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ABSTRACT
We describe an approach to testing complex safety critical
software that combines unit-level symbolic execution and
system-level concrete execution for generating test cases that
satisfy user-specified testing criteria. We have developed
Symbolic Java PathFinder, a symbolic execution framework
that implements a non-standard bytecode interpreter on top
of the Java PathFinder model checking tool. The framework
propagates the symbolic information via attributes associ-
ated with the program data. Furthermore, we use two tech-
niques that leverage system-level concrete program execu-
tions to gather information about a unit’s input to improve
the precision of the unit-level test case generation.

We applied our approach to testing a prototype NASA
flight software component. Our analysis helped discover a
serious bug that resulted in design changes to the software.
Although we give our presentation in the context of a NASA
project, we believe that our work is relevant for other critical
systems that require thorough testing.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms
Reliability, Verification
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1. INTRODUCTION
Our work is motivated by an ongoing collaboration be-

tween NASA Ames and Johnson Space Center, whose goal
is to develop automated techniques for error detection in
complex, flight control software for manned space missions.
Such software needs to be highly reliable. Techniques for
checking software include model checking (e.g., [23, 26, 18, 7,
22]), static analysis (e.g., [29]), and testing. Model checking
exhaustively analyzes all program executions in a systematic
way, but it suffers from scalability issues. Static analysis is
scalable and exhaustive, but it may give many warnings that
are spurious (i.e., do not correspond to real errors). Testing,
on the other hand, reports errors that are real, but it may
miss errors since it can only analyze some of the program
executions. Furthermore, testing is the most widely used
method for error detection at NASA, as well as elsewhere.
We aim to combine the strengths of automated exhaustive
techniques to make testing more effective.

Towards this end we have developed Symbolic Java Path
Finder (Symbolic JPF), a framework that integrates sym-
bolic execution [28, 11] with model checking to perform au-
tomated generation of test cases and to check properties of
code during test case generation. Symbolic JPF generates
test cases that obtain high coverage for flexible, user-defined,
coverage metrics. Programs are executed on symbolic inputs
that represent all possible concrete inputs. Values of vari-
ables are represented as numeric (mixed integer and real)
constraints, encoding the conditions from the code. These
constraints are then solved to generate test inputs guaran-
teed to exercise the analyzed code. Pre-conditions, when
available, may be leveraged to reduce the size of the input
data domains and to only generate test inputs that satisfy
the pre-conditions. The framework uses the analysis engine
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Figure 1: JPF high-level structure.

of the Java PathFinder (JPF) model checking tool and it is
available at [26], the symbc JPF extension.

Unlike previous symbolic execution approaches (e.g., our
own previous approach [27, 5] but also [19, 32]) that work
by code instrumentation, this new framework does not re-
quire such instrumentation, but instead implements a “non-
standard” interpreter of bytecodes. Moreover, the approach
in [27] requires an (approximate) type-based static analy-
sis [4] to determine if a program bytecode needs to be exe-
cuted symbolically, and therefore needs to be instrumented.
Symbolic JPF does not require such approximate analysis,
since the symbolic information is stored in attributes associ-
ated with the program data and and is propagated dynam-
ically during execution. As a result, our framework always
maintains the most accurate information about the symbolic
nature of the program data.

Symbolic JPF is quite general and it can be applied at
different phases of software development, but it is most ef-
fective for unit (or sub-system) level testing. It is often the
case that the input data to the unit is constrained by the en-
vironment, e.g., the calling context of a procedure represent-
ing the unit. To avoid generation of un-realistic test cases,
such constraints would need to be encoded explicitly, which
would require non-trivial additional manual effort from the
software developers. We alleviate this problem in two ways.

• First, the new framework allows symbolic execution
to be started at any point in the program and at any
time during the concrete execution of a program. More
specifically, one can let a program run in concrete exe-
cution mode within JPF’s specialized Java virtual ma-
chine, and trigger symbolic execution based on some
condition on the current concrete program state. Thus,
the concrete execution of the system can be effectively
used to set up the environment for the symbolic exe-
cution of a unit in the system. Furthermore, one can
analyze a method/procedure symbolically, while some
of the parameters and the calling context of the pro-
cedure are kept concrete.

• It is not always possible to run the whole program
within the JPF’s customized execution environment
(due to sheer size, native libraries, hardware-software
interaction, etc.). We therefore consider a second ap-
proach that uses actual system-level simulation runs to
determine constraints on unit input data. Such con-
straints are then encoded as unit pre-conditions that
help improve the precision of the unit-level symbolic
analysis by avoiding generation of test cases that vio-
late the constraints.

We describe the application of our techniques to a compo-
nent of a NASA flight software system. Our symbolic frame-
work generated in a few seconds a test suite that obtained
full testing coverage, for a special coverage required by the
developer. In contrast, random testing obtained only partial
coverage while manual test case generation took approx. 20
hours to obtain not quite adequate coverage. During test
generation, the framework also discovered errors that were
later fixed by the developers. Furthermore, the generated
test suite was applied to a new version of the code, where
it helped uncover a subtle bug that led to the re-design of
part of the flight software.

The rest of the paper is organized as follows. We begin
with some background information on Java PathFinder (Sec-
tion 2) and on symbolic execution – the enabling technique
for test case generation (Section 3). We present our new
framework for symbolic execution: we describe the exten-
sions to Java PathFinder that were implemented to support
this framework (Section 4) and we outline different mech-
anisms for combining system-level concrete program runs
with unit-level symbolic execution (Section 5). We also dis-
cuss applications of our framework (Section 6), related work
(Section 7) and conclusions (Section 8).

2. JAVA PATHFINDER (JPF)
JPF [26] is an open-source runtime environment for ver-

ifying Java bytecode, i.e., programs written in Java’s inter-
mediate representation. JPF consists of a backtrackable,
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int x, y;

[1] if (x > y)

[2] result = x - y;

[3] else

[4] result = y - x;

[5] assert (result > 0);

PC : true

PC : Symx ≤ Symy

x:Symx, y:Symy

PC : Symx > Symy

x:Symx, y:Symy

x:Symx, y:Symy

[1] [1]

[2] [4]

[5] [5] [5] [5]

x:Symx, y:Symy

result: Symx − Symy

PC : Symx > Symy

x:Symx, y:Symy

result: Symx − Symy

PC : Symx > Symy

x:Symx, y:Symy

result: Symy − Symx

PC : Symx ≤ Symy
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result: Symx − Symy
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Path 1 FALSE! Path 2 Path 3

PC : Symx > Symy

∧Symx − Symy > 0 ∧Symx − Symy ≤ 0 ∧Symy − Symx ≤ 0∧Symy − Symx > 0

Figure 2: Example for symbolic execution (left) and corresponding execution tree (right).

state matching and state storing virtual machine (VM), and
a configurable search strategy object that drives the execu-
tion in the VM (see Figure 1). The search and VM compo-
nents together form the JPF core – a software model checker
that can be directly applied to Java bytecode, to find prop-
erty violations like unhandled exceptions, race conditions
and deadlocks.

JPF employs a variety of mechanisms to reduce the num-
ber and storage costs of program states, such as on-the-fly
partial order reduction and hash collapsing. Furthermore,
JPF provides configurable extensions to define:

• operations that force the execution to branch (Choice
Generators)

• code that should be executed outside JPF (Native Peers,
e.g., for abstracting native libraries)

• code that allows changing the semantics of execution
for bytecode instructions (Instruction Factories)

• code that non-intrusively monitors and controls JPF
program execution (Listeners)

• properties to check for (such as no unhandled runtime
exceptions)

In Section 4, we describe how we used JPF’s configurable
extensions to implement our symbolic execution framework.

3. SYMBOLIC EXECUTION
Symbolic execution [28] is a form of program analysis that

uses symbolic values instead of actual data as inputs and
symbolic expressions to represent the values of program vari-
ables. As a result, the outputs computed by a program are
expressed as a function of the symbolic inputs. The state
of a symbolically executed program includes the (symbolic)
values of program variables, a path condition (PC), and a
program counter. The path condition is a boolean formula
over the symbolic inputs, encoding the constraints which
the inputs must satisfy in order for an execution to follow
the particular associated path. The paths followed during
the symbolic execution of a program are characterized by a
symbolic execution tree.

To illustrate the difference between concrete and symbolic
execution, consider the simple example in Figure 2 (left) that

computes the absolute difference between two input integers
x and y. Assume that the values of the input parameters are
x=2 and y=1.

Concrete execution will follow only one program path, cor-
responding to the true branch of the if statement at line
[1]; this execution does not violate the assertion.

In contrast, symbolic execution starts with symbolic, rather
than concrete, values, x = Symx, y = Symy, and the initial
value of PC is true. The corresponding (simplified) execu-
tion tree is illustrated in Figure 2 (right). At each branch
point, PC is updated with constraints on the inputs in or-
der to choose between alternative paths. For example, after
executing line [1] in the code, both alternatives of the if

statement are possible, and PC is updated accordingly. If
the path condition becomes “false”, it means that the cor-
responding path is infeasible (and symbolic execution does
not continue for that path).

For our example, symbolic execution explores three dif-
ferent feasible paths, it determines that a fourth path is
infeasible and it reports an assertion violation (for Path 3).
For test case generation, the obtained path conditions are
solved (using off-the-shelf decision procedures) and the solu-
tions are used as test inputs that are guaranteed to exercise
all the paths through this code.

3.1 Generalized Symbolic Execution
In previous work [27, 5], we have extended JPF to per-

form generalized symbolic execution for Java programs. The
approach handles dynamically allocated data, arrays, and
multi-threading. Programs are instrumented to enable JPF
to perform symbolic execution; concrete types are replaced
with corresponding symbolic types and concrete operations
are replaced with calls to methods that implement corre-
sponding operations on symbolic expressions. The model
checker checks properties of the instrumented program using
its usual state space exploration techniques. Several off-the-
shelf decision procedures are used to check satisfiability of
numeric path conditions.

While quite general, our previous approach may result
in sub-optimal execution since for each instrumented byte-
code the model checker needs to check a set of bytecodes
representing the symbolic counterpart. To minimize the
instrumentation effort, a specialized type based analysis is
proposed in [4]. This analysis computes a conservative ap-
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Figure 3: Bytecode factories for concrete vs. symbolic execution.

proximation of type-dependence information that is used to
locate the parts of the code that depend on the input sym-
bolic variables. Therefore only those parts need to be trans-
formed into their symbolic counterparts (the rest of the code
remaining unchanged).

To address the problems described above, we have de-
veloped a new framework that does not require the code
instrumentation and the approximate type based analysis.
This framework is described in detail in the next section.

4. SYMBOLIC JAVA PATHFINDER
The symbolic execution framework is built as an extension

of JPF – the framework performs a non-standard bytecode
interpretation and uses JPF to systematically generate and
execute the symbolic execution tree of the code under anal-
ysis. The key mechanisms that we used were:

• JPF’s bytecode instruction factory and

• attributes associated with the program state.

The instruction factory allows replacing or extending the
standard, concrete execution semantics of bytecodes with a
non-standard (symbolic) execution, as desired. The sym-
bolic information is stored in attributes associated with pro-
gram data (fields, stack operands and local variables) and it
is propagated as needed, during symbolic execution.

These mechanisms together allow dynamic modification
of execution semantics, i.e., changing mid-stream from a
system-level, concrete execution semantics to a symbolic ex-
ecution semantics, thus providing the integrated test gener-
ation capability described later in this paper. We note also
that they enable other types of integrated program analyses
that we plan to pursue in future work.

Furthermore, we used JPF’s choice generators, for han-
dling branching conditions during symbolic execution, and
listeners, for printing the results of the symbolic analysis
(i.e., method summaries) and for enabling dynamic change
of execution semantics. We also used native peers, for mod-
eling native libraries, e.g., to capture java.lang.Math li-
brary calls and to send them to the constraint solver.

We describe some of these features in more detail below.

4.1 An Instruction Factory for Symbolic Exe-
cution of Bytecodes

JPF analyzes an input Java program (class files) by inter-
preting the Java bytecodes in a custom-made Virtual Ma-
chine. JPF implements a “default”, concrete execution se-
mantics that is based on a stack machine model, according
to the Java VM specification [30]. Furthermore, JPF al-
lows replacing this standard execution semantics by using a
configurable InstructionFactory (see Figure 3).

For each method that is executed, JPF maintains an ob-
ject (MethodInfo) that internally stores the associated byte-
code as an array of Instruction objects, which are created
from the bytecodes read from the corresponding class file.
JPF imposes few constraints on Instruction classes other
than requiring an execute() method.

JPF uses the abstract factory design pattern [16] to in-
stantiate its Instruction objects. We therefore created
a SymbolicInstructionFactory containing instructions for
the symbolic interpretation of Java bytecodes. The new
Instruction classes are derived from the ones that come
with the JPF core; they conditionally add new functional-
ity and otherwise just delegate to their super classes. This
enables simultaneous concrete-symbolic execution modes.

4.2 Attributes
JPF maintains program states very similar to a standard

Java VM. Each state consists of a call stack per thread, the
values of the fields (i.e., the heap) and the scheduling infor-
mation. The call stack contains stack frames corresponding
to the methods that are being executed. Each stack frame
stores information about the locals and the operands.

Figure 4 illustrates the state representation in JPF core,
including the heap and the stack frame for the currently ex-
ecuting method, i.e., the “callee”, as well as the stack frame
for the “caller” method. The values of the heap and the
stack frames are manipulated via various bytecode opera-
tions, such as copy values between operand slots of Stack
Frames (dup), between local variable slots and operand slots
of Stack Frames (istore), and between operand slots and
heap object fields (putfield and getfield).

Figure 4 also illustrates the attributes associated with the
program values. We used a previous experimental extension
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of JPF that associates so called slot attributes i.e., addi-
tional, state-stored information, with each of the locals and
operands on the stack frame. This experimental extension
was initially designed for verifying numeric properties.

We generalized this mechanism by providing support for
field attributes (in addition to slot attributes). In our frame-
work, the attributes are used to store the symbolic values
and expressions that are created during symbolic execution.

Attributes are created or accessed by bytecode instruc-
tions, via accessors (e.g., methods setAttr, getAttr). They
can also be created or accessed by listeners or native peers
(see Figure 4). Attribute manipulation is mainly done in-
side of the JPF core, within the various operations that
modify and store the program states (such as dup, istore,
putfield, and getfield).

Therefore, we only needed to override instruction classes
that create or modify symbolic information, like numeric,
compare-and-branch and type conversion operations. Other
bytecode instructions, that only retrieve or store the sym-
bolic information, remained un-changed.

Note that while this mechanism was developed in the con-
text of our symbolic execution mode, it is now generalized
sufficiently to allow arbitrary value and variable attributes,
and therefore it can be useful for implementing other anal-
yses (e.g., to keep track of physical dimensions and numeric
error bounds or to perform concolic execution [19]).

4.3 Handling Branching Conditions
The symbolic execution of branching conditions involves

creating a non-deterministic choice in JPF’s search and adding
the condition (or its negation) to the corresponding path
condition. We achieved this by creating a new choice genera-
tor (PCChoiceGenerator) that branches the execution inside
JPF. A path condition is associated with each choice gener-
ated by PCChoiceGenerator; the path condition is checked
for satisfiability using a constraint solver. If the path condi-
tion becomes un-satisfiable, JPF is instructed to backtrack.

Our framework currently uses the choco constraint solver [10]
for integer and real constraints, and IASolver [25], an inter-
val arithmetic solver that can handle complex Math func-
tions. The two constraint solvers are integrated in Symbolic

JPF via a common, generic, interface; the user can specify
which one to use. We also plan to incorporate other decision
procedures/constraint solvers in our analysis (similar to [5]).

4.4 Multi-threading, State-matching, Loops
As mentioned, our framework uses JPF to explore the

symbolic execution tree of the analyzed program. JPF is
also used to analyze thread interleavings and other forms
of non-determinism that might be present in the code. We
do not require the model checker to perform state matching
(this is in general undecidable when states represent path
conditions on un-bounded data). To limit the possibly infi-
nite (symbolic) search state space that results from analyz-
ing programs with loops or recursion, we put a limit on the
model checker’s search depth or on the number of constraints
encoded in the path condition.

4.5 Examples
We illustrate symbolic execution of bytecodes with two

examples.
Let us first consider the IADD bytecode, that performs ad-

dition of two integers. The code in Figure 5 (left) shows the
default JPF class that implements the concrete interpreta-
tion of the bytecode: the first two values on the operand
stack are popped (lines [1] and [2]), they are added and
the result is pushed back on the stack (line [3]). JPF is
then instructed to execute the next bytecode (line [4]).

Figure 5 (right) shows the (simplified) code that imple-
ments the“symbolic”counterpart. Class IntegerExpression
implements symbolic integer expressions; a similar class,
RealExpression, implements symbolic real expressions.

The symbolic information is propagated via attributes.
Method execute first checks if the attributes associated with
the two operands are null. If they are, then the two operands
must be concrete and the execution follows according to
standard execution semantics (line [5]). Otherwise, if at
least one of the operands is symbolic, then the result also be-
comes symbolic, and this is recorded in the result attribute
that is pushed on the stack. Method _plus builds a new
symbolic expression that represents the addition of its pa-
rameters. The attribute of the result is set to this new
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public class IADD extends Instruction { ...
public Instruction execute (... ThreadInfo th){

[1] int v1 = th.pop();
[2] int v2 = th.pop();
[3] th.push(v1 + v2, ...);
[4] return getNext(th);

}
}

public class IADD extends ....bytecode.IADD {
public Instruction execute (... ThreadInfo th) {

[1] IntegerExpression sym_v1, sym_v2;
[2] sym_v1 = ... .getOperandAttr(0);
[3] sym_v2 = ... .getOperandAttr(1);
[4] if (sym_v1 == null && sym_v2 == null)

// both values are concrete
[5] return super.execute(ss, ks, th);
[6] else {
[7] int v1 = th.pop();
[8] int v2 = th.pop();

...
[9] th.push(0, ...); // don’t care about concrete value
[10] IntegerExpression result =

IntegerExpression._plus(sym_v1,sym_v2);
[11] ... .setOperandAttr(result);
[12] return getNext(th);

} } }

Figure 5: Concrete (left) and symbolic (right) execution for the IADD bytecode.

public class IFGE extends Instruction {
public Instruction execute (... ThreadInfo th) {

[1] condition = (th.pop() >= 0);
[2] if (condition)
[3] next=getTarget();
[4] else
[5] next=getNext(th);
[6] return next;

}
}

public class IFGE extends ....bytecode.IFGE {
public Instruction execute (... ThreadInfo th) {

[1] IntegerExpression sym_v = ... .getOperandAttr();
[2] if(sym_v == null)
[3] // the condition is concrete
[4] return super.execute(... th);
[5] else {

// the condition is symbolic
[6] PCChoiceGenerator cg = new PCChoiceGenerator(2);

...
[7] condition=cg.getNextChoice()==0?false:true;
[8] th.pop();
[9] if (condition) {
[10] pc._add_GE(sym_v, 0);
[11] next = getTarget();

}
[12] else {
[13] pc._add_LT(sym_v, 0);
[14] next = getNext(th);

}
[15] if(!pc.isSatisfiable())
[16] ... // instruct JPF to backtrack
[17] else
[18] cg.setCurrentPC(pc);
[19] return next;

} } }

Figure 6: Concrete (left) and symbolic (right) execution for the IFGE bytecode.

symbolic expression (line [11]). Since the result becomes
symbolic, its concrete value does not matter, so we set it to
0 (line [9]).

We illustrate the use of choice generators in the symbolic
execution of branching conditions with the IFGE bytecode.
The code in Figure 6 (left) shows the concrete interpretation
of the bytecode: the first popped value from the stack is
compared with 0 to compute the associated condition. This
condition determines the next instruction to be executed.

In symbolic execution (Figure 6 (right)), the concrete con-
dition is no longer used to exclusively choose between pro-
gram branches. Instead we create a choice generator (line
[6]) that introduces a non-deterministic choice (line [7])
that allows both execution branches to be considered.

For each branch, the path condition is updated with the
symbolic condition (line [10]) or its negation (line [13]).
Method isSatisfiable uses a decision procedure to check
if the path condition is satisfiable or not, in which case JPF
backtracks (line [16]).

5. USING SYSTEM-LEVEL CONCRETE EX-
ECUTIONS

Symbolic JPF is quite general and it can be applied at
different phases of software development, i.e., unit-level or
system-level testing. However due to inherent limitations,
such as availability of decision procedures for the application
domains and number of constraints that can be handled by
the constraint solver, our tool is most effective at unit (or
sub-system) level. A unit is a Java method, or set of meth-
ods, but it can also be an arbitrary piece of code designated
as such by the user. To simplify our discussion, we only con-
sider here Java methods as units. It is often the case that
the input data to the unit is constrained by the environ-
ment, e.g., the calling context of a procedure representing
the unit. These environment constraints need to be encoded
explicitly to avoid generation of un-realistic unit level test
cases. We describe here two techniques that address this
problem. Both techniques use system-level concrete execu-
tion to set-up the symbolic execution at the unit-level.
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5.1 “Any time” symbolic execution
In our framework, symbolic execution can start from any

point in the program and it can perform symbolic execution
of the unit, with mixed concrete and symbolic inputs. Fur-
thermore, no special test driver needs to be created; it is
sufficient to have an executable program that uses the unit.

To execute a method symbolically, the user needs to in-
struct JPF to use the SymbolicInstructionFactory and to
specify the method name and the method inputs that are
to be considered symbolic or concrete. These inputs include
the method arguments and the globals (i.e., fields) that are
accessed (i.e., read) by the method code.

The program begins execution using the concrete seman-
tics, since all the symbolic bytecode Instruction classes
simply delegate execution to the“concrete” super-class when
there are no symbolic attributes associated with the data
(see the examples in Figure 5 line [5] and Figure 6 line
[4]). A listener monitors the concrete execution of the pro-
gram within JPF’s VM and it triggers symbolic execution
the first time the method with the specified name is invoked,
i.e., it “injects” new symbolic values in the attributes of the
specified symbolic inputs (parameters and globals).

From that point on, the execution proceeds symbolically
(e.g., the methods invoked by the designated method con-
tinue to process the symbolic information stored in the at-
tributes). Once the method returns (or some user specified
limit has been reached), JPF prints the method summary,
i.e., a set of test cases characterizing the symbolic execution.

In general, one can trigger symbolic execution of a unit
“any time” during concrete execution, by writing a special-
ized listener (see Figure 7). The listener is watching for cer-
tain concrete variable conditions and method sequences that
identify program states which should be analyzed symboli-
cally and it starts symbolic execution when the conditions
are met. It is also possible to switch back to concrete execu-
tion, i.e., solve the constraints in the current path condition,
compute the corresponding concrete values of the program
variables and continue execution in concrete mode. We plan
to investigate this feature for handling native library calls.

Since the unit can be analyzed with mixed concrete and
symbolic inputs, one can use the concrete execution of a
program to set up different concrete global contexts for the
unit-level symbolic analysis. The use of concrete correlated
input values also reduces the complexity of path conditions
in the symbolic analysis (which in turn improves the per-
formance and rate of success of the constraint solver when
computing solutions for the path conditions).

Furthermore, our approach allows us to generate tests that
exercise “deep” system executions. An example where this
could be useful would be a complex server application that
can run for a very long time. Instead of trying to symboli-
cally analyze the whole state space (which might be impossi-
ble), such an application could be executed in concrete mode
until a certain condition is recognized that warrants closer
inspection. At this point, symbolic execution can take over
and provide the data for test cases that specifically stress
the suspicious program states.

Moreover, we can use our mixed concrete-symbolic execu-
tion to extend existing tests. For example, this could be use-
ful when generating test sequences for Java containers [33].
A test in this case is a sequence of add and remove methods
that add and remove elements to and from the container.
One can use an existing test sequence to set-up the content
of the heap for the container and subsequently execute add

or remove symbolically to increase testing coverage. This
would be much less expensive than executing the whole test
sequence symbolically.

5.2 Using system-level simulation runs
We consider here a second technique that uses actual system-

level simulation runs to improve the precision of unit-level
analysis. The technique is illustrated in Figure 8. Multiple
system runs are obtained via Monte Carlo simulations. The
values of various system variables that form the unit’s inter-
face are monitored and the results are recorded in a log file
that is then analyzed to determine “likely” correlations on
unit input parameters. These correlations are then encoded
as pre-conditions to the unit and they are asserted as initial
path conditions for the symbolic execution of the unit. As a
result, only test inputs that satisfy the input pre-conditions
are generated.

As a simulation environment, we use ANTARES [1] (the
Advanced NASA Technology ARchitecture for Exploration
Studies), a trajectory simulation tool used by the JSC Guid-
ance Navigation and Control (GN&C) community in sup-
port of NASA missions. ANTARES is a collection of space-
craft system related models and libraries that are assembled
and executed by Trick, a C-based simulation environment.

Currently, ANTARES is used for spacecraft design assess-
ment, performance analysis, requirements validation, Hard-
ware in the Loop and Human in the Loop testing.

To execute a run in ANTARES, the user specifies an input
file which contains all of the information that Trick needs to
properly initialize the data in every model. There are several
ANTARES input file templates that have been verified and
validated, and the user typically needs only to modify one
of these files for their specific task.

The input file also specifies the log file, which contains a
list of the variables to be monitored during the run. The
resulting data files can take up several gigabytes, depending
on the number of variables and the frequency with which
they are written to the log file.

21



�
1 p2 pn...

Test

Unit

correlation

analysis

multiple
concrete
executions

System

Test

Unit

precond

symbolic
executions

interface
monitoring

p1p2 pn...

Figure 8: Using system simulations to determine unit pre-conditions.

One can also set up Monte Carlo simulations by writing
an input file which specifies designated input variables, their
probability distributions and how many cases one wishes to
run while sampling from the probability distributions. This
allowed us to obtain simulations with widely varying initial
system data.

The correlation analysis uses machine learning techniques
(e.g., [31, 12]) to determine unit input constraints. For the
case study presented in the next section, we only needed a
simple analysis of the log file to determine simple correla-
tions in terms of range restriction on unit inputs. However,
for other, more complex applications, we are experiment-
ing with the treatment learner from [31] to determine more
complex correlations.

We remark that this second technique can be combined
with the first technique presented above in Section 5.1. In-
deed, one can run a program within JPF and obtain input
constraints for the unit, and then use these as pre-conditions
during the symbolic execution analysis. In fact, an interface
between JPF and the Daikon invariant detector tool [12]
already exists, and it can be used for our purpose.

6. CASE STUDY
In this section we describe the application of our approach

to testing NASA software.

6.1 On-board Abort Executive (OAE)
We applied our approach to a Java model of the Crew

Exploration Vehicle’s prototype ascent abort handling soft-
ware, the Onboard Abort Executive (OAE). The OAE mon-
itors the status of the vehicle during the ascent phase of
flight. It decides the following:

• when an abort is required,

• which abort mode is currently safest for the astronauts,

• when to automatically initiate an ascent abort.

The high-level structure of the code is shown in Figure 9.
The OAE receives its inputs (e.g., current altitude, launch
vehicle internal pressures, etc.) from sensors and other soft-
ware components. The inputs are analyzed to determine if

read inputs

check flight rule violation

compute feasible aborts

pick highest ranked abort

Figure 9: The OAE code structure.

any of the ascent flight rules have been broken, and to evalu-
ate which ascent abort modes are currently possible. If mul-
tiple abort modes are currently possible, the OAE chooses
the abort mode that is safest for the flight crew. The OAE
also predicts what the vehicle’s abort mode options will be
in a short time. This gives the crew the opportunity to
postpone abort initiation in favor of a safer abort mode in
the near future. Once a flight rule is broken, and an abort
mode is chosen, it is sent to the rest of the flight software
for initiation. The analyzed code is approximately 600 lines
of code, it has a large input space (approximately 65 input
variables) and fairly complicated logic.

There are many ascent flight rules and abort modes, and
encoding them correctly in software is difficult. Since the
OAE is directly concerned with human safety, it is impera-
tive that this code be correctly implemented and carefully
verified. Currently, test generation is done by hand by JSC
engineers, so it is time-consuming to ensure that all nec-
essary test cases are created. Our goal was therefore to
demonstrate that our approach can quickly and automati-
cally generate all required test cases for the OAE. During
test case generation, our approach also checked known safety
properties derived from the requirements.
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6.2 Properties
Examples of safety properties that we checked for the OAE

are:

• If a flight rule is violated, then an abort mode must be
chosen.

• If no flight rules are violated, then an abort mode must
not be chosen.

• If both performance and systems abort conditions ex-
ist, then the systems abort rules should apply.

We encoded these properties as assertions in the code.

6.3 Test Coverage
The OAE requires different kinds of code coverage for its

test suite. These include abort coverage, flight rule cover-
age, combinations of abort/flight rules coverage, and branch
coverage. Initially, we generated a maximal test suite that
included test cases violating multiple flight rules. However,
since the OAE was an early prototype, it was not designed
to handle multiple simultaneous flight rule violations. We
therefore generated a new set of test cases for single flight
rule violations (by instructing JPF to backtrack when a sec-
ond flight rule violation occurs). More generally, one can
customize JPF’s search to satisfy user-specified test coverage
criteria (using JPF listeners).

6.4 Results
We used our symbolic execution framework to generate

approximately 200 test cases to cover all aborts and flight
rules. The total execution time was less than 1 minute.
A typical test case required solving path conditions with
between 70 and 85 clauses. During test case generation we
also discovered an error (flight rules broken but no abort
picked) which was later corrected by the OAE developers.
Each test case includes the values of the input variables and
the expected output abort mode.

Note that manual test case generation took more than 20
hours and did not cover all possible flight rule/abort combi-
nations. We also experimented with random testing, which
covered only a few flight rules and no aborts; this is not
surprising, given the large input state space and the compli-
cated conditions in the code.

The engineers at JSC used the test cases that we generated
both as part of their test suite for this early version of OAE
and as regression tests for later versions. This proved to
be important as one of the generated test cases (run as a
regression test) identified a significant design error in the
next version of OAE and resulted in design changes that
affected not just the flight rules and abort code, but also
several other modules.

We also analyzed a later version of the OAE that imple-
mented the predicted abort mode functionality. The analy-
sis procedure was the same as for the original OAE model,
and it generated approximately 300 test cases in less than 2
minutes.

6.5 Input Constraints
In our case study, we analyzed the OAE component in

isolation, by writing a driver that invokes the component.
However, the OAE operates in a vehicle subject to real-world
constraints, so some combinations of input parameters that

might cause the code to detect flight rule violations are not
physically possible. For example, we initially generated a
test suite that contained a case that set the inertial velocity
of the vehicle to 24000 ft/s, though the altitude of the ve-
hicle was only 0 feet (a physically impossible combination).
We therefore needed to encode such constraints explicitly to
avoid generation of un-realistic test cases. The constraints
were expressed as range restrictions on input variables or as
simple functions of input variables. These were asserted as
pre-conditions to the OAE code and were thereby automat-
ically included in the path conditions.

Some of the input constraints were directly provided by
the domain experts, while other constraints, such as range
restrictions, were determined from ANTARES simulation
runs. For the OAE, we determined the minimum (min)
and maximum (max) values of the pertinent OAE input
variables.We used these values to encode the ranges [min −

δ . . . max + δ] as pre-conditions in the OAE code; we used
the extra quantity δ to increase the chances that symbolic
execution would discover failure cases. As a result, we were
able to generate test suites that did not contain physically
impossible test cases, but still achieved the desired coverage.

In the future, as we will need to analyze new, more com-
plex versions of the OAE, we plan to use the treatment
learner [31] to correlate the ranges of the input variables
with different phases of the abort logic.

In general, we should note that the analysis of the sim-
ulation data can only give “likely” correlations on the unit
inputs. While these correlations help focus the symbolic ex-
ecution, they need to be used with care, since they might
mask unit behaviour. This is the reason we introduced the
δ above. We need to investigate more how one can “expand”
the input domains in the case of more complex correlations.

7. RELATED WORK
The work related to the topic of this paper is vast, and

for brevity we only highlight here some of the closely related
works.

Several approaches have been proposed that use model
checking for test input generation [2, 17, 21, 24]. In these ap-
proaches, one specifies as a (temporal) property that a spe-
cific coverage cannot be achieved and a model checker is used
to produce counterexample traces, if they exist, that then
can be transformed into test inputs to achieve the stated
coverage.

Two popular software model checkers, BLAST and SLAM,
have also been used for generating test inputs with the goal
of covering a specific predicate or a combination of predi-
cates [8, 6]. Both these tools use over-approximation based
predicate abstraction and use some form of symbolic evalua-
tion for the analysis of (spurious) abstract counterexamples
and refinement. We use a hybrid approach that combines
model checking with symbolic execution and constraint solv-
ing for test case generation. Furthermore, we have shown
how to use system-level concrete executions to improve unit-
level test case generation.

Program analysis based on symbolic execution has re-
ceived a lot of attention recently, e.g., [14, 34, 19, 32, 9].

The Extended Static Checker (ESC) [14] uses a static
analysis to verify partial correctness of Java classes. Al-
though our focus here is on test case generation, we can also
use our symbolic execution framework to check light-weight
properties in a way similar to ESC.
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Symstra [34] uses a specialized symbolic execution over
numeric data for generating test sequences for (sequential)
Java containers. We provide here a general framework for
the symbolic execution of arbitrary Java bytecode. Symclat
is an experimental implementation of symbolic execution in
JPF that was done in the more general context of an empir-
ical case study [3]. Similar to Symbolic JPF, Symclat was
done via changing the byte-code interpretation, but it did
not use attributes or the instruction factory, and was limited
to handling integer symbolic inputs. Bogor/Kiasan [13] is
similar to JPF–SE [5], but uses a “lazier” approach.

We are working towards making our framework supersede
in functionality our previous tool [27, 5], but without requir-
ing the code instrumentation. Therefore, all the applications
from our previous work, such as test sequence generation
for Java containers [33] should be possible with our new ap-
proach. Furthermore, the ability to alternate dynamically
between concrete and symbolic execution (as described in
Section 5) opens up a new set of applications that need to
be explored.

Concolic execution [19, 32, 9] is an analysis technique that
performs a concrete execution on random inputs and it col-
lects the path constraints along the executed path. These
path constraints are then used to compute new inputs that
drive the program along alternative paths. Unlike concolic
execution, which performs symbolic execution along a con-
crete execution, we use concrete execution to set-up the en-
vironment for symbolic execution. Furthermore, unlike our
approach, the approaches described in [19, 32, 9] use code
instrumentation and don’t use model checking (that we use
for analyzing multithreading systematically). We are not
aware of any other techniques that combine symbolic and
concrete execution in a way similar to our approach.

Our work is similar in spirit, but different methodolog-
ically to other hybrid approaches such as [35, 20]. These
works combine abstraction techniques and theorem proving
for program analysis and testing and do not address the
problem of constraining the environment for unit analysis.

Finally, Symbolic JPF can be viewed as leveraging JPF to
enable integration of mixed symbolic and concrete execution
with the work on carving differential unit tests from system
tests [15].

8. CONCLUSIONS AND FUTURE WORK
We presented a symbolic execution framework for test case

generation that implements a non-standard interpreter on
top of the JPF model checking tool. We proposed two tech-
niques that use concrete system executions to improve the
precision of the symbolic analysis. We described a case study
that demonstrated the merits of our techniques.

In the future, we plan to work on a tighter integration of
the symbolic execution with the system level simulations and
to experiment with different machine learning techniques for
correlation analysis. Furthermore, we want to investigate
whether some of the constraints generated by the symbolic
analysis can also be fed back to the simulator, to help it
focus on complex, off-nominal scenarios.

We are actively working on extending the capabilities of
our symbolic execution framework and applying it to testing
new NASA software (e.g., a Java utility library for trajectory
computation). We are also extending the tool’s capabilities
to generate test sequences for UML statecharts (using JPF’s
statechart extension).
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