” category if the
use wasn’t clear. For the purposes of our analysis, we combine the
time spent in the OCaml run-time library and data management.
Figure 15 shows the results for BIND and normal and memoised
DEENS.

BIND spends most time in data management (49.5%) and network
packet creation (23.2%) with little time in its memory management
layer (4.9%). DEENS spends more time in data management due
to the overhead of the OCaml run-time library (57.8%) and less
time in packet processing due to the more efficient MPL-generated
code (16.3%). Both servers spend approximately 14% in external
libraries and 4.1% in system calls, indicating that there is no ex-
tra overhead to the userland/kernel interface when using MPL and
OCaml.

BIND DEENS +memoised +weak

P
e
rc

e
n
ta

g
e
 t

im
e
 s

p
e
n

t
(b

y
 c

a
te

g
o
ry

)

0

20

40

60

80

100
System

Other

Network

Libraries

Memory

Data mgmt

OCaml

Figure 15: Normalised profiling results for the DNS servers,
showing how each application spends its time serving queries.

Clearer differences arise when examining the memoized versions
of DEENS. Recall (§3.2.2) that there are two versions—a strongly
memoized cache which never releases cached entries and uses a
larger heap in return for greater performance, and a weakly mem-
oized cache which is erased on every garbage collection, but still
maintains fast performance. Both versions spend less time process-
ing network packets (12.35% and 14.4%) due to the cache hit rates,
and more time in the garbage collector (19.5% and 22.8%) due to
the extra use of the heap for storing cache entries. As expected, the
strongly-memoized version spends more time in the garbage col-
lector (by 3.3%) due to the larger heap requiring longer collection
scanning times. The increased system call percentage (8.5% and
10.7%) is because the faster memoized versions are transmitting
many more packets than the slower non-caching versions.

As an aside, the memoized DEENS saturated a GigE network line
with responses during these tests, sustaining over 64,000 query
responses per second (compared with around 20,000 for a non-
caching DEENS, and less for BIND).

Memory Usage
In our tests, we loaded the DNS server with 30,000 resource records
from approximately 2,200 zones. A recent survey of DNS name
server density9 shows the mean number of zones per server at 37.2
and the median 3.0, placing our experimental setup comfortably
larger than an “average DNS server”.

The memory hierarchy of modern servers is large enough to store
a significant proportion of hot zone data in the processor cache.
Our tests show a virtually 100% L2 data cache hit rate while run-
ning the benchmarks and DEENS having a slightly better instruction
cache hit-rate than BIND due to its smaller code footprint. We have
also explored ML DNS servers supporting millions of zones [13],
although we do not cover that analysis in this paper.

3.3.2 Lines of Code
A primary benefit of our approach is the smaller amount of code re-
quired to construct network applications. By reducing the difficulty
and time required to rapidly implement Internet protocols (much as
yacc simplified the task of writing language grammars), we hope
to increase the adoption of type-safe programming techniques.

9The Measurement Factory, June 2005. http://dns.
measurement-factory.com/surveys/200506.html

OpenSSH mlssh BIND Deens

L
in

e
s
 o

f
c
o

d
e

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

28,347

13,635

207,105

7,806

C

MPL / OCaml

generated code

Figure 16: Relative code sizes for MPL/OCaml and C code
(lower is better).

To justify this claim of simplicity, we analyse the lines of code in
our protocol implementations against their C equivalents. The C
code is first pre-processed through unifdef to remove platform
portability code that would artificially increase its size, but oth-
erwise unmodified. The OCaml code is run through the camlp4
pre-processor that reformats it to a consistent, well-tabulated style.
External libraries were not included in the count (e.g. OpenSSL or
Cryptokit).

Figure 16 plots the number of lines of C, OCaml and auto-generated
code present in the applications. The figures for SSH show that
OpenSSH is nearly 3 times larger than the total lines of OCaml in
MLSSH, and 6 times larger when considering only the hand-written
OCaml.

The numbers for DNS reveal that DEENS is a remarkable 50 times
smaller than the BIND 9.3.1. DEENS does lack some of the fea-
tures of BIND such as DNSSEC support and so this should only
be treated a rough metric. We are confident, particularly after our
experiences with constructing MLSSH, that these extra features can
be implemented without issue.

3.3.3 Configuration
The use of the MELANGE framework encourages the separation of
data plane logic from control plane logic. The former is written in
MPL and the latter in OCaml. A benefit of this split is that con-
figuration information can easily be abstracted out by the control
plane portion. In MLSSH, for example, all configuration decisions
are represented as a functional object that is exported from the li-
brary and implemented by the main application. A sample snippet
is shown next:

type user auth =
|Password |Public key
|Interactive |Host

type reason code = |Protocol error |Illegal user [etc...]
type auth resp = bool * user auth list
type conn resp =

|Allow of connection t
|Deny of reason code

class type server config = object
method connection req : int32→ int32→ conn resp
method auth methods supported : user auth list
method auth password : string→ string→ auth resp
method auth public key : string→ Key.t→ auth resp

end

http://dns.measurement-factory.com/surveys/200506.html
http://dns.measurement-factory.com/surveys/200506.html

In this example, we define two new types: (i) for user authentica-
tion methods (user auth); and (ii) for providing reasons for deny-
ing connections (reason code). Both are part of the SSH protocol
specification. The server config object defines a class signa-
ture, which contains a list of call-back functions that are invoked at
appropriate points in the protocol state machine. For example, the
auth password function is called when password authentication is
required, and connection request when a new connection with
some window size parameters is requested by the client.

The result of this separation is that applications are now much
more composable; e.g. embedding SSH functionality into other
OCaml code is now a trivial matter of implementing this class type.
This technique should be familiar to programmers who use object-
oriented languages like Java or C++, but it can be implemented
very succinctly in MELANGE because of OCaml’s automatic type
inference.

We have found that these configuration objects are very useful for
rapidly prototyping novel network architectures. For example, we
have combined MLSSH and DEENS with bindings to the user-level
tuntap interface to experiment with new distributed naming algo-
rithms in user-space, as well as constructing file systems that export
their contents via the DNS (which involved specifying the Plan9 9P
protocol [44] using MPL).

Composable configuration files can also be used with common log-
ging and network setup modules; the notion of configuration unifi-
cation between applications is an active research area in MELANGE.
Our source code includes a domain-specific configuration language
intended to bridge standard Unix /etc-style configuration files and
the configuration objects described above.

3.3.4 MPL Custom Types
All of the implementations consist of a varying degree of code writ-
ten in MPL and OCaml. This section discusses any custom field
types required to implement a protocol using MELANGE.

SSH required defining one major custom type: the multiple pre-
cision integer. This has a very precise wire representation
(defined in RFC 4253), but does not require any state to be
maintained and is straight-forward to implement. The major-
ity of the SSH protocol parsing can be expressed directly in
MPL, once the external encryption layer has been processed,
as described earlier (§3.1.1).

DNS required defining custom types for the string compression
format. This implementation is around 100 lines of OCaml
code, using a symbol table to keep track of entries in the
compression table.

IPv4 required no custom fields, but requires two specifications:
one for the IPv4 packet, and another for the contents of the
IPv4 options field.

ICMP required no custom fields.

UDP required no custom fields.

DHCP has variable-length option fields which cannot be expressed
directly in MPL. However, each individual option can be
parsed with an MPL specification, with custom OCaml code
used to iterate over the list of options until it reaches the ’end-
of-option’ field.

In general, it proved difficult to generalise a ”list” type in MPL,
since the precise wire formats of lists vary between protocols (e.g.
how they are terminated or how elements are represented).

4. RELATED WORK
The inspiration for MPL stems from the FoxNet project [4, 5],
which implemented a TCP/IP stack using Standard ML. It made
use of SML/NJ features such as parameterised modules to separate
out protocol elements into a series of abstract signatures. A combi-
nation of these protocol signatures resulted in a TCP/IP implemen-
tation, and other permutations included TCP over Ethernet Their
work highlighted layering violations in the design of TCP such as
the pseudo-header used in checksums. FoxNet was one of the first
attempts to apply a functional language to a low-level “systems”
problem such as network protocol implementation.

Although undeniably elegant, FoxNet ultimately did not deliver in
terms of performance; they reported a 10x performance loss over
a conventional TCP/IP stack, and required compiler modifications
to handle low-level bit-shifting. We attribute MELANGE’s supe-
rior performance to: (i) advances in hardware such as faster pro-
cessors, larger caches, and more memory to increase efficiency of
garbage collection; (ii) built-in support in recent OCaml compilers
for low-level coding; and (iii) integrating meta-programming tech-
niques via MPL. FoxNet did not tackle complex application-level
protocol implementations such as SSH or DNS.

Another successful networking project that used OCaml is the En-
semble network protocol architecture [22]. Ensemble is designed
to simplify the construction of group membership and communica-
tions protocol stacks by composing simple micro-protocols, which
can be re-arranged depending on the exact application needs. They
cite reduced memory allocation and avoiding the use of foreign
function bindings as key to a successful OCaml system. When
compared to MPL-based code, a crucial difference is that Ensem-
ble assumes that all nodes are trusted and directly transfers OCaml
heap structures into C iovecs to be transmitted over the network,
a technique Ensemble calls direct marshalling. This means that a
malicious node, or any heterogeneous node running on a different
CPU architecture or OCaml version, can corrupt heap structures by
sending malformed data. In contrast, MPL uses well-defined exist-
ing protocols and bounds checks to ensure that all traffic is valid.
MELANGE is designed to simplify the implementation of network
protocols; it does not tackle the high-level distributed communi-
cations issues that Ensemble solves. Billings et al. have created
HashCaml [7] to permit type-safe marshalling in OCaml when the
precise wire format used does not matter to the application.

Other data description languages for network protocols are PACK-
ETTYPES [35] and Prolac [27], which have both been used to create
implementations of TCP/IP and similar low-level protocols. The
key differentiation of MPL is that it outputs high-level, type-safe
code instead of C, and its facility for state variables and custom
field types permit the expression of more complex application-level
protocols such as DNS, BGP or SSH. To our knowledge, we are
the first to consider the wider spectrum of Internet protocols instead
of the relatively simple low-level ones. The PADS language [17],
using modern dependent typing techniques to describe ad-hoc data
sources, looks promising as an alternative to MPL if an efficient
type-safe language backend is developed.

Many packet filtering languages have been developed to specify
rules for detecting patterns in network traffic, such as BPF [36]

and the more extensible FFPF [8]. An early stub-compiler was
USC [41] which provided an extended form of ANSI C to suc-
cinctly describe low-level heard formats and generate near-optimal
C code to parse them. More recently, Pang et al. designed binpac
as an equivalent of yacc aimed at parsing binary protocols [42].
binpac can parse a number of complex protocols such HTTP, DNS,
CIFS/SMB, and Sun RPC. The key difference of these parsers from
MPL is that they are unidirectional, and cannot be used to also cre-
ate network packets from the same specification, as MPL or PACK-
ETTYPES can. The general problem of bidirectional parsing is still
an active area of language research, most notably tackled by Foster
et al. for tree-structured data [18].

MPL draws from research into constructing fast data paths through
operating systems, such as Scout [39] or fbufs [15], which both
perform the same task inside the kernel. MPL generates type-safe
code to provide the same facility to user-level network applications.

Click [28] was developed to ease the process of creating extensible
network routers. It is assembled from packet processing modules
(e.g. for classification, queueing or scheduling) and a configuration
language specifies a routing graph. It is written in C++ and primar-
ily focuses on low-level network protocols, unlike our wider focus
on application-level binary protocols as well.

Recently, there have been several more formal languages designed
to deal with complex networking problems. P2 [31] implements
a high-level declarative language for constructing peer-to-peer net-
works succinctly, and meta-routing [20] is an algebra for network
routing. The implementations are currently written in C++, and
MPL complements them by enabling a switch to a type-safe lan-
guage without compromising performance.

Researchers have also been helping to evolve C code to a safer fu-
ture; languages such as Cyclone [25] and Ivy [9] extend the se-
mantics of C to be type-safe and require minimal modifications
from existing code. We are attempting the opposite approach, by
starting from a clean language and solving low-level performance
problems, but acknowledge that the evolutionary approach is also
essential given the large amount of legacy C code already written.
However, we have shown by example that our philosophy is quite
practical for the well-specified Internet standard protocols.

5. CONCLUSIONS
We have described the Meta Packet Language (MPL), which per-
mits the high-level specification of Internet protocols, and have de-
scribed a compiler that transforms these high-level specifications
into type-safe code. MPL is part of the MELANGE framework
written in OCaml, and we used it to specify many standard Inter-
net protocols ranging from the low-level IPv4, Ethernet and ICMP,
to higher-level application protocols like SSH and DNS. Our ap-
proach of using a domain-specific packet specification language
helped solve the issues reported by previous research projects such
as FoxNet and Ensemble, such as the creation of high-performance
servers without the need for foreign-function bindings.

We described and evaluated our implementations of the SSH and
DNS protocols and found our type-safe versions to perform bet-
ter than their counterparts written in type-unsound C. MLSSH sus-
tained a higher bulk-throughput with less inter-packet jitter than
OpenSSH, and DEENS handled double the queries per second with
lower latency than BIND. Furthermore, both contain fewer lines of
code and were easier to enhance and optimise.

5.1 MPL Enhancements
Modern kernels perform the minimum data copying required to
process data as it passes through the network stack (e.g. the FreeBSD
mbuf [37]) and strive for a zero-copy data-flow of network payloads
directly from the hardware to user-space applications [10]. mbufs
can also be chained to support scatter-gather I/O.

The current MPL mechanism for packet suspensions consists of a
set of operations which must be executed to construct a network
packet (e.g. write some fields at an offset, or copy a payload from
another packet environment). When the packet suspension is eval-
uated, it results in a single buffer which is transmitted using the
write(2) or sendto(2) system call. The basis library could be ex-
tended to eliminate the need for the final copy into a single buffer,
and instead internally maintain a data structure suitable for scatter-
gather transmission via the writev(2) system call instead. Thus far
however, the single final copy for marshalling a packet has not been
shown to be a great overhead, and is much simpler to implement.

5.2 Future Research
Our approach of software reconstruction has opened up many in-
teresting avenues of research. We have implemented a prototype
operating system in OCaml to run MELANGE applications directly
as guest operating systems over the Xen hypervisor [2], thus skip-
ping the overhead of a general-purpose operating system written in
in a type-unsafe language.

Our creation of a code-base of networking applications written in
OCaml is helping with the integration of quasi-linear types [16]
into OCaml to statically enforce the control/data abstractions. The
use of MPL is also spreading beyond networking, being used as
a convenient description language for creating bindings between
kernel modules and safe OCaml daemons in user-space for file-
system services [6], in the style of icTCP [21].

The complete MELANGE framework includes the content described
in this paper as well as tools for integrating formal model-checking
techniques into the applications [33, 34, 32]. The source code
is available under a BSD-style license at http://melange.
recoil.org/, and contributions and bug reports are welcomed!

6. ACKNOWLEDGEMENTS
We would like to thank Tim Griffin, John Billings, Jon Crowcroft,
David Greaves, Steven Hand, Christian Kreibich, Evangelia Kaly-
vianaki, Andrew Warfield, and Euan Harris for many hours of dis-
cussions, reviews and cups of strong coffee with the authors. This
work was partially funded by Intel Research Cambridge.

7. REFERENCES
[1] ALBITZ, P., AND LIU, C. DNS and BIND, fourth ed.

O’Reilly, 2001.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the art of virtualization. In Proc. of
19th SOSP (Bolton Landing, NY, 2003), pp. 164–177.

[3] BERNSTEIN, D. J. DNS server survey [online]. 2002.
http://cr.yp.to/surveys/dns1.html.

[4] BIAGIONI, E. A structured TCP in Standard ML. In Proc. of
SIGCOMM (London, UK, 1994), pp. 36–45.

http://melange.recoil.org/
http://melange.recoil.org/
http://cr.yp.to/surveys/dns1.html

[5] BIAGIONI, E., HARPER, R., AND LEE, P. A network
protocol stack in Standard ML. Higher Order Symbolic
Computing 14, 4 (2001), 309–356.

[6] BILLINGS, J., FRASER, A., AND SCOTT, D. Orion: Named
flows with access control. Tech. rep., Fraser Research,
Princeton, NJ, USA, 2005.

[7] BILLINGS, J., SEWELL, P., SHINWELL, M., AND
STRNISA, R. Type-safe distributed programming for OCaml.
In Proceedings of the 2006 ACM-SIGPLAN Workshop on ML
(2006).

[8] BOS, H., DE BRUIJN, W., CRISTEA, M., NGUYEN, T.,
AND PORTOKALIDIS, G. FFPF: Fairly Fast Packet Filters. In
Proc. of 6th Symp. on OSDI (2004), pp. 347–363.

[9] BREWER, E., CONDIT, J., MCCLOSKEY, B., AND ZHOU,
F. Thirty years is long enough: Getting beyond C. In Proc. of
10th HotOS Workshop (2005).

[10] CHU, H. K. J. Zero-copy TCP in Solaris. In Proceedings of
the USENIX Annual Technical Conference (1996), USENIX,
pp. 253–264.

[11] COOK, B., PODELSKI, A., AND RYBALCHENKO, A.
Termination proofs for systems code. In Proc. of PLDI
(2006).

[12] DEEGAN, T., CROWCROFT, J., AND WARFIELD, A. The
main name system: an exercise in centralized computing.
Computer Communications Review 35, 5 (2005), 5–14.

[13] DEEGAN, T. J. The Main Name System. PhD thesis,
University of Cambridge, 2006.

[14] DOLIGEZ, D., AND LEROY, X. A concurrent, generational
garbage collector for a multithreaded implementation of ML.
In Proc. of the 20th Symp. on PoPL (Charleston, South
Carolina, 1993), pp. 113–123.

[15] DRUSCHEL, P., AND PETERSON, L. L. Fbufs: a
high-bandwidth cross-domain transfer facility. In Proc. of
14th SOSP (1993), pp. 189–202.

[16] ENNALS, R., SHARP, R., AND MYCROFT, A. Linear types
for packet processing. In 13th European Symp. on
Programming (Barcelona, Spain, 2004), pp. 204–218.

[17] FISHER, K., AND GRUBER, R. PADS: a domain-specific
language for processing ad hoc data. In Proc. of 2005 Conf.
on PLDI (Chicago, IL, 2005), pp. 295–304.

[18] FOSTER, J. N., GREENWALD, M. B., MOORE, J. T.,
PIERCE, B. C., AND SCHMITT, A. Combinators for
bi-directional tree transformations: a linguistic approach to
the view update problem. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2005),
ACM Press, pp. 233–246.

[19] GARRIGUE, J. Programming with polymorphic variants. In
SIGPLAN Workshop on ML (Baltimore, MD, 1998).

[20] GRIFFIN, T. G., AND SOBRINHO, J. L. Metarouting. In
Proc. of SIGCOMM (Philadelphia, PA, 2005), pp. 1–12.

[21] GUNAWI, H. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Deploying safe user-level
network services with icTCP. In Proc. of 6th Symp. on OSDI
(2004), pp. 317–332.

[22] HAYDEN, M. The Ensemble System. TR98-1662, Cornell
University, 1998.

[23] HENSBERGEN, E. V. Plan 9 remote resource protocol
(experimental-draft-9p2000-protocol), March 2005.
http://v9fs.sourceforge.net/rfc/.

[24] JACOBSON, V., LERES, C., AND MCCANNE, S. Packet
capture with tcpdump and pcap [online].
http://www.tcpdump.org/.

[25] JIM, T., MORRISETT, G., GROSSMAN, D., HICKS, M.,
CHENEY, J., AND WANG, Y. Cyclone: A safe dialect of C.
In Proceedings of USENIX Annual Tech. Conf. (General
Track) (2002), pp. 275–288.

[26] JUNG, J., SIT, E., BALAKRISHNAN, H., AND MORRIS, R.
DNS performance and the effectiveness of caching. In Proc.
of 1st Workshop on Internet Measurement (San Francisco,
CA, 2001), pp. 153–167.

[27] KOHLER, E., KAASHOEK, M. F., AND MONTGOMERY,
D. R. A readable TCP in the Prolac protocol language. In
Proc. of SIGCOMM (Cambridge, MA, 1999), pp. 3–13.

[28] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The Click modular router. ACM Trans.
on Computer Systems 18, 3 (2000), 263–297.

[29] LEROY, X., DOLIGEZ, D., GARRIGUE, J., RÉMY, D., AND
VOUILLON, J. The Objective Caml system [online]. 2005.
http://caml.inria.fr/.

[30] LETOUZEY, P. Exécution de termes de preuves: une nouvelle
méthode d’extraction pour le Calcul des Constructions
Inductives. Université Paris VI, 2000.

[31] LOO, B. T., CONDIE, T., HELLERSTEIN, J. M.,
MANIATIS, P., ROSCOE, T., AND STOICA, I. Implementing
declarative overlays. In Proc. of 20th SOSP (2005),
pp. 75–90.

[32] MADHAVAPEDDY, A. Creating High-Performance Statically
Type-Safe Network Applications. PhD thesis, University of
Cambridge, 2006.

[33] MADHAVAPEDDY, A., AND SCOTT, D. On the challenge of
delivering high-performance, dependable, model-checked
internet servers. In First Workshop on Hot Topics in System
Dependability (2005).

[34] MADHAVAPEDDY, A., SCOTT, D., AND SHARP, R. SPLAT:
A tool for model-checking and dynamically enforcing
abstractions. In 12th Int’l SPIN Workshop on Model
Checking of Software (2005), pp. 277–281.

[35] MCCANN, P. J., AND CHANDRA, S. Packet types: Abstract
specification of network protocol messages. In Proc. of
SIGCOMM (2000), pp. 321–333.

[36] MCCANNE, S., AND JACOBSON, V. The BSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the USENIX Winter Technical Conference
(1993), pp. 259–270.

http://v9fs.sourceforge.net/rfc/
http://www.tcpdump.org/
http://caml.inria.fr/

[37] MCKUSICK, M. K., AND NEVILLE-NEIL, G. V. The
Design and Implementation of the FreeBSD Operating
System. Addison-Wesley Professional Computing Series,
August 2004.

[38] MOORE, D. DNS server survey [online]. 2004.
mydns.bboy.net/survey/.

[39] MOSBERGER, D., AND PETERSON, L. L. Making paths
explicit in the Scout operating system. In Proceedings of the
2nd USENIX Symposium on Operating Systems Design and
Implementation (1996), pp. 153–167.

[40] NECULA, G. C., MCPEAK, S., AND WEIMER, W. CCured:
Type-safe retrofitting of legacy code. In Proc. of 29th Symp.
on POPL (Portland, OR, 2002), pp. 128–139.

[41] O’MALLEY, S., PROEBSTING, T., AND MONTZ, A. B.
Usc: a universal stub compiler. In Proceedings of the
Conference on Communications Architectures, Protocols and
Applications (New York, NY, USA, 1994), ACM Press,
pp. 295–306.

[42] PANG, R., PAXSON, V., SOMMER, R., AND PETERSON, L.
binpac: A yacc for writing application protocol parsers. In
Proceedings of the Internet Measurement Conference (2006).

[43] PFLEEGER, S. L., AND HATTON, L. Investigating the
influence of formal methods. Computer 30, 2 (1997), 33–43.

[44] PIKE, R., PRESOTTO, D., THOMPSON, K., TRICKEY, H.,
AND WINTERBOTTOM, P. The use of name spaces in Plan 9.
Operating Systems Review 27, 2 (1993), 72–76.

[45] PROVOS, N., FRIEDL, M., AND HONEYMAN, P. Preventing
privilege escalation. In Proc. of 12th USENIX Security
Symposium (2003), pp. 231–242.

[46] PROVOS, N., AND HONEYMAN, P. ScanSSH: Scanning the
internet for SSH servers. In Proc. of 15th LISA (San Diego,
CA, 2001), pp. 25–30.

[47] RÉMY, D., AND VOUILLON, J. Objective ML: a simple
object-oriented extension of ML. In Proc. of 24th Symp. on
POPL (1997), pp. 40–53.

[48] XI, H., AND PFENNING, F. Eliminating array bound
checking through dependent types. In Proc. of Conf. on
PLDI (1998), pp. 249–257.

http://mydns.bboy.net/survey/

