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Abstract
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1, Introduction

A commonly discussed technique [Bellman (1971), Bellman-Dreyfus (1962),
Bellman-Kalaba (1960), Bellman-Kalaba-Kotkin (1963), Peterson (1964)] for reducing
storage requirements in the fundamental recursiens for the minimum-return functien
in dynamic programming is to approximate this function by linear combinations of
a relatively small number of fixed functions, To describe the approach simply,
we suppose that we are using dynamic programming to sclve a contrel preoblem and
that the state wvariable, %, is one-dimensional and has been normalized so that
ix| < 1; the problem we are treating could be, for example, that of minimizing

P[x{TY] subject to g% = G{x,y) on 0 < £ <1, x(0) = a, with y restricted say

to c <y <d. Using a discrete time-step of A, the recurrence formula of dynamic

programming becomes [Peterson (1964} ]

(1.1) f,.1%) = min ='fk[x+t;{x,ym_u, for all x inm [-1,1],
¥
with
{1.2) fl(x} = min [P[e+G{x,y)A]}
¥

The storage problem here is that we must store fk{x) at an enormous number of
grid points x; the situation is even worse when x is multidimensional,.
A standard way of reducing the storage requirements is to approximate

each minimum~treturn function £ a3 a linear combination of fizxed functions

It

Pl ;
Py fqs that is,



M
(1.3} fk{X} . ‘L aikoi{x}
i=1
We then only need store the M coefficients [aik]T 1 to represent Ik{x] for

all =x; if M 1is not terribly large then this results in a considerable storage

savingy Clearly the storage savings depend essentially only on

M and not on

the form of the {w,}. How then should we choose among the various {mi?? Clearly

i

we should consider questions of the approximation accuracy of the

linear com-

binations of the [¢i}, and we should consider the effort Involved in computing

with such approximations, Therefore in this paper we address ourselves to these

questions of accuracy and efficiency, We use these two criteria

for comparing

the method based on spline approximations with the standard one [Bellman-Kalaba

{1960), Bellman-Kalaba-Kotkin (1963), Peterson (1964)] using polynomial approxi-

mations,

Before we proceed to this, we state in general how one uses thilis general

approach to approximate the fundamental recursion given by Equations 1.1 and 1.2.

We choose to approximate via interpolation at given points {x,

rough outline of the process:

byl
1]1'

We give a

Step l: Perform whatever initial computations can be used to simplify

later steps;

Step 2: Compute fl{xi} = min {i[xi;G{xi,y}ﬂ]}, 1 <1 <M

¥
Step 3: Set k = 1;
M
Step &: Compute the coefficients {ajk? ;
j=1
L<1i<M ¢
- M
Step 5: Compute fkfl(xi) = m;n jtlajkmjoi4G(Xi,F)ﬂ1 P

Step 6: Increase k by 1 and return to Step &,

. = f
so that ajkmj{xi) k(xi):

1 <1 < M;



. 1
The above algorithm is, of course, terminated when k+1 = N = >

2. Polwvnomial Approximation

It is widely recommended [Bellman-Kalaba-Kotkin (1963), Petersom (1964),
Bellman (1971)] that one choose an orthonormal set of functions {mij such as
trigonometric functioms or classical orthogonal polynomials. To be precise, we
follow the suggestion of [Peterson (1964)] and assume that Py is a classical

orthogonal polynomial of degree 1-1, such as
{2.1) mi{xj = Ti_lix) = cos[(i-1l)arc cos x],

the clasgical Chebyshev polynomials, Thus each fk iz approximated by a poly-
nomial of degree M-1, If fk has a bounded r-th derivative, then fk can be
approximated by such polynomials te degree ﬂ(%?) as M increases; this anawers
the question of the accuracy attainable by this choice of {mi} S0 we turn our

attention to matters of efficiency,.

; gl
By choosing the interpolation points gxi}l as the zeros of Bye1? for

example X, = cO8 ig%éllE in the case of Equation 2,1, we can expleit the orthe-

gonality of the {wi} in the algorithm of Section 1. In particular, the compu-

tation of the ajk in Step 4 reduces to
M
- A YOF -
(2.2) a5 © Py i?l fk(xi}mj{xi}, L] <M

for some constants ﬂj depending only on the set [mi}, Thus all the coefficients

I < j <M, for fixed k, can be evaluated in about HE multiplications and

.

2 .
M additioms,



Whatever method used to implement Step 5, certainly for each vy we must

M

-1

evaluate 2l

wi[xi+G{xi,y}$]. By careful exploitation of the usual three-
j=0 -

? 5k
term recursion among orthogomal polynomials [Cheney (1966), Clenshaw (1962)], we
can evaluate this expression in about M multiplications and M additioms for
each 1 and each w. To be explicit, if we hawve to evaluate at § different
points y, Step 5 will require about QJ‘-‘[Z multiplications and lI:'}'[*"[z additions.
Since we see that the costs in Step 2 are independent of {wi] and

since the costs in Step 1 for this case are just the evaluations of [xi}, we
find that our total costs for each value of %k, 1 < k < N-1, is about {Q-I-l]HE
miltiplications and additions, Sinece generally § is much greater than one,

the following 1is walid:

degree ™M polynomial approximation costs on the order of NQHE
(2.3) operations and yields :F(é;) accuracy for return functions having

a bounded r-th derivative.

3. Spline Approximation

We now consider approximation by splines of order r {or degree < r)

having joints at the interpolation points [xi]m. For convenience we assume that

J!
-1 + (i-1)h with h = =% .

the %, are equally spaced im [-1,1]}, so that x 01
L -

Then such a spline Sr is an (r-2)-times continupusly differentiable function
on [-1,1] which equals a polynomial of degree not greater than (r-1) in each

interval {xi for 1< 1<M-1. For informarion on splines, see, for example,

’xi+l}
[Ahlberg, et al. (1967), Greville (1969), Schoenberg (1970), Schultz (1973)].

1f fk has a bounded r-th derivative then it can be approximated by such a spline

Sr to an accuracy of ﬁ(l—r) juzt as for polynomlals; since the dimension of this
M



spline space i8 M+r-2 and we do not usually take r to be large, we see that
splines of order r give essentially the same approximation power as polynomials
with roughly the same number of free parameters, Much more Importantly, however,
we can prepresent each spline as a linear combination of M+r-2 special
B-splines Py having the property that they wanish everywhere outside the interwval

[#,,%, ]. Thus in evaluating any function 7a p.(x) no more than r different
I if]

E-splines wj can be-non-zero at each x; since each B-spline can be efficiently
evaluated [de Boor (1971, 1972), Cox (1971)] at a cost independent of M we see
that the cost of evaluating Hajmj(x) 15 a small constant C independent of M.
One can show that € is roughly %rz [de Boor (1971, 1972)]. Therefeore in Step 5
of the algorithm in Section 1 we need perform only (MQ ocperations as opposed to
qu for polynomials,

To perform Step 4 we meed to be able to interpolate by splines in the

B-spline representation, that is, to solve H-ajmj[xi} - f(xil for the aj.

k|

Actually one usually interpolates at an additional r-2 points so as to determine
uniquely the spline; this does not disturb the structure of the system of equatioms,
Eecause of the small supports of the B-splines we see that this system of equations
is essentially r-banded and hence can be decomposed into a product of banded

lower- and upper-triangular matrices in the order of M operations., Once we do

this decomposition in Step 1, we can solve the interpolation problems of Step 4

in the order of ¥ operations using this decomposition,

In summary, we see that there is a small integer ¢ such that

degree r spline approximatlion with M joints costs on the order

1 .
(3.1) ' of CNQM operations and yields U(—?J accuracy for return functions
M

having a bounded r-th derivative.



This should be compared with Equation 2.3 where we see that polynomial

approximation with the same accuracy and the same storage requirements involves

more work by a factor of roughly M, certainly a significant increase for even

moderate M. Clearly practitioners should seriouszsly conslder using spline approxi-

mation,

4,

Higher Dimensions

Similar approximations can be emploved in higher dimensions by using

tensor products: in two dimensions, for example, we could approximate via

flu,v) ~ 2 ai,mi{u]wj{v}_ In p dimensions one sees that polynomial approxi-

mation costs roughly QMM

i,3

2
P compared with GQNMF for spline approximation,
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