
Image-Based Visual Hulls

Wojciech Matusik*
Laboratory for Computer Science

Massachusetts Institute of Technology

Chris Buehler*
Laboratory for Computer Science

Massachusetts Institute of Technology

Ramesh Raskar‡

Department of Computer Science
University of North Carolina - Chapel Hill

Steven J. Gortler†

Division of Engineering and Applied Sciences
Harvard University

Leonard McMillan*
Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract
In this paper, we describe an efficient image-based approach to
computing and shading visual hulls from silhouette image data.
Our algorithm takes advantage of epipolar geometry and incre-
mental computation to achieve a constant rendering cost per
rendered pixel. It does not suffer from the computation complex-
ity, limited resolution, or quantization artifacts of previous
volumetric approaches. We demonstrate the use of this algorithm
in a real-time virtualized reality application running off a small
number of video streams.
Keywords: Computer Vision, Image-Based Rendering, Con-
structive Solid Geometry, Misc. Rendering Algorithms.

1 Introduction
Visualizing and navigating within virtual environments composed
of both real and synthetic objects has been a long-standing goal of
computer graphics. The term “Virtualized Reality™”, as popular-
ized by Kanade [23], describes a setting where a real-world scene
is “captured” by a collection of cameras and then viewed through
a virtual camera, as if the scene was a synthetic computer graphics
environment. In practice, this goal has been difficult to achieve.
Previous attempts have employed a wide range of computer vision
algorithms to extract an explicit geometric model of the desired
scene.

Unfortunately, many computer vision algorithms (e.g. stereo
vision, optical flow, and shape from shading) are too slow for
real-time use. Consequently, most virtualized reality systems em-
ploy off-line post-processing of acquired video sequences.
Furthermore, many computer vision algorithms make unrealistic
simplifying assumptions (e.g. all surfaces are diffuse) or impose
impractical restrictions (e.g. objects must have sufficient non-
periodic textures) for robust operation. We present a new algo-
rithm for synthesizing virtual renderings of real-world scenes in
real time. Not only is our technique fast, it also makes few sim-
plifying assumptions and has few restrictions.

*(wojciech | cbuehler | mcmillan)@graphics.lcs.mit.edu
†sjg@cs.harvard.edu
‡raskar@cs.unc.edu

Figure 1 - The intersection of silhouette cones defines an approxi-
mate geometric representation of an object called the visual hull. A
visual hull has several desirable properties: it contains the actual
object, and it has consistent silhouettes.

Our algorithm is based on an approximate geometric repre-
sentation of the depicted scene known as the visual hull (see
Figure 1). A visual hull is constructed by using the visible silhou-
ette information from a series of reference images to determine a
conservative shell that progressively encloses the actual object.
Based on the principle of calculatus eliminatus [28], the visual
hull in some sense carves away regions of space where the object
“is not”.

The visual hull representation can be constructed by a series
of 3D constructive solid geometry (CSG) intersections. Previous
robust implementations of this algorithm have used fully enumer-
ated volumetric representations or octrees. These methods
typically have large memory requirements and thus, tend to be
restricted to low-resolution representations.

In this paper, we show that one can efficiently render the ex-
act visual hull without constructing an auxiliary geometric or
volumetric representation. The algorithm we describe is “image
based” in that all steps of the rendering process are computed in
“image space” coordinates of the reference images.

We also use the reference images as textures when shading
the visual hull. To determine reference images that can be used,
we compute which reference cameras have an unoccluded view of
each point on the visual hull. We present an image-based visibility
algorithm based on epipolar geometry and McMillan's occlusion
compatible ordering [18] that allows us to shade the visual hull in
roughly constant time per output pixel.

Using our image-based visual hull (IBVH) algorithm, we
have created a system that processes live video streams and ren-
ders the observed scene from a virtual camera's viewpoint in real
time. The resulting representation can also be combined with
traditional computer graphics objects.

2 Background and Previous Work
Kanade’s virtualized reality system [20] [23] [13] is perhaps clos-
est in spirit to the rendering system that we envision. Their initial
implementations have used a collection of cameras in conjunction
with multi-baseline stereo techniques to extract models of dy-
namic scenes. These methods require significant off-line
processing, but they are exploring special-purpose hardware for
this task. Recently, they have begun exploring volume-carving
methods, which are closer to the approach that we use [26] [30].

Pollard’s and Hayes’ [21] immersive video objects allow
rendering of real-time scenes by morphing live video streams to
simulate three-dimensional camera motion. Their representation
also uses silhouettes, but in a different manner. They match sil-
houette edges across pairs of views, and use these
correspondences to compute morphs to novel views. This ap-
proach has some limitations, since silhouette edges are generally
not consistent between views.

Visual Hull. Many researchers have used silhouette infor-
mation to distinguish regions of 3D space where an object is and
is not present [22] [8] [19]. The ultimate result of this carving is a
shape called the object’s visual hull [14]. A visual hull always
contains the object. Moreover, it is an equal or tighter fit than the
object’s convex hull. Our algorithm computes a view-dependent,
sampled version of an object’s visual hull each rendered frame.

Suppose that some original 3D object is viewed from a set of
reference views R. Each reference view r has the silhouette sr with
interior pixels covered by the object. For view r one creates the
cone-like volume vhr defined by all the rays starting at the image's
point of view pr and passing through these interior points on its
image plane. It is guaranteed that the actual object must be con-
tained in vhr. This statement is true for all r; thus, the object must
be contained in the volume vhR= r∈Rvhr. As the size of R goes to
infinity, and includes all possible views, vhR converges to a shape
known as the visual hull vh∞ of the original geometry. The visual
hull is not guaranteed to be the same as the original object since
concave surface regions can never be distinguished using silhou-
ette information alone.

In practice, one must construct approximate visual hulls us-
ing only a finite number of views. Given the set of views R, the
approximation vhR is the best conservative geometric description
that one can achieve based on silhouette information alone (see
Figure 1). If a conservative estimate is not required, then alterna-
tive representations are achievable by fitting higher order surface
approximations to the observed data [2].

Volume Carving. Computing high-resolution visual hulls
can be tricky matter. The intersection of the volumes vhr requires
some form of CSG. If the silhouettes are described with a polygo-
nal mesh, then the CSG can be done using polyhedral CSG, but
this is very hard to do in a robust manner.

A more common method used to convert silhouette contours
into visual hulls is volume carving [22] [8] [29] [19] [5] [27].
This method removes unoccupied regions from an explicit volu-
metric representation. All voxels falling outside of the projected
silhouette cone of a given view are eliminated from the volume.
This process is repeated for each reference image. The resulting
volume is a quantized representation of the visual hull according
to the given volumetric grid. A major advantage of our view-
dependent method is that it minimizes artifacts resulting from this
quantization.

CSG Rendering. A number of algorithms have been de-
veloped for the fast rendering of CSG models, but most are ill
suited for our task. The algorithm described by Rappoport [24],

1

2
3

Figure 2 – Computing the IBVH involves three steps. First, the
desired ray is projected onto a reference image. Next, the intervals
where the projected ray crosses the silhouette are determined.
Finally, these intervals are lifted back onto the desired ray where
they can be intersected with intervals from other reference images.

requires that each solid be first decomposed to a union of convex
primitives. This decomposition can prove expensive for compli-
cated silhouettes. Similarly, the algorithm described in [11]
requires a rendering pass for each layer of depth complexity. Our
method does not require preprocessing the silhouette cones. In
fact, there is no explicit data structure used to represent the sil-
houette volumes other than the reference images.

Using ray tracing, one can render an object defined by a tree
of CSG operations without explicitly computing the resulting
solid [25]. This is done by considering each ray independently
and computing the interval along the ray occupied by each object.
The CSG operations can then be applied in 1D over the sets of
intervals. This approach requires computing a 3D ray-solid inter-
section. In our system, the solids in question are a special class of
cone-like shapes with a constant cross section in projection. This
special form allows us to compute the equivalent of 3D ray inter-
sections in 2D using the reference images.

Image-Based Rendering. Many different image-based
rendering techniques have been proposed in recent years
[3] [4] [15] [6] [12]. One advantage of image-based rendering
techniques is their stunning realism, which is largely derived from
the acquired images they use. However, a common limitation of
these methods is an inability to model dynamic scenes. This is
mainly due to data acquisition difficulties and preprocessing re-
quirements. Our system generates image-based models in real-
time, using the same images to construct the IBHV and to shade
the final rendering.

3 Visual-Hull Computation
Our approach to computing the visual hull has two distinct char-
acteristics: it is computed in the image space of the reference
images and the resulting representation is viewpoint dependent.
The advantage of performing geometric computations in image
space is that it eliminates the resampling and quantization artifacts
that plague volumetric approaches. We limit our sampling to the
pixels of the desired image, resulting in a view-dependent visual-
hull representation. In fact, our IBVH representation is equivalent
to computing exact 3D silhouette cone intersections and rendering
the result with traditional rendering methods.

Our technique for computing the visual hull is analogous to
finding CSG intersections using a ray-casting approach [25].

Given a desired view, we compute each viewing ray’s intersection
with the visual hull. Since computing a visual hull involves only
intersection operations, we can perform the CSG calculations in
any order. Furthermore, in the visual hull context, every CSG
primitive is a generalized cone (a projective extrusion of a 2D
image silhouette). Because the cone has a fixed (scaled) cross
section, the 3D ray intersections can be reduced to cheaper 2D ray
intersections. As shown in Figure 2 we perform the following
steps: 1) We project a 3D viewing ray into a reference image. 2)
We perform the intersection of the projected ray with the 2D sil-
houette. These intersections result in a list of intervals along the
ray that are interior to the cone’s cross-section. 3) Each interval is
then lifted back into 3D using a simple projective mapping, and
then intersected with the results of the ray-cone intersections from
other reference images. A naïve algorithm for computing these
IBVH ray intersections follows:

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 for each scanline s in d
 for each pixel p in s
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 intervals int2D = calcIntervals(l2,r.silEdges)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

To analyze the efficiency of this algorithm, let n be the num-
ber of pixels in a scanline. The number of pixels in the image d is
O(n2). Let k be the number of reference images. Then, the above
algorithm has an asymptotic running time O(ikn2), where i is the
time complexity of the calcIntervals routine. If we test for the
intersection of each projected ray with each of the e edges of the
silhouette, the running time of calcIntervals is O(e). Given
that l is the average number of times that a projected ray intersects
the silhouette1, the number of silhouette edges will be O(ln).
Thus, the running time of IBVHisect to compute all of the 2D
intersections for a desired view is O(lkn3).

The performance of this naïve algorithm can be improved by
taking advantage of incremental computations that are enabled by
the epipolar geometry relating the reference and desired images.
These improvements will allow us to reduce the amortized cost of
1D ray intersections to O(l) per desired pixel, resulting in an im-
plementation of IBVHisect that takes O(lkn2).

Given two camera views, a reference view r and a desired
view d, we consider the set of planes that share the line connect-
ing the cameras’ centers. These planes are called epipolar planes.
Each epipolar plane projects to a line in each of the two images,
called an epipolar line. In each image, all such lines intersect at a
common point, called the epipole, which is the projection of one
of the camera's center onto the other camera's view plane [9].

As a scanline of the desired view is traversed, each pixel
projects to an epipolar line segment in r. These line segments
emanate from the epipole edr, the image of d’s center of projection
onto r’s image plane (see Figure 3), and trace out a “pencil” of
epipolar lines in r. The slopes of these epipolar line segments will
either increase or decrease monotonically depending on the direc-
tion of traversal (Green arc in Figure 3). We take advantage of this
monotonicity to compute silhouette intersections for the whole
scanline incrementally.

1 We assume reference images also have O(n2) pixels.

r1
r2

r3

r4

r5

r6

rpr1
rpr2

rpr3
rpr4

rpr5

rpr6

Desired Image

Reference Image

Figure 3 – The pixels of a scanline in the desired image trace out
a pencil of line segments in the reference image. An ordered tra-
versal of the scanline will sweep out these segments such that their
slope about the epipole varies monotonically.

The silhouette contour of each reference view is represented
as a list of edges enclosing the silhouette’s boundary pixels. These
edges are generated using a 2D variant of the marching cubes
approach [16]. Next, we sort the O(nl) contour vertices in in-
creasing order by the slope of the line connecting each vertex to
the epipole. These sorted vertex slopes divide the reference image
domain into O(nl) bins. Bin Bi has an extent spanning between the
slopes of the ith and i+1st vertex in the sorted list. In each bin Bi

we place all edges that are intersected by epipolar lines with a
slope falling within the bin’s extent2. During IBVHisect as we
traverse the pixels along a scanline in the desired view, the pro-
jected corresponding view rays fan across the epipolar pencil in
the reference view with either increasing or decreasing slope.
Concurrently, we step through the list of bins. The appropriate bin
for each epipolar line is found and it is intersected with the edges
in that bin. This procedure is analogous to merging two sorted
lists, which can be done in a time proportional to the length of the
lists (O(nl) in our case).

For each scanline in the desired image we evaluate n viewing
rays. For each viewing ray we compute its intersection with edges
in a single bin. Each bin contains on average O(l) silhouette
edges. Thus, this step takes O(l) time per ray. Simultaneously we
traverse the sorted set of O(nl) bins as we traverse the scanline.
Therefore, one scanline is computed in O(nl) time. Over n scanli-
nes of the desired image, and over k reference images, this gives a
running time of O(lkn2). Pseudocode for the improved algorithm
follows.

IBVHisect (intervalImage &d, refImList R){
 for each referenceImage r in R
 computeSilhouetteEdges (r)
 for each pixel p in desiredImage d do
 p.intervals = {0..inf}
 for each referenceImage r in R
 bins b = constructBins(r.caminfo, r.silEdges, d.caminfo)
 for each scanline s in d
 incDec order = traversalOrder(r.caminfo,d.caminfo,s)
 resetBinPositon(b)
 for each pixel p in s according to order
 ray3D ry3 = compute3Dray(p,d.camInfo)
 lineSegment2D l2 = project3Dray(ry3,r.camInfo)
 slope m = ComputeSlope(l2,r.caminfo,d.caminfo)
 updateBinPosition(b,m)
 intervals int2D = calcIntervals(l2,b.currentbin)
 intervals int3D = liftIntervals(int2D,r.camInfo,ry3)
 p.intervals = p.intervals ISECT int3D
}

2 Sorting the contour vertices takes O(nl log(nl)) and binning takes O(nl2).

Sorting and binning over k reference views takes O(knl log(nl)) and
O(knl2) correspondingly. In our setting, l << n so we view this preproc-
essing stage as negligible.

It is tempting to apply further optimizations to take greater
advantage of epipolar constraints. In particular, one might con-
sider rectifying each reference image with the desired image prior
to the ray-silhouette intersections. This would eliminate the need
to sort, bin, and traverse the silhouette edge lists. However, a call
to liftInterval would still be required for each pixel, giving
the same asymptotic performance as the algorithm presented. The
disadvantage of rectification is the artifacts introduced by the two
resampling stages that it requires. The first resampling is applied
to the reference silhouette to map it to the rectified frame. The
second is needed to unrectify the computed intervals of the de-
sired view. In the typical stereo case, the artifacts of rectification
are minimal because of the closeness of the cameras and the
similarity of their pose. But, when computing visual hulls the
reference cameras are positioned more freely. In fact, it is not
unreasonable for the epipole of a reference camera to fall within
the field of view of the desired camera. In such a configuration,
rectification is degenerate.

4 Visual-Hull Shading
The IBVH is shaded using the reference images as textures. In
order to capture as many view-dependent effects as possible a
view-dependent texturing strategy is used. At each pixel, the ref-
erence-image textures are ranked from "best" to "worst" according
to the angle between the desired viewing ray and rays to each of
the reference images from the closest visual hull point along the
desired ray. We prefer those reference views with the smallest
angle [7]. However, we must avoid texturing surface points with
an image whose line-of-sight is blocked by some other point on
the visual hull, regardless of how well aligned that view might be
to the desired line-of-sight. Therefore, visibility must be consid-
ered during the shading process.

When the visibility of an object is determined using its visual
hull instead of its actual geometry, the resulting test is conserva-
tive– erring on the side of declaring potentially visible points as
non-visible. We compute visibility using the visual hull, VHR, as
determined by IBVHisect. This visual hull is represented as inter-
vals along rays of the desired image d. Pseudocode for our
shading algorithm is given below.

IBVHshade(intervalImage &d, refImList R){
 for each pixel p in d do
 p.best = BIGNUM
 for each referenceImage r in R do
 for each pixel p in d do
 ray3D ry3 = compute3Dray(p,d.camInfo)
 point3 pt3 = front(p.intervals,ry3)
 double s = angleSimilarity(pt3,ry3,r.camInfo)
 if isVisible(pt3,r,d)
 if (s < p.best)
 point2 pt2 = project(pt3,r.camInfo)
 p.color = sample_color(pt2,r)
 p.best = s
}

The front procedure finds the front most geometric point of the
IBVH seen along the ray. The IBVHshade algorithm has time
complexity O(vkn2), where v is the cost for computing visibility of
a pixel.

Once more we can take advantage of the epipolar geometry
in order to incrementally determine the visibility of points on the
visual hull. This reduces the amortized cost of computing visibil-
ity to O(l) per desired pixel, thus giving an implementation of
IBVHshade that takes O(lkn2).

Consider the visibility problem in flatland as shown in
Figure 4. For a pixel p, we wish to determine if the front-most
point on the visual hull is occluded with respect to a particular
reference image by any other pixel interval in d.

Figure 4 – In order to compute the visibility of an IBVH sample with
respect to a given reference image, a series of IBVH intervals are
projected back onto the reference image in an occlusion-
compatible order. The front-most point of the interval is visible if it
lies outside of the unions of all preceding intervals.

Efficient calculation can proceed as follows. For each refer-
ence view r, we traverse the desired-view pixels in front-to-back
order with respect to r (left-to-right in Figure 4). During traversal,
we accumulate coverage intervals by projecting the IBVH pixel
intervals into the reference view, and forming their union. For
each front most point, pt3, we check to see if its projection in the
reference view is already covered by the coverage intervals com-
puted thus far. If it is covered, then pt3 is occluded from r by the
IBVH. Otherwise, pt3 is not occluded from r by either the IBVH
or the actual (unknown) geometry.

visibility2D(intervalFlatlandImage &d, referenceImage r){
 intervals coverage = <empty>
 for each pixel p in d do \\front to back in r
 ray2D ry2 = compute2Dray(p,d.camInfo)
 point2 pt2 = front(p.intervals,ry2);
 point1D p1 = project(pt2,r.camInfo)
 if contained(p1,coverage)
 p.visible[r] = false
 else
 p.visible[r] = true
 intervals tmp =
 prjctIntrvls(p.intervals,ry2,r.camInfo)
 coverage = coverage UNION tmp
}

This algorithm runs in O(nl), since each pixel is visited once, and
containment test and unions can be computed in O(l) time.

Figure 5 – Ideally, the visibility of points in 3D could be computed
by applying the 2D algorithm along epipolar planes.

In the continuous case, 3D visibility calculations can be re-
duced to a set of 2D calculations within epipolar planes (Figure
5), since all visibility interactions occur within such planes. How-
ever, the extension of the discrete 2D algorithm to a complete
discrete 3D solution is not trivial, as most of the discrete pixels in
our images do not exactly share epipolar planes. Consequently,
one must be careful in implementing conservative 3D visibility.

First, we consider each of the intervals stored in d as a solid
frustum with square cross section. To determine visibility of a
(square) pixel p correctly we consider Sp, the set of all possible
epipolar planes which touch p. There are at least two possible
definitions for whether p is visible: (1) p is visible along all planes
in Sp , (2) p is visible along any plane in Sp. Clearly the first defi-
nition results in more pixels that are labeled not visible, therefore,
it is better suited when using a large number of reference images.
With a small number of reference images, the second definition is
preferred. Implementing efficient exact algorithms for these visi-
bility definitions is difficult, therefore, we use conservative
algorithms; if the pixel is truly invisible we never label it as visi-
ble. However, the algorithms could label some pixel as invisible
though it is in fact visible.

An algorithm that conservatively computes visibility ac-
cording to the first definition is performed as follows. We define
an epipolar wedge starting from the epipole erd in the desired view
extending out to a one pixel-width interval on the image bound-
ary. Depending on the relative camera views, we traverse the
wedge either toward or away from the epipole [17]. For each pixel
in this wedge, we compute visibility with respect to the pixels
traversed earlier in the wedge using the 2D visibility algorithm. If
a pixel is computed as visible then no geometry within the wedge
could have occluded it in the reference view. We use a set of
wedges whose union covers the whole image. A pixel may be
touched by more than one wedge, in these cases its final visibility
is computed as the AND of the results obtained from each wedge.

The algorithm for the second visibility definition works as
follows. We do not consider all possible epipolar lines that touch
pixel p but only some subset of them such that at least one line
touches each pixel. One such subset is all the epipolar lines that
pass through the centers of the image boundary pixels. This par-
ticular subset completely covers all the pixels in the desired
image; denser subsets can also be chosen. The algorithm com-
putes visibility2D for all epipolar lines in the subset.
Visibility for a pixel might be computed more than once (e.g., the
pixels near the epipole are traversed more often). We OR all ob-
tained visibility results. Since we compute visibility2D for up
to 4n epipolar lines in k reference images the total time complex-
ity of this algorithm is O(lkn2). In our real-time system we use
small number of reference images (typically four). Thus, we use
the algorithm for the second definition of visibility.

The total time complexity of our IBVH algorithms is O(lkn2),
which allows for efficient rendering of IBVH objects. These algo-
rithms are well suited to distributed and parallel implementations.
We have demonstrated this efficiency with a system that computes
IBVHs in real time from live video sequences.

Figure 6 – Four segmented reference images from our system.

5 System Implementation
Our system uses four calibrated Sony DFW500 FireWire video
cameras. We distribute the computation across five computers,
four that process video and one that assembles the IBVH (see
Figure 6). Each camera is attached to a 600 MHz desktop PC that
captures the video frames and performs the following processing

steps. First, it corrects for radial lens distortion using a lookup
table. Then it segments out the foreground object using back-
ground-subtraction [1] [10]. Finally, the silhouette and texture
information are compressed and sent over a 100Mb/s network to a
central server for IBVH processing.

Our server is a quad-processor 550 MHz PC. We interleave
the incoming frame information between the 4 processors to in-
crease throughput. The server runs the IBVH intersection and
shading algorithms. The resulting IBVH objects can be depth-
buffer composited with an OpenGL background to produce a full
scene. In the examples shown, a model of our graphics lab made
with the Canoma modeling system was used as a background.

Figure 7 – A plot of the execution times for each step of the IBVH
rendering algorithm on a single CPU. A typical IBVH might cover
approximately 8000 pixels in a 640 × 480 image and it would exe-
cute at greater than 8 frames per second on our 4 CPU machine.

In Figure 7, the performances of the different stages in the
IBVH algorithm are given. For these tests, 4 input images with
resolutions of 256 × 256 were used. The average number of times
that a projected ray crosses a silhouette is 6.5. Foreground seg-
mentation (done on client) takes about 85 ms. We adjusted the
field of view of the desired camera, to vary the number of pixels
occupied by the object. This graph demonstrates the linear growth
of our algorithm with respect to the number of output pixels.

6 Conclusions and Future Work
We have described a new image-based visual-hull rendering algo-
rithm and a real-time system that uses it. The algorithm is efficient
from both theoretical and practical standpoints, and the resulting
system delivers promising results.

The choice of the visual hull for representing scene elements
has some limitations. In general, the visual hull of an object does
not match the object’s exact geometry. In particular, it cannot
represent concave surface regions. This shortcoming is often con-
sidered fatal when an accurate geometric model is the ultimate
goal. In our applications, the visual hull is used largely as an im-
poster surface onto which textures are mapped. As such, the visual
hull provides a useful model whose combination of accurate sil-
houettes and textures provides surprisingly effective renderings
that are difficult to distinguish from a more exact model. Our
system also requires accurate segmentations of each image into
foreground and background elements. Methods for accomplishing
such segmentations include chromakeying and image differenc-
ing. These techniques are subject to variations in cameras,
lighting, and background materials.

We plan to investigate techniques for blending between tex-
tures to produce smoother transitions. Although we get impressive
results using just 4 cameras, we plan to scale our system up to
larger numbers of cameras. Much of the algorithm parallelizes in a
straightforward manner. With k computers, we expect to achieve
O(n2 l log k) time using a binary-tree based structure.

7 Acknowledgements
We would like to thank Kari Anne Kjølaas, Annie Choi, Tom
Buehler, and Ramy Sadek for their help with this project. We also
thank DARPA and Intel for supporting this research effort. NSF
Infrastructure and NSF CAREER grants provided further aid.

8 References
[1] Bichsel, M. “Segmenting Simply Connected Moving Objects in a

Static Scene.” IEEE PAMI 16, 11 (November 1994), 1138-1142.
[2] Boyer, E., and M. Berger. “3D Surface Reconstruction Using Oc-

cluding Contours.” IJCV 22, 3 (1997), 219-233.
[3] Chen, S. E. and L. Williams. “View Interpolation for Image Synthe-

sis.” SIGGRAPH 93, 279-288.
[4] Chen, S. E. “Quicktime VR – An Image-Based Approach to Virtual

Environment Navigation.” SIGGRAPH 95, 29-38.
[5] Curless, B., and M. Levoy. “A Volumetric Method for Building

Complex Models from Range Images.” SIGGRAPH 96, 303-312.
[6] Debevec, P., C. Taylor, and J. Malik, “Modeling and Rendering

Architecture from Photographs.” SIGGRAPH 96, 11-20.
[7] Debevec, P.E., Y. Yu, and G. D. Borshukov, “Efficient View-

Dependent Image-based Rendering with Projective Texture Map-
ping.” Proc. of EGRW 1998 (June 1998).

[8] Debevec, P. Modeling and Rendering Architecture from Photo-
graphs. Ph.D. Thesis, University of California at Berkeley,
Computer Science Division, Berkeley, CA, 1996.

[9] Faugeras, O. Three-dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[10] Friedman, N. and S. Russel. “Image Segmentation in Video Se-
quences.” Proc 13th Conference on Uncertainty in Artifical
Intelligence (1997).

[11] Goldfeather, J., J. Hultquist, and H. Fuchs. “Fast Constructive Solid
Geometry Display in the Pixel-Powers Graphics System.” SIG-
GRAPH 86, 107-116.

[12] Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen. “The
Lumigraph.” SIGGRAPH 96, 43-54.

[13] Kanade, T., P. W. Rander, and P. J. Narayanan. “Virtualized Reality:
Constructing Virtual Worlds from Real Scenes.” IEEE Multimedia
4, 1 (March 1997), 34-47.

[14] Laurentini, A. “The Visual Hull Concept for Silhouette Based Image
Understanding.” IEEE PAMI 16,2 (1994), 150-162.

[15] Levoy, M. and P. Hanrahan. “Light Field Rendering.” SIGGRAPH
96, 31-42.

[16] Lorensen, W.E., and H. E. Cline. “Marching Cubes: A High Resolu-
tion 3D Surface Construction Algorithm.” SIGGRAPH 87, 163-169.

[17] McMillan, L., and G. Bishop. “Plenoptic Modeling: An Image-
Based Rendering System.” SIGGRAPH 95, 39-46.

[18] McMillan, L. An Image-Based Approach to Three-Dimensional
Computer Graphics, Ph.D. Thesis, University of North Carolina at
Chapel Hill, Dept. of Computer Science, 1997.

[19] Moezzi, S., D.Y. Kuramura, and R. Jain. “Reality Modeling and
Visualization from Multiple Video Sequences.” IEEE CG&A 16, 6
(November 1996), 58-63.

[20] Narayanan, P., P. Rander, and T. Kanade. “Constructing Virtual
Worlds using Dense Stereo.” Proc. ICCV 1998, 3-10.

[21] Pollard, S. and S. Hayes. “View Synthesis by Edge Transfer with
Applications to the Generation of Immersive Video Objects.” Proc.
of VRST, November 1998, 91-98.

[22] Potmesil, M. “Generating Octree Models of 3D Objects from their
Silhouettes in a Sequence of Images.” CVGIP 40 (1987), 1-29.

[23] Rander, P. W., P. J. Narayanan and T. Kanade, “Virtualized Reality:
Constructing Time Varying Virtual Worlds from Real World
Events.” Proc. IEEE Visualization 1997, 277-552.

[24] Rappoport, A., and S. Spitz. “Interactive Boolean Operations for
Conceptual Design of 3D solids.” SIGGRAPH 97, 269-278.

[25] Roth, S. D. “Ray Casting for Modeling Solids.” Computer Graphics
and Image Processing, 18 (February 1982), 109-144.

[26] Saito, H. and T. Kanade. “Shape Reconstruction in Projective Grid
Space from a Large Number of Images.” Proc. of CVPR, (1999).

[27] Seitz, S. and C. R. Dyer. “Photorealistic Scene Reconstruction by
Voxel Coloring.” Proc. of CVPR (1997), 1067-1073.

[28] Seuss, D. “The Cat in the Hat,” CBS Television Special (1971).
[29] Szeliski, R. “Rapid Octree Construction from Image Sequences.”

CVGIP: Image Understanding 58, 1 (July 1993), 23-32.
[30] Vedula, S., P. Rander, H. Saito, and T. Kanade. “Modeling, Com-

bining, and Rendering Dynamic Real-World Events from Image
Sequences.” Proc. 4th Intl. Conf. on Virtual Systems and Multimedia
(Nov 1998).

Figure 8 - Example IBVH images. The upper images show depth maps of the computed visual hulls. The lower images show shaded ren-
derings from the same viewpoint. The hull segment connecting the two legs results from a segmentation error caused by a shadow.

