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Abstract

We propose a new multiframe algorithm to enhance the spatial resolution of frames in video sequences.
Our technique specifically accounts for the possibility that motion estimation will be inaccurate and
compensates for these inaccuracies. Experiments comparing our results with other methods show that
our multiframe enhancement algorithm yields perceptibly sharper enhanced images with significant
SNR improvement over bilinear and cubic B-spline interpolation.

1 Introduction

Given a digital image or a sequence of digital images, one often desires to increase the spatial resolution

of a single or a set of digital images. One such application could be to magnify the limited resolution

digital images obtained by a satellite. Another application is to obtain a higher quality digital video

from one obtained with an inexpensive low quality cameras or camcorder for printing purposes. This

problem has attracted a great deal of attention in the image processing literature in recent years

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In particular, in 1997, Patti et. al. introduced a super-resolution

technique based on Projection Onto Convex Sets (POCS) [5] in which the following effects were taken

into account: camera motion, non zero aperture time, non zero physical dimension of each individual

sensor element, blurring caused by the imaging optics, sensor noise, and sampling of the continuous

scene on an arbitrary space-time lattice. Eren et. al. then extended the technique in [5] to scenes

with multiple moving objects by introducing the concept of validity maps and segmentation maps [8].

Validity maps were introduced to allow robust reconstruction in the presence of motion estimation

errors, where pixels are classified as those with reliable versus unreliable motion vectors.

In this paper, we will propose a multiframe enhancement technique that specifically accounts for

the fact that motion estimation used in the reconstruction process will be inaccurate. In doing so, we

also exploit the color component of the video signal to improve the accuracy of the motion vectors

[13, 14]. It is important to emphasize that unlike the approaches in [5, 8], the imaging model given

in this paper does not have a temporal component; the blur is assumed to be non-space varying and

that the non-zero aperture time is not accounted for. This can be justified in situations where motion

blur is small. Section 2 includes problem formulation. The basic algorithm is described in section 3.

Results and conclusions are included in sections 4 and 5 respectively.
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2 Problem Statement

Let f(x, y, t) denote a time-varying continuous-space, continuous-time scene projected onto a two-

dimensional image plane. Assume that the region of interest of f(x, y, t) is 0 ≤ x ≤ N2∆, 0 ≤ y ≤ N1∆.

Then we can let `
(k)
i,j for 0 ≤ k ≤ K − 1, 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1 denote the (N1 × N2)-pixel,

discrete-space, discrete-time frames in the corresponding digital video sequence of length K. `
(k)
i,j

denotes the pixel element at the ith row and jth column of the kth frame. The relationship between

f(x, y, t) and `
(k)
i,j is given by

`
(k)
i,j =

∫ (k+1)T

kT

∫ (i+1)∆

i∆

∫ (j+1)∆

j∆
f(x, y, t) dx dy dt, i = 0, . . . , N1 − 1, j = 0, . . . , N2 − 1, (1)

where T is the exposure time for obtaining each digital frame. The problem we solve is to use M con-

secutive original (N1×N2) pixel video frames {`(k−M−1

2
), . . . , `(k), . . . , `(k+ M−1

2
)} to obtain the sequence

of (N1 ×N2)-pixel frames {`(k)} to obtain a (qN1 × qN2)-pixel frames h(k). Without loss of generality,

we will present our methods with a value of M = 5.

3 Enhancement Algorithm

The overall system diagram for the proposed multiframe enhancement algorithm is shown in Figure 1.

The first block in the diagram, labeled “Motion Estimation”, takes the set of low resolution intensity

frames as input, with the central frame (Frame #k) as the reference frame, and outputs a set of

motion estimates for each frame relative to the reference frame. The next block in the diagram, labeled

“Iterative Algorithm”, takes the low resolution intensity frames along with the motion estimates as

input to form an initial estimate of the high resolution frame. Then, it takes this initial estimate, along

with the low resolution intensity frames and motion estimates, and applies an iterative algorithm to

converge upon the final enhanced high resolution frame estimate. This section describes each of these

procedures in more detail.

3.1 Modified Block Matching Algorithm(MBMA)

Our approach is to match each low resolution frame `(i), i ∈ {k − 2, k − 1, k + 1, k + 2} relative to the

reference frame `(k) using the traditional block matching algorithm. There are two novelties to our

motion estimation technique. First, we find a set of candidate motion estimates instead of a single

motion vector for each pixel of the match frame relative to the reference frame. Second, we use both

the luminance and chrominance values to compute the dense field of subpixel accuracy motion vectors.
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3.1.1 Candidate Set of Motion Vectors

Our motion estimation algorithm is based on the fact that the true motion vector may have a higher

MSE than other false motion estimates. We have empirically found that the true motion estimate

usually has an MSE close to the “best” or lowest value. Hence, instead of simply accepting the possibly

false minimum MSE motion vector as our estimate, we save several candidate motion estimates for each

pixel along with the corresponding MSE’s. These candidates consist of the estimate with smallest MSE

along with all the estimates which have an error less than a small multiple τ of the minimum MSE.

Using this procedure, for each pixel in the match frame we get a small set of possible motion vectors,

ranked by the corresponding MSE, relative to the reference frame. We refer to these set of motion

vectors as {m̂i→k}
k+2
i=k−2.

There are two motivations behind using a candidate set of motion vectors rather than a single

motion vector per pixel. First, as we will see later, one motion vector per pixel results in too many

“holes” in the initial high resolution estimate, which in turn causes problems during the iterations

of our reconstruction algorithm. Second, the imperfections in traditional BMA sometimes result in

inaccuracies when choosing one motion vector per pixel. An example of the lowest MSE leading to

an incorrect motion estimate is shown in Figure 2. Here we have an original high resolution image

consisting of an object with a diagonal edge. We also show the resulting low resolution images after

applying a 2× 2 uniform blurring function to shifted versions of the high resolution image. We observe

that the low resolution images `2, `3 and `4 are identical despite the fact they correspond to different

shifts relative to the single high resolution image.

3.1.2 Chrominance Components to Increase Accuracy

Another difference between our motion estimation and traditional techniques is our use of color [13, 14].

The standard BMA is usually used only on the intensity or luminance component of the video signal.

However, since we wish to obtain a high degree of accuracy in our motion estimates and because we

will apply our method to color video sequences, our modified block matching algorithm uses the color

components of the video signal to aid in motion estimation. In particular, we use luma and chroma

components to arrive at one motion vector for all components based on a technique described at [14].

Harasaki and Zakhor [14] have shown that motion estimation using color components can significantly

reduce motion estimation errors. Our experiments on sequences with known motion showed a 20%

improvement in the number of correct motion estimates when using color components in the motion

estimation as compared with luminance only motion estimation. This process adds some computational

complexity to the algorithm but this cost is justified by the increased accuracy achieved.
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3.2 Iterative Enhancement

After performing motion estimation to find the correspondences between the set of low resolution

frames, we combine the available information to generate an initial high resolution frame estimate and

then iteratively refine this estimate.

3.2.1 Initial High Resolution Estimate

For the initial high resolution frame estimate, we combine the low resolution frames using the motion

estimates {m̂i→k}
k+2
i=k−2 from section 3.1.1. The combination method maps all the intensity values from

the set of low resolution frames onto a high resolution frame grid using the sets of subpixel accuracy

candidate motion vectors. So, the pixels of the reference low resolution frame occupy a regularly spaced

subset of the high resolution grid. For the remaining low resolution frames, we have subpixel accuracy

motion estimates which enable us to map their pixels to the finer high resolution grid. Since, we

have several frames and multiple motion vectors per pixel, this mapping process will yield some high

resolution pixels with multiple conflicting intensity values landing on them. Since the high resolution

grid is finer than the low resolution grid, it is also possible that some high resolution grid points will

have no low resolution intensity values placed on them. These points are referred to as holes. The

possible situations that can arise are depicted pictorially in Figure 3.

In the case of multiple low resolution intensities vying for a single high resolution pixel location,

we choose the intensity and corresponding motion vector of the low resolution pixel which had the

lowest MSE during the MBMA algorithm. In the case of holes, although no low resolution intensity

points map to the holes, it is still desirable to have a good initial estimate for these pixels before we

start the iterative enhancement. For this reason, we apply an interpolation technique such as nearest

neighbor to estimate the holes based on surrounding filled grid points. The estimates in the initial

high resolution frame will be modified by the iterative algorithm, so high accuracy at this stage is not

required.

3.2.2 Iterative Algorithm

Our iterative stage is based on the Landweber algorithm. For ease of summarizing the general scheme,

we consider the case of estimating a high resolution frame from only two low resolution frames; the

case with a larger set of low resolution frames is a straightforward extension. Initially, we desire a good

estimate of the original high resolution frame h from the corresponding set of low resolution frames

`(1) and `(2), which are available to us. At step n− 1 of the iteration, we have a high resolution frame

estimate ĥn−1. For step n of the iteration, we desire the estimate ĥn to be a better estimate than

ĥn−1 of the original high resolution frame h which is, of course, unknown. The original low resolution
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frames, however, are known and can be used to yield information about h. The approach we take is to

use the motion estimate information to simulate the imaging of low resolution frames ˆ̀(1) and ˆ̀(2) from

ĥn−1. We then compare and determine the error between the simulated low resolution frames ˆ̀(1), ˆ̀(2)

and the original low resolution frames `(1), `(2). We use this computed error in the iteration step to

modify ĥn−1, yielding a better estimate ĥn. Successive iterations allow us to converge on a final high

resolution estimate for the original high resolution frame h. The precise algorithm for this iterative

technique is given below.

Algorithm (Iterative Enhancement): Determine a high resolution frame estimate for frame h(k).

1. Using the method outlined in Section 3.2.1, determine an initial high resolution frame estimate

ĥ
(k)
0 and a consistent set of motion vectors {mi→k}

k+2
i=k−2 from the set of low resolution frames

{`(i)}k+2
i=k−2 and the initial motion estimates {m̂i→k}

k+2
i=k−2.

2. Set the iteration step counter to s = 0, so that ĥ
(k)
s is equal to the initial frame estimate determined

in Step 1.

3. Using the high resolution frame estimate ĥ
(k)
s , apply the imaging process to it using the motion

estimates {mi→k}
k+2
i=k−2 to obtain a sequence of simulated low resolution frames {ˆ̀

(i)
s }

k+2
i=k−2.

4. Compare the simulated and original low resolution frames, {ˆ̀
(i)
s }

k+2
i=k−2 and {`

(i)
s }

k+2
i=k−2, respec-

tively, to determine the errors in the pixels of the high resolution frame estimate ĥ
(k)
s .

5. Use the errors determined in Step 4 and the motion vectors {mi→k}
k+2
i=k−2 to adjust the high

resolution estimate ĥ
(k)
s using Landweber’s iterative algorithm to yield a new high resolution

frame estimate ĥ
(k)
s+1.

6. Increment the iteration step: s← s + 1.

7. Repeat Steps 3 to 6 until either the error calculated in Step 4 is less than some desired value or
until a desired number of iterations have been performed.

4 Results

We shall now examine some experimental results using the methods described above for Foreman and

Mobile Calendar sequences. For both sequences, we chose τ = 10% for all frames, M = 5, and used

a 2 × 2 uniform support blurring function to obtain a sequence of low resolution frarmes. The first

test video sequence, entitled Foreman, consists of a camera panning through a scene of man’s upper

body in the foreground with a building in the background. The original high resolution frames each

consist of one 176 × 144 pixel luminance component and two 88 × 72 pixel chrominance components.

Frame #0, Frame #10, Frame #15 and Frame #25 of the low resolution sequence are shown in
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Figure 4. We applied our multiframe algorithm to the first 25 frames of the low resolution Foreman

sequence. For comparison, we also applied the single frame techniques of bilinear interpolation and

cubic B-spline interpolation, as well as a multiframe method using traditional BMA for the motion

estimation. Figure 5 shows the original high resolution Frame #0 as well as the high resolution estimate

for Frame #0 obtained by using the different methods. We notice that the single frame techniques look

more blurred than the multiframe result. In particular, the multiframe estimate contains much sharper

edges than either of the other two approaches. Note that Frame #0 was estimated from frames -2, -1,

+1, and +2 and that frame #0 was not the first frame of the video sequence under consideration.

To perform a more quantitative comparison, we computed the signal-to-noise ratio(SNR) for the

various methods, including a multiframe approach using simple BMA instead of the novel approach

proposed in this paper. The results are shown in Figure 6 and Table 5. We observe that our pro-

posed multiframe method performs better than bilinear interpolation by an average of 3.5 dB, better

than cubic B-spline interpolation by an average of 2.5 dB and better than a multiframe method using

traditional BMA by an average of almost 2.0 dB.

The multiframe algorithm performs significantly better than the single frame methods for all the

frames in the sequence, with greater performance differential for some parts of the sequence than others.

Figure 6 reveals that for the first 10 frames the multiframe method is at least 3.0 dB better than cubic

B-spline interpolation and at least 4.0 dB better than bilinear interpolation. In some regions, however,

such as in the vicinity of Frame #10, the improvement is not as dramatic, yielding only 1.0 dB of

improvement. Direct observation of the video sequence reveals that the video frames corresponding to

the areas of less significant improvement contain very little motion between frames.

The second video sequence, entitled Mobile Calendar, consists of nontrivial motions among several

objects possessing fine detail and significant color components. In the sequence, a wall calendar moves

with 3-D translational motion(i.e., translational motion in the image plane as well as a component

perpendicular to the camera), a toy train moves with roughly translational motion and the train
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pushes a ball which undergoes rotational motion. The original high resolution frames each consist of

one 400 × 320 pixel luminance component and two 200 × 160 pixel chrominance components. Four

low resolution frames are shown in Figure 7. We followed the same procedure as with the Foreman

sequence to generate a sequence of high resolution estimates. The results for Frame #0 are shown in

Figure 8. Once again, note that frame #0 was estimated from frames -2, -1, +1, and +2 and that frame

#0 was not the first frame of the video sequence under consideration. We observe that the multiframe

method is capable of reproducing an estimate that is comparable to the original high resolution frame.

The details in the multiframe estimate are much sharper than those in either single frame interpolation

method. The quantitative results support the perceived improvement in quality. Table 5 shows the

average SNR for the various methods over the entire sequence. The multiframe approach performs

about 1.1 dB better than bilinear interpolation, about 1.6 dB better than cubic B-spline interpolation

and about 0.86 dB better than multiframe using traditional BMA. Figure 9 shows the SNR plot. We

observe that the proposed method outperforms the others throughout the sequence.

5 Conclusions

We have proposed an approach for enhancing the spatial resolution of a color video sequence by using

multiple frames to obtain each enhanced resolution frame. The results presented in Section 4 indicate

that this multiframe approach significantly outperforms standard single frame approaches in both SNR

and perceived visual quality. This is in spite of the fact that there is no explicit model taken into account

for the motion blur [5]. It is important to emphasize that the desired expansion factor determines the

accuracy with which the motion vectors need to be determined. For example, a 3X magnification factor

would have required motion vector estimation with resolution of 1/3 pixels. Convergence properties of

the algorithm are demonstrated in [15].
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