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Notes by Yves Meyer

The history of wavelets is not very old, at most 10 to 15 years. The field 
experienced a fast and impressive start, characterized by a close-knit 
international community of researchers who freely circulated scientific 
information and were driven by the researchers’ youthful enthusiasm. Even as 
the commercial rewards promised to be significant, the ideas were shared, the 
trials were pooled together, and the successes were shared by the community.

There are lots of successes for the community to share. Why? Probably because 
the time is ripe. Fourier techniques were liberated by the appearance of 
windowed Fourier methods that operate locally on a time-frequency approach. 
In another direction, Burt-Adelson’s pyramidal algorithms, the quadrature 
mirror filters, and filter banks and subband coding are available. The 
mathematics underlying those algorithms existed earlier, but new computing 
techniques enabled researchers to try out new ideas rapidly. The numerical 
image and signal processing areas are blooming. 

The wavelets bring their own strong benefits to that environment: a local 
outlook, a multiscaled outlook, cooperation between scales, and a time-scale 
analysis. They demonstrate that sines and cosines are not the only useful 



functions and that other bases made of weird functions serve to look at new 
foreign signals, as strange as most fractals or some transient signals. 

Recently, wavelets were determined to be the best way to compress a huge 
library of fingerprints. This is not only a milestone that highlights the practical 
value of wavelets, but it has also proven to be an instructive process for the 
researchers involved in the project. Our initial intuition generally was that the 
proper way to tackle this problem of interweaving lines and textures was to use 
wavelet packets, a flexible technique endowed with quite a subtle sharpness of 
analysis and a substantial compression capability. However, it was a 
biorthogonal wavelet that emerged victorious and at this time represents the 
best method in terms of cost as well as speed. Our intuitions led one way, but 
implementing the methods settled the issue by pointing us in the right 
direction.

For wavelets, the period of growth and intuition is becoming a time of 
consolidation and implementation. In this context, a toolbox is not only 
possible, but valuable. It provides a working environment that permits 
experimentation and enables implementation. 

Since the field still grows, it has to be vast and open. The Wavelet Toolbox 
product addresses this need, offering an array of tools that can be organized 
according to several criteria:

• Synthesis and analysis tools

• Wavelet and wavelet packets approaches

• Signal and image processing

• Discrete and continuous analyses

• Orthogonal and redundant approaches

• Coding, de-noising and compression approaches

What can we anticipate for the future, at least in the short term? It is difficult 
to make an accurate forecast. Nonetheless, it is reasonable to think that the 
pace of development and experimentation will carry on in many different fields. 
Numerical analysis constantly uses new bases of functions to encode its 
operators or to simplify its calculations to solve partial differential equations. 
The analysis and synthesis of complex transient signals touches musical 
instruments by studying the striking up, when the bow meets the cello string. 
The analysis and synthesis of multifractal signals, whose regularity (or rather 
irregularity) varies with time, localizes information of interest at its 

 

geographic location. Compression is a booming field, and coding and de-noising 
are promising. 

For each of these areas, the Wavelet Toolbox software provides a way to 
introduce, learn, and apply the methods, regardless of the user’s experience. It 
includes a command-line mode and a graphical user interface mode, each very 
capable and complementing to the other. The user interfaces help the novice to 
get started and the expert to implement trials. The command line provides an 
open environment for experimentation and addition to the graphical interface. 

In the journey to the heart of a signal’s meaning, the toolbox gives the traveler 
both guidance and freedom: going from one point to the other, wandering from 
a tree structure to a superimposed mode, jumping from low to high scale, and 
skipping a breakdown point to spot a quadratic chirp. The time-scale graphs of 
continuous analysis are often breathtaking and more often than not 
enlightening as to the structure of the signal.

Here are the tools, waiting to be used. 

Yves Meyer
Professor, Ecole Normale Supérieure de Cachan and Institut de France

Notes by Ingrid Daubechies 

Wavelet transforms, in their different guises, have come to be accepted as a set 
of tools useful for various applications. Wavelet transforms are good to have at 
one’s fingertips, along with many other mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox, 
together with the power of MATLAB® software, really allows one to write 
complex and powerful applications, in a very short amount of time. The 
Graphic User Interface is both user-friendly and intuitive. It provides an 
excellent interface to explore the various aspects and applications of wavelets; 
it takes away the tedium of typing and remembering the various function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in 
Applied and Computational Mathematics
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Product Overview
Everywhere around us are signals that can be analyzed. For example, there are 
seismic tremors, human speech, engine vibrations, medical images, financial 
data, music, and many other types of signals. Wavelet analysis is a new and 
promising set of tools and techniques for analyzing these signals.

Wavelet Toolbox™ software is a collection of functions built on the MATLAB® 
technical computing environment. It provides tools for the analysis and 
synthesis of signals and images, and tools for statistical applications, using 
wavelets and wavelet packets within the framework of MATLAB.

The MathWorks™ provides several products that are relevant to the kinds of 
tasks you can perform with the toolbox. For more information about any of 
these products, see the products section of The MathWorks Web site. 

Wavelet Toolbox software provides two categories of tools:

• Command-line functions 

• Graphical interactive tools

The first category of tools is made up of functions that you can call directly from 
the command line or from your own applications. Most of these functions are 
M-files, series of statements that implement specialized wavelet analysis or 
synthesis algorithms. You can view the code for these functions using the 
following statement:

type function_name

You can view the header of the function, the help part, using the statement

help function_name

A summary list of the Wavelet Toolbox functions is available to you by typing

help wavelet

You can change the way any toolbox function works by copying and renaming 
the M-file, then modifying your copy. You can also extend the toolbox by adding 
your own M-files.

Product Overview
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The second category of tools is a collection of graphical interface tools that 
afford access to extensive functionality. Access these tools from the command 
line by typing

wavemenu

Note  The examples in this guide are generated using Wavelet Toolbox 
software with the DWT extension mode set to 'zpd' (for zero padding), except 
when it is explicitly mentioned. So if you want to obtain exactly the same 
numerical results, type dwtmode('zpd'), before to execute the example code.

In most of the command-line examples, figures are displayed. To clarify the 
presentation, the plotting commands are partially or completely omitted. To 
reproduce the displayed figures exactly, you would need to insert some 
graphical commands in the example code.
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Background Reading
Wavelet Toolbox™ software provides a complete introduction to wavelets and 
assumes no previous knowledge of the area. The toolbox allows you to use 
wavelet techniques on your own data immediately and develop new insights. 

It is our hope that, through the use of these practical tools, you may want to 
explore the beautiful underlying mathematics and theory.

Excellent supplementary texts provide complementary treatments of wavelet 
theory and practice (see “References” on page 6-155). For instance:

• Burke-Hubbard [Bur96] is an historical and up-to-date text presenting the 
concepts using everyday words.

• Daubechies [Dau92] is a classic for the mathematics.

• Kaiser [Kai94] is a mathematical tutorial, and a physics-oriented book.

• Mallat [Mal98] is a 1998 book, which includes recent developments, and 
consequently is one of the most complete.

• Meyer [Mey93] is the “father” of the wavelet books.

• Strang-Nguyen [StrN96] is especially useful for signal processing engineers. 
It offers a clear and easy-to-understand introduction to two central ideas: 
filter banks for discrete signals, and for wavelets. It fully explains the 
connection between the two. Many exercises in the book are drawn from 
Wavelet Toolbox software. 

The Wavelet Digest Internet site (http://www.wavelet.org/) provides much 
useful and practical information.

Installing Wavelet Toolbox™ Software
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Installing Wavelet Toolbox™ Software
To install this toolbox on your computer, see the appropriate platform-specific 
MATLAB® installation guide. To determine if the Wavelet Toolbox™ software 
is already installed on your system, check for a subdirectory named wavelet 
within the main toolbox directory or folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed 
images or truecolor images (represented by m-by-n-by-3 arrays of uint8), all 
wavelet functions use floating-point operations. To avoid Out of Memory errors, 
be sure to allocate enough memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual 
memory. See your operating system documentation for how to configure virtual 
memory.

System Recommendations
While not a requirement, we recommend you obtain Signal Processing 
Toolbox™ and Image Processing Toolbox™ software to use in conjunction with 
the Wavelet Toolbox software. These toolboxes provide complementary 
functionality that give you maximum flexibility in analyzing and processing 
signals and images.

This manual makes no assumption that your computer is running any other 
MATLAB toolboxes. 

Platform-Specific Details
Some details of the use of the Wavelet Toolbox software may depend on your 
hardware or operating system.

Windows Fonts
We recommend you set your operating system to use “Small Fonts.” Set this 
option by clicking the Display icon in your desktop’s Control Panel (accessible 
through the Settings�Control Panel submenu). Select the Configuration option, 
and then use the Font Size menu to change to Small Fonts. You’ll have to restart 
Windows® for this change to take effect.
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Fonts for Non-Windows Platforms
We recommend you set your operating system to use standard default fonts. 

However, for all platforms, if you prefer to use large fonts, some of the labels in 
the GUI figures may be illegible when using the default display mode of the 
toolbox. To change the default mode to accept large fonts, use the wtbxmngr 
function. (For more information, see either the wtbxmngr help or its reference 
page.)

Mouse Compatibility
Wavelet Toolbox software was designed for three distinct types of mouse 
control.

Note  The functionality of the middle mouse button and the right mouse 
button can be inverted depending on the platform.

For more information, see “Using the Mouse” on page A-4.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections. 
Activate controls.

Display cross-hairs to 
show position-dependent 
information.

Translate plots up and 
down, and left and 
right.

Shift + Option +

Wavelet Applications
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Wavelet Applications
Wavelets have scale aspects and time aspects, consequently every application 
has scale and time aspects. To clarify them we try to untangle the aspects 
somewhat arbitrarily.

For scale aspects, we present one idea around the notion of local regularity. For 
time aspects, we present a list of domains. When the decomposition is taken as 
a whole, the de-noising and compression processes are center points.

Scale Aspects
As a complement to the spectral signal analysis, new signal forms appear. They 
are less regular signals than the usual ones. 

The cusp signal presents a very quick local variation. Its equation is  with t 
close to 0 and 0 < r < 1. The lower r the sharper the signal. 

To illustrate this notion physically, imagine you take a piece of aluminum foil; 
The surface is very smooth, very regular. You first crush it into a ball, and then 
you spread it out so that it looks like a surface. The asperities are clearly 
visible. Each one represents a two-dimension cusp and analog of the one 
dimensional cusp. If you crush again the foil, more tightly, in a more compact 
ball, when you spread it out, the roughness increases and the regularity 
decreases.

Several domains use the wavelet techniques of regularity study: 

• Biology for cell membrane recognition, to distinguish the normal from the 
pathological membranes

• Metallurgy for the characterization of rough surfaces

• Finance (which is more surprising), for detecting the properties of quick 
variation of values

• In Internet traffic description, for designing the services size

Time Aspects
Let’s switch to time aspects. The main goals are:

• Rupture and edges detection

• Study of short-time phenomena as transient processes

tr
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As domain applications, we get:

• Industrial supervision of gear-wheel

• Checking undue noises in craned or dented wheels, and more generally in 
nondestructive control quality processes

• Detection of short pathological events as epileptic crises or normal ones as 
evoked potentials in EEG (medicine)

• SAR imagery

• Automatic target recognition

• Intermittence in physics

Wavelet Decomposition as a Whole
Many applications use the wavelet decomposition taken as a whole. The 
common goals concern the signal or image clearance and simplification, which 
are parts of de-noising or compression. 

We find many published papers in oceanography and earth studies. 

One of the most popular successes of the wavelets is the compression of FBI 
fingerprints.

When trying to classify the applications by domain, it is almost impossible to 
sum up several thousand papers written within the last 15 years. Moreover, it 
is difficult to get information on real-world industrial applications from 
companies. They understandably protect their own information. 

Some domains are very productive. Medicine is one of them. We can find 
studies on micro-potential extraction in EKGs, on time localization of His 
bundle electrical heart activity, in ECG noise removal. In EEGs, a quick 
transitory signal is drowned in the usual one. The wavelets are able to 
determine if a quick signal exists, and if so, can localize it. There are attempts 
to enhance mammograms to discriminate tumors from calcifications. 

Another prototypical application is a classification of Magnetic Resonance 
Spectra. The study concerns the influence of the fat we eat on our body fat. The 
type of feeding is the basic information and the study is intended to avoid 
taking a sample of the body fat. Each Fourier spectrum is encoded by some of 
its wavelet coefficients. A few of them are enough to code the most interesting 
features of the spectrum. The classification is performed on the coded vectors.

Fourier Analysis
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Fourier Analysis
Signal analysts already have at their disposal an impressive arsenal of tools. 
Perhaps the most well known of these is Fourier analysis, which breaks down 
a signal into constituent sinusoids of different frequencies. Another way to 
think of Fourier analysis is as a mathematical technique for transforming our 
view of the signal from time-based to frequency-based.

For many signals, Fourier analysis is extremely useful because the signal’s 
frequency content is of great importance. So why do we need other techniques, 
like wavelet analysis?

Fourier analysis has a serious drawback. In transforming to the frequency 
domain, time information is lost. When looking at a Fourier transform of a 
signal, it is impossible to tell when a particular event took place.

If the signal properties do not change much over time — that is, if it is what is 
called a stationary signal — this drawback isn’t very important. However, most 
interesting signals contain numerous nonstationary or transitory 
characteristics: drift, trends, abrupt changes, and beginnings and ends of 
events. These characteristics are often the most important part of the signal, 
and Fourier analysis is not suited to detecting them. 

F
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Short-Time Fourier Analysis
In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier 
transform to analyze only a small section of the signal at a time — a technique 
called windowing the signal. Gabor’s adaptation, called the Short-Time Fourier 
Transform (STFT), maps a signal into a two-dimensional function of time and 
frequency.

The STFT represents a sort of compromise between the time- and 
frequency-based views of a signal. It provides some information about both 
when and at what frequencies a signal event occurs. However, you can only 
obtain this information with limited precision, and that precision is determined 
by the size of the window.

While the STFT compromise between time and frequency information can be 
useful, the drawback is that once you choose a particular size for the time 
window, that window is the same for all frequencies. Many signals require a 
more flexible approach — one where we can vary the window size to determine 
more accurately either time or frequency. 
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Wavelet Analysis
Wavelet analysis represents the next logical step: a windowing technique with 
variable-sized regions. Wavelet analysis allows the use of long time intervals 
where we want more precise low-frequency information, and shorter regions 
where we want high-frequency information.

Here’s what this looks like in contrast with the time-based, frequency-based, 
and STFT views of a signal:

You may have noticed that wavelet analysis does not use a time-frequency 
region, but rather a time-scale region. For more information about the concept 
of scale and the link between scale and frequency, see “How to Connect Scale 
to Frequency?” on page 6-66.
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What Can Wavelet Analysis Do?
One major advantage afforded by wavelets is the ability to perform local 
analysis — that is, to analyze a localized area of a larger signal. 

Consider a sinusoidal signal with a small discontinuity — one so tiny as to be 
barely visible. Such a signal easily could be generated in the real world, 
perhaps by a power fluctuation or a noisy switch.

A plot of the Fourier coefficients (as provided by the fft command) of this 
signal shows nothing particularly interesting: a flat spectrum with two peaks 
representing a single frequency. However, a plot of wavelet coefficients clearly 
shows the exact location in time of the discontinuity.

Wavelet analysis is capable of revealing aspects of data that other signal 
analysis techniques miss, aspects like trends, breakdown points, 
discontinuities in higher derivatives, and self-similarity. Furthermore, 
because it affords a different view of data than those presented by traditional 
techniques, wavelet analysis can often compress or de-noise a signal without 
appreciable degradation.

Sinusoid with a small discontinuity

Fourier Coefficients Wavelet Coefficients

Wavelet Analysis
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Indeed, in their brief history within the signal processing field, wavelets have 
already proven themselves to be an indispensable addition to the analyst’s 
collection of tools and continue to enjoy a burgeoning popularity today.
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What Is Wavelet Analysis?
Now that we know some situations when wavelet analysis is useful, it is 
worthwhile asking “What is wavelet analysis?” and even more fundamentally, 
“What is a wavelet?”

A wavelet is a waveform of effectively limited duration that has an average 
value of zero. 

Compare wavelets with sine waves, which are the basis of Fourier analysis. 
Sinusoids do not have limited duration — they extend from minus to plus 
infinity. And where sinusoids are smooth and predictable, wavelets tend to be 
irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various 
frequencies. Similarly, wavelet analysis is the breaking up of a signal into 
shifted and scaled versions of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that 
signals with sharp changes might be better analyzed with an irregular wavelet 
than with a smooth sinusoid, just as some foods are better handled with a fork 
than a spoon.

It also makes sense that local features can be described better with wavelets 
that have local extent.

Number of Dimensions
Thus far, we’ve discussed only one-dimensional data, which encompasses most 
ordinary signals. However, wavelet analysis can be applied to two-dimensional 
data (images) and, in principle, to higher dimensional data. 

This toolbox uses only one- and two-dimensional analysis techniques.

Sine Wave Wavelet (db10)

......

Continuous Wavelet Transform
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Continuous Wavelet Transform
Mathematically, the process of Fourier analysis is represented by the Fourier 
transform:

which is the sum over all time of the signal f(t) multiplied by a complex 
exponential. (Recall that a complex exponential can be broken down into real 
and imaginary sinusoidal components.) 

The results of the transform are the Fourier coefficients , which when 
multiplied by a sinusoid of frequency  yield the constituent sinusoidal 
components of the original signal. Graphically, the process looks like

Similarly, the continuous wavelet transform (CWT) is defined as the sum over 
all time of the signal multiplied by scaled, shifted versions of the wavelet 
function :

The results of the CWT are many wavelet coefficients C, which are a function of 
scale and position. 

F ω( ) f t( )e jωt–

∞–

∞

� dt=

F ω( )
ω

Signal

...

Constituent sinusoids of different frequencies

Fourier

Transform

ψ

C scale position,( ) f t( )ψ scale position t,,( ) td
∞–

∞

�=
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Multiplying each coefficient by the appropriately scaled and shifted wavelet 
yields the constituent wavelets of the original signal.

Scaling
We’ve already alluded to the fact that wavelet analysis produces a time-scale 
view of a signal, and now we’re talking about scaling and shifting wavelets. 
What exactly do we mean by scale in this context?

Scaling a wavelet simply means stretching (or compressing) it. 

To go beyond colloquial descriptions such as “stretching,” we introduce the 
scale factor, often denoted by the letter  If we’re talking about sinusoids, for 
example, the effect of the scale factor is very easy to see.

Signal Constituent wavelets of different scales and positions

...

Wavelet

Transform

a.

f t( ) t( )sin=

f t( ) 2t( )sin=

f t( ) 4t( )sin=

a; 1=

  ;  a 1
2
---=

  ;  a 1
4
---=

Continuous Wavelet Transform
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The scale factor works exactly the same with wavelets. The smaller the scale 
factor, the more “compressed” the wavelet.

It is clear from the diagrams that, for a sinusoid , the scale factor is 
related (inversely) to the radian frequency . Similarly, with wavelet analysis, 
the scale is related to the frequency of the signal. We’ll return to this topic later.

Shifting
Shifting a wavelet simply means delaying (or hastening) its onset. 
Mathematically, delaying a function  by k is represented by :

Five Easy Steps to a Continuous Wavelet Transform
The continuous wavelet transform is the sum over all time of the signal 
multiplied by scaled, shifted versions of the wavelet. This process produces 
wavelet coefficients that are a function of scale and position.

f t( ) ψ t( )=

f t( ) ψ 2t( )=

f t( ) ψ 4t( )=

;    a 1=

;    a 1
2
---=

;    a 1
4
---=

ωt( )sin a
ω

f t( ) f t k–( )

Wavelet function
ψ t( ) ψ t k–( )

Shifted wavelet function

 0 0
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It’s really a very simple process. In fact, here are the five steps of an easy recipe 
for creating a CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is 
with this section of the signal. The higher C is, the more the similarity. More 
precisely, if the signal energy and the wavelet energy are equal to one, C may 
be interpreted as a correlation coefficient.

 Note that the results will depend on the shape of the wavelet you choose.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you’ve covered 
the whole signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.
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Wavelet

C = 0.0102
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5 Repeat steps 1 through 4 for all scales.

When you’re done, you’ll have the coefficients produced at different scales by 
different sections of the signal. The coefficients constitute the results of a 
regression of the original signal performed on the wavelets.

How to make sense of all these coefficients? You could make a plot on which the 
x-axis represents position along the signal (time), the y-axis represents scale, 
and the color at each x-y point represents the magnitude of the wavelet 
coefficient C. These are the coefficient plots generated by the graphical tools.
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These coefficient plots resemble a bumpy surface viewed from above. If you 
could look at the same surface from the side, you might see something like this:

The continuous wavelet transform coefficient plots are precisely the time-scale 
view of the signal we referred to earlier. It is a different view of signal data from 
the time-frequency Fourier view, but it is not unrelated.

Scale and Frequency
Notice that the scales in the coefficients plot (shown as y-axis labels) run from 
1 to 31. Recall that the higher scales correspond to the most “stretched” 
wavelets. The more stretched the wavelet, the longer the portion of the signal 
with which it is being compared, and thus the coarser the signal features being 
measured by the wavelet coefficients.

Thus, there is a correspondence between wavelet scales and frequency as 
revealed by wavelet analysis:

• Low scale a � Compressed wavelet � Rapidly changing details � High 
frequency .

Time
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• High scale a � Stretched wavelet � Slowly changing, coarse features � Low 
frequency .

Scale of Nature
It’s important to understand that the fact that wavelet analysis does not 
produce a time-frequency view of a signal is not a weakness, but a strength of 
the technique.

Not only is time-scale a different way to view data, it is a very natural way to 
view data deriving from a great number of natural phenomena.

Consider a lunar landscape, whose ragged surface (simulated below) is a result 
of centuries of bombardment by meteorites whose sizes range from gigantic 
boulders to dust specks.

If we think of this surface in cross section as a one-dimensional signal, then it 
is reasonable to think of the signal as having components of different scales — 
large features carved by the impacts of large meteorites, and finer features 
abraded by small meteorites.

ω
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Here is a case where thinking in terms of scale makes much more sense than 
thinking in terms of frequency. Inspection of the CWT coefficients plot for this 
signal reveals patterns among scales and shows the signal’s possibly fractal 
nature.

Even though this signal is artificial, many natural phenomena — from the 
intricate branching of blood vessels and trees, to the jagged surfaces of 
mountains and fractured metals — lend themselves to an analysis of scale.

What’s Continuous About the Continuous Wavelet
Transform?
Any signal processing performed on a computer using real-world data must be 
performed on a discrete signal — that is, on a signal that has been measured 
at discrete time. So what exactly is “continuous” about it? 

What’s “continuous” about the CWT, and what distinguishes it from the 
discrete wavelet transform (to be discussed in the following section), is the set 
of scales and positions at which it operates. 

Unlike the discrete wavelet transform, the CWT can operate at every scale, 
from that of the original signal up to some maximum scale that you determine 
by trading off your need for detailed analysis with available computational 
horsepower.

Continuous Wavelet Transform
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The CWT is also continuous in terms of shifting: during computation, the 
analyzing wavelet is shifted smoothly over the full domain of the analyzed 
function.
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Discrete Wavelet Transform
Calculating wavelet coefficients at every possible scale is a fair amount of work, 
and it generates an awful lot of data. What if we choose only a subset of scales 
and positions at which to make our calculations? 

It turns out, rather remarkably, that if we choose scales and positions based on 
powers of two — so-called dyadic scales and positions — then our analysis will 
be much more efficient and just as accurate. We obtain such an analysis from 
the discrete wavelet transform (DWT). For more information on DWT, see 
“Algorithms” on page 6-23.

An efficient way to implement this scheme using filters was developed in 1988 
by Mallat (see [Mal89] in “References” on page 6-155). The Mallat algorithm is 
in fact a classical scheme known in the signal processing community as a 
two-channel subband coder (see page 1 of the book Wavelets and Filter Banks, 
by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a box 
into which a signal passes, and out of which wavelet coefficients quickly 
emerge. Let’s examine this in more depth.

One-Stage Filtering: Approximations and Details
For many signals, the low-frequency content is the most important part. It is 
what gives the signal its identity. The high-frequency content, on the other 
hand, imparts flavor or nuance. Consider the human voice. If you remove the 
high-frequency components, the voice sounds different, but you can still tell 
what’s being said. However, if you remove enough of the low-frequency 
components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The 
approximations are the high-scale, low-frequency components of the signal. 
The details are the low-scale, high-frequency components. 

The filtering process, at its most basic level, looks like this.

Discrete Wavelet Transform
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The original signal, S, passes through two complementary filters and emerges 
as two signals. 

Unfortunately, if we actually perform this operation on a real digital signal, we 
wind up with twice as much data as we started with. Suppose, for instance, 
that the original signal S consists of 1000 samples of data. Then the resulting 
signals will each have 1000 samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 
1000 we had. There exists a more subtle way to perform the decomposition 
using wavelets. By looking carefully at the computation, we may keep only one 
point out of two in each of the two 2000-length samples to get the complete 
information. This is the notion of downsampling. We produce two sequences 
called cA and cD.

The process on the right, which includes downsampling, produces DWT 
coefficients.

To gain a better appreciation of this process, let’s perform a one-stage discrete 
wavelet transform of a signal. Our signal will be a pure sinusoid with 
high-frequency noise added to it.

S

high-pass

A D

Filters
low-pass

S

cD

cA

1000 samples

~500 coefs

~500 coefs

S

D

A
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~1000 samples
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Here is our schematic diagram with real signals inserted into it.

The MATLAB® code needed to generate s, cD, and cA is

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a 
high-frequency noise, while the approximation coefficients cA contain much 
less noise than does the original signal.

[length(cA) length(cD)]

ans =
   501  501

You may observe that the actual lengths of the detail and approximation 
coefficient vectors are slightly more than half the length of the original signal. 
This has to do with the filtering process, which is implemented by convolving 
the signal with a filter. The convolution “smears” the signal, introducing 
several extra samples into the result.

1000 data points

~500 DWT coefficients

~500 DWT coefficients

S

cD   High Frequency

cA   Low Frequency
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Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations 
being decomposed in turn, so that one signal is broken down into many lower 
resolution components. This is called the wavelet decomposition tree.

Looking at a signal’s wavelet decomposition tree can yield valuable 
information.

Number of Levels
Since the analysis process is iterative, in theory it can be continued 
indefinitely. In reality, the decomposition can proceed only until the individual 

S

cA1 cD1

cA2 cD2

cA3 cD3

S

cA1 cD1

cA2 cD2

cA3 cD3
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details consist of a single sample or pixel. In practice, you’ll select a suitable 
number of levels based on the nature of the signal, or on a suitable criterion 
such as entropy (see “Choosing the Optimal Decomposition” on page 6-147).

Wavelet Reconstruction
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Wavelet Reconstruction
We’ve learned how the discrete wavelet transform can be used to analyze, or 
decompose, signals and images. This process is called decomposition or 
analysis. The other half of the story is how those components can be assembled 
back into the original signal without loss of information. This process is called 
reconstruction, or synthesis. The mathematical manipulation that effects 
synthesis is called the inverse discrete wavelet transform (IDWT).

To synthesize a signal using Wavelet Toolbox™ software, we reconstruct it 
from the wavelet coefficients.

Where wavelet analysis involves filtering and downsampling, the wavelet 
reconstruction process consists of upsampling and filtering. Upsampling is the 
process of lengthening a signal component by inserting zeros between samples.

The toolbox includes commands, like idwt and waverec, that perform 
single-level or multilevel reconstruction, respectively, on the components of 
one-dimensional signals. These commands have their two-dimensional 
analogs, idwt2 and waverec2.

S
H'

L'

H'

L'

Signal component Upsampled signal component

1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
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Reconstruction Filters
The filtering part of the reconstruction process also bears some discussion, 
because it is the choice of filters that is crucial in achieving perfect 
reconstruction of the original signal. 

The downsampling of the signal components performed during the 
decomposition phase introduces a distortion called aliasing. It turns out that 
by carefully choosing filters for the decomposition and reconstruction phases 
that are closely related (but not identical), we can “cancel out” the effects of 
aliasing. 

A technical discussion of how to design these filters is available on page 347 of 
the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and 
high-pass decomposition filters (L and H), together with their associated 
reconstruction filters (L' and H'), form a system of what is called quadrature 
mirror filters:

Reconstructing Approximations and Details
We have seen that it is possible to reconstruct our original signal from the 
coefficients of the approximations and details.

S S

Decomposition Reconstruction
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It is also possible to reconstruct the approximations and details themselves 
from their coefficient vectors. As an example, let’s consider how we would 
reconstruct the first-level approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to 
reconstruct the original signal. However, instead of combining it with the 
level-one detail cD1, we feed in a vector of zeros in place of the detail coefficients 
vector:

The process yields a reconstructed approximation A1, which has the same 
length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous 
process:

The reconstructed details and approximations are true constituents of the 
original signal. In fact, we find when we combine them that

Note that the coefficient vectors cA1 and cD1 — because they were produced by 
downsampling and are only half the length of the original signal — cannot 
directly be combined to reproduce the signal. It is necessary to reconstruct the 
approximations and details before combining them.

A1

H'

L'

0

cA1

1000 samples
~500 zeros

~500 coefs

D1

H'

L'

cD1

0

1000 samples
~500 coefs
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A1 D1+ S=
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Extending this technique to the components of a multilevel analysis, we find 
that similar relationships hold for all the reconstructed signal constituents. 
That is, there are several ways to reassemble the original signal:

Relationship of Filters to Wavelet Shapes
In the section “Reconstruction Filters” on page 1-30, we spoke of the 
importance of choosing the right filters. In fact, the choice of filters not only 
determines whether perfect reconstruction is possible, it also determines the 
shape of the wavelet we use to perform the analysis. 

To construct a wavelet of some practical utility, you seldom start by drawing a 
waveform. Instead, it usually makes more sense to design the appropriate 
quadrature mirror filters, and then use them to create the waveform. Let’s see 
how this is done by focusing on an example.

Consider the low-pass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux command:

Lprime = dbaux(2)

S

A1 D1

A2 D2

A3 D3

= A2 D2 D1+ +

S A1 D1+=

= A3 D3 D2 D1+ + +

Reconstructed
Signal

Components

0 1 2 3
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0

1
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Lprime =
    0.3415    0.5915    0.1585   0.0915

If we reverse the order of this vector (see wrev), and then multiply every even 
sample by –1, we obtain the high-pass filter H':

Hprime =
   0.0915   0.1585    0.5915   0.3415

Next, upsample Hprime by two (see dyadup), inserting zeros in alternate 
positions:

HU =
    0.0915         0   0.1585         0    0.5915         0   0.3415 
Finally, convolve the upsampled vector with the original low-pass 
filter:

H2 = conv(HU,Lprime);
plot(H2)

If we iterate this process several more times, repeatedly upsampling and 
convolving the resultant vector with the four-element filter vector Lprime, a 
pattern begins to emerge.
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The curve begins to look progressively more like the db2 wavelet. This means 
that the wavelet’s shape is determined entirely by the coefficients of the 
reconstruction filters. 

This relationship has profound implications. It means that you cannot choose 
just any shape, call it a wavelet, and perform an analysis. At least, you can’t 
choose an arbitrary wavelet waveform if you want to be able to reconstruct the 
original signal accurately. You are compelled to choose a shape determined by 
quadrature mirror decomposition filters.

Scaling Function
We’ve seen the interrelation of wavelets and quadrature mirror filters. The 
wavelet function  is determined by the high-pass filter, which also produces 
the details of the wavelet decomposition.

There is an additional function associated with some, but not all, wavelets. 
This is the so-called scaling function, . The scaling function is very similar to 
the wavelet function. It is determined by the low-pass quadrature mirror 
filters, and thus is associated with the approximations of the wavelet 
decomposition. 

In the same way that iteratively upsampling and convolving the high-pass 
filter produces a shape approximating the wavelet function, iteratively 
upsampling and convolving the low-pass filter produces a shape approximating 
the scaling function.
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Multistep Decomposition and Reconstruction
A multistep analysis-synthesis process can be represented as

This process involves two aspects: breaking up a signal to obtain the wavelet 
coefficients, and reassembling the signal from the coefficients. 

We’ve already discussed decomposition and reconstruction at some length. Of 
course, there is no point breaking up a signal merely to have the satisfaction of 
immediately reconstructing it. We may modify the wavelet coefficients before 
performing the reconstruction step. We perform wavelet analysis because the 
coefficients thus obtained have many known uses, de-noising and compression 
being foremost among them.

But wavelet analysis is still a new and emerging field. No doubt, many 
uncharted uses of the wavelet coefficients lie in wait. The toolbox can be a 
means of exploring possible uses and hitherto unknown applications of wavelet 
analysis. Explore the toolbox functions and see what you discover.
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History of Wavelets
From an historical point of view, wavelet analysis is a new method, though its 
mathematical underpinnings date back to the work of Joseph Fourier in the 
nineteenth century. Fourier laid the foundations with his theories of frequency 
analysis, which proved to be enormously important and influential.

The attention of researchers gradually turned from frequency-based analysis 
to scale-based analysis when it started to become clear that an approach 
measuring average fluctuations at different scales might prove less sensitive to 
noise. 

The first recorded mention of what we now call a “wavelet” seems to be in 1909, 
in a thesis by Alfred Haar.

The concept of wavelets in its present theoretical form was first proposed by 
Jean Morlet and the team at the Marseille Theoretical Physics Center working 
under Alex Grossmann in France.

The methods of wavelet analysis have been developed mainly by Y. Meyer and 
his colleagues, who have ensured the methods’ dissemination. The main 
algorithm dates back to the work of Stephane Mallat in 1988. Since then, 
research on wavelets has become international. Such research is particularly 
active in the United States, where it is spearheaded by the work of scientists 
such as Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser.

Barbara Burke Hubbard describes the birth, the history, and the seminal 
concepts in a very clear text. See The World According to Wavelets, A.K. Peters, 
Wellesley, 1996.

The wavelet domain is growing up very quickly. A lot of mathematical papers 
and practical trials are published every month.

Introduction to the Wavelet Families
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Introduction to the Wavelet Families
Several families of wavelets that have proven to be especially useful are 
included in this toolbox. What follows is an introduction to some wavelet 
families. 

• “Haar” on page 1-41

• “Daubechies” on page 1-42

• “Biorthogonal” on page 1-43

• “Coiflets” on page 1-45

• “Symlets” on page 1-45

• “Morlet” on page 1-46

• “Mexican Hat” on page 1-46

• “Meyer” on page 1-47

• “Other Real Wavelets” on page 1-47

• “Complex Wavelets” on page 1-47

To explore all wavelet families on your own, check out the Wavelet Display 
tool:

1 Type wavemenu at the MATLAB® command line. The Wavelet Toolbox 
Main Menu appears.
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2 Click the Wavelet Display menu item. The Wavelet Display tool appears.

3 Select a family from the Wavelet menu at the top right of the tool.

4 Click the Display button. Pictures of the wavelets and their associated 
filters appear.

5 Obtain more information by clicking the information buttons located at the 
right.

Introduction to the Wavelet Families

1-41

Haar
Any discussion of wavelets begins with Haar wavelet, the first and simplest. 
Haar wavelet is discontinuous, and resembles a step function. It represents the 
same wavelet as Daubechies db1. See “Haar” on page 6-73 for more detail.
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Daubechies
Ingrid Daubechies, one of the brightest stars in the world of wavelet research, 
invented what are called compactly supported orthonormal wavelets — thus 
making discrete wavelet analysis practicable. 

The names of the Daubechies family wavelets are written dbN, where N is the 
order, and db the “surname” of the wavelet. The db1 wavelet, as mentioned 
above, is the same as Haar wavelet. Here are the wavelet functions psi of the 
next nine members of the family:

You can obtain a survey of the main properties of this family by typing 
waveinfo('db') from the MATLAB command line. See “Daubechies Wavelets: 
dbN” on page 6-72 for more detail.
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Biorthogonal
This family of wavelets exhibits the property of linear phase, which is needed 
for signal and image reconstruction. By using two wavelets, one for 
decomposition (on the left side) and the other for reconstruction (on the right 
side) instead of the same single one, interesting properties are derived.
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You can obtain a survey of the main properties of this family by typing 
waveinfo('bior') from the MATLAB command line. See “Biorthogonal 
Wavelet Pairs: biorNr.Nd” on page 6-76 for more detail.
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Coiflets
Built by I. Daubechies at the request of R. Coifman. The wavelet function has 
2N moments equal to 0 and the scaling function has 2N-1 moments equal to 0. 
The two functions have a support of length 6N-1. You can obtain a survey of the 
main properties of this family by typing waveinfo('coif') from the MATLAB 
command line. See “Coiflet Wavelets: coifN” on page 6-75 for more detail.

Symlets
The symlets are nearly symmetrical wavelets proposed by Daubechies as 
modifications to the db family. The properties of the two wavelet families are 
similar. Here are the wavelet functions psi.

You can obtain a survey of the main properties of this family by typing 
waveinfo('sym') from the MATLAB command line. See “Symlet Wavelets: 
symN” on page 6-74 for more detail.
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Morlet
This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing 
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet: 
morl” on page 6-81 for more detail.

Mexican Hat
This wavelet has no scaling function and is derived from a function that is 
proportional to the second derivative function of the Gaussian probability 
density function.

 You can obtain a survey of the main properties of this family by typing 
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat 
Wavelet: mexh” on page 6-80 for more information.
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Meyer
The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing 
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet: 
meyr” on page 6-78 for more detail.

Other Real Wavelets
Some other real wavelets are available in the toolbox:

• Reverse Biorthogonal 

• Gaussian derivatives family

• FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” on page 6-82 for more information. 

Complex Wavelets
Some complex wavelet families are available in the toolbox:

• Gaussian derivatives

• Morlet 

• Frequency B-Spline

• Shannon

See “Complex Wavelets” on page 6-84 for more information. 
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One-Dimensional Continuous Wavelet Analysis
This section takes you through the features of continuous wavelet analysis 
using Wavelet Toolbox™ software. 

The toolbox requires only one function for continuous wavelet analysis: cwt. 
You’ll find full information about this function in its reference page.

In this section, you’ll learn how to

• Load a signal

• Perform a continuous wavelet transform of a signal

• Produce a plot of the coefficients

• Produce a plot of coefficients at a given scale

• Produce a plot of local maxima of coefficients across scales

• Select the displayed plots

• Switch from scale to pseudo-frequency information

• Zoom in on detail

• Display coefficients in normal or absolute mode

• Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method. 

The final subsection discusses how to exchange signal and coefficient 
information between the disk and the graphical tools.

One-Dimensional Continuous Wavelet Analysis
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Continuous Analysis Using the Command Line
This example involves a noisy sinusoidal signal.

1 Load a signal.

From the MATLAB® prompt, type

load noissin; 

You now have the signal noissin in your workspace:

whos

2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(noissin,1:48,'db4');

Name Size Bytes Class

noissin 1x1000 8000 double array 
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The arguments to cwt specify the signal to be analyzed, the scales of the 
analysis, and the wavelet to be used. The returned argument c contains the 
coefficients at various scales. In this case, c is a 48-by-1000 matrix with each 
row corresponding to a single scale.

3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when 
present, causes cwt to produce a plot of the absolute values of the continuous 
wavelet transform coefficients.

The cwt command can accept more arguments to define the different 
characteristics of the produced plot. For more information, see the cwt 
reference page.

c = cwt(noissin,1:48,'db4','plot');

A plot appears.

Of course, coefficient plots generated from the command line can be 
manipulated using ordinary MATLAB graphics commands. 
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4 Choose scales for the analysis.

The second argument to cwt gives you fine control over the scale levels on 
which the continuous analysis is performed. In the previous example, we 
used all scales from 1 to 48, but you can construct any scale vector subject to 
these constraints:

- All scales must be real positive numbers.

- The scale increment must be positive.

- The highest scale cannot exceed a maximum value depending on the 
signal.

Let’s repeat the analysis using every other scale from 2 to 128. Type

c = cwt(noissin,2:2:128,'db4','plot');

A new plot appears:

This plot gives a clearer picture of what’s happening with the signal, 
highlighting the periodicity.
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Continuous Analysis Using the Graphical Interface
We now use the Continuous Wavelet 1-D tool to analyze the same noisy 
sinusoidal signal we examined earlier using the command line interface in 
“Continuous Analysis Using the Command Line” on page 2-5.

1 Start the Continuous Wavelet 1-D Tool. From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

One-Dimensional Continuous Wavelet Analysis
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Click the Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for one-dimensional signal data 
appears.
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2 Load a signal.

Choose the File > Load Signal menu option.

When the Load Signal dialog box appears, select the demo MAT-file 
noissin.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. 

The noisy sinusoidal signal is loaded into the Continuous Wavelet 1-D tool.

The default value for the sampling period is equal to 1 (second).

3 Perform a Continuous Wavelet Transform.

To start our analysis, let’s perform an analysis using the db4 wavelet at 
scales 1 through 48, just as we did using command line functions in the 
previous section.

In the upper right portion of the Continuous Wavelet 1-D tool, select the 
db4 wavelet and scales 1–48.

Select db4

Select scales 1 to 48 in steps of 1

One-Dimensional Continuous Wavelet Analysis
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4 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot, the 
coefficients line plot corresponding to the scale a = 24, and the local maxima 
plot, which displays the chaining across scales (from a = 48 down to a = 1) of 
the coefficients local maxima.

.

5 View Wavelet Coefficients Line.

Select another scale a = 40 by clicking in the coefficients plot with the right 
mouse button. See step 9 to know, more precisely, how to select the desired 
scale.

Click the New Coefficients Line button. The tool updates the plot.
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6 View Maxima Line.

Click the Refresh Maxima Line button. The local maxima plot displays the 
chaining across scales of the coefficients local maxima from a = 40 down to 
a = 1.

Hold down the right mouse button over the coefficients plot. The position of 
the mouse is given by the Info frame (located at the bottom of the screen) in 
terms of location (X) and scale (Sca).

One-Dimensional Continuous Wavelet Analysis
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7 Switch from scale to Pseudo-Frequency Information.

Using the option button on the right part of the screen, select Frequencies 
instead of Scales. Again hold down the right mouse button over the 
coefficients plot, the position of the mouse is given in terms of location (X) 
and frequency (Frq) in Hertz.
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This facility allows you to interpret scale in terms of an associated 
pseudo-frequency, which depends on the wavelet and the sampling period. 
For more information on the connection between scale and frequency, see 
“How to Connect Scale to Frequency?” on page 6-66.

8 Deselect the last two plots using the check boxes in the Selected Axes 
frame.

One-Dimensional Continuous Wavelet Analysis
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.

9 Zoom in on detail.

Drag a rubber band box (by holding down the left mouse button) over the 
portion of the signal you want to magnify.

.

10 Click the X+ button (located at the bottom of the screen) to zoom horizontally 
only.
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The Continuous Wavelet 1-D tool enlarges the displayed signal and 
coefficients plot (for more information on zooming, see “Connection of Plots” on 
page A-3).

As with the command line analysis on the preceding pages, you can change 
the scales or the analyzing wavelet and repeat the analysis. To do this, just 
edit the necessary fields and click the Analyze button.

11 View normal or absolute coefficients.

The Continuous Wavelet 1-D tool allows you to plot either the absolute 
values of the wavelet coefficients, or the coefficients themselves.

More generally, the coefficients coloration can be done in several different 
ways. For more details on the Coloration Mode, see “Controlling the 
Coloration Mode” on page A-7.

One-Dimensional Continuous Wavelet Analysis
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Choose either one of the absolute modes or normal modes from the 
Coloration Mode menu. In normal modes, the colors are scaled between the 
minimum and maximum of the coefficients. In absolute modes, the colors are 
scaled between zero and the maximum absolute value of the coefficients.

The coefficients plot is redisplayed in the mode you select.

Importing and Exporting Information from the
Graphical Interface
The Continuous Wavelet 1-D graphical interface tool lets you import 
information from and export information to disk.

You can

• Load signals from disk into the Continuous Wavelet 1-D tool.

• Save wavelet coefficients from the Continuous Wavelet 1-D tool to disk.

Loading Signals into the Continuous Wavelet 1-D Tool
To load a signal you’ve constructed in your MATLAB workspace into the 
Continuous Wavelet 1-D tool, save the signal in a MAT-file (with extension 
mat or other). 

For instance, suppose you’ve designed a signal called warma and want to 
analyze it in the Continuous Wavelet 1-D tool.

save warma warma

Absolute Mode Normal Mode
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The workspace variable warma must be a vector.

sizwarma = size(warma) 

sizwarma =
           1        1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu option 
File > Load Signal. A dialog box appears that lets you select the appropriate 
MAT-file to be loaded.

Note  The first one-dimensional variable encountered in the file is considered 
the signal. Variables are inspected in alphabetical order.

Saving Wavelet Coefficients
The Continuous Wavelet 1-D tool lets you save wavelet coefficients to disk. The 
toolbox creates a MAT-file in the current directory with the extension wc1 and 
a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the 
menu option File > Save > Coefficients.

A dialog box appears that lets you specify a directory and filename for storing 
the coefficients.

Consider the example analysis:

 File > Example Analysis > with haar at scales [1:1:64] −−> Cantor curve.

One-Dimensional Continuous Wavelet Analysis
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After saving the continuous wavelet coefficients to the file cantor.wc1, load the 
variables into your workspace:

load cantor.wc1 -mat
whos

Variables coefs and scales contain the continuous wavelet coefficients and 
the associated scales. More precisely, in the above example, coefs is a 
64-by-2188 matrix, one row for each scale; and scales is the 1-by-64 vector 
1:64. Variable wname contains the wavelet name.

Name Size Bytes Class

coeff 64x2188 1120256 double array 

scales 1x64   512 double array 

wname 1x4 8 char array 
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One-Dimensional Complex Continuous Wavelet Analysis
This section takes you through the features of complex continuous wavelet 
analysis using the Wavelet Toolbox™ software and focuses on the differences 
between the real and complex continuous analysis.

You can refer to the section “One-Dimensional Continuous Wavelet Analysis” 
on page 2-4 if you want to learn how to

• Zoom in on detail

• Display coefficients in normal or absolute mode

• Choose the scales at which the analysis is performed

• Switch from scale to pseudo-frequency information

• Exchange signal and coefficient information between the disk and the 
graphical tools

Wavelet Toolbox software requires only one function for complex continuous 
wavelet analysis of a real valued signal: cwt. You’ll find full information about 
this function in its reference page.

In this section, you’ll learn how to

• Load a signal

• Perform a complex continuous wavelet transform of a signal

• Produce plots of the coefficients

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method. 
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Complex Continuous Analysis Using the Command 
Line
This example involves a cusp signal.

1 Load a signal.

From the MATLAB® prompt, type

load cuspamax; 

You now have the signal cuspamax in your workspace:

whos

caption

caption =
x = linspace(0,1,1024);
y = exp(-128*((x-0.3).^2))-3*(abs(x-0.7).^0.4);

caption is a string that contains the signal definition.

Name Size Bytes Class

caption 1x71 142 char array 

cuspamax 1x1024 8192 double array 
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2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(cuspamax,1:2:64,'cgau4');

The arguments to cwt specify the signal to be analyzed, the scales of the 
analysis, and the wavelet to be used. The returned argument c contains the 
coefficients at various scales. In this case, c is a complex 32-by-1024 matrix, 
each row of which corresponds to a single scale.

3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when 
present, causes cwt to produce four plots related to the complex continuous 
wavelet transform coefficients:

- Real and imaginary parts

- Modulus and angle

The cwt command can accept more arguments to define the different 
characteristics of the produced plots. For more information, see the cwt 
reference page.

Type

c = cwt(cuspamax,1:2:64,'cgau4','plot');

One-Dimensional Complex Continuous Wavelet Analysis
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A plot appears:

Of course, coefficient plots generated from the command line can be 
manipulated using ordinary MATLAB graphics commands. 

Complex Continuous Analysis Using the Graphical 
Interface
We now use the Complex Continuous Wavelet 1-D tool to analyze the same 
cusp signal we examined using the command line interface in the previous 
section.

1 Start the Complex Continuous Wavelet 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Complex Continuous Wavelet 1-D menu item.
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The continuous wavelet analysis tool for one-dimensional signal data 
appears.

2 Load a signal.

Choose the File > Load Signal menu option.

When the Load Signal dialog box appears, select the demo MAT-file 
cuspamax.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. 

The cusp signal is loaded into the Complex Continuous Wavelet 1-D tool.

The default value for the sampling period is equal to 1 (second).

3 Perform a Complex Continuous Wavelet Transform

To start our analysis, let’s perform an analysis using the cgau4 wavelet at 
scales 1 through 64 in steps of 2, just as we did using command-line 
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functions in “Complex Continuous Analysis Using the Command Line” on 
page 2-21.

In the upper-right portion of the Complex Continuous Wavelet 1-D tool, 
select the cgau4 wavelet and scales 1–64 in steps of 2.

Click the Analyze button.

After a pause for computation, the tool displays the usual plots associated to 
the modulus of the coefficients on the left side, and the angle of the 
coefficients on the right side.

Select cgau4

Select scales from 1 to 64 in steps of 2

One-Dimensional Complex Continuous Wavelet Analysis
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Each side has exactly the same representation that we found in “Continuous 
Analysis Using the Graphical Interface” on page 2-8.

Select the plots related to the modulus of the coefficients using the Modulus 
option button in the Selected Axes frame.
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The figure now looks like the one in the real Continuous Wavelet 1-D tool.

Importing and Exporting Information from the
Graphical Interface
To know how to import and export information from the Complex Continuous 
Wavelet Graphical Interface, see the corresponding paragraph in 
“One-Dimensional Continuous Wavelet Analysis” on page 2-4.

The only difference is that the variable coefs is a complex matrix (see “Saving 
Wavelet Coefficients” on page 2-18).
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One-Dimensional Discrete Wavelet Analysis
This section takes you through the features of one-dimensional discrete 
wavelet analysis using the Wavelet Toolbox™ software. 

The toolbox provides these functions for one-dimensional signal analysis. For 
more information, see the reference pages.

Analysis-Decomposition Functions

Synthesis-Reconstruction Functions

Decomposition Structure Utilities

Function Name Purpose

dwt Single-level decomposition

wavedec Decomposition

wmaxlev Maximum wavelet decomposition level

Function Name Purpose

idwt Single-level reconstruction

waverec Full reconstruction

wrcoef Selective reconstruction

upcoef Single reconstruction

Function Name Purpose

detcoef Extraction of detail coefficients

appcoef Extraction of approximation coefficients

upwlev Recomposition of decomposition structure
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De-noising and Compression

In this section, you’ll learn how to

• Load a signal

• Perform a single-level wavelet decomposition of a signal

• Construct approximations and details from the coefficients

• Display the approximation and detail

• Regenerate a signal by inverse wavelet transform

• Perform a multilevel wavelet decomposition of a signal

• Extract approximation and detail coefficients

• Reconstruct the level 3 approximation

• Reconstruct the level 1, 2, and 3 details

• Display the results of a multilevel decomposition

• Reconstruct the original signal from the level 3 decomposition

• Remove noise from a signal

• Refine an analysis

• Compress a signal

• Show a signal’s statistics and histograms

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method.

Function Name Purpose

ddencmp Provide default values for de-noising and compression

wbmpen Penalized threshold for wavelet 1-D or 2-D de-noising

wdcbm Thresholds for wavelet 1-D using BirgÐ©-Massart 
strategy

wdencmp Wavelet de-noising and compression

wden Automatic wavelet de-noising

wthrmngr Threshold settings manager
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The final subsection discusses how to exchange signal and coefficient 
information between the disk and the graphical tools.

One-Dimensional Analysis Using the Command Line
This example involves a real-world signal — electrical consumption measured 
over the course of 3 days. This signal is particularly interesting because of noise 
introduced when a defect developed in the monitoring equipment as the 
measurements were being made. Wavelet analysis effectively removes the 
noise.

1 Load a signal.

From the MATLAB® prompt, type

load leleccum; 

Set the variables. Type

s = leleccum(1:3920); 
l_s = length(s);

2 Perform a single-level wavelet decomposition of a signal.

Perform a single-level decomposition of the signal using the db1 wavelet. 
Type

[cA1,cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail 
(cD1).
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3 Construct approximations and details from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the 
coefficients cA1 and cD1, type

A1 = upcoef('a',cA1,'db1',1,l_s); 
D1 = upcoef('d',cD1,'db1',1,l_s);

or

A1 = idwt(cA1,[],'db1',l_s); 
D1 = idwt([],cD1,'db1',l_s);

4 Display the approximation and detail.

To display the results of the level-one decomposition, type

subplot(1,2,1); plot(A1); title('Approximation A1')
subplot(1,2,2); plot(D1); title('Detail D1')

5 Regenerate a signal by using the Inverse Wavelet Transform.

To find the inverse transform, type

A0 = idwt(cA1,cD1,'db1',l_s);
err = max(abs(s-A0))
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err = 
2.2737e-013

6 Perform a multilevel wavelet decomposition of a signal.

To perform a level 3 decomposition of the signal (again using the db1 
wavelet), type

[C,L] = wavedec(s,3,'db1');

The coefficients of all the components of a third-level decomposition (that is, 
the third-level approximation and the first three levels of detail) are 
returned concatenated into one vector, C. Vector L gives the lengths of each 
component.

7 Extract approximation and detail coefficients.

To extract the level 3 approximation coefficients from C, type

cA3 = appcoef(C,L,'db1',3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

cD3 = detcoef(C,L,3); 
cD2 = detcoef(C,L,2); 
cD1 = detcoef(C,L,1);

or

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);

S

cA1 cD1

cA2 cD2

cA3 cD3
cD1cD2cA3 cD3

C



2 Using Wavelets

2-34

Results are displayed in the figure below, which contains the signal s, the 
approximation coefficients at level 3 (cA3), and the details coefficients from 
level 3 to 1 (cD3, cD2 and cD1) from the top to the bottom.

8 Reconstruct the Level 3 approximation and the Level 1, 2, and 3 details.

To reconstruct the level 3 approximation from C, type

A3 = wrcoef('a',C,L,'db1',3);

To reconstruct the details at levels 1, 2, and 3, from C, type

D1 = wrcoef('d',C,L,'db1',1);
D2 = wrcoef('d',C,L,'db1',2);
D3 = wrcoef('d',C,L,'db1',3);
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9 Display the results of a multilevel decomposition.

To display the results of the level 3 decomposition, type

subplot(2,2,1); plot(A3); 
title('Approximation A3')
subplot(2,2,2); plot(D1); 
title('Detail D1')
subplot(2,2,3); plot(D2); 
title('Detail D2')
subplot(2,2,4); plot(D3); 
title('Detail D3')

10 Reconstruct the original signal from the Level 3 decomposition.

To reconstruct the original signal from the wavelet decomposition structure, 
type

A0 = waverec(C,L,'db1');

err = max(abs(s-A0))

err = 
4.5475e-013
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11 Crude de-noising of a signal.

Using wavelets to remove noise from a signal requires identifying which 
component or components contain the noise, and then reconstructing the 
signal without those components. 

In this example, we note that successive approximations become less and 
less noisy as more and more high-frequency information is filtered out of the 
signal. 

The level 3 approximation, A3, is quite clean as a comparison between it and 
the original signal.

To compare the approximation to the original signal, type

subplot(2,1,1);plot(s);title('Original'); axis off
subplot(2,1,2);plot(A3);title('Level 3 Approximation');
axis off
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Of course, in discarding all the high-frequency information, we’ve also lost 
many of the original signal’s sharpest features. 

Optimal de-noising requires a more subtle approach called thresholding. 
This involves discarding only the portion of the details that exceeds a certain 
limit.

12 Remove noise by thresholding.

Let’s look again at the details of our level 3 analysis.

To display the details D1, D2, and D3, type

subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off
subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off
subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

Original

Level 3 Approximation
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Most of the noise occurs in the latter part of the signal, where the details 
show their greatest activity. What if we limited the strength of the details 
by restricting their maximum values? This would have the effect of cutting 
back the noise while leaving the details unaffected through most of their 
durations. But there’s a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, so we could directly 
manipulate each vector, setting each element to some fraction of the vectors’ 
peak or average value. Then we could reconstruct new detail signals D1, D2, 
and D3 from the thresholded coefficients.

To denoise the signal, use the ddencmp command to calculate the default 
parameters and the wdencmp command to perform the actual de-noising, 
type

[thr,sorh,keepapp] = ddencmp('den','wv',s);
clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

Detail Level 1

Detail Level 2

Detail Level 3

Setting a 
threshold
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Note that wdencmp uses the results of the decomposition (C and L) that we 
calculated in step 6 on page 2-33. We also specify that we used the db1 
wavelet to perform the original analysis, and we specify the global 
thresholding option 'gbl'. See ddencmp and wdencmp in the reference pages 
for more information about the use of these commands.

To display both the original and denoised signals, type

subplot(2,1,1); plot(s(2000:3920)); title('Original')
subplot(2,1,2); plot(clean(2000:3920)); title('De-noised')

We’ve plotted here only the noisy latter part of the signal. Notice how we’ve 
removed the noise without compromising the sharp detail of the original 
signal. This is a strength of wavelet analysis.

While using command line functions to remove the noise from a signal can 
be cumbersome, the software’s graphical interface tools include an 
easy-to-use de-noising feature that includes automatic thresholding. 
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More information on the de-noising process can be found in the following 
sections:

- “Remove noise from a signal.” on page 2-49

- “De-Noising” on page 6-97

- “One-Dimensional Variance Adaptive Thresholding of Wavelet 
Coefficients” on page 2-158

- “One-Dimensional Variance Adaptive Thresholding of Wavelet 
Coefficients” on page 6-107

One-Dimensional Analysis Using the Graphical 
Interface
In this section, we explore the same electrical consumption signal as in the 
previous section, but we use the graphical interface tools to analyze the signal.

1 Start the 1-D Wavelet Analysis Tool.

From the MATLAB prompt, type 

wavemenu

One-Dimensional Discrete Wavelet Analysis
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The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.
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3 Load a signal.

From the File menu, choose the Load > Signal option.

When the Load Signal dialog box appears, select the demo MAT-file 
leleccum.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.

One-Dimensional Discrete Wavelet Analysis
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The electrical consumption signal is loaded into the Wavelet 1-D tool.

4 Perform a single-level wavelet decomposition.

To start our analysis, let’s perform a single-level decomposition using the 
db1 wavelet, just as we did using the command-line functions in 
“One-Dimensional Analysis Using the Command Line” on page 2-31.

In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and 
single-level decomposition.

Click the Analyze button.

After a pause for computation, the tool displays the decomposition.
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5 Zoom in on relevant detail.

One advantage of using the graphical interface tools is that you can zoom in 
easily on any part of the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the 
portion of the signal you want to magnify. Here, we’ve selected the noisy part 
of the original signal.

One-Dimensional Discrete Wavelet Analysis
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Click the X+ button (located at the bottom of the screen) to zoom 
horizontally.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you’d expect them to. The 
X- button, for example, zooms out horizontally. The history function keeps 
track of all your views of the signal. Return to a previous zoom level by 
clicking the left arrow button.
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6 Perform a multilevel decomposition.

Again, we’ll use the graphical tools to emulate what we did in the previous 
section using command line functions. To perform a level 3 decomposition of 
the signal using the db1 wavelet:

Select 3 from the Level menu at the upper right, and then click the Analyze 
button again.

After the decomposition is performed, you’ll see a new analysis appear in the 
Wavelet 1-D tool.

Select a view

One-Dimensional Discrete Wavelet Analysis
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Selecting Different Views of the Decomposition

The Display mode menu (middle right) lets you choose different views of the 
wavelet decomposition. 

The default display mode is called “Full Decomposition Mode.” Other 
alternatives include:

- “Separate Mode,” which shows the details and the approximations in 
separate columns.

- “Superimpose Mode,” which shows the details on a single plot 
superimposed in different colors. The approximations are plotted 
similarly.

- “Tree Mode,” which shows the decomposition tree, the original signal, and 
one additional component of your choice. Click on the decomposition tree 
to select the signal component you’d like to view.

- “Show and Scroll Mode,” which displays three windows. The first shows 
the original signal superimposed on an approximation you select. The 
second window shows a detail you select. The third window shows the 
wavelet coefficients.

- “Show and Scroll Mode (Stem Cfs)” is very similar to the “Show and Scroll 
Mode” except that it displays, in the third window, the wavelet coefficients 
as stem plots instead of colored blocks.
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You can change the default display mode on a per-session basis. Select the 
desired mode from the View > Default Display Mode submenu.

Note  The Compression and De-noising windows opened from the Wavelet 
1-D tool will inherit the current coefficient visualization attribute (stems or 
colored blocks).

Depending on which display mode you select, you may have access to 
additional display options through the More Display Options button (for 
more information, see “More Display Options” on page A-19).

Separate Mode Superimpose Mode Tree Mode

Show & Scroll Mode Show & Scroll Mode (Stem Cfs)
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These options include the ability to suppress the display of various 
components, and to choose whether or not to display the original signal 
along with the details and approximations.

7 Remove noise from a signal.

The graphical interface tools feature a de-noising option with a predefined 
thresholding strategy. This makes it very easy to remove noise from a signal.

Bring up the de-noising tool: click the De-noise button, located in the middle 
right of the window, underneath the Analyze button.
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The Wavelet 1-D De-noising window appears.

While a number of options are available for fine-tuning the de-noising 
algorithm, we’ll accept the defaults of soft fixed form thresholding and 
unscaled white noise.

Continue by clicking the De-noise button.

The de-noised signal appears superimposed on the original. The tool also 
plots the wavelet coefficients of both signals.

One-Dimensional Discrete Wavelet Analysis
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Zoom in on the plot of the original and de-noised signals for a closer look.

Drag a rubber band box around the pertinent area, and then click the XY+ 
button.

The De-noise window magnifies your view. By default, the original signal is 
shown in red, and the de-noised signal in yellow.
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Dismiss the Wavelet 1-D De-noising window: click the Close button.

You cannot have the De-noise and Compression windows open 
simultaneously, so close the Wavelet 1-D De-noising window to continue. 
When the Update Synthesized Signal dialog box appears, click No. If you 
click Yes, the Synthesized Signal is then available in the Wavelet 1-D main 
window.

8 Refine the analysis.

The graphical tools make it easy to refine an analysis any time you want to. 
Up to now, we’ve looked at a level 3 analysis using db1. Let’s refine our 
analysis of the electrical consumption signal using the db3 wavelet at level 5.

Select 5 from the Level menu at the upper right, and select the db3 from the 
Wavelet menu. Click the Analyze button.

9 Compress the signal.

The graphical interface tools feature a compression option with automatic or 
manual thresholding. 

One-Dimensional Discrete Wavelet Analysis
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Bring up the Compression window: click the Compress button, located in 
the middle right of the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing by level thresholding, here 
we’ll take advantage of the global thresholding feature for quick and easy 
compression.

Thresholding method menus

Threshold slider

Compress button
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Note  If you want to experiment with manual thresholding, choose the By 
Level thresholding option from the menu located at the top right of the 
Wavelet 1-D Compression window. The sliders located below this menu then 
control the level-dependent thresholds, indicated by yellow dotted lines 
running horizontally through the graphs on the left of the window. The yellow 
dotted lines can also be dragged directly using the left mouse button.

Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is 
redisplayed in red with the compressed version superimposed in yellow. 
Below, we’ve zoomed in to get a closer look at the noisy part of the signal.

You can see that the compression process removed most of the noise, but 
preserved 99.74% of the energy of the signal. The automatic thresholding 
was very efficient, zeroing out all but 3.2% of the wavelet coefficients.

10 Show the residuals.

From the Wavelet 1-D Compression tool, click the Residuals button. The 
More on Residuals for Wavelet 1-D Compression window appears.

One-Dimensional Discrete Wavelet Analysis
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Displayed statistics include measures of tendency (mean, mode, median) 
and dispersion (range, standard deviation). In addition, the tool provides 
frequency-distribution diagrams (histograms and cumulative histograms), 
as well as time-series diagrams: autocorrelation function and spectrum. The 
same feature exists for the Wavelet 1-D De-noising tool.

Dismiss the Wavelet 1-D Compression window: click the Close button. 
When the Update Synthesized Signal dialog box appears, click No.

11 Show statistics.

You can view a variety of statistics about your signal and its components. 

From the Wavelet 1-D tool, click the Statistics button.
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The Wavelet 1-D Statistics window appears displaying by default statistics 
on the original signal.

Select the synthesized signal or signal component whose statistics you want 
to examine. Click the appropriate option button, and then click the Show 
Statistics button. Here, we’ve chosen to examine the compressed signal 
using more 100 bins instead of 30, which is the default:
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Displayed statistics include measures of tendency (mean, mode, median) 
and dispersion (range, standard deviation). 

In addition, the tool provides frequency-distribution diagrams (histograms 
and cumulative histograms). You can plot these histograms separately using 
the Histograms button from the Wavelets 1-D window.

Click the Approximation option button. A menu appears from which you 
choose the level of the approximation you want to examine.

Select Level 1 and again click the Show Statistics button. Statistics appear 
for the level 1 approximation.
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Wavelet Applications

This chapter explores various applications of wavelets by presenting a series of sample analyses.

• Introduction to Wavelet Analysis (p. 3-2)

• Detecting Discontinuities and Breakdown Points I (p. 3-3)

• Detecting Discontinuities and Breakdown Points II (p. 3-6)

• Detecting Long-Term Evolution (p. 3-8)

• Detecting Self-Similarity (p. 3-10)

• Identifying Pure Frequencies (p. 3-12)

• Suppressing Signals (p. 3-15)

• De-Noising Signals (p. 3-18)

• De-Noising Images (p. 3-21)

• Compressing Images (p. 3-26)

• Fast Multiplication of Large Matrices (p. 3-28)
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Introduction to Wavelet Analysis
Each example is followed by a discussion of the usefulness of wavelet analysis 
for the particular application area under consideration.

Use the graphical interface tools to follow along:

1 From the MATLAB® command line, type

wavemenu

2 Click on Wavelets 1-D (or another tool as appropriate).

3 Load the sample analysis by selecting the appropriate submenu item from 
File�Example Analysis.

Feel free to explore on your own — use the different options provided in the 
graphical interface to look at different components of the signal, to compress or 
de-noise the signal, to examine signal statistics, or to zoom in and out on 
different signal features.

If you want, try loading the corresponding MAT-file from the MATLAB 
command line, and use Wavelet Toolbox™ functions to further investigate the 
sample signals. The MAT-files are located in the directory 
toolbox/wavelet/wavedemo.

There are also other signals in the wavedemo directory that you can analyze on 
your own.

Detecting Discontinuities and Breakdown Points I
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Detecting Discontinuities and Breakdown Points I
The purpose of this example is to show how analysis by wavelets can detect the 
exact instant when a signal changes. The discontinuous signal consists of a 
slow sine wave abruptly followed by a medium sine wave.

The first- and second-level details (D1 and D2) show the discontinuity most 
clearly, because the rupture contains the high-frequency part. Note that if we 
were only interested in identifying the discontinuity, db1 would be a more 
useful wavelet to use for the analysis than db5.

The discontinuity is localized very precisely: only a small domain around     
time = 500 contains any large first- or second-level details. 
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Here is a noteworthy example of an important advantage of wavelet analysis 
over Fourier. If the same signal had been analyzed by the Fourier transform, 
we would not have been able to detect the instant when the signal’s frequency 
changed, whereas it is clearly observable here.

Details D3 and D4 contain the medium sine wave. The slow sine is clearly 
isolated in approximation A5, from which the higher-frequency information has 
been filtered.

Discussion
The deterministic part of the signal may undergo abrupt changes such as a 
jump, or a sharp change in the first or second derivative. In image processing, 
one of the major problems is edge detection, which also involves detecting 
abrupt changes. Also in this category, we find signals with very rapid 
evolutions such as transient signals in dynamic systems.

The main characteristic of these phenomena is that the change is localized in 
time or in space.

The purpose of the analysis is to determine

• The site of the change (e.g., time or position)

• The type of change (a rupture of the signal, or an abrupt change in its first 
or second derivative)

• The amplitude of the change

The local aspects of wavelet analysis are well adapted for processing this type 
of event, as the processing scales are linked to the speed of the change.

Guidelines for Detecting Discontinuities
Short wavelets are often more effective than long ones in detecting a signal 
rupture. In the initial analysis scales, the support is small enough to allow fine 
analysis. The shapes of discontinuities that can be identified by the smallest 
wavelets are simpler than those that can be identified by the longest wavelets. 
Therefore, to identify

• A signal discontinuity, use the haar wavelet

• A rupture in the j-th derivative, select a sufficiently regular wavelet with at 
least j vanishing moments. (See “Detecting Discontinuities and Breakdown 
Points II” on page 3-6.)

Detecting Discontinuities and Breakdown Points I
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The presence of noise, which is after all a fairly common situation in signal 
processing, makes identification of discontinuities more complicated. If the 
first levels of the decomposition can be used to eliminate a large part of the 
noise, the rupture is sometimes visible at deeper levels in the decomposition. 

Check, for example, the sample analysis File�Example Analysis�Basic 
Signals�ramp + white noise (MAT-file wnoislop). The rupture is visible in 
the level-six approximation (A6) of this signal.
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Detecting Discontinuities and Breakdown Points II
The purpose of this example is to show how analysis by wavelets can detect a 
discontinuity in one of a signal’s derivatives. The signal, while apparently a 
single smooth curve, is actually composed of two separate exponentials that are 
connected at time = 500. The discontinuity occurs only in the second derivative, 
at time = 500.

We have zoomed in on the middle part of the signal to show more clearly what 
happens around time = 500. The details are high only in the middle of the 
signal and are negligible elsewhere. This suggests the presence of 
high-frequency information — a sudden change or discontinuity — around     
time = 500.
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Discussion
Regularity can be an important criterion in selecting a wavelet. We have 
chosen to use db4, which is sufficiently regular for this analysis. Had we chosen 
the haar wavelet, the discontinuity would not have been detected. If you try 
repeating this analysis using haar at level two, you’ll notice that the details are 
equal to zero at time = 500. 

Note that to detect a singularity, the selected wavelet must be sufficiently 
regular, which implies a longer filter impulse response. 

See “Frequently Asked Questions” on page 6-61 and “Wavelet Families: 
Additional Discussion” on page 6-71 for a discussion of the mathematical 
meaning of regularity and a comparison of the regularity of various wavelets.
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Detecting Long-Term Evolution
The purpose of this example is to show how analysis by wavelets can detect the 
overall trend of a signal. The signal in this case is a ramp obscured by “colored” 
(limited-spectrum) noise. (We have zoomed in along the x-axis to avoid showing 
edge effects.)

There is so much noise in the original signal, s, that its overall shape is not 
apparent upon visual inspection. In this level-6 analysis, we note that the trend 
becomes more and more clear with each approximation, A1 to A6. Why is this?

The trend represents the slowest part of the signal. In wavelet analysis terms, 
this corresponds to the greatest scale value. As the scale increases, the 
resolution decreases, producing a better estimate of the unknown trend. 

Another way to think of this is in terms of frequency. Successive 
approximations possess progressively less high-frequency information. With 
the higher frequencies removed, what’s left is the overall trend of the signal.
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Discussion
Wavelet analysis is useful in revealing signal trends, a goal that is 
complementary to the one of revealing a signal hidden in noise. It’s important 
to remember that the trend is the slowest part of the signal. If the signal itself 
includes sharp changes, then successive approximations look less and less 
similar to the original signal. 

Consider the demo analysis File�Example Analysis�Basic Signals�Step 
signal (MAT-file wstep.mat). It is instructive to analyze this signal using the 
Wavelet 1-D tool and see what happens to the successive approximations. Try 
it.
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Detecting Self-Similarity
The purpose of this example is to show how analysis by wavelets can detect a 
self-similar, or fractal, signal. The signal here is the Koch curve — a synthetic 
signal that is built recursively.

This analysis was performed with the Continuous Wavelet 1-D graphical tool. 
A repeating pattern in the wavelet coefficients plot is characteristic of a signal 
that looks similar on many scales. 

Wavelet Coefficients and Self-Similarity
From an intuitive point of view, the wavelet decomposition consists of 
calculating a “resemblance index” between the signal and the wavelet. If the 
index is large, the resemblance is strong, otherwise it is slight. The indices are 
the wavelet coefficients.
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If a signal is similar to itself at different scales, then the “resemblance index” 
or wavelet coefficients also will be similar at different scales. In the coefficients 
plot, which shows scale on the vertical axis, this self-similarity generates a 
characteristic pattern.

Discussion
The work of many authors and the trials that they have carried out suggest 
that wavelet decomposition is very well adapted to the study of the fractal 
properties of signals and images.

When the characteristics of a fractal evolve with time and become local, the 
signal is called a multifractal. The wavelets then are an especially suitable tool 
for practical analysis and generation.
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Identifying Pure Frequencies
The purpose of this example is to show how analysis by wavelets can effectively 
perform what is thought of as a Fourier-type function — that is, resolving a 
signal into constituent sinusoids of different frequencies. The signal is a sum 
of three pure sine waves.

Discussion
The signal is a sum of three sines: slow, medium, and rapid, which have periods 
(relative to the sampling period of 1) of 200, 20, and 2, respectively. 

The slow, medium, and rapid sinusoids appear most clearly in approximation 
A4, detail D4, and detail D1, respectively. The slight differences that can be 
observed on the decompositions can be attributed to the sampling period. 

Detail D1 contains primarily the signal components whose period is between 1 
and 2 (i.e., the rapid sine), but this period is not visible at the scale that is used 
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for the graph. Zooming in on detail D1 (see below) reveals that each “belly” is 
composed of 10 oscillations, and this can be used to estimate the period. We 
indeed find that it is close to 2.

The detail D3 and (to an even greater extent), the detail D4 contain the medium 
sine frequencies. We notice that there is a breakdown between approximations 
A3 and A4, from which the medium frequency information has been subtracted. 
We should therefore use approximations A1 to A3 to estimate the period of the 
medium sine. Zooming in on A1 reveals a period of around 20. 

Now only the period of the slow sine remains to be determined. Examination of 
approximation A4 (see the figure in “Identifying Pure Frequencies” on 
page 3-12) shows that the distance between two successive maximums is 200. 
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This slow sine still is visible in approximation A5, but were we to extend this 
analysis to further levels, we would find that it disappears from the 
approximation and moves into the details at level 8.

This also can be obtained automatically using the scal2frq function, which 
associates pseudo-frequencies to scales for a given wavelet.

lev = [1:5]; a = 2.^lev;     % scales.
wname ='db3';
delta = 1;
f = scal2frq(a,wname,delta); % corresponding pseudo-frequencies.
per  = 1./f;                 % corresponding pseudo-periods.

Leading to

In summation, we have used wavelet analysis to determine the frequencies of 
pure sinusoidal signal components. We were able to do this because the 
different frequencies predominate at different scales, and each scale is taken 
into account by our analysis.

Signal Component Found In Period Frequency

Slow sine Approximation A4 200 0.005

Medium sine Detail D4 20 0.05

Rapid sine Detail D1 2 0.5

Level Scale Pseudo-Period Pseudo-Frequency

1 2 2.5 0.4 

2 4 5 0.2 

3 8 10 0.1 

4 16 20 0.05 

5 32 40 0.025 

Suppressing Signals
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Suppressing Signals
The purpose of this example is to illustrate the property that causes the 
decomposition of a polynomial to produce null details, provided the number of 
vanishing moments of the wavelet (N for a Daubechies wavelet dbN) exceeds the 
degree of the polynomial. The signal here is a second-degree polynomial 
combined with a small amount of white noise. 

Note that only the noise comes through in the details. The peak-to-peak 
magnitude of the details is about 2, while the amplitude of the polynomial 
signal is on the order of 105.

The db3 wavelet, which has three vanishing moments, was used for this 
analysis. Note that a wavelet of the Daubechies family with fewer vanishing 
moments would fail to suppress the polynomial signal. For more information, 
see the section “Daubechies Wavelets: dbN” on page 6-72.
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Here is what the first three details look like when we perform the same 
analysis with db2.

The peak-to-peak magnitudes of the details D1, D2, and D3 are 2, 10, and 40, 
respectively. These are much higher detail magnitudes than those obtained 
using db3.

Discussion
For the db2 analysis, the details for levels 2 to 4 show a periodic form that is 
very regular, and that increases with the level. This is explained by the fact 
that the detail for level j takes into account primarily the fluctuations of the 
polynomial function around its mean value on dyadic intervals that are 2j long. 
The fluctuations are periodic and very large in relation to the details of the 
noise decomposition.
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On the other hand, for the db3 analysis, we find the presence of white noise 
thus indicating that the polynomial does not come into play in any of the 
details. The wavelet suppresses the polynomial part and analyzes the noise.

Suppressing part of a signal allows us to highlight the remainder.

Vanishing Moments
The ability of a wavelet to suppress a polynomial depends on a crucial 
mathematical characteristic of the wavelet called its number of vanishing 
moments. A technical discussion of vanishing moments appears in the sections 
“Frequently Asked Questions” on page 6-61 and “Wavelet Families: Additional 
Discussion” on page 6-71. For the present discussion, it suffices to think of 
“moment” as an extension of “average.” Since a wavelet’s average value is zero, 
it has (at least) one vanishing moment. 

More precisely, if the average value of is zero (where is the wavelet 
function), for  then the wavelet has  vanishing moments and 
polynomials of degree n are suppressed by this wavelet. 

xkψ x( ) ψ x( )
k 0 … n,, ,= n 1+
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De-Noising Signals
The purpose of this example is to show how to de-noise a signal using wavelet 
analysis. This example also gives us an opportunity to demonstrate the 
automatic thresholding feature of the Wavelet 1-D graphical interface tool. 
The signal to be analyzed is a Doppler-shifted sinusoid with some added noise.

Discussion
We note that the highest frequencies appear at the start of the original signal. 
The successive approximations appear less and less noisy; however, they also 
lose progressively more high-frequency information. In approximation A5, for 
example, about the first 20% of the signal is truncated.

Click the De-noise button to bring up the Wavelet 1-D De-Noising window. 
This window shows each detail along with its automatically set de-noising 
threshold.
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Click the De-noise button. On the screen, the original and de-noised signals 
appear superimposed in red and yellow, respectively. 
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Note that the de-noised signal is flat initially. Some of the highest-frequency 
signal information was lost during the de-noising process, although less was 
lost here than in the higher level approximations A4 and A5.

For this signal, wavelet packet analysis does a better job of removing the noise 
without compromising the high-frequency information. Explore on your own: 
try repeating this analysis using the Wavelet Packet 1-D tool. Select the menu 
item File�Example Analysis�noisdopp.

De-Noising Images
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De-Noising Images
The purpose of this example is to show how to de-noise an image using both a 
two-dimensional wavelet analysis and a two-dimensional stationary wavelet 
analysis. De-noising is one of the most important applications of wavelets.

The image to be de-noised is a noisy version of a piece of the following image.

For this example, switch the extension mode to symmetric padding using the 
command

dwtmode('sym')

Open the Wavelet 2-D tool, select from the File menu the Load Image option, 
and select the MAT-file noiswom.mat, which should reside in the MATLAB® 
directory toolbox/wavelet/wavedemo.

The image is loaded into the Wavelet 2-D tool. Select the haar wavelet and 
select 4 from the level menu, and then click the Analyze button.
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The analysis appears in the Wavelet 2-D window.

Click the De-noise button (located at the middle right) to bring up the Wavelet 
2-D -- De-noising window.

Discussion
The graphical tool provides automatically generated thresholds. From the 
Select thresholding method menu, select the item Penalize low and click the 
De-noise button.

Example Analysis
Noisy Woman
MAT-file
noiswom.mat

Wavelet
haar

Level
4

De-Noising Images
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The de-noised image exhibits some blocking effects. Let's try another wavelet. 
Click the Close button to go back to the Wavelet 2-D window. Select the sym6 
wavelet, and then click the Analyze button. Click the De-noise button to bring 
up the Wavelet 2-D -- De-noising window again. 

From the Select thresholding method menu, select the item Penalize low, 
and click the De-noise button.
  

The de-noised image exhibits some ringing effects. Let's try another strategy 
based on the two-dimensional stationary wavelet analysis to de-noise images. 
The basic idea is to average many slightly different discrete wavelet analyses. 
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For more information, see the section “Discrete Stationary Wavelet Transform 
(SWT)” on page 6-44.

Click the Close button to go back to the Wavelet 2-D window and click the 
Close button again. Open the SWT De-noising 2-D tool, select from the File 
menu the Load Image option and select the MAT-file noiswom.mat. Select the 
haar wavelet and select 4 from the level menu, and then click the Decompose 
Image button.

The selected thresholding method is Penalize low. Use the Sparsity slider to 
adjust the threshold value close to 44.5 (the same as before to facilitate the 
comparison with the first trial), and then click the De-noise button.
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The result is more satisfactory. It’s possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the 
Sparsity slider to adjust the threshold value close to 40.44 (the same as before 
to facilitate the comparison with the second trial), and then click the De-noise 
button.

At the end of this example, turn back the extension mode to zero-padding using 
the command

dwtmode('zpd')
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Compressing Images
The purpose of this example is to show how to compress an image using 
two-dimensional wavelet analysis. Compression is one of the most important 
applications of wavelets. The image to be compressed is a fingerprint. 

For this example, open the Wavelet 2-D tool and select the menu item 
File�Example Analysis�at level 3, with haar −−> finger.

The analysis appears in the Wavelet 2-D tool. Click the Compress button 
(located at the middle right) to bring up the Wavelet 2-D Compression 
window.

Example Analysis
Finger
MAT-file
detfingr.mat

Wavelet
haar

Level
3

Compressing Images
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Discussion
The graphical tool provides an automatically generated threshold. From the 
Select thresholding method menu, select Remove near 0, setting the 
threshold to 3.5. Then, click the Compress button. Values under the threshold 
are forced to zero, achieving about 42% zeros while retaining almost all 
(99.96%) the energy of the original image.

The automatic thresholds usually achieve reasonable and various balances 
between the number of zeros and retained image energy. Depending on your 
data and your analysis criteria, you may find setting more or less aggressive 
thresholds achieves better results.

Here we’ve set the global threshold to around 30. This results in a compressed 
image consisting of about 92% zeros with 97.7% retained energy.
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Fast Multiplication of Large Matrices
This section illustrates matrix-vector multiplication in the wavelet domain.

• The problem is 

let m be a dense matrix of large size (n, n). We want to perform a large 
number, L, of multiplications of m by vectors v.

• The idea is 

Stage 1: (executed once) Compute the matrix approximation, sm, at a 
suitable level k. The matrix will be assimilated with an image. 

Stage 2: (executed L times) divided in the following three steps: 

a Compute vector approximation. 

b Compute multiplication in wavelet domain. 

c Reconstruct vector approximation.

It is clear that when sm is a sufficiently good approximation of m, the error 
with respect to ordinary multiplication can be small. This is the case in the first 
example below where m is a magic square. Conversely, when the wavelet 
representation of the matrix m is dense the error will be large (for example, if 
all the coefficients have the same order of magnitude). This is the case in the 
second example below where m is two-dimensional Gaussian white noise. The 
figure in Example 1 compares for n = 512, the number of floating point 
operations (flops) required by wavelet based method and by ordinary method 
versus L.

Fast Multiplication of Large Matrices
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Example 1: Effective Fast Matrix Multiplication

n = 512; 
lev = 5; 
wav = 'db1';

% Wavelet based matrix multiplication by a vector: 
% a good  example 
% Matrix is magic(512) Vector is (1:512)

m = magic(n); 
v = (1:n)'; 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wav);

% ordinary matrix multiplication by a vector. 
p = m * v; 

% The number of floating point operations used is 524,288

% Compute matrix approximation at level 5. 
sm = m;
for i = 1:lev 

sm = dyaddown(conv2(sm,Lo_D),'c'); 
sm = dyaddown(conv2(sm,Lo_D'),'r'); 

end 

% The number of floating point operations used is 2,095,154

% The three steps: 
% 1. Compute vector approximation. 
% 2. Compute multiplication in wavelet domain. 
% 3. Reconstruct vector approximation.

sv = v; 
for i = 1:lev, sv = dyaddown(conv(sv,Lo_D)); end 
sp = sm * sv; 
for i = 1:lev, sp = conv(dyadup(sp),Lo_R); end 
sp = wkeep(sp,length(v)); 

% Now, the number of floating point operations used is 9058
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% Relative square norm error in percent when using wavelets. 
rnrm = 100 ∗ (norm(p-sp)/norm(p))

rnrm = 
2.9744e-06

Example 2: Ineffective Fast Matrix Multiplication
The commands used are the same as in Example 1, but applied to a new matrix 
m. 

% Wavelet based matrix multiplication by a vector: 
% a bad  example with a randn matrix.
% Change the matrix m of example1 using:
randn('state',0);
m = randn(n,n);

Then, you obtain

% Relative square norm error in percent 
rnrm = 100 * (norm(p-sp)/norm(p))

rnrm = 
99.2137

 

4
Wavelets in Action: 
Examples and Case Studies

This chapter presents examples of wavelet decomposition. Suggested areas for further exploration 
follow most examples, along with a summary of the topics addressed by that example. This chapter 
also includes a case study that examines the practical uses of wavelet analysis in greater detail, as 
well as a demonstration of the application of wavelets for fast multiplication of large matrices. An 
extended discussion of many of the topics addressed by the examples can be found in “Advanced 
Concepts” on page 6-1. 

• Illustrated Examples (p. 4-2)

• Case Study: An Electrical Signal (p. 4-36)
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Illustrated Examples
Fourteen illustrated examples are included in this section, organized as shown:

Example Equation Signal 
Name

MAT-File

Example 1: A Sum of Sines 
on page 4-8

A sum of sines: s1(t) sumsin 

Example 2: A Frequency 
Breakdown on page 4-10

A frequency breakdown: s2(t) freqbrk 

Example 3: Uniform White 
Noise on page 4-12

A uniform white noise:

on the interval

b1(t) whitnois 

Example 4: Colored AR(3) 
Noise on page 4-14

A colored AR(3) noise: b2(t) warma 

Example 5: Polynomial + 
White Noise on page 4-16

A polynomial + a white noise:

on the interval

s3(t) noispol 

Example 6: A Step Signal on 
page 4-18

A step signal: s4(t) wstep 

s1 t( ) 3t( )sin 0.3t( )sin 0.03t( )sin+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s2 t( ) 0.03t( )sin=

s2 t( ) 0.3t( )sin=

0.5   – 0.5[ ]

b2 t( ) 1.5b2 t 1–( )– 0.75b2 t 2–( )–=
0.125b2 t 3–( )– b1 t( ) 0.5+ +

1   1000[ ]

s3 t( ) t2 t– 1 b1 t( )+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s4 t( ) 0=

s4 t( ) 20=

Illustrated Examples
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Example 7: Two Proximal 
Discontinuities on page 4-20

Two proximal discontinuities: s5(t) nearbrk

Example 8: A 
Second-Derivative 
Discontinuity on page 4-22

A second-derivative discontinuity:

s6 is f3 sampled at 10-3

s6(t) scddvbrk

Example 9: A Ramp + White 
Noise on page 4-24

A ramp + a white noise: s7(t) wnoislop

Example 10: A Ramp + 
Colored Noise on page 4-26

A ramp + a colored noise: s8(t) cnoislop

Example 11: A Sine + White 
Noise on page 4-28

A sine + a white noise: s9(t) noissin

Example Equation Signal 
Name

MAT-File

1 t 499,≤ ≤
500 t 510,≤ ≤
511 t,≤

s5 t( ) 3t=

s5 t( ) 1500=

s5 t( ) 3t 30–=

t 0.5   – 0.5[ ] R;⊂∈
t 0, f3 t( )< 4t2–( )exp=
t 0, f3 t( )≥ t2–( )exp=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s7 t( ) 3t
500
---------- b1 t( )+=

s7 t( ) 3 b1 t( )+=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s8 t( ) t
500
---------- b2 t( )+=

s8 t( ) 1 b2 t( )+=

s9 t( ) 0.03t( )sin b1 t( )+=
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Please note that

• All the decompositions use Daubechies wavelets.

• The examples show the signal, the approximations, and the details.

The examples include specific comments and feature distinct domains — for 
instance, if the level of decomposition is 5,

• The left column contains the signal and the approximations A5 to A1.

• The right column contains the signal and the details D5 to D1.

• The approximation A1 is located under A2, A2 under A3, and so on; the same 
is true for the details.

• The abscissa axis represents the time; the unit for the ordinate axis for 
approximations and details is the same as that of the signal.

Example 12: A Triangle + A 
Sine on page 4-30

A triangle + a sine: s10(t) trsin

Example 13: A Triangle + A 
Sine + Noise on page 4-32

A triangle + a sine + a noise: s11(t) wntrsin

Example 14: A Real 
Electricity Consumption 
Signal on page 4-34

A real electricity consumption signal — leleccum

Example Equation Signal 
Name

MAT-File

1 t 500,≤ ≤

501 t 1000,≤ ≤

s10 t( ) t 1–
500
----------- 0.3t( )sin+=

s10 t( ) 1000 t–
500

--------------------- 0.3t( )sin+=

501 t 1000,≤ ≤
s11 t( ) 1000 t–

500
--------------------- 0.3t( )sin b1 t( )+ +=

1 t 500, s11 t( ) t 1–
500
----------- 0.3t( )sin b1 t( )+ +=≤ ≤

Illustrated Examples
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• When the approximations do not provide enough information, they are 
replaced by details obtained by changing wavelets.

• The examples include questions for you to think about: 

- What can be seen on the figure? 

- What additional questions can be studied?

Advice to the Reader
You should follow along and process these examples on your own, using either 
the graphical interface or the command line functions. 

Use the graphical interface for immediate signal processing. To execute the 
analyses included in the figures, 

1 To open the Wavelet Toolbox Main Menu, type

wavemenu

2 Select the Wavelet 1-D menu option to open the Wavelet 1-D tool.

3 From the Wavelet 1-D tool, choose the File�Example Analysis menu 
option.

4 From the dialog box, select the sample analysis in question.

This triggers the execution of the examples.

When using the command line, follow the process illustrated in this M-file to 
conduct calculations:

% Load original 1-D signal.
load sumsin; s = sumsin;

% Perform the decomposition of s at level 5, using coif3.
w = 'coif3'
[c,l] = wavedec(s,5,w);

% Reconstruct the approximation signals and detail signals at 
% levels 1 to 5, using the wavelet decomposition structure [c,l].
for i = 1:5

A(i,:) = wrcoef('a',c,l,w,i);
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D(i,:) = wrcoef('d',c,l,w,i);
end

Note  This loop replaces 10 separate wrcoef statements defining 
approximations and details. The variable A contains the five approximations 
and the variable D contains the five details.

% Plots. 
t = 100:900; 
subplot(6,2,1); plot(t,s(t),'r'); 
title('Orig. signal and approx. 1 to 5.'); 
subplot(6,2,2); plot(t,s(t),'r'); 
title('Orig. signal and details 1 to 5.'); 
for i = 1:5, 

subplot(6,2,2*i+1); plot(t,A(5-i+1,t),'b'); 
subplot(6,2,2*i+2); plot(t,D(5-i+1,t),'g'); 

end

Illustrated Examples
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About Further Exploration

Tip 1. On all figures, visually check that for j = 0, 1, ..., Aj = Aj+1 + Dj+1.

Tip 2. Don’t forget to change wavelets. Test the shortest ones first. 

Tip 3. Identify edge effects. They will create problems for a correct analysis. At 
present, there is no easy way to avoid them perfectly. You can use tools 
described in the section “Dealing with Border Distortion” on page 6-35 and see 
also the dwtmode reference page. They should eliminate or greatly reduce these 
effects. 

Tip 4. As much as possible, conduct calculations manually to cross-check 
results with the values in the graphic representations. Manual calculations are 
possible with the db1 wavelet.

For the sake of simplicity in the following examples, we use only the haar and 
db family wavelets, which are the most frequently used wavelets.



4 Wavelets in Action: Examples and Case Studies

4-8

Example 1: A Sum of Sines
Analyzing wavelet: db3 

Decomposition levels: 5

The signal is composed of the sum of three sines: slow, medium, and rapid. 
With regard to the sampling period equal to 1, the periods are approximately 
200, 20, and 2 respectively. We should, therefore, see this later period in D1, 
the medium sine in D4, and the slow sine in A4. The slight differences that can 
be observed on the decompositions can be attributed to the sampling period. 
The scale of the approximation charts is 2, 4, or 10 times larger than that of the 
details. D1 contains primarily the components whose period is situated 
between 1 and 2 (i.e., the rapid sine), but this period is not visible at the scale 
that is used for the graph. Zooming in on D1 reveals that each “belly” is 
composed of 10 oscillations, and can be used to estimate the period. We find 
that the period is close to 2. D2 is very small. This is also seen in the 
approximations: the first two resemble one another, since .

The detail D3 and, to an even greater extent, the detail D4 contain the medium 
sine. We notice that there is a breakdown between approximations 3 and 4.

Approximations A1 to A3 can be used to estimate the period of the medium sine. 
Now, only the slow sine, which appears in A4, remains to be determined. The 
distance between two successive maximums is equal to 200, which is the period 
of the slow sine. This latter sine is still visible in A5, but will disappear from 
the approximation and move into the details at level 8.

A1 A2 D2+=

Illustrated Examples
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Example 1: A Sum of Sines

Addressed topics • Detecting breakdown points

• Detecting long-term evolution

• Identifying pure frequencies

• The effect of a wavelet on a sine

• Details and approximations: a signal moves from 
an approximation to a detail

• The level at which characteristics appear

Further exploration • Compare with a Fourier analysis.

• Change the frequencies. Analyze other linear 
combinations.
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Example 2: A Frequency Breakdown
Analyzing wavelet: db5 

Decomposition levels: 5 

The signal is formed of a slow sine and a medium sine, on either side of 500. 
These two sines are not connected in a continuous manner: D1 and D2 can be 
used to detect this discontinuity. It is localized very precisely: only a small 
domain around 500 contains large details. This is because the rupture contains 
the high-frequency part; the frequencies in the rest of the signal are not as 
high. It should be noted that if we are interested only in identifying the 
discontinuity, db1 is more useful than db5.

D3 and D4 contain the medium sine as in the previous analysis. The slow sine 
appears clearly alone in A5. It is more regular than in the s1 analysis, since db5 
is more regular than db3. If the same signal had been analyzed by the Fourier 
transform, we would not have been able to detect the instant corresponding to 
the signal’s frequency change, whereas it is clearly observable here.
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Example 2: A Frequency Breakdown

Addressed topics • Suppressing signals

• Detecting long-term evolution

Further exploration • Compare to the signal s1.

• On a longer signal, select a deeper level of 
decomposition in such a way that the slow 
sinusoid appears into the details.

• Compare with a Fourier analysis.

• Compare with a windowed Fourier analysis.
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Example 3: Uniform White Noise
Analyzing wavelet: db3 

Decomposition levels: 5 

At all levels we encounter noise-type signals that are clearly irregular. This is 
because all the frequencies carry the same energy. The variances, however, 
decrease regularly between one level and the next as can be seen reading the 
detail chart (on the right) and the approximations (on the left).

The variance decreases two-fold between one level and the next, i.e., 
variance(Dj) = variance(Dj - 1) / 2. Lastly, it should be noted that the details and 
approximations are not white noise, and that these signals are increasingly 
interdependent as the resolution decreases. On the other hand, the wavelet 
coefficients are random, noncorrelated variables. This property is not evident 
on the reconstructed signals shown here, but it can be guessed at from the 
representation of the coefficients.
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Example 3: Uniform White Noise

Addressed topics • Processing noise

• The shapes of the decomposition values

• The evolution of these shapes according to level; 
the correlation increases, the variance decreases

Further exploration • Compare the frequencies included in the details 
with those in the approximations.

• Study the values of the coefficients and their 
distribution.

• On the continuous analysis, identify the chaotic 
aspect of the colors.

• Replace the uniform white noise by a Gaussian 
white noise or other noise.
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Example 4: Colored AR(3) Noise
Analyzing wavelet: db3 

Decomposition levels: 5 

Note  AR(3) means AutoRegressive model of order 3.

This figure can be examined in view of Example 3: Uniform White Noise on 
page 4-12, since we are confronted here with a nonwhite noise whose spectrum 
is mainly at the higher frequencies. Therefore, it is found primarily in D1, 
which contains the major portion of the signal. In this situation, which is 
commonly encountered in practice, the effects of the noise on the analysis 
decrease considerably more rapidly than in the case of white noise. In A3, A4, 
and A5, we encounter the same scheme as that in the analysis of (see the 
table in “Example 3: Uniform White Noise” on page 4-12), the noise from which 

is built using linear filtering. (  and  are defined explicitly in 
“Illustrated Examples” on page 4-2, Examples 3 and 4.)
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Example 4: Colored AR(3) Noise

Addressed topics • Processing noise

• The relative importance of different details

• The relative importance of D1 and A1

Further 
exploration

• Compare the detail frequencies with those in the 
approximations.

• Compare approximations A3, A4, and A5 with those 
shown in Example 3: Uniform White Noise on page 
4-12.

• Replace AR(3) with an ARMA (AutoRegressive 
Moving Average) model noise. For instance,

• Study an ARIMA (Integrated ARMA) model noise. 
For instance,

 

• Check that each detail can be modeled by an ARMA 
process.

b3 t( ) 1.5– b3 t 1–( ) 0.75b3 t 2–( )– 0.125b3 t 3–( )–=

+ b1 t( ) 0.7b1 t 1–( )–

b4 t( ) b4 t 1–( ) b3 t( )+=
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Example 5: Polynomial + White Noise
Analyzing wavelets: db2 and db3 

Decomposition levels: 4 

The purpose of this analysis is to illustrate the property that causes the 
decomposition by dbN of a p-degree polynomial to produce null details as long 
as N > p. In this case, p=2 and we examine the first four levels of details for two 
values of N: one is too small, N=2 on the left, and the other is sufficient, N=3 on 
the right. The approximations are left out since they differ very little from the 
signal itself.

For db2 (on the left), we obtain the decomposition of t2 + b1(t), since the -t + 1 
part of the signal is suppressed by the wavelet. In fact, with the exception of 
level 1, where noise-generated irregularities can be seen, the details for levels 
2 to 4 show a periodic form that is very regular, and which increases with the 
level. This is because the detail for level j takes into account that the 
fluctuations of the function around its mean value on dyadic intervals are long. 
The fluctuations are periodic and very large in relation to the details of the 
noise decomposition.

On the other hand, for db3 (on the right) we again find the presence of white 
noise, thus indicating that the polynomial does not come into play in any of the 
details. The wavelet suppresses the polynomial part and analyzes the noise.

Illustrated Examples
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Example 5: Polynomial + White Noise

Addressed topics • Suppressing signals

• Compare the results of the processing for the 
following wavelets: the short db2 and the longer 
db3.

• Explain the regularity that is visible in D3 and D4 
in the analysis by db2.

Further exploration • Increase noise intensity and repeat the analysis.
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Example 6: A Step Signal
Analyzing wavelet: db2 

Decomposition levels: 5 

In this case, we are faced with the simplest example of a rupture (i.e., a step). 
The time instant when the jump occurs is equal to 500. The break is detected 
at all levels, but it is obviously detected with greater precision in the higher 
resolutions (levels 1 and 2) than in the lower ones (levels 4 and 5). It is very 
precisely localized at level 1, where only a very small zone around the jump 
time can be seen.

It should be noted that the reconstructed details are primarily composed of the 
basic wavelet represented in the initial time.

Furthermore, the rupture is more precisely localized when the wavelet 
corresponds to a short filter.
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Example 6: A Step Signal

Addressed topics • Detecting breakdown points

• Suppressing signals

• Detecting long-term evolution

• Identifying the range width of the variations of 
details and approximations

Further exploration • Use the coefficients of the FIR filter associated 
with the wavelet to check the values of D1.

• Replace the step by an impulse.

• Add noise to the signal and repeat the analysis.
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Example 7: Two Proximal Discontinuities
Analyzing wavelet: db2 and db7 

Decomposition levels: 5 

The signal is formed of two straight lines with identical slopes, extending 
across a very short plateau. On the initial signal, the plateau is in fact barely 
visible to the naked eye. Two analyses are thus carried out: one on a well 
localized wavelet with the short filter (db2, shown on the left side of the figure); 
and the other on a wavelet having a longer filter (db7, shown on the right side 
of the figure).

In both analyses, the plateau is detected clearly. With the exception of a fairly 
limited domain, D1 is equal to zero. The regularity of the signal in the plateau, 
however, is clearly distinguished for db2 (for which plateau beginning and end 
time are distinguished), whereas for db7 both discontinuities are fused and 
only the entire plateau can be said to be visible.

This example suggests that the selected wavelets should be associated with 
short filters to distinguish proximal discontinuities of the first derivative. A 
look at the other detail levels again shows the lack of precision when detecting 
at low resolutions. The wavelet filters the straight line and analyzes the 
discontinuities.

Illustrated Examples
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Example 7: Two Proximal Discontinuities

Addressed topics • Detecting breakdown points

Further exploration • Move the discontinuities closer together and 
further apart.

• Add noise to the signal until the rupture is no 
longer visible.

• Try using other wavelets, haar for instance.
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Example 8: A Second-Derivative Discontinuity
Analyzing wavelets: db1 and db4 

Decomposition levels: 2 

This figure shows that the regularity can be an important criterion in selecting 
a wavelet. The basic function is composed of two exponentials that are 
connected at 0, and the analyzed signal is the sampling of the continuous 
function with increments of 10–3. The sampled signal is analyzed using two 
different wavelets: db1, which is insufficiently regular (shown on the left side 
of the figure); and db4, which is sufficiently regular (shown on the right side of 
the figure).

Looking at the figure on the left, notice that the singularity has not been 
detected in the extent that the details are equal to 0 at 0. The black areas 
correspond to very rapid oscillations of the details. These values are equal to 
the difference between the function and an approximation using a constant 
function. Close to 0, the slow decrease of the details absolute values followed by 
a slow increase is due to the fact that the function derivative is zero and 
continuous at 0. The value of the details is very small (close to 10–3 for db1 and 
10–6 for db4), since the signal is very smooth and does not contain any high 
frequency. This value is even smaller for db4, since the wavelet is more regular 
than db1.

However, with db4 (right side of the figure), the discontinuity is well detected; 
the details are high only close to 0, and are 0 everywhere else. This is the only 
element that can be derived from the analysis. In this case, as a conclusion, 
notice that the selected wavelet must be sufficiently regular, which implies a 
longer filter impulse response to detect the singularity.

Note  To produce the figure below you can use the One-Dimensional Wavelet 
GUI Tool. Type wavemenu at the MATLAB® prompt and click Wavelet 1-D. 
Then, select File > Example Analysis > Basic Signals > with db1 at level 
2 --->Second Derivative Breakdown (and ... with db4 ...). Detail values 
are very small, so to get the same shapes you must zoom the y-axis many 
times (close to 10–3 for db1 and 10–6 for db4).
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Example 8: A Second-Derivative Discontinuity

Addressed topics • Detecting breakdown points

• Suppressing signals

• Identifying a difficult discontinuity

• Carefully selecting a wavelet to reveal an effect

Further exploration • Calculate the detail values for the Haar wavelet.

• Be aware of parasitic effects: rapid detail 
fluctuations may be artifacts.

• Add noise to the signal until the rupture is no 
longer visible.
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Example 9: A Ramp + White Noise
Analyzing wavelet: db3 

Decomposition levels: 6 

The signal is built from a trend plus noise. The trend is a slow linear rise from 
0 to 3, up to t=500, and becoming constant afterwards. The noise is a uniform 
zero-mean white noise, varying between -0.5 and 0.5 (see the analyzed 
signal b1).

Looking at the figure, in the chart on the right, we again find the decomposition 
of noise in the details. In the charts on the left, the approximations form 
increasingly precise estimates of the ramp with less and less noise. These 
approximations are quite acceptable from level 3, and the ramp is well 
reconstructed at level 6.

We can, therefore, separate the ramp from the noise. Although the noise affects 
all scales, its effect decreases sufficiently quickly for the low-resolution 
approximations to restore the ramp. It should also be noted that the breakdown 
point of the ramp is shown with good precision. This is due to the fact that the 
ramp is recovered at too low a resolution.

The uniform noise indicates that the ramp might be best estimated using half 
sums for the higher and lower portions of the signal. This approach is not 
applicable for other noises.

Illustrated Examples
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Example 9: A Ramp + White Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying noises and approximations

Further exploration • Compare with the white noise b1(t) shown in 
Example 3: Uniform White Noise on page 4-12.

• Identify the number of levels needed to suppress 
the noise almost entirely.

• Change the noise.
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Example 10: A Ramp + Colored Noise
Analyzing wavelet: db3 

Decomposition levels: 6 

The signal is built in the same manner as in “Example 9: A Ramp + White 
Noise” on page 4-24, using a trend plus a noise. The trend is a slow linear 
increase from 0 to 1, up to t=500. Beyond this time, the value remains constant. 
The noise is a zero mean AR(3) noise, varying between -3 and 3 (see the 
analyzed signal b2). The scale of the noise is indeed six times greater than that 
of the ramp. At first glance, the situation seems a little bit less favorable than 
in the previous example, in terms of the separation between the ramp and the 
noise. This is actually a misconception, since the two signal components are 
more precisely separated in frequency.

Looking at the figure, the charts on the right show the detail decomposition of 
the colored noise. The charts on the left show a decomposition that resembles 
the one in the previous analysis. Starting at level 3, the curves provide 
satisfactory approximations of the ramp.
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Example 10: A Ramp + Colored Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

Further exploration • Compare with the s7(t) signal shown in Example 
9: A Ramp + White Noise on page 4-24.

• Identify the number of levels needed to suppress 
the noise almost entirely.

• Identify the noise characteristics. Use the 
coefficients and the command line mode.
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Example 11: A Sine + White Noise
Analyzing wavelet: db5 

Decomposition levels: 5 

The signal is formed of the sum of two previously analyzed signals: the slow 
sine with a period close to 200 and the uniform white noise b1. This example is 
an illustration of the linear property of decompositions: the analysis of the sum 
of two signals is equal to the sum of analyses.

The details correspond to those obtained during the decomposition of the white 
noise.

The sine is found in the approximation A5. This is a high enough level for the 
effect of the noise to be negligible in relation to the amplitude of the sine.
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Example 11: A Sine + White Noise

Addressed topics • Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Identify the noise characteristics. Use the 
coefficients and the command line mode.
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Example 12: A Triangle + A Sine
Analyzing wavelet: db5 

Decomposition levels: 6 

The signal is the sum of a sine having a period of approximately 20 and of a 
“triangle”.

D1 and D2 are very small. This suggests that the signal contains no components 
with periods that are short in relation to the sampling period.

D3 and especially D4 can be attributed to the sine. The jump of the sine from 
A3 to D4 is clearly visible.

The details for the higher levels D5 and D6 are small, especially D5. 

D6 exhibits some edge effects.

A6 contains the triangle, which includes only low frequencies.
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Example 12: A Triangle + A Sine

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Try using sinusoids whose period is a power of 2.
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Example 13: A Triangle + A Sine + Noise
Noise Analyzing wavelet: db5 

Decomposition levels: 7 

The signal examined here is the same as the previous signal plus a uniform 
white noise divided by 3. The analysis can, therefore, be compared to the 
previous analysis. All differences are due to the presence of the noise.

D1 and D2 are due to the noise.

D3 and especially D4 are due to the sine.

The higher level details are increasingly low, and originate in the noise.

A7 contains a triangle, although it is not as well reconstructed as in the 
previous example.
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Example 13: A Triangle + A Sine + Noise

Addressed topics • Detecting long-term evolution

• Splitting signal components

Further exploration • Increase the amplitude of the noise.

• Replace the triangle by a polynomial.

• Replace the white noise by an ARMA noise.
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Example 14: A Real Electricity Consumption Signal
Analyzing wavelet: db3 

Decomposition levels: 5 

The series presents a peak in the center, followed by two drops, a shallow drop, 
and then a considerably weaker peak.

The details for levels 1 and 2 are of the same order of magnitude and give a good 
expression of the local irregularities caused by the noise. The detail for level 3 
presents high values in the beginning and at the end of the main peak, thus 
allowing us to locate the corresponding drops. The detail D4 shows coarser 
morphological aspects for the series (i.e., three successive peaks). This fits the 
shape of the curve remarkably well, and includes the essential signal 
components for periods of less than 32 time-units. The approximations show 
this effect clearly: A1 and A2 bear a strong resemblance; A3 forms a reasonably 
accurate approximation of the original signal. A look at A4, however, shows 
that a considerable amount of information has been lost.

In this case, as a conclusion, the multiscale aspect is the most interesting and 
the most significant feature: the essential components of the electrical signal 
used to complete the description at 32 time-units (homogeneous to A5) are the 
components with a period between 8 and 16 time-units.

Illustrated Examples
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This signal is explored in much greater detail in “Case Study: An Electrical 
Signal” on page 4-36.

Example 14: A Real Electricity Consumption Signal

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Detecting breakdown points

• Multiscale analysis

Further exploration • Try the same analysis on various sections of the 
signal. Focus on a range other than the 
[3600:3700] shown here.
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Case Study: An Electrical Signal
The goal of this section is to provide a statistical description of an electrical load 
consumption using the wavelet decompositions as a multiscale analysis.

Two problems are addressed. They both deal with signal extraction from the 
load curve corrupted by noise: 

1 What information is contained in the signal, and what pieces of information 
are useful? 

2 Are there various kinds of noises, and can they be distinguished from one 
another?

The context of the study is the forecast of the electrical load. Currently, 
short-term forecasts are based on the data sampled over 30 minutes. After 
eliminating certain components linked to weather conditions, calendar effects, 
outliers and known external actions, a SARIMA parametric model is 
developed. The model delivers forecasts from 30 minutes to 2 days. The quality 
of the forecasts is very high at least for 90% of all days, but the method fails 
when working with the data sampled over 1 minute.

Data and the External Information
The data consist of measurement of a complex, highly aggregated plant: the 
electrical load consumption, sampled minute by minute, over a 5-week period. 
This time series of 50,400 points is partly plotted at the top of the second plot 
in the “Analysis of the End of the Night Period” on page 4-39.

External information is given by electrical engineers, and additional 
indications can be found in several papers. This information, used to define 
reference situations for the purpose of comparison, includes these points:

• The load curve is the aggregation of hundreds of sensors measurements, thus 
generating measurement errors. 

• Roughly speaking, 50% of the consumption is accounted for by industry, and 
the rest by individual consumers. The component of the load curve produced 
by industry has a rather regular profile and exhibits low-frequency changes. 
On the other hand, the consumption of individual consumers may be highly 
irregular, leading to high-frequency components. 

• There are more than 10 million individual consumers. 

Case Study: An Electrical Signal
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• The fundamental periods are the weekly-daily cycles, linked to economic 
rhythms. 

• Daily consumption patterns also change according to rate changes at 
different times (e.g., relay-switched water heaters to benefit from special 
night rates). 

• Missing data have been replaced. 

• Outliers have not been corrected. 

• For the observations 2400 to 3400, the measurement errors are unusually 
high, due to sensors failures.

From a methodological point of view, the wavelet techniques provide a 
multiscale analysis of the signal as a sum of orthogonal signals corresponding 
to different time scales, allowing a kind of time-scale analysis. 

Because of the absence of a model for the 1-minute data, the description 
strategy proceeds essentially by successive uses of various comparative 
methods applied to signals obtained by the wavelet decomposition. 

Without modeling, it is impossible to define a signal or a noise effect. 
Nevertheless, we say that any repetitive pattern is due to signal and is 
meaningful. 

Finally, it is known that two kinds of noise corrupt the signal: sensor errors and 
the state noise.

We shall not report here the complete analysis, which is included in the paper 
[MisMOP94] (see “References” on page 6-155). Instead, we illustrate the 
contribution of wavelet transforms to the local description of time series. We 
choose two small samples: one taken at midday, and the other at the end of the 
night.

In the first period, the signal structure is complex; in the second one, it is much 
simpler. The midday period has a complicated structure because the intensity 
of the electricity consumer activity is high and it presents very large changes. 
At the end of the night, the activity is low and it changes slowly.

For the local analysis, the decomposition is taken up to the level j = 5, because 
25 = 32 is very close to 30 minutes. We are then able to study the components 
of the signal for which the period is less than 30 minutes.
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The analyzing wavelet used here is db3. 

The results are described similarly for the two periods.

Analysis of the Midday Period
This signal (see “Example 14: A Real Electricity Consumption Signal” on 
page 4-34) is also analyzed more crudely in “Example 14: A Real Electricity 
Consumption Signal” on page 4-34.

The shape is a middle mode between 12:30 p.m. and 1:00 p.m., preceded and 
followed by a hollow off-peak, and next a second smoother mode at 1:15 p.m. 
The approximation A5, corresponding to the time scale of 32 minutes, is a very 
crude approximation, particularly for the central mode: there is a peak time lag 
and an underestimation of the maximum value. So at this level, the most 
essential information is missing. We have to look at lower scales (4 for 
instance).

Let us examine the corresponding details.

The details D1 and D2 have small values and may be considered as local 
short-period discrepancies caused by the high-frequency components of sensor 
and state noises. In this bandpass, these noises are essentially due to 
measurement errors and fast variations of the signal induced by millions of 
state changes of personal electrical appliances.

The detail D3 exhibits high values at times corresponding to the start and the 
end of the original middle mode. It allows time localization of the local minima.

The detail D4 contains the main patterns: three successive modes. It is 
remarkably close to the shape of the curve. The ratio of the values of this level 
to the other levels is equal to 5. The detail D5 does not bear much information. 
So the contribution of the level 4 is the highest one, both in qualitative and 
quantitative aspects. It captures the shape of the curve in the concerned period.

In conclusion, with respect to the approximation A5, the detail D4 is the main 
additional correction: the components of a period of 8 to 16 minutes contain the 
crucial dynamics.
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Analysis of the End of the Night Period
The shape of the curve during the end of the night is a slow descent, globally 
smooth, but locally highly irregular. One can hardly distinguish two successive 
local extrema in the vicinity of time t = 1600 and t = 1625. The approximation 
A5 is quite good except at these two modes.

The accuracy of the approximation can be explained by the fact that there 
remains only a low-frequency signal corrupted by noises. The massive and 
simultaneous changes of personal electrical appliances are absent.

The details D1, D2, and D3 show the kind of variation and have, roughly 
speaking, similar shape and mean value. They contain the local short period 
irregularities caused by noises, and the inspection of D2 and D3 allows you to 
detect the local minimum around t =1625.

The details D4 and D5 exhibit the slope changes of the regular part of the 
signal, and A4 and A5 are piecewise linear.
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In conclusion, none of the time scales brings a significant contribution 
sufficiently different from the noise level, and no additional correction is 
needed. The retained approximation is A4 or A5.

All the figures in this paragraph are generated using the graphical user 
interface tools, but the user can also process the analysis using the command 
line mode. The following example corresponds to a command line equivalent for 
producing the figure below.

% Load the original 1-D signal, decompose, reconstruct details in 
% original time and plot.
% Load the signal. 
load leleccum; s = leleccum;

% Decompose the signal s at level 5 using the wavelet db3. 
w = 'db3'; 
[c,l] = wavedec(s,5,w);
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% Reconstruct the details using the decomposition structure. 
for i = 1:5

D(i,:) = wrcoef('d',c,l,w,i);
end

Note  This loop replaces five separate wrcoef statements defining the details. 
The variable D contains the five details.

% Avoid edge effects by suppressing edge values and plot. 
tt = 1+100:length(s)-100; 
subplot(6,1,1); plot(tt,s(tt),'r'); 
title('Electrical Signal and Details'); 
for i = 1:5, subplot(6,1,i+1); plot(tt,D(5-i+1,tt),'g'); end
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Suggestions for Further Analysis
Let us now make some suggestions for possible further analysis starting from 
the details of the decomposition at level 5 of 3 days.

Identify the Sensor Failure
Focus on the wavelet decomposition and try to identify the sensor failure 
directly on the details D1, D2, and D3, and not the other ones. Try to identify 
the other part of the noise.

Indication: see figure below.
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Suppress the Noise
Suppress measurement noise. Try by yourself and afterwards use the 
de-noising tools.

Indication: study the approximations and compare two successive days, the 
first without sensor failure and the second corrupted by failure (see figure 
below).
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Identify Patterns in the Details
The idea here is to identify a pattern in the details typical of relay-switched 
water heaters.

Indication: the figure below gives an example of such a period. Focus on details 
D2, D3, and D4 around abscissa 1350, 1383, and 1415 to detect abrupt changes 
of the signal induced by automatic switches.
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Locate and Suppress Outlying Values
Suppress the outliers by setting the corresponding values of the details to 0.

Indication: The figure below gives two examples of outliers around  
and . The effect produced on the details is clear when focusing on the 
low levels. As far as outliers are concerned, D1 and D2 are synchronized with s, 
while D3 shows a delayed effect.
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Study Missing Data
Missing data have been crudely substituted (around observation 2870) by the 
estimation of 30 minutes of sampled data and spline smoothing for the 
intermediate time points. You can improve the interpolation by using an 
approximation and portions of the details taken elsewhere, thus implementing 
a sort of “graft.”

Indication: see the figure below focusing around time 2870, and use the small 
variations part of D1 to detect the missing data.
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Using Wavelet Packets

• About Wavelet Packet Analysis (p. 5-2)

• One-Dimensional Wavelet Packet Analysis (p. 5-7)

• Two-Dimensional Wavelet Packet Analysis (p. 5-23)

• Importing and Exporting from Graphical Tools (p. 5-32)
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Advanced Concepts

This chapter presents a more advanced treatment of wavelet methods, and focuses on real wavelets, 
except in the two sections dedicated to wavelet families.

• Mathematical Conventions (p. 6-2)

• General Concepts (p. 6-5)

• Fast Wavelet Transform (FWT) Algorithm (p. 6-19)

• Dealing with Border Distortion (p. 6-35)

• Discrete Stationary Wavelet Transform (SWT) (p. 6-44)

• Lifting Method for Constructing Wavelets (p. 6-51)

• Frequently Asked Questions (p. 6-61)

• Wavelet Families: Additional Discussion (p. 6-71)

• Wavelet Applications: More Detail (p. 6-92)

• Wavelet Packets (p. 6-136)

• References (p. 6-155)
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Mathematical Conventions
This chapter and the reference pages use certain mathematical conventions.

General Notation Interpretation

Dyadic scale.  is the level, 1/  or  is the 
resolution.

Dyadic translation

Continuous time

 or Discrete time

Pixel

Signal or image. The signal is a function defined on 
 or ; the image is defined on  or .

Fourier transform of the function f or the sequence f 

Continuous Time

Set of signals of finite energy

Energy of the signal 

Scalar product of signals  and 

Set of images of finite energy

Energy of the image 

Scalar product of images and 

a 2j= j Z∈, j a 2 j–

b ka= k Z∈,

t

k n

i j,( )

s
R Z R2 Z2

f
ˆ

L2 R( )

s2 x( ) xd
R
�

s

s s′,� � s x( )s′ x( ) xd
R
�= s s′

L2 R2( )

R� s2 x y,( ) xd yd
R�

s

s s′,� � s x y,( )s′ x y,( ) xd yd
R
�

R
�= s s′

Mathematical Conventions

6-3

Discrete Time

Set of signals of finite energy

Energy of the signal 

Scalar product of signals and 

Set of images of finite energy

Energy of the image 

Scalar product of images  and 

General Notation Interpretation (Continued)

l2 Z( )

s2 n( )
n Z∈

� s

s s′,� � s n( )s′ n( )
n Z∈�=

s s′

l2 Z2( )

n Z∈� s2 n m,( )
m Z∈�

s

s s′,� � s n m,( )s′ n m,( )
m Z∈

�
n Z∈

�=
s s′

Wavelet Notation Interpretation

Aj j-level approximation or approximation at level j

Dj j-level detail or detail at level j

φ Scaling function

ψ Wavelet

Family associated with the one-dimensional 
wavelet, indexed by  and 

Family associated with the two-dimensional 
wavelet, indexed by 

1
a

-------ψ x b–
a

------------� �
	 


a 0> b R∈

1
a1a2

-----------------ψ
x1 b1–

a1
------------------

x2 b2–
a2

------------------,� �
	 
 x x1 x2( , )= R2∈, a1 0 a2 0 b1 R b2 R∈,∈,>,>
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Family associated with the one-dimensional scaling 
function for dyadic scales ; it should 
be noted that .

Family associated with the one-dimensional  for 
dyadic scales ; it should be noted 
that .

Scaling filter associated with a wavelet

Wavelet filter associated with a wavelet

Wavelet Notation Interpretation (Continued)

φj k, x( ) 2 j– 2⁄ φ 2 j– x k–( )= j Z∈ k Z∈, ,
a 2j,b ka= =

φ φ0 0,=

ψj k, x( ) 2 j– 2⁄ ψ 2 j– x k–( )= j Z∈ k Z∈, , ψ
a 2j,b ka= =

ψ ψ0 0,=

hk( ) k Z∈,

gk( ) k Z∈,

General Concepts

6-5

General Concepts
This section presents a brief overview of wavelet concepts, focusing mainly on 
the orthogonal wavelet case. It includes the following sections:

• “Wavelets: A New Tool for Signal Analysis” on page 6-5

• “Wavelet Decomposition: A Hierarchical Organization” on page 6-5

• “Finer and Coarser Resolutions” on page 6-6

• “Wavelet Shapes” on page 6-6

• “Wavelets and Associated Families” on page 6-8

• “Wavelet Transforms: Continuous and Discrete” on page 6-12

• “Local and Global Analysis” on page 6-14

• “Synthesis: An Inverse Transform” on page 6-15

• “Details and Approximations” on page 6-15

Wavelets: A New Tool for Signal Analysis
Wavelet analysis consists of decomposing a signal or an image into a 
hierarchical set of approximations and details. The levels in the hierarchy often 
correspond to those in a dyadic scale.

From the signal analyst’s point of view, wavelet analysis is a decomposition of 
the signal on a family of analyzing signals, which is usually an orthogonal 
function method. From an algorithmic point of view, wavelet analysis offers a 
harmonious compromise between decomposition and smoothing techniques.

Wavelet Decomposition: A Hierarchical 
Organization
Unlike conventional techniques, wavelet decomposition produces a family of 
hierarchically organized decompositions. The selection of a suitable level for 
the hierarchy will depend on the signal and experience. Often the level is 
chosen based on a desired low-pass cutoff frequency.

At each level j, we build the j-level approximation Aj, or approximation at level 
j, and a deviation signal called the j-level detail Dj, or detail at level j. We can 
consider the original signal as the approximation at level 0, denoted by A0. The 
words approximation and detail are justified by the fact that A1 is an 
approximation of A0 taking into account the low frequencies of A0, whereas the 



6 Advanced Concepts

6-6

detail D1 corresponds to the high frequency correction. Among the figures 
presented in “Reconstructing Approximations and Details” on page 1-30, one of 
them graphically represents this hierarchical decomposition.

One way of understanding this decomposition consists of using an optical 
comparison. Successive images A1, A2, A3 of a given object are built. We use the 
same type of photographic devices, but with increasingly poor resolution. The 
images are successive approximations; one detail is the discrepancy between 
two successive images. Image A2 is, therefore, the sum of image A4 and 
intermediate details D4, D3:

Finer and Coarser Resolutions
The organizing parameter, the scale a, is related to level j by . If we 
define resolution as 1/a, then the resolution increases as the scale decreases. 
The greater the resolution, the smaller and finer are the details that can be 
accessed.

From a technical point of view, the size of the revealed details for any j is 
proportional to the size of the domain in which the wavelet or analyzing 

function of the variable x,  is not too close to 0. 

Wavelet Shapes
One-dimensional analysis is based on one scaling function φ and one wavelet ψ. 
Two-dimensional analysis (on a square or rectangular grid) is based on one 
scaling function  and three wavelets. 

Figure 6-1 shows φ and ψ for each wavelet, except the Morlet wavelet and the 
Mexican hat, for which φ does not exist. All the functions decay quickly to zero. 
The Haar wavelet is the only noncontinuous function with three points of 
discontinuity (0, 0.5, 1). The ψ functions oscillate more than associated φ 

j 10 9 ... 2 1 0 -1 -2

Scale 1024 512 ... 4 2 1 1/2 1/4

Resolution 1/210 1/29 ... 1/4 1/2 1 2 4

A2 A3 D3 A4 D4 D3+ +=+=

a 2j=

ψ x
a
---� �
	 


φ x1 x2,( )
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functions. coif2 exhibits some angular points; db6 and sym6 are quite smooth. 
The Morlet and Mexican hat wavelets are symmetrical.

Figure 6-1:  Various One-Dimensional Wavelets
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Wavelets and Associated Families
In the one-dimensional context, we distinguish the wavelet ψ from the 
associated function φ, called the scaling function. Some properties of ψ and φ 
are

• The integral of ψ is zero, , and ψ is used to define the details. 

• The integral of φ is 1, , and φ is used to define approximations.

The usual two-dimensional wavelets are defined as tensor products of 
one-dimensional wavelets:  is the scaling function and 

 are the three 
wavelets.

Figure 6-2 shows the four functions associated with the 2-D coif2 wavelet.

Figure 6-2:  Two-Dimensional coif2 Wavelet

ψ x( ) xd� 0=( )
φ x( ) xd� 1=( )

φ x y,( ) φ x( )φ y( )=
ψ1 x y,( ) φ x( )ψ y( ),ψ2 x y,( ) ψ x( )φ y( ),ψ3 x y,( ) ψ x( )ψ y( )===
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To each of these functions, we associate its doubly indexed family, which is 
used to:

• Move the basic shape from one side to the other, translating it to position b 
(see the following figure).

• Keep the shape while changing the one-dimensional time scale a ( ) (see 
Figure 6-4 on page 6-10).

So a wavelet family member has to be thought of as a function located at a 
position b, and having a scale a. 

In one-dimensional situations, the family of translated and scaled wavelets 
associated with ψ is expressed as follows.

Figure 6-3:  Translated Wavelets

Translation Change of Scale Translation and Change of Scale

ψ(x-b)

a 0>

1
a

-------ψ x
a
---� �
	 
 1

a
-------ψ x b–

a
------------� �
	 


b = 8 b = 0 b = -8

db3(x + 8) db3(x) db3(x - 8)
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Figure 6-4:  Time Scaled One-Dimensional Wavelet

In a two-dimensional context, we have the translation by vector  and a 
change of scale of parameter .

Translation and change of scale become:

In most cases, we will limit our choice of a and b values by using only the 
following discrete set (coming back to the one-dimensional context):

Let us define:

We now have a hierarchical organization similar to the organization of a 
decomposition; this is represented in the example of Figure 6-5, Wavelets 
Organization. Let k = 0 and leave the translations aside for the moment. The 
functions associated with j = 0, 1, 2, 3 for φ (expressed as φj,0) and with j = 1, 2, 
3 for ψ (expressed as ψj,0) are displayed in the following figure for the db3 
wavelet.

a = 0.5 a = 1 a = 2

db3(x) db3(x/2 - 7)db3(2x + 7)

b1 b2( , )
a1 a2( , )

1
a1a2

-----------------ψ  
x1 b1–

a1
------------------

x2 b2–
a2

------------------ ,� �
	 
  where x x1 x2( , ) R2∈=( )

j k( , ) Z2∈  : a 2j,= b k2j ka= =

j k( , ) Z2∈  : ψj k, 2 j 2⁄– ψ 2 j– x k–( )  φj k, 2 j 2⁄– φ 2 j– x k–( )=,=
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Figure 6-5:  Wavelets Organization

In Figure 6-5, Wavelets Organization, the four-level decomposition is shown, 
progressing from the top to the bottom. We find φ0,0; then 21/2φ1,0, 21/2ψ1,0; then 
2φ2,0, 2ψ2,0; then 23/2φ3,0, 23/2ψ3,0. The wavelet is db3.
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Wavelet Transforms: Continuous and Discrete
The wavelet transform of a signal s is the family C(a,b), which depends on two 
indices a and b. The set to which a and b belong is given below in the table. The 
studies focus on two transforms:

• Continuous transform

• Discrete transform

From an intuitive point of view, the wavelet decomposition consists of 
calculating a “resemblance index” between the signal and the wavelet located 
at position b and of scale a. If the index is large, the resemblance is strong, 
otherwise it is slight. The indexes C(a,b) are called coefficients.

We define the coefficients in the following table. We have two types of analysis 
at our disposal.

Next we will illustrate the differences between the two transforms, for the 
analysis of a fractal signal (see Figure 6-6).

Continuous Time Signal
Continuous Analysis

Continuous Time Signal
Discrete Analysis

C a b,( ) s t( ) 1
a

-------ψ t b–
a

-----------� �
	 
 td

R
�= C a b,( ) s t( ) 1

a
-------ψ t b–

a
-----------� �
	 
 td

R
�=

a R+ 0{ }–∈ b R∈, a 2j= b k2j= j k( , ) Z2∈, ,
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Figure 6-6:  Continuous Versus Discrete Transform

Using a redundant representation close to the so-called continuous analysis, 
instead of a nonredundant discrete time-scale representation, can be useful for 
analysis purposes. The nonredundant representation is associated with an 
orthonormal basis, whereas the redundant representation uses much more 
scale and position values than a basis. For a classical fractal signal, the 
redundant methods are quite accurate.

• Graphic representation of discrete analysis: (in the middle of Figure 6-6, 
Continuous Versus Discrete Transform) time is on the abscissa and on the 
ordinate the scale a is dyadic: 21, 22, 23, 24, and 25 (from the bottom to the 
top), levels are 1, 2, 3, 4, and 5. Each coefficient of level k is repeated 2k times.

• Graphic representation of continuous analysis: (at the bottom of 
Figure 6-6, Continuous Versus Discrete Transform) time is on the abscissa 
and on the ordinate the scale varies almost continuously between 21 and 25 
by step 1 (from the bottom to the top). Keep in mind that when a scale is 
small, only small details are analyzed, as in a geographical map.
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Local and Global Analysis
A small scale value permits us to perform a local analysis; a large scale value 
is used for a global analysis. Combining local and global is a useful feature of 
the method. Let us be a bit more precise about the local part and glance at the 
frequency domain counterpart.

Imagine that the analyzing function φ or ψ is zero outside of a domain U, which 
is contained in a disk of radius ρ: . The wavelet ψ is localized. 
The signal s and the function ψ are then compared in the disk, taking into 
account only the t values in the disk. The signal values, which are located 
outside of the domain U, do not influence the value of the coefficient

The same argument holds when ψ is translated to position b and the 
corresponding coefficient analyzes s around b. So this analysis is local.

The wavelets having a compact support are used in local analysis. This is the 
case for Haar and Daubechies wavelets, for example. The wavelets whose 
values are considered as very small outside a domain U can be used with 
caution, as if they were in fact actually zero outside U. Not every wavelet has 
a compact support. This is the case, for instance, of the Meyer wavelet.

The previous localization is temporal, and is useful in analyzing a temporal 
signal (or spatial signal if analyzing an image). The good spectral domain 
localization is a second type of a useful property. A result (linked to the 
Heisenberg uncertainty principle) links the dispersion of the signal f and the 
dispersion of its Fourier transform , and therefore of the dispersion of ψ and 

. The product of these dispersions is always greater than a constant c (which 
does not depend on the signal, but only on the dimension of the space). So it is 
impossible to reduce arbitrarily both time and frequency localization. 

In the Fourier and spectral analysis, the basic function is . 
This function is not a time localized function. The support is R. Its Fourier 
transform  is a generalized function concentrated at point .

The function f is very poorly localized in time, but  is perfectly localized in 
frequency. The wavelets generate an interesting “compromise” on the supports, 
and this compromise differs from that of complex exponentials, sine, or cosine.

ψ u( ) = 0, u∀ U∉

s t( )ψ t( ) t  and we get  s t( )ψ t( ) td
R� s t( )ψ t( ) td

U�=d
R�

f̂
ψ̂

f x( ) exp iωx( )=

f̂ ω

f̂
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Synthesis: An Inverse Transform
In order to be efficient and useful, a method designed for analysis also has to 
be able to perform synthesis. The wavelet method achieves this.

The analysis starts from s and results in the coefficients C(a,b). The synthesis 
starts from the coefficients C(a,b) and reconstructs s. Synthesis is the 
reciprocal operation of analysis.

For signals of finite energy, there are two formulas to perform the inverse 
wavelet transform:

• Continuous synthesis:

 where  is a constant depending on ψ.

• Discrete synthesis:

Of course, the previous formulas need some hypotheses on the  function. 
More precisely, see “What Functions Are Candidates to Be a Wavelet?” on 
page 6-63 for the continuous synthesis formula and “Why Does Such an 
Algorithm Exist?” on page 6-28 for the discrete one.

Details and Approximations
The equations for continuous and discrete synthesis are of considerable 
interest and can be read in order to define the detail at level j:

1 Let us fix j and sum on k. A detail is nothing more than the function

2 Now, let us sum on j. The signal is the sum of all the details:

s t( ) 1
Kψ

-------
R+� C a b,( ) 1

a
-------ψ t b–

a
-----------� �
	 
  da  db

a2
------------------

R
�=

Kψ

s t( ) C j k,( )ψj k, t( ).
k Z∈
�

j Z∈
�=

ψ

Dj

Dj t( ) C j k( , )ψj k, t( ).
k Z∈
�=

s Djj Z∈�=
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The details have just been defined. Take a reference level called J. There are 
two sorts of details. Those associated with indices  correspond to the scales 

 which are the fine details. The others, which correspond to j > J, 
are the coarser details.

We group these latter details into

which defines what is called an approximation of the signal s. We have just 
created the details and an approximation. They are connected. The equality

signifies that s is the sum of its approximation AJ and of its fine details. From 
the previous formula, it is obvious that the approximations are related to one 
another by

For an orthogonal analysis, in which the ψj,k is an orthonormal family,

• AJ is orthogonal to DJ, DJ-1, DJ-2, ...

• s is the sum of the two orthogonal signals: AJ and 

•

• AJ is an approximation of s. The quality (in energy) of the approximation of s
by AJ is

•

j J≤
a 2j 2J≤=

AJ Dj
j J>
�=

s AJ Dj
j J≤
�+=

AJ 1– AJ DJ+=

Dj
j J≤
�

Dj Dk   for   j k≠⊥

qualJ
AJ

2

s 2
--------------=

qualJ 1– qualJ
DJ

2

s 2
--------------- qualJ≥+=
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The following table contains definitions of details and approximations.

From a graphical point of view, when analyzing a signal, it is always valuable 
to represent the different signals (s, Aj, Dj) and coefficients (C(j,k)).

Let us consider Figure 6-7. On the left side, s is the signal; a5, a4, a3, a2, and 
a1 are the approximations at levels 5, 4, 3, 2, and 1. The best approximation is 
a1; the next one is a2, and so on. Noise oscillations are exhibited in a1, whereas 
a5 is smoother.

On the right side, cfs represents the coefficients (for more information, see 
“Wavelet Transforms: Continuous and Discrete” on page 6-12), s is the signal, 
and d5, d4, d3, d2, and d1 are the details at levels 5, 4, 3, 2, and 1.

The different signals that are presented exist in the same time grid. We can 
consider that the t index of detail D4(t) identifies the same temporal instant as 
that of the approximation A5(t) and that of the signal s(t). This identity is of 
considerable practical interest in understanding the composition of the signal, 
even if the wavelet sometimes introduces dephasing.

Definition of the detail at level j 

The signal is the sum of its details

The approximation at level J

Link between AJ-1 and AJ AJ-1 = AJ + DJ 

Several decompositions

Dj t( ) C j k( , )ψj k, t( )
k Z∈�=

s Djj Z∈�=

AJ Djj J>�=

s AJ Djj J≤�+=
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Figure 6-7:  Approximations, Details, and Coefficients

200

400 s

200
300
400
500

a4

200
300
400
500

a3

200
300
400
500

a2

1000 2000 3000 4000

200
300
400
500

a1

−20

0

20

40

d4

−10
0

10
20

d3

−10
0

10
20

d2

1000 2000 3000 4000
−20

0

20

d1

200
300
400
500

a5

−20

0

20

d5

200
300
400
500

s

Signal and Approximation(s)

cfs

Signal and Detail(s)

1
2
3
4
5

Fast Wavelet Transform (FWT) Algorithm

6-19

Fast Wavelet Transform (FWT) Algorithm
In 1988, Mallat produced a fast wavelet decomposition and reconstruction 
algorithm [Mal89]. The Mallat algorithm for discrete wavelet transform (DWT) 
is, in fact, a classical scheme in the signal processing community, known as a 
two-channel subband coder using conjugate quadrature filters or quadrature 
mirror filters (QMFs).

• The decomposition algorithm starts with signal s, next calculates the 
coordinates of A1 and D1, and then those of A2 and D2, and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform 
(IDWT) starts from the coordinates of AJ and DJ, next calculates the 
coordinates of AJ-1, and then using the coordinates of AJ-1 and DJ-1 
calculates those of AJ-2, and so on.

This section addresses the following topics:

• “Filters Used to Calculate the DWT and IDWT”

• “Algorithms” on page 6-23

• “Why Does Such an Algorithm Exist?” on page 6-28

• “One-Dimensional Wavelet Capabilities” on page 6-32

• “Two-Dimensional Wavelet Capabilities” on page 6-33

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework (see [Dau92] in 
Chapter 5, “Using Wavelet Packets”), we start with the scaling function φ and 
the wavelet function ψ. One of the fundamental relations is the twin-scale 
relation (dilation equation or refinement equation):

All the filters used in DWT and IDWT are intimately related to the sequence

Clearly if φ is compactly supported, the sequence (wn) is finite and can be 
viewed as a filter. The filter W, which is called the scaling filter 
(nonnormalized), is

1
2
---φ x

2
---� �
	 
 wnφ x n–( )

n Z∈
�=

wn( )n Z∈
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• Finite Impulse Response (FIR)

• Of length 2N

• Of sum 1

• Of norm 

• A low-pass filter

For example, for the db3 scaling filter,

load db3 
db3

db3 =
0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

1.0000

norm(db3)
ans =

0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized 
as follows.

The four filters are computed using the following scheme.

Filters Low-Pass High-Pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

1
2

-------
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where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., 
Hi_R(k) = (-1) k Lo_R(2N + 1 - k)) for k = 1, 2, ..., 2N.

Note that wrev flips the filter coefficients. So Hi_D and Lo_D are also 
quadrature mirror filters. The computation of these filters is performed using 
orthfilt. Next, we illustrate these properties with the db6 wavelet. The plots 
associated with the following commands are shown in Figure 6-8 on page 6-22.

% Load scaling filter.
load db6; w = db6; 
subplot(421); stem(w); title('Original scaling filter');

% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w); 
subplot(423); stem(Lo_D); 
title('Decomposition low-pass filter Lo{\_}D'); 
subplot(424); stem(Hi_D); 
title('Decomposition high-pass filter Hi{\_}D'); 
subplot(425); stem(Lo_R); 
title('Reconstruction low-pass filter Lo{\_}R'); 
subplot(426); stem(Hi_R); 
title('Reconstruction high-pass filter Hi{\_}R');

% High and low frequency illustration.
n = length(Hi_D);
freqfft = (0:n-1)/n;
nn = 1:n;
N = 10*n;

Lo_R =  
norm(W)

 

Lo_D = wrev(Lo_R)

Hi_D = wrev(Hi_R)

W

W

Hi_R = qmf (Lo_R)
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for k=1:N
lambda(k) = (k-1)/N;
XLo_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Lo_D';
XHi_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Hi_D';

end
fftld = fft(Lo_D);
ffthd = fft(Hi_D);
subplot(427); plot(lambda,abs(XLo_D),freqfft,abs(fftld),'o'); 
title('Transfer modulus: lowpass (Lo{\_}D or Lo{\_}R') 
subplot(428); plot(lambda,abs(XHi_D),freqfft,abs(ffthd),'o'); 
title('Transfer modulus: highpass (Hi{\_}D or Hi{\_}R') 

Figure 6-8:  Four Wavelet Filters for db6
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Algorithms
Given a signal s of length N, the DWT consists of log2N stages at most. Starting 
from s, the first step produces two sets of coefficients: approximation 
coefficients cA1, and detail coefficients cD1. These vectors are obtained by 
convolving s with the low-pass filter Lo_D for approximation, and with the 
high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is

The length of each filter is equal to 2n. If N= length (s), the signals F and G are 
of length N+ 2n - 1, and then the coefficients cA1 and cD1 are of length

The next step splits the approximation coefficients cA1 in two parts using the 
same scheme, replacing s by cA1 and producing cA2 and cD2, and so on.

s

Lo_D

Hi_D

high-pass filter

F

G

downsample

downsample approximation

cA1

cD1

2

detail

low-pass filter

2

where

2

X Convolve with filter X.

Keep the even indexed elements
(see dyaddown). 

 coefficients

coefficients

floor N 1–( )
2

------------------- n+� �
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So the wavelet decomposition of the signal s analyzed at level j has the 
following structure: [cAj, cDj, ..., cD1].

This structure contains for J = 3 the terminal nodes of the following tree.

• Conversely, starting from cAj and cDj, the IDWT reconstructs cAj-1, inverting 
the decomposition step by inserting zeros and convolving the results with the 
reconstruction filters.

One-Dimensional DWT

Decomposition Step

Lo_D

Hi_D

cAj

2

Initialization

Convolve with filter X.

Downsample.

cA0 = s.

where

2

2

X

cAj+1

cDj+1

level j+1
level j

s

cD1cA1

cD2cA2

cD3cA3
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• For images, a similar algorithm is possible for two-dimensional wavelets and 
scaling functions obtained from one-dimensional wavelets by tensorial 
product.

This kind of two-dimensional DWT leads to a decomposition of 
approximation coefficients at level j in four components: the approximation 
at level j + 1 and the details in three orientations (horizontal, vertical, and 
diagonal).

The following charts describe the basic decomposition and reconstruction 
steps for images.

cAj-1

Lo_R

Hi_R

high-passupsample

upsample

cAj

cDj

2

level j

low-pass

where 2

X Convolve with filter X.

Insert zeros at odd-indexed elements.

Take the central part of U with the 

2

wkeep

wkeep
convenient length.

level j-1

One-Dimensional IDWT

Reconstruction Step
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Two-Dimensional DWT

Decomposition Step

rows

Lo_D

Hi_D

rows

cAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns.

Downsample rows: keep the even indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

CA0 = s for the decomposition initialization.

where

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows
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So, for J = 2, the two-dimensional wavelet tree has the following form.

Two-Dimensional IDWT
Reconstruction Step

cAj

columns

Upsample columns: insert zeros at odd-indexed columns.

Upsample rows: insert zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

where

21

21

21

21

2 1

21

X

columns
Hi_R

Lo_R

X

columns

columns
Hi_R

Lo_R

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows

rows
Lo_R

Hi_R
rows

2 1

2 1

wkeep

cD (h)
1 cD (d)

1 cD (v)
1

cA2 cD (h)
2 cD (d)

2 cD (v)
2

s

cA1
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Finally, let us mention that, for biorthogonal wavelets, the same algorithms 
hold but the decomposition filters on one hand and the reconstruction filters on 
the other hand are obtained from two distinct scaling functions associated with 
two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of 
different odd lengths. This situation occurs, for example, for “splines” 
biorthogonal wavelets used in the toolbox. By zero-padding, the four filters can 
be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?
The previous paragraph describes algorithms designed for finite-length signals 
or images. To understand the rationale, we must consider infinite-length 
signals. The methods for the extension of a given finite-length signal are 
described in “Dealing with Border Distortion” on page 6-35.

Let us denote h = Lo_R and g = Hi_R and focus on the one-dimensional case.

We first justify how to go from level j to level j+1, for the approximation vector. 
This is the main step of the decomposition algorithm for the computation of the 
approximations. The details are calculated in the same way using the filter g 
instead of filter h.

Let  be the coordinates of the vector Aj:

and  the coordinates of the vector Aj+1:

 is calculated using the formula

This formula resembles a convolution formula.

The computation is very simple. 

Let us define

Ak
j( )( )k Z∈

Aj Ak
j( )φj k,

k
�=

Ak
j 1+( )

Aj 1+ Ak
j 1+( )φj 1+ k,

k
�=

Ak
j 1+( )

Ak
j 1+( ) hn 2k–  An

j( )

n
�=
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The sequence  is the filtered output of the sequence  by the filter .

We obtain

We have to take the even index values of F. This is downsampling.

The sequence  is the downsampled version of the sequence .

The initialization is carried out using , where s(k) is the signal 
value at time k. 

There are several reasons for this surprising result, all of which are linked to 
the multiresolution situation and to a few of the properties of the functions φj,k 
and ψj,k. 

Let us now describe some of them.

1 The family  is formed of orthonormal functions. As a 
consequence for any j, the family  is orthonormal. 

2 The double indexed family  is orthonormal. 

3 For any j, the  are orthogonal to .

4 Between two successive scales, we have a fundamental relation, called the 
twin-scale relation.

This relation introduces the algorithm’s h filter ( ). For more 
information, see “Filters Used to Calculate the DWT and IDWT” on page 6-19.

5 We check that:

a The coordinate of  on φj,k is  and does not depend on j.

Twin-Scale Relation for φ

h
˜

k( ) h k–( )= , and  Fk
j 1+( ) h

˜
k n–  An

j( )

n
�=

F j 1+( ) A j( ) h̃

Ak
j 1+( ) F2k

j 1+( )=

A j 1+( ) F j 1+( )

Ak
0( ) s k( )=

φ0 k, k Z∈,( )
φj k, k Z∈,( )

ψj k, j Z∈ k Z∈, ,( )

φj k, k Z∈,( ) ψj ′ k, j′ j≤ k Z∈, ,( )

φ1 0, hkφ0 k,
k Z∈
�= φj 1+ 0, hkφj k,

k Z∈
�=

hn 2wn=

φj 1+ 0, hk
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b The coordinate of  on φj,k is equal to .

6 These relations supply the ingredients for the algorithm. 

7 Up to now we used the filter h. The high-pass filter g is used in the twin 
scales relation linking the ψ and φ functions. Between two successive scales, 
we have the following twin-scale fundamental relation.

8 After the decomposition step, we justify now the reconstruction algorithm by 
building it. Let us simplify the notation. Starting from A1 and D1, let us 
study A0 = A1 + D1. The procedure is the same to calculate Aj = Aj+1 + Dj+1.

Let us define αn, δn,  by

Let us assess the  coordinates as 

We will focus our study on the first sum ; the second sum

 is handled in a similar manner. 

The calculations are easily organized if we note that (taking k = 0 in the 
previous formulas, makes things simpler) 

Twin-Scale Relation Between ψ and φ

φj 1+ n, φj 1+ n, φj k,,� � hk 2n–=

ψ1 0, gkφ0 k,
k Z∈
�= ψj 1+ 0, gkφj k,

k Z∈
�=

αk
0

A1 αnφ1 n,
n
�= D1 δnψ1 n,

n
�= A0 αk

0φ0 k,
k
�=

αk
0

αk
0 A0 φ0 k,,� � A1 D1+ φ0 k,,� � A1 φ0 k,,� � D1 φ0 k,,� �+= = =

αn φ1 n, φ0 k,,� �
n
� δn ψ1 n, φ0 k,,� �

n
�+=

αnhk 2n–
n
� δngk 2n–

n
�+=

αnhk 2n–n�
δngk 2n–n�
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If we transform the (αn) sequence into a new sequence  defined by

..., α-1, 0, α0, 0, α1, 0, α2, 0, ... that is precisely

Then

and by extension

Since

the reconstruction steps are:

1 Replace the α and δ sequences by upsampled versions  and  inserting 
zeros.

2 Filter by h and g respectively. 

3 Sum the obtained sequences.

αnh 2n–
n
� … α 1– h2 α0h0 α1h 2– α2h 4– …+ + + + +=

… α 1– h2 0h1 α0h0 0h 1– α1h 2– 0h 3– α2h 4– …+ + + + + + + +=

α̃n( )

α2n αn α2n 1+, 0= =

αnh 2n–
n
� α̃nh n–

n
�=

αnhk 2n–
n
� α̃nhk n–

n
�=

αk
0 α̃nhk n–

n
� δ̃ngk n–

n
�+=

α̃ δ̃
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One-Dimensional Wavelet Capabilities

Basic One-Dimensional Objects.

Analysis-Decomposition Capabilities.

Synthesis-Reconstruction Capabilities.

Objects Description

Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k

Coefficients in scale-related time cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1

Purpose Input Output M-File

Single-level decomposition s cA1, cD1 dwt

Single-level decomposition cAj cAj+1, cDj+1 dwt

Decomposition s [cAj, cDj, ..., cD1] wavedec

Purpose Input Output M-File

Single-level reconstruction cA1, cD1 s or A0 idwt

Single-level reconstruction cAj+1, cDj+1 cAj idwt

Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec

Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef 
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Decomposition Structure Utilities. .

To illustrate command-line mode for one-dimensional capabilities, see 
“One-Dimensional Analysis Using the Command Line” on page 2-31.

Two-Dimensional Wavelet Capabilities

Basic Two-Dimensional Objects.

Dk stands for , the horizontal, vertical, and diagonal 
details at level k.

Purpose Input Output M-File

Extraction of detail 
coefficients

[cAj, cDj, ..., cD1] cDk,

1 ≤ k ≤ j

detcoef

Extraction of 
approximation 
coefficients

[cAj, cDj, ..., cD1] cAk,

0≤ k ≤ j

appcoef

Recomposition of 
the decomposition 
structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., 
cD1]

1 ≤ k ≤ j

upwlev

Objects Description

Image in 
original 
resolution

s Original image

A0 Approximation at level 0

Ak, 1 ≤ k ≤ j Approximation at level k

Dk, 1 ≤ k ≤ j Details at level k

Coefficients in 
scale-related 
resolution

cAk, 1 ≤ k ≤ j Approximation coefficients at level k

cDk, 1 ≤ k ≤ j Detail coefficients at level k

[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk
h( )  Dk

v( ),  Dk
d( ),[ ]



6 Advanced Concepts

6-34

The same holds for cDk, which stands for .

The two-dimensional M-files are the same as those for the one-dimensional 
case, but with a 2 appended on the end of the command.

For example, idwt becomes idwt2. For more information, see 
“One-Dimensional Wavelet Capabilities” on page 6-32.

To illustrate command-line mode for two-dimensional capabilities, see 
“Two-Dimensional Analysis Using the Command Line” on page 2-69.

cDk
h( )  cDk

v( ),  cDk
d( ),[ ]
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Dealing with Border Distortion
Classically, the DWT is defined for sequences with length of some power of 2, 
and different ways of extending samples of other sizes are needed. Methods for 
extending the signal include zero-padding, smooth padding, periodic extension, 
and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based 
on a simple scheme: convolution and downsampling. As usual, when a 
convolution is performed on finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization,
and Smooth Padding
To deal with border distortions, the border should be treated differently from 
the other parts of the signal.

Various methods are available to deal with this problem, referred to as 
“wavelets on the interval” (see [CohDJV93] in “References” on page 6-155). 
These interesting constructions are effective in theory but are not entirely 
satisfactory from a practical viewpoint.

Often it is preferable to use simple schemes based on signal extension on the 
boundaries. This involves the computation of a few extra coefficients at each 
stage of the decomposition process to get a perfect reconstruction. It should be 
noted that extension is needed at each stage of the decomposition process.

Details on the rationale of these schemes are in Chapter 8 of the book Wavelets 
and Filter Banks, by Strang and Nguyen (see [StrN96] in “References” on 
page 6-155).

The available signal extension modes are as follows (see dwtmode):

• Zero-padding ('zpd'): This method is used in the version of the DWT given 
in the previous sections and assumes that the signal is zero outside the 
original support.

The disadvantage of zero-padding is that discontinuities are artificially 
created at the border.



6 Advanced Concepts

6-36

• Symmetrization ('sym'): This method assumes that signals or images can 
be recovered outside their original support by symmetric boundary value 
replication.

It is the default mode of the wavelet transform in the toolbox.

Symmetrization has the disadvantage of artificially creating discontinuities 
of the first derivative at the border, but this method works well in general for 
images.

• Smooth padding of order 1 ('spd' or 'sp1'): This method assumes that 
signals or images can be recovered outside their original support by a simple 
first-order derivative extrapolation: padding using a linear extension fit to 
the first two and last two values.

Smooth padding works well in general for smooth signals.

• Smooth padding of order 0 ('sp0'): This method assumes that signals or 
images can be recovered outside their original support by a simple constant 
extrapolation. For a signal extension this is the repetition of the first value 
on the left and last value on the right.

• Periodic-padding (1) ('ppd'): This method assumes that signals or images 
can be recovered outside their original support by periodic extension.

The disadvantage of periodic padding is that discontinuities are artificially 
created at the border.

The DWT associated with these five modes is slightly redundant. But IDWT 
ensures a perfect reconstruction for any of the five previous modes whatever 
the extension mode used for DWT.

• Periodic-padding (2) ('per'): If the signal length is odd, the signal is first 
extended by adding an extra-sample equal to the last value on the right. 
Then a minimal periodic extension is performed on each side. The same kind 
of rule exists for images. This extension mode is used for SWT (1-D & 2-D).

This last mode produces the smallest length wavelet decomposition. But the 
extension mode used for IDWT must be the same to ensure a perfect 
reconstruction.

Before looking at an illustrative example, let us compare some properties of the 
theoretical Discrete Wavelet Transform versus the actual DWT.
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The theoretical DWT is applied to signals that are defined on an infinite length 
time interval (Z). For an orthogonal wavelet, this transform has the following 
desirable properties:

1 Norm preservation

Let cA and cD be the approximation and detail of the DWT coefficients of an 
infinite length signal X. Then the l2-norm is preserved:

2 Orthogonality

Let A and D be the reconstructed approximation and detail. Then, A and D 
are orthogonal and

3 Perfect reconstruction

X = A + D

Since the DWT is applied to signals that are defined on a finite-length time 
interval, extension is needed for the decomposition, and truncation is 
necessary for reconstruction.

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices of

• The signal length

• The wavelet

• The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended 
signal of length usually larger than the length of the original signal. So only 
the perfect reconstruction property is always preserved. Nevertheless if the 
DWT is performed using the periodic extension mode ('per') and if the length 
of the signal is divisible by 2J, where J is the maximum level decomposition, 
the properties 1, 2, and 3 remain true.

It is interesting to notice that if arbitrary extension is used, and decomposition 
performed using the convolution-downsampling scheme, perfect reconstruction 
is recovered using idwt or idwt2. This point is illustrated below.

X 2 cA 2 cD 2+=

X 2 A 2 D 2+=
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% Set initial signal and get filters.
x = sin(0.3*[1:451]); w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);
% In fact using a slightly redundant scheme, any signal
% extension strategy works well. 
% For example use random padding.

lx = length(x); lf = length(Lo_D);
randn('seed',654);
ex = [randn(1,lf) x randn(1,lf)];
axis([1 lx+2*lf -2 3])
subplot(211), plot(lf+1:lf+lx,x), title('Original signal')
axis([1 lx+2*lf -2 3])
subplot(212), plot(ex), title('Extended signal')
axis([1 lx+2*lf -2 3])

% Decomposition.
la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,Lo_D)),la);
dr = wkeep(dyaddown(conv(ex,Hi_D)),la);
% Reconstruction.
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xr = idwt(ar,dr,w,lx);

% Check perfect reconstruction.
err0 = max(abs(x-xr))

err0 = 
3.0464e-11

Now let us illustrate the differences between the first three methods both for 
1-D and 2-D signals.

Zero-Padding.

Using the GUI we will examine the effects of zero-padding.

1 From the MATLAB® prompt, type

dwtmode('zpd')

2 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

3 Click the Wavelet 1-D menu item.The discrete wavelet analysis tool for 
one-dimensional signal data appears.

4 From the File menu, choose the Example Analysis option and select Basic 
Signals > with db2 at level 5 > Two nearby discontinuities.

5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.
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Symmetric Extension.

6 From the MATLAB prompt, type

dwtmode('sym')

7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

8 From the File menu, choose the Example Analysis option and select Basic 
Signals >  with db2 at level 5 > Two nearby discontinuities.

9 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are present, but the 
discontinuities are well detected.

Smooth Padding.

10 From the MATLAB prompt, type

dwtmode('spd')

11 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

12 From the File menu, choose the Example Analysis option and select Basic 
Signals >  with db2 at level 5 --> Two nearby discontinuities.
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13 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the 
discontinuities are well detected.

Let us now consider an image example.

Original Image.

1 From the MATLAB prompt, type

load geometry;
% X contains the loaded image and 
% map contains the loaded colormap. 
nbcol = size(map,1);
colormap(pink(nbcol));
image(wcodemat(X,nbcol));
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Zero-Padding.

Now we set the extension mode to zero-padding and perform a decomposition 
of the image to level 3 using the sym4 wavelet. Then we reconstruct the 
approximation of level 3.

2 From the MATLAB prompt, type

lev = 3; wname = 'sym4';
dwtmode('zpd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

Symmetric Extension.

Now we set the extension mode to symmetric extension and perform a 
decomposition of the image again to level 3 using the sym4 wavelet. Then we 
reconstruct the approximation of level 3.

3 From the MATLAB prompt, type

dwtmode('sym')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

Dealing with Border Distortion

6-43

Smooth Padding.

Now set the extension mode to smooth padding and perform a decomposition of 
the image again to level 3 using the sym4 wavelet. Then reconstruct the 
approximation of level 3.

4 From the MATLAB prompt, type

dwtmode('spd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));
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[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = 
isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])

samewavelet =

     1

% Visualize the two times two pairs of scaling and wavelet
% functions.
bswfun(LoDN,HiDN,LoRN,HiRN,'plot');
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Frequently Asked Questions

Continuous or Discrete Analysis?
When is continuous analysis more appropriate than discrete analysis? To 
answer this, consider the related questions: Do you need to know all values of 
a continuous decomposition to reconstruct the signal s exactly? Can you 
perform nonredundant analysis?

When the energy of the signal is finite, not all values of a decomposition are 
needed to exactly reconstruct the original signal, provided that you are using a 
wavelet that satisfies some admissibility condition (see [Dau92] pages 7, 24, 
and 27). Usual wavelets satisfy this condition. In which case, a continuous-time 
signal s is characterized by the knowledge of the discrete transform 

.

In such cases, discrete analysis is sufficient and continuous analysis is 
redundant. When the signal is recorded in continuous time or on a very fine 
time grid, both analyses are possible. Which should be used? It depends; each 
one has its own advantages:

• Discrete analysis ensures space-saving coding and is sufficient for exact 
reconstruction.

• Continuous analysis is often easier to interpret, since its redundancy tends 
to reinforce the traits and makes all information more visible. This is 
especially true of very subtle information. Thus, the analysis gains in 
“readability” and in ease of interpretation what it loses in terms of saving 
space.

Why Are Wavelets Useful for Space-Saving Coding?
The family of functions (φ0,k;ψj,l) j ≤ 0,  used for the analysis is an 
orthogonal basis, therefore leading to nonredundancy. The orthogonality 
properties are  as soon as , and  as soon as 

.

Let us remember that for a one-dimensional signal,  stands for

For biorthogonal wavelets, the idea is similar.

C j k,( ) j k( , ), Z2∈

k l,( ) Z2∈

φ0 k, ψj ′ k ′,⊥ j′ 0≤ ψj k, ψj ′ k ′,⊥

j k( , ) j′ k′( , )≠

u v⊥

u x( )v x( ) xd
R� 0=
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What Is the Advantage Having Zero Average and Sometimes Several 
Vanishing Moments?

When the wavelet’s k + 1 moments are equal to zero (  for

) all the polynomial signals  have zero wavelet 
coefficients. 

As a consequence, the details are also zero. This property ensures the 
suppression of signals that are polynomials of a degree lower or equal to k.

What About the Regularity of a Wavelet ψ?
In theoretical and practical studies, the notion of regularity has been 
increasing in importance. Wavelets are tools used to study regularity and to 
conduct local studies. Deterministic fractal signals or Brownian motion 
trajectories are locally very irregular; for example, the latter are continuous 
signals, but their first derivative exists almost nowhere.

The definition of the concept of regularity is somewhat technical. To make 
things simple, we will define the regularity s of a signal f.

If the signal is s-time continuously differentiable at x0 and s is an integer ( ), 
then the regularity is s.

If the derivative of f of order m resembles locally around x0, then 
s = m + r with 0 < r < 1.

The regularity of f in a domain is that of its least regular point.

The greater s, the more regular the signal.

The regularity of certain wavelets is known. The following table gives some 
indications for Daubechies wavelets.

We have an asymptotic relation linking the size of the support of the 
Daubechies wavelets dbN and their regularity: when , 

length(support) = 2N, regularity .

ψ db1 = Haar db2 db3 db4 db5 db7 db10

Regularity Discontinuous 0.5 0.91 1.27 1.59 2.15 2.90

tjψ t( ) td
R� 0=

j 0= … k, , s t( ) ajt
j

0 j k≤ ≤
�=

0≥

x x0– r

N ∞→

s N
5
----≈
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The functions are more regular at certain points than at others (see Figure 6-9 
on page 6-63).

Figure 6-9:  Zooming in on a db3 Wavelet

Selecting a regularity and a wavelet for the regularity is useful in estimations 
of the local properties of functions or signals. This can be used, for example, to 
make sure that a signal has a constant regularity at all points. Work by 
Donoho, Johnstone, Kerkyacharian, and Picard on function estimation and 
nonlinear regression is currently under way to adapt the statistical estimators 
to unknown regularity. See also the remarks by I. Daubechies (see [Dau92] 
page 301).

From a practical viewpoint, these questions arise in the world of finance in 
dealing with monetary and stock markets where detailed studies of very fast 
transactions are required.

Are Wavelets Useful in Fields Other Than Signal or Image Processing?

• From a theoretical viewpoint, wavelets are used to characterize large sets of 
mathematical functions and are used in the study of operators linked to 
partial differential equations.

• From a practical viewpoint, wavelets are used in several fields of numerical 
analysis, making certain complex calculations easier to handle or more 
precise.

What Functions Are Candidates to Be a Wavelet?
If a function f is continuous, has null moments, decreases quickly towards 0 
when x tends towards infinity, or is null outside a segment of R, it is a likely 
candidate to become a wavelet.
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More precisely, the admissibility condition for  is

The family of shifts and dilations of  allows all finite energy signals to be 
reconstructed using the details in all scales. This allows only continuous 
analysis.

A wavelet satisfying only the admissibility condition is said to be crude.

In the toolbox, the ψ wavelet is usually associated with a scaling function φ. 
There are, however, some ψ wavelets for which we do not know how to associate 
a φ. In some cases we know how to prove that φ does not exist, for example, the 
Mexican hat wavelet.

Is It Easy to Build a New Wavelet?
For a minimal requirement on the wavelet properties, it is easy to build a new 
wavelet but not very interesting unless the new wavelet is adapted to a specific 
task. For example the paragraph “New Wavelet for CWT” on page 2-216 
explains how to obtain wavelets adapted to a given pattern, which can then be 
used for an accurate pattern detection. If more interesting properties (like the 
existence of φ for example) are needed, then building the wavelet is more 
difficult. Let us mention that an interesting approach is the lifting method (see 
“Lifting Method for Constructing Wavelets” on page 6-51).

Very few wavelets have an explicit analytical expression. Notable exceptions 
are wavelets that are piecewise polynomials (Haar, Battle-Lemarié; see 
[Dau92] in “References” on page 6-155), Morlet, or Mexican hat.

Wavelets, even db2, db3, ..., are defined by functional equations. The solution 
is numerical, and is accomplished using a fairly simple algorithm.

The basic property is the existence of a linear relation between the two 
functions φ(x/2) and φ(x). Another relation of the same type links ψ(x/2) to φ(x). 
These are the relations of the two scales, the twin-scale relations.

Indeed there are two sequences h and g of coefficients such that

and

ψ L1 R( ) L2 R( )∩∈

ψ̂ s( )
2

s
----------------- sd

R-�
ψ̂ s( )

2

s
----------------- sd

R+� Kψ +∞<= =

ψ

h l2 Z( )∈ g l2 Z( )∈,
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By rewriting these formulas using Fourier transforms (expressed using a hat) 
we obtain

There are functions for which the h has a finite impulse response (FIR): 
there is only a finite number of nonzero hn coefficients. The associated wavelets 
were built by I. Daubechies (see [Dau92] in “References” on page 6-155) and are 
used extensively in the toolbox. The reader can refer to page 164 and 
Chapter 10 of the book Wavelets and Filter Banks, by Strang and Nguyen (see 
[StrN96] in “References” on page 6-155).

What Is the Link Between Wavelet and Fourier Analysis?
Wavelet analysis complements the Fourier analysis for which there are several 
functions: fft in MATLAB® software and spectrum and sptool in Signal 
Processing Toolbox™ software.

Fourier analysis uses the basic functions sin(ωt), cos(ωt), and exp(iωt).

• In the frequency domain, these functions are perfectly localized. The 
functions are suited to the analysis and synthesis of signals with a simple 
spectrum, which is very well localized in frequency; for example, 
sin(ω1 t) + 0.5 sin(ω2 t) - cos(ω3 t).

• In the time domain, these functions are not localized. It is difficult for them 
to analyze or synthesize complex signals presenting fast local variations such 
as transients or abrupt changes: the Fourier coefficients for a frequency ω 
will depend on all values in the signal. To limit the difficulties involved, it is 
possible to “window” the signal using a regular function, which is zero or 
nearly zero outside a time segment [-m, m]. 

We then build “a well localized slice” as I. Daubechies calls it (see page 2 of 
[Dau92] in “References” on page 6-155). The windowed-Fourier analysis 
coefficients are the doubly indexed coefficients:

1
2
---φ x

2
---� �
	 
 1

2
------- hnφ x n–( )

n Z∈
�=

1
2
---ψ x

2
---� �
	 
 1

2
------- gnφ x n–( )

n Z∈
�=

φ̂ 2ω( ) 1

2
-------h

ˆ
ω( )φ̂ ω( )= ψ̂ 2ω( ) 1

2
------- ĝ ω( ) φ̂ ω( )=

φ
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The analogy of this formula with that of the wavelet coefficients is obvious:

The large values of a correspond to small values of ω.

The Fourier coefficient  depends on the values of the signal s on the 
segment [t - m, t + m] with a constant width. If ψ, like g, is zero outside of 
[-m, m], the C(a,t) coefficients will depend on the values of the signal s on the 
segment [t - am, t + am] of width 2am, which varies as a function of a. This 
slight difference solves several difficulties, allowing a kind of time-windowed 
analysis, different at the various scales a.

The wavelets stay competitive, however, even in contexts considered favorable 
for the Fourier technique. I. Daubechies (see [Dau92] pages 3 to 6) gives an 
example of windowed-Fourier processing and complex Morlet wavelet 

processing, with , of a signal composed 

mainly of the sum of two sines. This wavelet analysis gives good results.

How to Connect Scale to Frequency? 
A common question is, what is the relationship between scale and frequency?

The answer can only be given in a broad sense, and it’s better to speak about 
the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency Fc of the wavelet and to use 
the following relationship (see [Abr97] in “References” on page 6-155).

Gs ω t( , ) s u( )g t u–( )e iωu– ud
R
�=

C a t( , ) s u( ) 1
a

-------� �
	 
ψ t u–

a
-----------� �
	 
  ud

R
�=

Gs ω t( , )

ψ t( ) Ce t– 2 α2⁄ eiπt e π2– α2 4⁄–( )= α 4=

Fa
Fc

a Δ⋅
-----------=
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where

• a is a scale.

•  is the sampling period.

• Fc is the center frequency of a wavelet in Hz.

• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of 
frequency Fc. The frequency maximizing the fft of the wavelet modulus is Fc. 
The function centfrq can be used to compute the center frequency and it allows 
the plotting of the wavelet with the associated approximation based on the 
center frequency. Figure 6-10 on page 6-68 shows some examples generated 
using the centfrq function.

• Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of order 1, 
and the Gaussian derivative of order 4.

• Two complex wavelets: the complex Gaussian derivative of order 6 and a 
Shannon complex wavelet. 

As you can see, the center frequency-based approximation captures the main 
wavelet oscillations. So the center frequency is a convenient and simple 
characterization of the leading dominant frequency of the wavelet.

If we accept to associate the frequency Fc to the wavelet function, then when 
the wavelet is dilated by a factor a, this center frequency becomes Fc / a. Lastly, 
if the underlying sampling period is , it is natural to associate to the scale a 
the frequency

The function scal2frq computes this correspondence.

Δ

Δ

Fa
Fc

a Δ⋅
-----------=
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Figure 6-10:  Center Frequencies for Real and Complex Wavelets
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To illustrate the behavior of this procedure, consider the following simple test. 
We generate sine functions of sensible frequencies F0. For each function, we 
shall try to detect this frequency by a wavelet decomposition followed by a 
translation of scale to frequency. More precisely, after a discrete wavelet 
decomposition, we identify the scale a* corresponding to the maximum value of 
the energy of the coefficients. The translated frequency F* is then given by

scal2frq(a_star,'wname',sampling_period)

The F* values are close to the chosen F0. The plots at the end of the example 
present the periods instead of the frequencies. If we change the F0 values 
slightly, the results remain satisfactory.

For example:

% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Set scales. 
amax = 7;
a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta); 

% Compute associated pseudo-periods.
per = 1./f; 

% Plot pseudo-periods versus scales.
subplot(211), plot(a,per)
title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')

% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.
for i = 1:amax

% Generate sine function of period
% per(i) at sampling period delta.
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t = 0:delta:100;
x = sin((t.*2*pi)/per(i));

% Decompose x at level 9.
[c,l] = wavedec(x,9,wname);

% Estimate standard deviation of detail coefficients.
stdc = wnoisest(c,l,[1:amax]);
% Compute identified period.
[y,jmax] = max(stdc);
idper(i) = per(jmax);

end

% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period') 

Figure 6-11:  Detected Versus Computed Pseudo-Periods
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Wavelet Families: Additional Discussion
There are different types of wavelet families whose qualities vary according to 
several criteria. The main criteria are:

• The support of ψ,  (and φ, ): the speed of convergence to 0 of these 
functions (  or ) when the time t or the frequency  goes to infinity, 
which quantifies both time and frequency localizations

• The symmetry, which is useful in avoiding dephasing in image processing

• The number of vanishing moments for ψ or for φ (if it exists), which is useful 
for compression purposes

• The regularity, which is useful for getting nice features, like smoothness of 
the reconstructed signal or image, and for the estimated function in 
nonlinear regression analysis

These are associated with two properties that allow fast algorithm and 
space-saving coding:

• The existence of a scaling function φ
• The orthogonality or the biorthogonality of the resulting analysis

They may also be associated with these less important properties:

• The existence of an explicit expression

• The ease of tabulating

• The familiarity with use

Typing waveinfo in command-line mode displays a survey of the main 
properties of all wavelet families available in the toolbox.

Note that the φ and ψ functions can be computed using wavefun; the filters are 
generated using wfilters. We provide definition equations for several 
wavelets. Some are given explicitly by their time definitions, others by their 
frequency definitions, and still others by their filters.

ψ̂ φ̂
ψ t( ) ψ ω( ) ω
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The following table outlines the wavelet families included in the toolbox.

Daubechies Wavelets: dbN
In dbN, N is the order. Some authors use 2N instead of N. More about this 
family can be found in [Dau92] pages 115, 132, 194, 242. By typing 
waveinfo('db'), at the MATLAB® command prompt, you can obtain a survey 
of the main properties of this family.

Wavelet Family 
Short Name

Wavelet Family Name

'haar' Haar wavelet

'db' Daubechies wavelets

'sym' Symlets

'coif' Coiflets

'bior' Biorthogonal wavelets

'rbio' Reverse biorthogonal wavelets

'meyr' Meyer wavelet

'dmey' Discrete approximation of Meyer wavelet

'gaus' Gaussian wavelets

'mexh' Mexican hat wavelet

'morl' Morlet wavelet

'cgau' Complex Gaussian wavelets

'shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets

'cmor' Complex Morlet wavelets

Wavelet Families: Additional Discussion
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Figure 6-12:  Daubechies Wavelets db4 on the Left and db8 on the Right

This family includes the Haar wavelet, written db1, the simplest wavelet 
imaginable and certainly the earliest. Using waveinfo('haar'), you can obtain 
a survey of the main properties of this wavelet.

Haar 

dbN
These wavelets have no explicit expression except for db1, which is the Haar 
wavelet. However, the square modulus of the transfer function of h is explicit 
and fairly simple.

• Let , where denotes the binomial 
coefficients.
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• The support length of  and  is 2N - 1. The number of vanishing moments 
of  is N.

• Most dbN are not symmetrical. For some, the asymmetry is very pronounced.

• The regularity increases with the order. When N becomes very large,  and 
 belong to  where μ is approximately equal to 0.2. Certainly, this 

asymptotic value is too pessimistic for small-order N. Note that the functions 
are more regular at certain points than at others.

• The analysis is orthogonal.

Symlet Wavelets: symN
In symN, N is the order. Some authors use 2N instead of N. Symlets are only 
near symmetric; consequently some authors do not call them symlets. More 
about symlets can be found in [Dau92], pages 194, 254-257. By typing 
waveinfo('sym') at the MATLAB command prompt, you can obtain a survey 
of the main properties of this family.

Figure 6-13:  Symlets sym4 on the Left and sym8 on the Right
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Daubechies proposes modifications of her wavelets that increase their 
symmetry can be increased while retaining great simplicity.

The idea consists of reusing the function m0 introduced in the dbN, considering 
the  as a function W of . 

Then we can factor W in several different ways in the form of  
because the roots of W with modulus not equal to 1 go in pairs. If one of the 
roots is z1, then  is also a root.

• By selecting U such that the modulus of all its roots is strictly less than 1, we 
build Daubechies wavelets dbN. The U filter is a “minimum phase filter.”

• By making another choice, we obtain more symmetrical filters; these are 
symlets.

The symlets have other properties similar to those of the dbNs.

Coiflet Wavelets: coifN
In coifN, N is the order. Some authors use 2N instead of N. For the coiflet 
construction, see [Dau92] pages 258–259. By typing waveinfo('coif') at the 
MATLAB command prompt, you can obtain a survey of the main properties of 
this family.

Figure 6-14:  Coiflets coif3 on the Left and coif5 on the Right
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Built by Daubechies at the request of Coifman, the function  has 2N moments 
equal to 0 and, what is more unusual, the function  has 2N-1 moments equal 
to 0. The two functions have a support of length 6N-1.

The coifN  and  are much more symmetrical than the dbNs. With respect 
to the support length, coifN has to be compared to db3N or sym3N. With 
respect to the number of vanishing moments of , coifN has to be compared to 
db2N or sym2N.

If s is a sufficiently regular continuous time signal, for large j the coefficient 
 is approximated by .

If s is a polynomial of degree d, d ≤ N - 1, then the approximation becomes an 
equality. This property is used, connected with sampling problems, when 
calculating the difference between an expansion over the  of a given signal 
and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd
More about biorthogonal wavelets can be found in [Dau92] pages 259, 262–85 
and in [Coh92]. By typing waveinfo('bior') at the MATLAB command 
prompt, you can obtain a survey of the main properties of this family, as well 
as information about Nr and Nd orders and associated filter lengths.

Figure 6-15:  Biorthogonal Wavelets bior2.4 on the Left and bior4.4 on the 
Right
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The new family extends the wavelet family. It is well known in the subband 
filtering community that symmetry and exact reconstruction are incompatible 
(except for the Haar wavelet) if the same FIR filters are used for reconstruction 
and decomposition. Two wavelets, instead of just one, are introduced:

• One, , is used in the analysis, and the coefficients of a signal s are

• The other, , is used in the synthesis

In addition, the wavelets  are related by duality in the following sense:

 as soon as  or and even

 as soon as 

It becomes apparent, as Cohen pointed out in his thesis, that “the useful 
properties for analysis (e.g., oscillations, zero moments) can be concentrated on 
the  function whereas the interesting properties for synthesis (regularity) are 
assigned to the  function. The separation of these two tasks proves very 
useful” (see [Coh92] page 110).

,  can have very different regularity properties (see [Dau92] page 269).

The , , , and  functions are zero outside of a segment.

The calculation algorithms are maintained, and thus very simple.

The filters associated with m0 and  can be symmetrical. The functions used 
in the calculations are easier to build numerically than those used in the usual 
wavelets.
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Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an auxiliary 
function ν (see [Dau92] pages 117, 119, 137, 152). By typing waveinfo('meyr') 
at the MATLAB command prompt, you can obtain a survey of the main 
properties of this wavelet.

Figure 6-16:  Meyer Wavelet
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By changing the auxiliary function, you get a family of different wavelets. For 
the required properties of the auxiliary function ν (see “References” on 
page 6-155 for more information). This wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when , 
faster than any inverse polynomial

 such that 

This property holds also for the derivatives

The wavelet is infinitely differentiable.

Note  Although the Meyer wavelet is not compactly supported, there exists a 
good approximation leading to FIR filters, and then allowing DWT. By typing 
waveinfo('dmey') at the MATLAB command prompt, you can obtain a survey 
of the main properties of this pseudo-wavelet.

Battle-Lemarie Wavelets
See [Dau92] pages 146–148, 151.

These wavelets are not included in the toolbox, but we use the spline functions 
in the biorthogonal family.

There are two forms of the wavelet: one does not ensure the analysis to be 
orthogonal, while the other does. For N=1, the scaling functions are linear 
splines. For N=2, the scaling functions are quadratic B-spline with finite 
support. More generally, for an N-degree B-spline,

with  if N is odd,  if N is even. 
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This formula can be used to build the filters. The twin scale relation is

• For an even N, φ is symmetrical around, x = 1/2; ψ is antisymmetrical around 
x = 1/2. For an odd N, φ is symmetrical around x = 0; ψ is symmetrical around 
x = 1/2.

• The analysis becomes orthogonal if we transform the functions ψ and φ 
somewhat. For N=1, for instance, let

• The supports of ψ and  are not finite, but the decrease of the functions ψ 
and  to 0 is exponential. The support of φ is compact. See [Dau92] p. 151.

• The ψ functions have derivatives up to order N-1.

Mexican Hat Wavelet: mexh
See [Dau92] page 75.

By typing waveinfo('mexh') at the MATLAB command prompt, you can 
obtain a survey of the main properties of this wavelet.
.

Figure 6-17:  Mexican Hat
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This function is proportional to the second derivative function of the Gaussian 
probability density function.

As the φ function does not exist, the analysis is not orthogonal.

Morlet Wavelet: morl
See [Dau92] page 76. 

By typing waveinfo('morl') at the MATLAB command prompt you can obtain 
a survey of the main properties of this wavelet.

Figure 6-18:  Morlet Wavelet

The constant C is used for normalization in view of reconstruction.

The Morlet wavelet does not satisfy exactly the admissibility condition 
discussed in “What Functions Are Candidates to Be a Wavelet?” on page 6-63.
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Additional Real Wavelets
Some other real wavelets are available in the toolbox.

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd
This family is obtained from the biorthogonal wavelet pairs previously 
described.

You can obtain a survey of the main properties of this family by typing 
waveinfo('rbio') from the MATLAB command line.

Figure 6-19:  Reverse Biorthogonal Wavelet rbio1.5

Gaussian Derivatives Family: gaus
This family is built starting from the Gaussian function  by 
taking the  derivative of  f. 

The integer  is the parameter of this family and in the previous formula,  
is such that

 where is the derivative of  f.

You can obtain a survey of the main properties of this family by typing 
waveinfo('gaus') from the MATLAB command line.
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Figure 6-20:  Gaussian Derivative Wavelet gaus8

FIR Based Approximation of the Meyer Wavelet: dmey
See [Abr97] page 268. 

This wavelet is a FIR based approximation of the Meyer wavelet, allowing fast 
wavelet coefficients calculation using DWT.

You can obtain a survey of the main properties of this wavelet by typing 
waveinfo('dmey') from the MATLAB command line.

Figure 6-21:  FIR Based Approximation of the Meyer Wavelet
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Complex Wavelets
Some complex wavelet families are available in the toolbox.

Complex Gaussian Wavelets: cgau
This family is built starting from the complex Gaussian function

 by taking the  derivative of . The integer  is the 
parameter of this family and in the previous formula,  is such that

 where is the derivative of f.

You can obtain a survey of the main properties of this family by typing 
waveinfo('cgau') from the MATLAB command line.

Figure 6-22:  Complex Gaussian Wavelet cgau8

Complex Morlet Wavelets: cmor
See [Teo98] pages 62–65.

A complex Morlet wavelet is defined by
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depending on two parameters:

•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('cmor') from the MATLAB command line.

Figure 6-23:  Complex Morlet Wavelet morl 1.5-1

Complex Frequency B-Spline Wavelets: fbsp
See [Teo98] pages 62–65.

A complex frequency B-spline wavelet is defined by
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•  is an integer order parameter ( ).

•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('fbsp') from the MATLAB command line.

Figure 6-24:  Complex Frequency B-Spline Wavelet fbsp 2-0.5-1

Complex Shannon Wavelets: shan
See [Teo98] pages 62–65.

This family is obtained from the frequency B-spline wavelets by setting m to 1.

A complex Shannon wavelet is defined by

depending on two parameters:

m m 1≥
fb

fc

−20 −10 0 10 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Real part of function psi

−20 −10 0 10 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Imaginary part of function psi

−20 −10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Modulus of function psi

−20 −10 0 10 20
−3

−2

−1

0

1

2

3
Angle of function psi

ψ x( ) fb sinc fbx( ) e
2iπfcx =

Wavelet Families: Additional Discussion

6-87

•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('shan') from the MATLAB command line.

Figure 6-25:  Complex Shannon Wavelet shan 0.5-1
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Summary of Wavelet Families and Associated
Properties (Part 1)

Property morl mexh meyr haar dbN symN coifN biorNr.Nd

Crude • •

Infinitely regular • • •

Arbitrary regularity • • • •

Compactly supported 
orthogonal

• • • •

Compactly supported 
biothogonal

•

Symmetry • • • • •

Asymmetry •

Near symmetry • •

Arbitrary number of 
vanishing moments

• • • •

Vanishing moments for 
φ

•

Existence of φ • • • • • •

Orthogonal analysis • • • • •

Biorthogonal analysis • • • • • •

Exact reconstruction • • • • • • •

FIR filters • • • • •

Continuous transform • • • • • • • •

Discrete transform • • • • •

≈

Wavelet Families: Additional Discussion
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Crude wavelet — A wavelet is said to be crude when satisfying only the 
admissibility condition. See “What Functions Are Candidates to Be a Wavelet?” 
on page 6-63.

Regularity — See “What About the Regularity of a Wavelet y?” on page 6-62.

Orthogonal — See “Details and Approximations” on page 6-15.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-76.

Vanishing moments — See “Suppressing Signals” on page 6-92.

Exact reconstruction — See “Reconstruction Filters” on page 1-30.

Continuous — See “Continuous Wavelet Transform” on page 1-15.

Discrete — See “Discrete Wavelet Transform” on page 1-24.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on 
page 6-19.

Fast algorithm • • • • •

Explicit expression • • • For 
splines

Property morl mexh meyr haar dbN symN coifN biorNr.Nd
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Summary of Wavelet Families and Associated
Properties (Part 2)

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan

Crude • • • • •

Infinitely regular • • • • •

Arbitrary regularity •

Compactly supported 
orthogonal

Compactly supported 
biothogonal

•

Symmetry • • • • • • •

Asymmetry

Near symmetry

Arbitrary number of vanishing 
moments

•

Vanishing moments for φ

Existence of φ •

Orthogonal analysis

Biorthogonal analysis •

Exact reconstruction • • • • • •

FIR filters • •

Continuous transform • •

Discrete transform • •

Fast algorithm • •

Explicit expression For splines • • • • •

≈
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Crude wavelet —A wavelet is said to be crude when satisfying only the 
admissibility condition. See “What Functions Are Candidates to Be a Wavelet?” 
on page 6-63.

Regularity — See “What About the Regularity of a Wavelet y?” on page 6-62.

Orthogonal — See “Details and Approximations” on page 6-15.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-76.

Vanishing moments — See “Suppressing Signals” on page 6-92.

Exact reconstruction — See “Reconstruction Filters” on page 1-30.

Continuous — See “Continuous Wavelet Transform” on page 1-15.

Discrete — See “Discrete Wavelet Transform” on page 1-24.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on 
page 6-19.

Complex valued • • • •

Complex continuous transform • • • •

FIR-based approximation •

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan
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Wavelet Applications: More Detail
Chapter 3, “Wavelet Applications,” and Chapter 4, “Wavelets in Action: 
Examples and Case Studies,” illustrate wavelet applications with examples 
and case studies. This section reexamines some of the applications with 
additional theory and more detail.

Suppressing Signals
As shown in “Suppressing Signals” on page 3-15, by suppressing a part of a 
signal the remainder may be highlighted.

Let  be a wavelet with at least k+1 vanishing moments:

for j = 0, ..., k,

If the signal s is a polynomial of degree k, then the coefficients C(a,b) = 0 for all 
a and all b. Such wavelets automatically suppress the polynomials. The degree 
of s can vary with time x, provided that it remains less than k.

If s is now a polynomial of degree k on segment , then C(a,b) = 0 as long 

as the support of the function  is included in . The suppression is 

local. Effects will appear on the edges of the segment.

Likewise, let us suppose that, on  to which 0 belongs, we have the 

expansion . The s and 
g signals then have the same wavelet coefficients. This is the technical 
meaning of the phrase “The wavelet suppresses a polynomial part of signal s.” 
The signal g is the “irregular” part of the signal s. The  wavelet 
systematically suppresses the regular part and analyzes the irregular part. 
This effect is easily seen in details D1 through D4 in “Example 2: A Frequency 
Breakdown” in Chapter 4 (see the curves d1, d2, d3, and d4). The wavelet 
suppresses the slow sine wave, which is locally assimilated to a polynomial.

Another way of suppressing a component of the signal is to modify and force 
certain coefficients C(a,b) to be equal to 0. Having selected a set E of indices, 
we stipulate that , C(a,b) = 0. We then synthesize the signal using 
the modified coefficients.

ψ

xjψ x( ) xd
R� 0=

α β[ , ]
1
a

-------ψ x b–
a

------------� �
	 
 α β[ , ]

α β[ , ]

s x( ) [s 0( ) xs′ 0( ) x2s 2( ) 0( ) … xks k( ) 0( )] g x( )+ + + + +=

ψ

a b( , )∀ E∈

Wavelet Applications: More Detail

6-93

Let us illustrate, with the following M-file, some features of wavelet processing 
using coefficients (resulting plots can be found in Figure 6-26 on page 6-94).

% Load original 1-D signal. 
load sumsin; s = sumsin;

% Set the wavelet name and perform the decomposition 
% of s at level 4, using coif3. 
w = 'coif3'; maxlev = 4; 
[c,l] = wavedec(s,maxlev,w); 
newc = c;

% Force to zero the detail coefficients at levels 3 and 4. 
newc = wthcoef('d',c,l,[3,4]);

% Force the detail coefficients at level 1 to zero on 
% original time interval [400:600] and shrink otherwise. 
% determine first and last index of 
% level 1 coefficients. 
k = maxlev+1; 
first = sum(l(1:k-1))+1; last = first+l(k)-1; 
indd1 = first:last;

% shrink by dividing by 3.
newc(indd1) = c(indd1)/3;

% find at level 1 indices of coefficients 
% in the interval [400:600], 
% note that time t in original grid corresponds to time 
% t/2^k on the grid at level k. Here k=1. 
indd1 = first+400/2:first+600/2; 

% force it to zero. 
newc(indd1) = zeros(size(indd1));

% Set to 4 a coefficient at level 2 corresponding roughly 
% to original time t = 500. 
k = maxlev; first = sum(l(1:k-1))+1; 
newc(first+500/2^2) = 4;
% Synthesize modified decomposition structure. 
synth = waverec(newc,l,w);
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Figure 6-26:  Suppress or Modify Signal Components, Acting on Coefficients

Simple procedures to select the set of indices E are used for de-noising and 
compression purposes (see “De-Noising” on page 6-97 and “Data Compression” 
on page 6-110).
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Splitting Signal Components
Wavelet analysis is a linear technique: the wavelet coefficients of the linear 

combination of two signals  are equal to the linear combination of 

their wavelet coefficients . The same holds true for the 

corresponding approximations and details, for example  and 

.

Noise Processing
Let us first analyze noise as an ordinary signal. Then the probability 
characteristics correlation function, spectrum, and distribution need to be 
studied.

In general, for a one-dimensional discrete-time signal, the high frequencies 
influence the details of the first levels (the small values of j), while the low 
frequencies influence the deepest levels (the large values of j) and the 
associated approximations.

If a signal comprising only white noise is analyzed (for example, see “Example 
3: Uniform White Noise” in Chapter 4), the details at the various levels 
decrease in amplitude as the level increases. The variance of the details also 
decreases as the level increases. The details and approximations are not white 
noise anymore, as color is introduced by the filters.

On the coefficients C(j,k), where j stands for the scale and k for the time, we can 
add often-satisfied properties for discrete time signals:

• If the analyzed signal s is stationary, zero mean, and a white noise, the 
coefficients are uncorrelated.

• If furthermore s is Gaussian, the coefficients are independent and Gaussian.

• If s is a colored, stationary, zero mean Gaussian sequence, then the 
coefficients remain Gaussian. For each scale level j, the sequence of 
coefficients is a colored stationary sequence. It could be interesting to know 
how to choose the wavelet that would de-correlate the coefficients. This 
problem has not yet been resolved. Furthermore, the wavelet (if indeed it 
exists) most probably depends on the color of the signal. For the wavelet to 
be calculated, the color must be known. In most instances, this is beyond our 
reach.
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• If s is a zero mean ARMA model stationary for each scale j, then  
is also a stationary, zero mean ARMA process whose characteristics depend 
on j.

• If s is a noise whose

- Correlation function  is known, we know how to calculate the 
correlations of C(j,k) and C(j,k′).

- Spectrum  is known, we know how to calculate the spectrum of C(j,k), 
 and the cross spectrum of two different levels j and j′.

These results are easily established, since they can be deduced from the fact 
that the C(a,b) coefficients are calculated primarily by convolving  and s, and 
using conventional formulas. The quantity that comes into play is the 
self-reproduction function U(a,b), which is obtained by analyzing the  
wavelet as if it was a signal:

From the results for coefficients we deduce the properties of the details (and of 
the approximations), by using the formula

where the C(j,k) coefficients are random variables and the functions  are 
not. If the support of  is finite, only a finite number of terms will be summed.
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De-Noising
This section discusses the problem of signal recovery from noisy data. This 
problem is easy to understand looking at the following simple example, where 
a slow sine is corrupted by a white noise.

Figure 6-27:  Simple De-Noising Example

Basic One-Dimensional Model
The underlying model for the noisy signal is basically of the following form:

where time n is equally spaced.
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In the simplest model we suppose that e(n) is a Gaussian white noise N(0,1) 
and the noise level  is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to 
recover f. 

The method is efficient for families of functions f that have only a few nonzero 
wavelet coefficients. These functions have a sparse wavelet representation. For 
example, a smooth function almost everywhere, with only a few abrupt 
changes, has such a property.

From a statistical viewpoint, the model is a regression model over time and the 
method can be viewed as a nonparametric estimation of the function f using 
orthogonal basis.

De-Noising Procedure Principles
The general de-noising procedure involves three steps. The basic version of the 
procedure follows these steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of 
the signal s at level N.

2 Threshold detail coefficients 

For each level from 1 to N, select a threshold and apply soft thresholding to 
the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation 
coefficients of level N and the modified detail coefficients of levels from 
1 to N.

Two points must be addressed: how to choose the threshold, and how to 
perform the thresholding.

σ
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Soft or Hard Thresholding?
Thresholding can be done using the function

yt = wthresh(y,sorh,thr)

which returns soft or hard thresholding of input y, depending on the sorh 
option. Hard thresholding is the simplest method. Soft thresholding has nice 
mathematical properties and the corresponding theoretical results are 
available (For instance, see [Don95] in “References” on page 6-155).

Let us give a simple example.

y = linspace(-1,1,100); 
thr = 0.4; 
ythard = wthresh(y,'h',thr); 
ytsoft = wthresh(y,'s',thr);

Figure 6-28:  Hard and Soft Thresholding of the Signal s = x

Comment: Let t denote the threshold. The hard threshold signal is x if |x| > t, 
and is 0 if |x| ≤ t. The soft threshold signal is sign (x)(|x| - t) if |x| > t and is 
0 if |x| ≤ t.

Hard thresholding can be described as the usual process of setting to zero the 
elements whose absolute values are lower than the threshold. Soft 
thresholding is an extension of hard thresholding, first setting to zero the 
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elements whose absolute values are lower than the threshold, and then 
shrinking the nonzero coefficients toward 0 (see Figure 6-28).

As can be seen in the comment of Figure 6-28 on page 6-99, the hard procedure 
creates discontinuities at x = ±t, while the soft procedure does not.

Threshold Selection Rules
According to the basic noise model, four threshold selection rules are 
implemented in the M-file thselect. Each rule corresponds to a tptr option in 
the command

thr = thselect(y,tptr)

which returns the threshold value.

• Option tptr = 'rigrsure' uses for the soft threshold estimator a threshold 
selection rule based on Stein’s Unbiased Estimate of Risk (quadratic loss 
function). You get an estimate of the risk for a particular threshold value t. 
Minimizing the risks in t gives a selection of the threshold value.

• Option tptr = 'sqtwolog' uses a fixed form threshold yielding minimax 
performance multiplied by a small factor proportional to log(length(s)).

• Option tptr = 'heursure' is a mixture of the two previous options. As a 
result, if the signal-to-noise ratio is very small, the SURE estimate is very 
noisy. So if such a situation is detected, the fixed form threshold is used.

• Option tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax 
performance for mean square error against an ideal procedure. The minimax 
principle is used in statistics to design estimators. Since the de-noised signal 
can be assimilated to the estimator of the unknown regression function, the 

Option Threshold Selection Rule

'rigrsure' Selection using principle of Stein’s Unbiased Risk 
Estimate (SURE)

'sqtwolog' Fixed form threshold equal to sqrt(2∗log(length(s)))

'heursure' Selection using a mixture of the first two options

'minimaxi' Selection using minimax principle
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minimax estimator is the option that realizes the minimum, over a given set 
of functions, of the maximum mean square error.

Typically it is interesting to show how thselect works if y is a Gaussian white 
noise N(0,1) signal.

y = randn(1,1000);

thr = thselect(y,'rigrsure')
thr = 

2.0735

thr = thselect(y,'sqtwolog')
thr = 

3.7169

thr = thselect(y,'heursure')
thr = 

3.7169

thr = thselect(y,'minimaxi')
thr = 

2.2163

Because y is a standard Gaussian white noise, we expect that each method kills 
roughly all the coefficients and returns the result f(x) = 0. For Stein’s Unbiased 
Risk Estimate and minimax thresholds, roughly 3% of coefficients are saved. 
For other selection rules, all the coefficients are set to 0.

We know that the detail coefficients vector is the superposition of the 
coefficients of f and the coefficients of e, and that the decomposition of e leads 
to detail coefficients, which are standard Gaussian white noises.

So minimax and SURE threshold selection rules are more conservative and 
would be more convenient when small details of function f lie near the noise 
range. The two other rules remove the noise more efficiently. The option 
'heursure' is a compromise. In this example, the fixed form threshold wins.

Recalling step 2 of the de-noise procedure, the function thselect performs a 
threshold selection, and then each level is thresholded. This second step can be 
done using wthcoef, directly handling the wavelet decomposition structure of 
the original signal s.
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Dealing with Unscaled Noise and Nonwhite Noise
Usually in practice the basic model cannot be used directly. We examine here 
the options available to deal with model deviations in the main de-noising 
function wden.

The simplest use of wden is

sd = wden(s,tptr,sorh,scal,n,wav)

which returns the de-noised version sd of the original signal s obtained using 
the tptr threshold selection rule. Other parameters needed are sorh, scal, n, 
and wav. The parameter sorh specifies the thresholding of details coefficients 
of the decomposition at level n of s by the wavelet called wav. The remaining 
parameter scal is to be specified. It corresponds to threshold’s rescaling 
methods.

• Option scal = 'one' corresponds to the basic model.

• In general, you can ignore the noise level and it must be estimated. The 
detail coefficients cD1 (the finest scale) are essentially noise coefficients with 
standard deviation equal to σ. The median absolute deviation of the 
coefficients is a robust estimate of σ. The use of a robust estimate is crucial 
for two reasons. The first one is that if level 1 coefficients contain f details, 
then these details are concentrated in a few coefficients if the function f is 
sufficiently regular. The second reason is to avoid signal end effects, which 
are pure artifacts due to computations on the edges.

Option scal = 'sln' handles threshold rescaling using a single estimation 
of level noise based on the first-level coefficients.

Option Corresponding Model

'one' Basic model

'sln' Basic model with unscaled noise

'mln' Basic model with nonwhite noise
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• When you suspect a nonwhite noise e, thresholds must be rescaled by a 
level-dependent estimation of the level noise. The same kind of strategy as 
in the previous option is used by estimating σlev level by level. 

This estimation is implemented in M-file wnoisest, directly handling the 
wavelet decomposition structure of the original signal s.

Option scal = 'mln' handles threshold rescaling using a level-dependent 
estimation of the level noise.

For a more general procedure, the wdencmp function performs wavelet 
coefficients thresholding for both de-noising and compression purposes, while 
directly handling one-dimensional and two-dimensional data. It allows you to 
define your own thresholding strategy selecting in

 xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

where

• opt = 'gbl' and thr is a positive real number for uniform threshold.

• opt = 'lvd' and thr is a vector for level dependent threshold.

• keepapp = 1 to keep approximation coefficients, as previously and

• keepapp = 0 to allow approximation coefficients thresholding.

• x is the signal to be de-noised and wav, n, sorh are the same as above.

De-Noising in Action
We begin with examples of one-dimensional de-noising methods with the first 
example credited to Donoho and Johnstone. You can use the following M-file to 
get the first test function using wnoise.

% Set signal to noise ratio and set rand seed. 
sqrt_snr = 4; init = 2055615866;

% Generate original signal xref and a noisy version x adding 
% a standard Gaussian white noise. 
[xref,x] = wnoise(1,11,sqrt_snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding 
% and scaled noise option, on detail coefficients obtained 
% from the decomposition of x, at level 3 by sym8 wavelet. 
xd = wden(x,'heursure','s','one',3,'sym8');
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Figure 6-29:  Blocks Signal De-Noising

Since only a small number of large coefficients characterize the original signal, 
the method performs very well (see Figure 6-29). If you want to see more about 
how the thresholding works, use the GUI (see “De-Noising Signals” on 
page 3-18).

As a second example, let us try the method on the highly perturbed part of the 
electrical signal studied above.

According to this previous analysis, let us use db3 wavelet and decompose at 
level 3. 

To deal with the composite noise nature, let us try a level-dependent noise size 
estimation.
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% Load electrical signal and select part of it. 
load leleccum; indx = 2000:3450; 
x = leleccum(indx);

% Find first value in order to avoid edge effects. 
deb = x(1);

% De-noise signal using soft fixed form thresholding 
% and unknown noise option. 
xd = wden(x-deb,'sqtwolog','s','mln',3,'db3')+deb;

Figure 6-30:  Electrical Signal De-Noising

The result is quite good in spite of the time heterogeneity of the nature of the 
noise after and before the beginning of the sensor failure around time 2450.
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Extension to Image De-Noising
The de-noising method described for the one-dimensional case applies also to 
images and applies well to geometrical images. A direct translation of the 
one-dimensional model is

where e is a white Gaussian noise with unit variance.

The two-dimensional de-noising procedure has the same three steps and uses 
two-dimensional wavelet tools instead of one-dimensional ones. For the 
threshold selection, prod(size(s)) is used instead of length(s) if the fixed 
form threshold is used.

Note that except for the “automatic” one-dimensional de-noising case, 
de-noising and compression are performed using wdencmp. As an example, you 
can use the following M-file illustrating the de-noising of a real image.

% Load original image. 
load  woman

% Generate noisy image.
init = 2055615866; randn('seed',init); 
x = X + 15*randn(size(X));

% Find default values. In this case fixed form threshold
% is used with estimation of level noise, thresholding
% mode is soft and the approximation coefficients are 
% kept.
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% thr is equal to estimated_sigma*sqrt(log(prod(size(X))))
thr 

thr =

  107.6428

% De-noise image using global thresholding option.
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);
% Plots.
colormap(pink(255)), sm = size(map,1);

s i j,( ) f i j,( ) σe i j,( )+=
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subplot(221), image(wcodemat(X,sm)), title('Original Image')
subplot(222), image(wcodemat(x,sm)), title('Noisy Image')
subplot(223), image(wcodemat(xd,sm)), title('De-Noised Image')

The result shown below is acceptable.

Figure 6-31:  Image De-Noising

One-Dimensional Variance Adaptive Thresholding of Wavelet Coefficients
Local thresholding of wavelet coefficients, for one- or two-dimensional data, is 
a capability available from a lot of graphical interface tools throughout Wavelet 
Toolbox™ software (see “Using Wavelets” on page 2-1). 

The idea is to define level by level time-dependent thresholds, and then 
increase the capability of the de-noising strategies to handle nonstationary 
variance noise models. 

More precisely, the model assumes (as previously) that the observation is equal 
to the interesting signal superimposed on a noise (see “De-Noising” on 
page 6-97).
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But the noise variance can vary with time. There are several different variance 
values on several time intervals. The values as well as the intervals are 
unknown.

Let us focus on the problem of estimating the change points or equivalently the 
intervals. The algorithm used is based on an original work of Marc Lavielle 
about detection of change points using dynamic programming (see [Lav99] in 
“References” on page 6-155).

Let us generate a signal from a fixed-design regression model with two noise 
variance change points located at positions 200 and 600. 

% Generate blocks test signal.
x = wnoise(1,10);       

% Generate noisy blocks with change points.
init = 2055615866; randn('seed',init);
bb = randn(1,length(x));
cp1 = 200; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/3,bb(cp2+1:end)];

The aim of this example is to recover the two change points from the signal x. 
In addition, this example illustrates how the GUI tools (see “Using Wavelets” 
on page 2-1) locate the change points for interval dependent thresholding.

Step 1. Recover a noisy signal by suppressing an approximation.

% Perform a single-level wavelet decomposition 
% of the signal using db3.
wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);

% Reconstruct detail at level 1.
det = wrcoef('d',c,l,wname,1);

The reconstructed detail at level 1 recovered at this stage is almost signal free. 
It captures the main features of the noise from a change points detection 
viewpoint if the interesting part of the signal has a sparse wavelet 
representation. To remove almost all the signal, we replace the biggest values 
by the mean. 

Step 2. To remove almost all the signal, replace 2% of biggest values by the 
mean.
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x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Step 3. Use the wvarchg function to estimate the change points with the 
following parameters:

• The minimum delay between two change points is d = 10.

• The maximum number of change points is 5. 

[cp_est,kopt,t_est] = wvarchg(det,5)
cp_est =

199   601

kopt =
2

t_est =
1024 0 0 0 0 0
601 1024 0 0 0 0
199 601 1024 0 0 0
199 261 601 1024 0 0
207 235 261 601 1024 0
207 235 261 393 601 1024

Two change points and three intervals are proposed. Since the three interval 
variances for the noise are very different the optimization program detects 
easily the correct structure.

The estimated change points are close to the true change points: 200 and 600.

Step 4. (Optional) Replace the estimated change points.

For 2 ≤ i ≤ 6, t_est(i,1:i-1) contains the i-1 instants of the variance 
change points, and since kopt is the proposed number of change points; then

cp_est = t_est(kopt+1,1:kopt);

You can replace the estimated change points by computing

% cp_New = t_est(knew+1,1:knew); % where 1 ≤ knew ≤ 5
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More About De-Noising
The de-noising methods based on wavelet decomposition appear mainly 
initiated by Donoho and Johnstone in the USA, and Kerkyacharian and Picard 
in France. Meyer considers that this topic is one of the most significant 
applications of wavelets (cf. [Mey93] page 173). This chapter and the 
corresponding M-files follow the work of the above mentioned researchers. 
More details can be found in Donoho’s references in “References” on page 6-155 
and in “More About the Thresholding Strategies” on page 6-125.

Data Compression
The compression features of a given wavelet basis are primarily linked to the 
relative scarceness of the wavelet domain representation for the signal. The 
notion behind compression is based on the concept that the regular signal 
component can be accurately approximated using the following elements: a 
small number of approximation coefficients (at a suitably chosen level) and 
some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of 
the signal s at level N.

2 Threshold detail coefficients

For each level from 1 to N, a threshold is selected and hard thresholding is 
applied to the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation 
coefficients of level N and the modified detail coefficients of levels from 
1 to N.

The difference of the de-noising procedure is found in step 2. There are two 
compression approaches available. The first consists of taking the wavelet 
expansion of the signal and keeping the largest absolute value coefficients. In 
this case, you can set a global threshold, a compression performance, or a 
relative square norm recovery performance. 
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Thus, only a single parameter needs to be selected. The second approach 
consists of applying visually determined level-dependent thresholds.

Let us examine two real-life examples of compression using global 
thresholding, for a given and unoptimized wavelet choice, to produce a nearly 
complete square norm recovery for a signal (see Figure 6-32 on page 6-112) and 
for an image (see Figure 6-33 on page 6-113).

% Load electrical signal and select a part. 
load leleccum; indx = 2600:3100; 
x = leleccum(indx);

% Perform wavelet decomposition of the signal. 
n = 3; w = 'db3'; 
[c,l] = wavedec(x,n,w);

% Compress using a fixed threshold. 
thr = 35; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] =

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Figure 6-32:  Signal Compression

The result is quite satisfactory, not only because of the norm recovery criterion, 
but also on a visual perception point of view. The reconstruction uses only 15% 
of the coefficients.

% Load original image. 
load woman; x = X(100:200,100:200); 
nbc = size(map,1);

% Wavelet decomposition of x. 
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding. 
thr = 20; 
keepapp =1;
[xd,cxd,lxd,perf0,perfl2] =

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Figure 6-33:  Image Compression

If the wavelet representation is too dense, similar strategies can be used in the 
wavelet packet framework to obtain a sparser representation. You can then 
determine the best decomposition with respect to a suitably selected 
entropy-like criterion, which corresponds to the selected purpose (de-noising or 
compression).

Compression Scores
When compressing using orthogonal wavelets, the Retained energy in 
percentage is defined by

When compressing using biorthogonal wavelets, the previous definition is not 
convenient. We use instead the Energy ratio in percentage defined by

and as a tuning parameter the Norm cfs recovery defined by
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The Number of zeros in percentage is defined by

Function Estimation: Density and Regression
In this section we present two problems of functional estimation:

• Density estimation

• Regression estimation

Note  According to the classical statistical notations, in this section,  
denotes the estimator of the function g instead of the Fourier transform of g.

Density Estimation
The data are values (X(i), 1 ≤ i ≤ n) sampled from a distribution whose 
density is unknown. We are looking for an estimate of this density.

What Is Density.

The well known histogram creates the information on the density distribution 
of a set of measures. At the very beginning of the 19th century, Laplace, a 
French scientist, repeating sets of observations of the same quantity, was able 
to fit a simple function to the density distribution of the measures. This 
function is called now the Laplace-Gauss distribution.

Density Applications.

Density estimation is a core part of reliability studies. It permits the evaluation 
of the life-time probability distribution of a TV set produced by a factory, the 
computation of the instantaneous availability, and of such other useful 
characteristics as the mean time to failure. A very similar situation occurs in 
survival analysis, when studying the residual lifetime of a medical treatment. 

100*(vector-norm(coeffs of the current decomposition,2))2

(vector-norm(coeffs of the original decomposition,2))2
--------------------------------------------------------------------------------------------------------------------------------------------------------------

100*(number of zeros of the current decomposition)
(number of coefficients)

----------------------------------------------------------------------------------------------------------------------------------------------
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Density Estimators.

As in the regression context, the wavelets are useful in a nonparametric 
context, when very little information is available concerning the shape of the 
unknown density, or when you don’t want to tell the statistical estimator what 
you know about the shape.

Several alternative competitors exist. The orthogonal basis estimators are 
based on the same ideas as the wavelets. Other estimators rely on statistical 
window techniques such as kernel smoothing methods.

We have theorems proving that the wavelet-based estimators behave at least 
as well as the others, and sometimes better. When the density h(x) has 
irregularities, such as a breakdown point or a breakdown point of the 
derivative h’(x), the wavelet estimator is a good solution.

How to Perform Wavelet-Based Density Estimation.

The key idea is to reduce the density estimation problem to a fixed-design 
regression model. More precisely the main steps are as follows:

1 Transform the sample X into (Xb, Yb) data where the Xb are equally spaced, 
using a binning procedure. For each bin i, Yb(i) = number of X(j) within 
bin i.

2 Perform a wavelet decomposition of Yb viewed as a signal, using fast 
algorithm. Thus, the underlying Xb data is 1, 2, ..., nb where nb is the 
number of bins.

3 Threshold the wavelet coefficients according to one of the methods described 
for de-noising (see “De-Noising” on page 6-97).

4 Reconstruct an estimate h1 of the density function h from the thresholded 
wavelet coefficients using fast algorithm (see “Fast Wavelet Transform 
(FWT) Algorithm” on page 6-19).

5 Postprocess the resulting function h1. Rescale the resulting function 
transforming 1, 2, ..., nb into Xb and interpolate h1 for each bin to calculate 
hest(X). 

Steps 2 to 4 are standard wavelet-based steps. But the first step of this 
estimation scheme depends on nb (the number of bins), which can be viewed as 
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a bandwidth parameter. In density estimation, nb is generally small with 
respect to the number of observations (equal to the length of X), since the 
binning step is a presmoother. A typical default value is nb = length(X) / 4.

For more information, you can refer for example to [AntP98], [HarKPT98], and 
[Ogd97] in “References” on page 6-155.

A More Technical Viewpoint.

Let us be a little more formal.

Let X1, X2, ... , Xn be a sequence of independent and identically distributed 
random variables, with a common density function .

This density h is unknown and we want to estimate it. We have very little 
information on h.

For technical reasons we suppose that  is finite. This allows us to 
express h in the wavelet basis.

We know that in the basis of functions  and  with usual notations, J being 
an integer,

The estimator  will use some wavelet coefficients. The rationale for 
the estimator is the following.

To estimate h, it is sufficient to estimate the coordinates  and the .

We shall do it now.

We know the definition of the coefficients:

and similarly
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The expression of the  has a very funny interpretation. Because h is a 

density  is , the mean value of the random variable 

.

Usually such an expectation is estimated very simply by the mean value:

Of course the same kind of formula holds true for the :

With a finite set of n observations, it is possible to estimate only a finite set of 
coefficients, those belonging to the levels from J-j0 up to J, and to some 
positions k.

Besides, several values of the  are not significant and are to be set to 0.

The values , lower than a threshold t, are set to 0 in a very similar manner 
as the de-noising process and for almost the same reasons.

Inserting these expressions into the definition of h, we get an estimator:

This kind of estimator avoids the oscillations that would occur if all the detail 
coefficients would have been kept.

From the computational viewpoint, it is difficult to use a quick algorithm 
because the Xi values are not equally spaced.

Note that this problem can be overcome.

Let’s introduce the normalized histogram  of the values of X, having nb 
classes, where the centers of the bins are collected in a vector Xb, the 
frequencies of Xi within the bins are collected in a vector Yb and then 
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 on the r-th bin

We can write, using ,

where  is the length of each bin.

The signs  occur because we lose some information when using histogram 
instead of the values Xi and when approximating the integral.

The last  sign is very interesting. It means that  is, up to the constant c, 
the wavelet coefficient of the function  associated with the level j and the 
position k. The same result holds true for the .

So, the last  sign of the previous equation shows that the coefficients  
appear also to be (up to an approximation) wavelet coefficients — those of the 
decomposition of the sequence . If some of the coefficients at level J are 
known or computed, the Mallat algorithm computes the others quickly and 
simply.

And now we are able to finish computing  when the  and the  have 
been computed.

The trick is the transformation of irregularly spaced X values into equally 
spaced values by a process similar to the histogram computation, and that is 
called binning.

You can see the different steps of the procedure using the Density Estimation 
Graphical User Interface, by typing

wavemenu 

and clicking the Density Estimation 1-D option.

Regression Estimation 

What Is Regression?

The regression problem belongs to the family of the most common practical 
questions. The goal is to get a model of the relationship between one variable 
Y and one or more variables X. The model gives the part of the variability of Y 
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taken in account or explained by the variation of X. A function f represents the 
central part of the knowledge. The remaining part is dedicated to the residuals, 
which are similar to a noise. The model is Y = f(X)+e.

Regression Models.

The simplest case is the linear regression Y = aX+b+e where the function f is 
affine. A case a little more complicated occurs when the function belongs to a 
family of parametrized functions as f(X) = cos (w X), the value of w being 
unknown. Statistics Toolbox™ software provides tools for the study of such 
models. When f is totally unknown, the problem of the nonlinear regression is 
said to be a nonparametric problem and can be solved either by using usual 
statistical window techniques or by wavelet based methods.

Regression Applications.

These regression questions occur in many domains. For example:

• Metallurgy, where you can try to explain the tensile strength by the carbon 
content

• Marketing, where the house price evolution is connected to an economical 
index

• Air-pollution studies, where you can explain the daily maximum of the ozone 
concentration by the daily maximum of the temperature

Two designs are distinguished: the fixed design and the stochastic design. The 
difference concerns the status of X. 

Fixed-Design Regression.

When the X values are chosen by the designer using a predefined scheme, as 
the days of the week, the age of the product, or the degree of humidity, the 
design is a fixed design. Usually in this case, the resulting X values are equally 
spaced. When X represents time, the regression problem can be viewed as a 
de-noising problem.

Stochastic Design Regression.

When the X values result from a measurement process or are randomly chosen, 
the design is stochastic. The values are often not regularly spaced. This 
framework is more general since it includes the analysis of the relationship 
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between a variable Y and a general variable X, as well as the analysis of the 
evolution of Y as a function of time X when X is randomized.

How to Perform Wavelet-Based Regression Estimation.

The key idea is to reduce a general problem of regression to a fixed-design 
regression model. More precisely the main steps are as follows:

1 Transform (X,Y) data into (Xb,Yb) data where the Xb are equally spaced, 
using a binning procedure. For each bin i, 

,

with the convention .

2 Perform a wavelet decomposition of Yb viewed as a signal using fast 
algorithm. This last sentence means that the underlying Xb data is 
1, 2, ..., nb where nb is the number of bins.

3 Threshold the wavelet coefficients according to one of the methods described 
for de-noising.

4 Reconstruct an estimate f1 of the function f from the thresholded wavelet 
coefficients using fast algorithm.

5 Post-process the resulting function f1. Rescale the resulting function f1 
transforming 1, 2, ..., nb onto Xb and interpolate f1 for each bin in order to 
calculate fest(x). 

Steps 2 to 4 are standard wavelet-based steps. But the first step of this 
estimation scheme depends on the number of bins, which can be viewed as a 
bandwidth parameter. Generally, the value of nb is not chosen too small with 
respect to the number of observations, since the binning step is a presmoother.

For more information, you can refer for example to [AntP98], [HarKPT98], and 
[Ogd97]. See “References” on page 6-155.

A More Technical Viewpoint.

The regression problem goes along the same lines as the density estimation. 
The main differences, of course, concern the model.

Yb i )( ) sum Y j( ) such that X j( ) lies in bin i{ }
number Y j( ) such that X j( ) lies in bin i{ }
--------------------------------------------------------------------------------------------------------------------=

0
0
--- 0=
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There is another difference with the density step: we have here two variables 
X and Y instead of one in the density scheme.

The regression model is  where  is a sequence of 
independent and identically distributed (i.i.d.) random variables and where the 

 are randomly generated according to an unknown density h.

Also, let us assume that  is a sequence of i.i.d. random 
variables.

The function f is unknown and we look for an estimator .

We introduce the function . So  with the convention .

We could estimate g by a certain and, from the density part, an , and then 

use . We choose to use the estimate of h given by the histogram suitably 

normalized.

Let us bin the X-values into nb bins. The l-th bin-center is called Xb(l), the 
number of X-values belonging to this bin is n(l). Then, we define Yb(l) by the 
sum of the Y-values within the bin divided by n(l). 

Let’s turn to the f estimator. We shall apply the technique used for the density 
function. The coefficients of f, are estimated by

We get approximations of the coefficients by the following formula that can be 
written in a form proving that the approximated coefficients are also the 
wavelet decomposition coefficients of the sequence Yb:
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The usual simple algorithms can be used. 

You can see the different steps of the procedure using the Regression 
Estimation Graphical User Interface by typing wavemenu, and clicking the 
Regression Estimation 1-D option.

Available Methods for De-Noising, Estimation, and
Compression Using GUI Tools
This section presents the predefined strategies available using the de-noising, 
estimation, and compression GUI tools. 

One-Dimensional DWT and SWT De-Noising 
Level-dependent or interval-dependent thresholding methods are available. 
Predefined thresholding strategies: 

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are

- Donoho-Johnstone methods: Fixed-form (default), Heursure, Rigsure, 
Minimax

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

The last three choices include a sparsity parameter a (a > 1).

Using this strategy the defaults are a = 6.25, 2, and 1.5, respectively, and 
the thresholding mode is hard. Only scaled and unscaled white noise 
options are supported.

One-Dimensional DWT Compression

1 Level-dependent or interval-dependent hard thresholding methods are 
available. Predefined thresholding strategies are:

- Birgé-Massart method: Scarce high (default), Scarce medium, Scarce low

This method includes a sparsity parameter a (1 < a < 5). Using this 
strategy the default is a = 1.5.

âJ k,
1
n
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- Empirical methods

- Equal balance sparsity-norm

- Remove near 0

2 Global hard thresholding methods with GUI-driven choice are available. 
Predefined thresholding strategies are:

- Empirical methods

- Balance sparsity-norm (default = equal)

- Remove near 0

Two-Dimensional DWT and SWT De-Noising
Level-dependent and orientation-dependent (horizontal, vertical, and 
diagonal) thresholding methods are available. Predefined thresholding 
strategies are:

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are:

- Donoho-Johnstone method: Fixed form (default)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

The last three choices include a sparsity parameter a (a > 1). See 
“One-Dimensional DWT and SWT De-Noising” on page 6-122.

- Empirical method: Balance sparsity-norm, default = sqrt

Two-Dimensional DWT Compression
Level-dependent and orientation-dependent (horizontal, vertical, and 
diagonal) thresholding methods are available.

1 Level-dependent or interval-dependent hard thresholding methods are 
available. Predefined thresholding strategies are:

- Birgé-Massart method: Scarce high (default); Scarce medium, Scarce low

This method includes a sparsity parameter a (1 < a < 5), the default is 
a = 1.5.
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