
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

264

Study of Variation in TSP using Genetic Algorithm

and Its Operator Comparison

Shalini Singh, Ejaz Aslam Lodhi

Abstract— The Purpose of this Paper is to give near optimal

solution in terms of quality and computation time. By

implementing Genetic Optimization Technique, the effectiveness

of the path has been evaluated in terms of fitness function with

the parameter such as tour length. In this research work, we see

different variation in traveling salesmen problem using Genetic

Algorithm Technique. Considering the Limitation of Nearest

Neighbor we find that the number of iteration and resulting time

complexity can be minimized by using Genetic approach. We also

compare the operator of pursued approach which give the best

result for finding the shortest path in a shortest time for moving

toward the goal. Thus the optimal distance with the tour length is

obtained in a more effective way.

Index Terms—TSP, Fitness Function, Genetic Algorithm, Nearest

Neighbour, GA operators.

INTRODUCTION

A TSP is a ‘NP-hard’ problem first formulated as a

mathematical problem in 1930,has been receiving

continuous and growing attention in artificial intelligence,

computational mathematics and optimization in recent years.

TSP can be described as follows: Given a set of cities, and

known distances between each pair of cities, the salesman

has to find a shortest possible tour that visits each city

exactly once and that minimizes the total distance travelled.

The mathematical model of TSP is described below:

Given a set of cities C = {C1, C2, C3… Cn}, the distance of

each pair of cities is d(Ci,Cj).The problem is to find a route

[C1,C2,C3…Cn] that visits each city exactly once and

makes f(x)=minΣdijxij to have a minimum value. Where,

f(x) is a fitness function i.e it evaluates each chromosome

and sets the numeric value to it, which represents the quality

of the chromosome – e.g. of the solution, which the

chromosome represents.

Fitness function is then used for evaluating the population

and preferring the higher quality of individuals for mating

and creating offspring. For TSP, the fitness function of

chromosome is computed at the total distance of the

represented solution. But even here, computing of the cost

of solution is not so easy and could be research, as the total

distance equation does not have to be the best fitness

function. As TSP algorithm tends sometime to create quite

long distance connections, root mean square (RMS) value

could be used to compute the cost. RMS value is just sum of

square roots of distances between the cities in path which is

encoded in chromosome. In this way, we could prefer more

expecting solution of (in distances) 2 3 2 2 (total distance=9,

RMS cost 21) against chromosome 1 2 1 5 (total distance 9,

but RMS distance 31).

Manuscript received on May, 2013.

Shalini Singh, Department of Electronics and Engineering, Indira
Gandhi Institute of Technology,Guru Gobind Singh Indraprastha

University,New Delhi,India.

Ejaz Aslam Lodhi,,Department of Electronics and Engineering, Indira
Gandhi Institute of Technology,Guru Gobind Singh Indraprastha

University,New Delhi,India.

For more difficult applications, the fitness function could be

defined in complex abstract and non exact way that only

tries to compare the quality of chromosomes against each

other, but fitness function by itself does not return any

meaningful information.

TSP is the problem of the permutation of n cities. For n

cities, there should be n! Different permutations. For the

symmetric TSP, each route has two different ways to

represent. Therefore, the size of its search space is: S

=n!/2n= (n-1)!/2. In this paper,we are trying to solve the

problem with various algorithms.i.e. Genetic Algorithm

(GA), with the advantages of robustness, flexibility and

versatility, has been widely studied to solve large-scale

combinatorial and optimization problems[6][7].

Genetic algorithms[8] emulate the mechanics of natural

selection by a process of randomized data exchange. They

were inspired by the behavior of natural systems, the

terminology used to describe them is a mix from both

biological and computer fields. A genetic algorithm

manipulates strings of information, usually called

chromosomes. These encode potential solutions to a given

problem. Chromosomes are evaluated and assigned a score

(fitness value) in terms of how well they solve the given

problem according to criteria defined by the programmer.

These fitness values are used as a probability of survival

during a round of reproduction. New chromosomes are

produced by combining two (or more) parent chromosomes.

This process is designed to lead to a succession of fitter

offspring, each encoding better solutions, until an acceptably

good solution is found[4].

RELATED WORK

Greedy Algorithms[5] are a method of finding a feasible

solution to the traveling salesman problem. The algorithm

creates a list of all edges in the graph and then orders them

from smallest cost to largest cost. It then chooses the edges

with smallest cost first, providing they do not create a cycle.

The greedy algorithm gives feasible solutions however they

are not always good.

The Nearest Neighbor algorithm[5] is similar to the greedy

algorithm in its simple approach. We arbitrarily choose a

starting city and then travel to the city closest to it that does

not create cycle. We continue to do this until all cities are in

is, the edge en1 where n is the number of cities) can be quite

large. The nearest neighbor algorithm was one of the first

algorithm used to determine a solution to the travelling

salesmen problem. In it, the salesman starts at a random city

and repeatedly visits the nearest city until all have been

visited. It quickly yields a short tour, but usually not the

optimal one.

These are the steps of the algorithm:

1) Stand on an arbitrary vertex as current vertex.

2) Find out the lightest edge connecting current vertex and

an unvisited vertex V.

3) Set current vertex to V.

4) Mark V as visited.

Study of Variation in TSP using Genetic Algorithm and Its Operator Comparison

265

5) If all the vertices in domain are visited, then terminate.

6) Go to step 2.

The sequence of the visited vertices is the output of the

algorithm The nearest neighbor algorithm is easy to

implement and executes quickly, but it can sometimes miss

shorter routes which are easily noticed with human insight,

due to its "greedy" nature. As a general guide, if the last few

stages of the tour are comparable in length to the first stages,

then the tour is reasonable, if they are much greater, then it

is likely that there are much better tours. Another check is to

use an algorithm such as the lower bound algorithm to

estimate if this tour is good enough.

In the worst case, the algorithm results in a tour that is much

longer than the optimal tour. To be precise, for every

constant r there is an instance of the traveling salesman

problem such that the length of the tour length computed by

the nearest neighbor algorithm is greater than r times the

length of the optimal tour. Moreover, for each number of

cities there is an assignment of distances between the cities

for which the nearest neighbor heuristic produces the unique

worst possible tour.

PROPOSED ALGORITHM

A. The Concept

GAs simulate the survival of the fittest among individuals

over consecutive generation for solving a problem. Each

generation consists of a population of character strings that

are analogous to the chromosome that we see in our DNA.

Each individual represents a point in a search space and a

possible solution. The individuals in the population are then

made to go through a process of evolution[1].GAs are based

on an analogy with the genetic structure and behavior of

chromosomes within a population of individuals using the

following foundations:

[1] Individuals in a population compete for resources and

mates.

[2] Those individuals most successful in each 'competition'

will produce more offspring than those individuals that

perform poorly.

[3] Genes from `good' individuals propagate throughout the

population so that two good parents will sometimes

produce offspring that are better than either parent.

[4] Thus each successive generation will become more

suited to their environment.

Search Space

A population of individuals are is maintained with in search

space for a GA, each representing a possible solution to a

given problem. Each individual is coded as a finite length

vector of components, or variables, in terms of some

alphabet, usually the binary alphabet {0,1}. To continue the

genetic analogy these individuals are likened to

chromosomes and the variables are analogous to genes.

Thus a chromosome (solution) is composed of several genes

(variables).A fitness score is assigned to each solution

representing the abilities of an individual to `compete'. The

individual with the optimal (or generally near optimal)

fitness score is sought. The GA aims to use selective

`breeding' of the solutions to produce `offspring' better than

the parents by combining information from the

chromosomes.

The GA maintains a population of n chromosomes

(solutions) with associated fitness values. Parents are

selected to mate, on the basis of their fitness, producing

offspring via a reproductive plan. Consequently highly fit

solutions are given more opportunities to reproduce, so that

offspring inherit characteristics from each parent. As parents

mate and produce offspring, room must be made for the new

arrivals since the population is kept at a static size.

Individuals in the population die and are replaced by the

new solutions, eventually creating a new generation once all

mating opportunities in the old population have been

exhausted. In this way it is hoped that over successive

generations better solutions will thrive while the least fit

solutions die out.

New generations of solutions are produced containing, on

average, more good genes than a typical solution in a

previous generation. Each successive generation will contain

more good `partial solutions' than previous generations.

Eventually, once the population has converged and is not

producing offspring noticeably different from those in

previous generations, the algorithm itself is said to have

converged to a set of solutions to the problem at hand.

Based on Natural Selection:

After an initial population is randomly generated, the

algorithm evolves the through three operators:

1. selection which equates to survival of the fittest;

2. crossover which represents mating between individuals;

3. mutation which introduces random modifications.

1. Selection Operator[2]

 key idea: give preference to better individuals, allowing

them to pass on their genes to the next generation.

 The goodness of each individual depends on its fitness.

 Fitness may be determined by an objective function or

by a subjective judgment.

2. Crossover Operator[3]

 Prime distinguished factor of GA from other

optimization techniques

 Two individuals are chosen from the population using

the selection operator

 A crossover site along the bit strings is randomly chosen

 The values of the two strings are exchanged up to this

point

 If S1=000000 and s2=111111 and the crossover point is

2 then S1'=110000 and s2'=001111

S1 0 0 0 0 0 0

S2 1 1 1 1 1 1

S1' 1 1 0 0 0 0

S2' 0 0 1 1 1 1

 Fig. 1. Single point Crossover

 The two new offspring created from this mating are put

into the next generation of the population

 By recombining portions of good individuals, this

process is likely to create even better individuals

3. Mutation Operator

 With some low probability, a portion of the new

individuals will have some of their bits flipped.

 Its purpose is to maintain diversity within the population

and inhibit premature convergence.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-3, Issue-2, May 2013

266

 Mutation alone induces a random walk through the

search space

 Mutation and selection (without crossover) create a

parallel, noise-tolerant, hill-climbing algorithms

Before 0 1 1 1 1 1 1 0

After 1 1 1 1 1 1 1 0

Fig. 2. Mutation operation

Effects of Genetic Operators

 Using selection alone will tend to fill the population with

copies of the best individual from the population

 Using selection and crossover operators will tend to

cause the algorithms to converge on a good but sub-

optimal solution

 Using mutation alone induces a random walk through the

search space.

 Using selection and mutation creates a parallel, noise-

tolerant, hill climbing algorithm

B. The Algorithm GA

1. randomly initialize population(t)

2. determine fitness of population(t)

3. repeat

1. select parents from population(t)

2. perform crossover on parents creating

population(t+1)

3. perform mutation of population(t+1)

4. determine fitness of population(t+1)

4. until best individual is good enough

IV. EXPERIMENT RESULTS

Experiments are conducted to evaluate the performance of

GA. The performance is compared with TSP using NN

Algorithm. To know the performance of each operators Flip,

Swap and Slide also are tried to compare. All Algorithm are

executed 10 times on each 5 dataset. The experiment focus 2

aspects: quality of solution and computation time. Fig. 3.

shows the performance of single traveling salesmen with

closed path, giving the city location, distance matrix, best

solution history and total distance. .

A. Variation in TSP with Single Salesmen closed loop using

GA

Fig. 3. Result of TSP using GA

B. Variation in TSP with Single Salesmen open loop using

GA

Fig. 4. Result of TSPO using GA

Fig. 4. shows the performance result of single traveling

salesmen problem with open path giving city location,

Distance matrix, Best solution result and Total distance

C. Variation in TSP using Nearest Neighbor Algorithm

Fig. 5. Result of TSP using NN

Fig. 5. shows the performance result of Nearest Neighbor

giving Total distance with 100 population size

D. Comparison Table of TSP_GA and TSP_NN

No. of cities TSP_GA TSP_NN

20 37.4493 49.1623

40 50.4738 63.9431

60 64.9016 76.2757

70 68.7479 79.8404

90 79.4125 97.4385

Fig. 6.Comparison graph of TSP_GA and TSP_NN

0 5 10

0

5

10

City Locations Distance Matrix

10 20 30 40 50

10

20

30

40

50

0 5 10

0

5

10

Total Distance = 63.6840

0 5000 10000

0

100

200

Best Solution History

0 5 10

0

5

10

City Locations Distance Matrix

10 20 30 40 50

10

20

30

40

50

0 5 10

0

5

10

Total Distance = 56.9331

0 5000 10000

0

50

100

150

200

Best Solution History

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Total Distance = 100.9280

Study of Variation in TSP using Genetic Algorithm and Its Operator Comparison

267

E. TSP_GA(Operator Comparison)

No. of

cities

Iteration Pop_si

ze

GA(Flip

)Dist.

GA(Swap)

Dist.

GA(Slide)

Dist.

30 6000 60 43.3758 50.8658 49.7778

50 10000 100 56.9020 68.1469 66.1501

70 14000 140 70.6605 84.1625 78.3081

90 18000 180 76.8693 112.0468 99.5990

100 20000 200 87.2720 127.9681 112.3047

Fig. 7. Comparison graph of different GA Operator

V. CONCLUSION

Genetic algorithms appear to find good solutions for the

traveling salesman problem in achieving the goal of

decreasing computing time by studying different variations

in it. In this paper, we study Traveling Salesmen problem

using GA and NN and we find that TSP_GA is giving better

result. Also, GA involves three operator Selection,

Crossover and mutation, however it depends very much on

the way the problem is encoded and which crossover and

mutation methods are used. We are comparing these

operators to know the better one in respect of reduce

computation time and quality of solution. It seems that the

methods that use heuristic information (such as the matrix

representation and crossover) perform the best and give

good indications for future work in this area.

VI. FUTURE SCOPE

Having compared algorithms used to solve TSP, the

following limitations should need to persuade in future

work. Compare algorithms applied to solve multiple

traveling salesman problem with traveling salesman

problem using genetic operator and traveling salesman

problem using nearest neighbor algorithm. We are also

planning to add timer in my result in order to make

comparison more efficient because optimal solution leads to

reduce computation time with efficient solution.

REFERENCES

[1] An introduction to Genetic Algorithms. mit press edited by Melanie

Mitchell

[2] http://www.darwins-theory-of-evolution .com
[3] Goldberg, D.E. Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA: Addison-Wesley.

[4] A Genetic Algorithm Tutorial: Darrel Whitley, Computer Science
Department, Colorado State University, USA.

[5] Gerard Reinelt. The Traveling Salesman: Computational Solutions
for TSP Applications. Springer-Verlag, 1994.

[6] Potvin, J.V. (1996). Genetic Algorithm for Travelling Salesmen

Problem, Annals of operational research , vol.63, pp.339-370.
[7] Wei, J.D & Lee, D.T. (2004). Anew approach to genetic algorithm

using Genetic Algorithm with priority encoding,Proc. 2004 IEEE

Congress on evolutionay computation portland, pp.1457-1464
[8] http://www.obitko.com/tutorials/genetic-algorithms/encoding.php

