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Abstract. Split Bregman methods introduced in [T. Goldstein and S. Osher, SIAM J. Imaging
Sci., 2(2009), pp. 323–343] have been demonstrated to be efficient tools for solving total variation
norm minimization problems, which arise from partial differential equation based image restoration
such as image denoising and magnetic resonance imaging reconstruction from sparse samples. In
this paper, we prove the convergence of the split Bregman iterations, where the number of inner
iterations is fixed to be one. Furthermore, we show that these split Bregman iterations can be used
to solve minimization problems arising from the analysis based approach for image restoration in the
literature. We apply these split Bregman iterations to the analysis based image restoration approach
whose analysis operator is derived from tight framelets constructed in [A. Ron and Z. Shen, J. Funct.
Anal., 148(1997), pp. 408–447]. This gives a set of new frame based image restoration algorithms
that cover several topics in image restorations, such as image denoising, deblurring, inpainting, and
cartoon-texture image decomposition. Several numerical simulation results are provided.
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1. Introduction. Image restoration is often formulated as an inverse problem.
Since only discrete forms will be used eventually in numerical implementations, we
focus on discrete settings in this paper. For simplicity, we denote images as vectors
in Rn by concatenating their columns. The objective of image restoration is to find
the unknown true image u ∈ Rn from an observed image (or measurements) f ∈ R`
defined by

f = Au+ ε, (1.1)

where ε is a white Gaussian noise with variance σ, and A ∈ R`×n is a linear oper-
ator, typically a convolution operator in image deconvolution, a projection in image
inpainting, or the identity in image denoising.

Images usually have sparse representations (or sparse approximations) in some
transformed domains. Such transforms can be, e.g., Fourier or windowed Fourier
transforms, local cosine transforms, wavelet or framelet transforms, or discrete gra-
dient operators. In order to make use of the sparsity, one solves (1.1) in the corre-
sponding transformed domain and finds a sparse solution of (1.1) in the transformed
domain. In many cases, the sparse solution can be approximated by solving an `1
norm regularized minimization problem. By different sparsity a priori assumptions,
it is common to divide these `1 regularized minimization problems into two subcate-
gories, namely, the analysis based and the synthesis based sparsity priors associated
with the transform under which images have sparse representations or approximations.

Let D ∈ Rm×n be a linear transform, called an analysis operator, acting from Rn
to Rm. The matrix D can be generated by discrete Fourier transforms, local cosine
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transforms, wavelet or framelet transforms, or discrete gradient operators. We will
use redundant transforms, so we have that m ≥ n in most cases.

Although the focus of this paper is the analysis based approach, we start with the
synthesis based approach, which is well studied in the literature and motivates us to
study the analysis based approach. The synthesis based approach is applicable only
when m ≥ n and D has a left inverse R, i.e., RD = I. In this case, it is necessary that
the column vectors of R span Rn. The matrix R ∈ Rn×m is also called a synthesis
operator, acting from Rm to Rn. For a given image u ∈ Rn, there are infinitely
many ways to represent u by the columns of R, and for some of them the coefficient
sequence may not be in the range of D. The synthesis based approach explores full
sparsity of all possible representations of u in terms of the columns of R. For this,
let d ∈ Rm be the coefficient of the given image u in terms of the columns of R.
We first find the sparsest possible coefficient d by solving an `1 norm minimization
problem. Then the solution of (1.1) is derived by synthesizing u via the synthesis
operator R, i.e., u = Rd. More precisely, the synthesis based approach is to solve
either the unconstrained minimization

min
d
|d|+H(Rd), (1.2)

where H(·) is a smooth convex function as the data fidelity (e.g., H(Rd) = λ
2 ‖ARd−

f‖2), or the constrained one

min
d
|d| subject to ARd = f. (1.3)

Here | · | stands for the `1 norm or its variants. These formulations cover a lot
of problems in the literature by properly choosing A, R, and H, e.g., frame based
methods solving inverse problems proposed by [31,40] and basis pursuit problems [32]
in compressed sensing [19,41].

Problems (1.2) and (1.3) arising from the synthesis based approach are relatively
easy to solve, as the nonsmooth term |d| involved is separable. Hence, it is now well
developed so far; see, e.g., [12–14, 31, 38, 40, 68]. Many of these algorithms are based
on scalar soft thresholdings. The basic idea is to use the gradient descent to deal with
smooth terms or constraints to obtain a latent vector and then find a vector that has
a small `1 norm and is in the proximity of the latent vector. Hence, the values of both
|d| and the smooth term are decreased.

More precisely, an iterative thresholding algorithm was proposed in [38] for (1.2),
which can be also formulated as a proximal forward-backward splitting algorithm
by [35]. See also [24,46,49]. The iteration is given as{

ck+1 = dk − δRT∇H(Rdk),
dk+1 = arg mind 1

2‖d− c
k+1‖2 + δ|d|.

(1.4)

The key factor to make this algorithm work is that the second step is equivalent
to a scalar shrinkage. For example, when |d| := ‖d‖1, the second step is the soft
thresholding

dk+1 = Tδ(ck+1),

where

Tδ(w) = [tδ(w1), tδ(w2), . . . , . . .]T , with tδ(wi) = sgn(wi) max{0, |wi| − δ}. (1.5)
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Therefore, this iteration is simple and makes use of the sparsity of the underlying
solution. The convergence of the above algorithm in various forms was analyzed in
the above-mentioned papers.

For the solution of (1.3), the linearized Bregman iteration was first proposed
in [58, 68] and was used as an efficient tool for compressed sensing. The iteration is
given as {

ck+1 = ck − δRTAT (ARdk − f),
dk+1 = arg mind 1

2‖d− c
k+1‖2 + µ|d|.

(1.6)

Again, the second step is equivalent to a scalar shrinkage, which uses the sparsity of
the solution. The convergence analysis of this algorithm was given in [12,13], and its
applications to frame based deblurring was given in [14]. With algorithms (1.4) and
(1.6), the synthesis based approach can be considered well developed.

The analysis based sparsity prior is to assume that, for the image u ∈ Rn under
consideration, its analysis coefficient Du is sparse in Rm; i.e., the number of nonzero
entries of the coefficient Du is small. Finding a solution of (1.1) with a sparse Du
usually yields a minimization problem involving a term |Du|, where | · | denotes the
`1 norm or its variants. In particular, it can be formulated to find a solution of the
unconstrained minimization:

min
u
|Du|+H(u), (1.7)

where H(·) is a smooth convex function as the data fidelity. For example, H(·) can
be chosen H(u) = λ

2 ‖Au − f‖
2. Or, it can be formulated to find a solution of the

constrained minimization:

min
u
|Du| subject to Au = f. (1.8)

Formulations (1.7) and (1.8) can be applied to many important problems in imaging
science (and other computational areas), including discrete partial differential equa-
tion (PDE) based approaches [30,60] and wavelet frame based ones.

The `1 terms involved in (1.7) and (1.8) are nonsmooth and nonseparable. This
prevents us from using optimization methods for smooth functions. A natural idea
to solve them is to use a smoothed `1 norm to approximate the `1 norm and then
apply optimization methods for smooth functions. This approach is commonly used
in some early algorithms for PDE based, particularly for total variation (TV) based,
image processing minimization (1.7); see, e.g., [28, 65]. However, in these smoothing
methods, the better the approximations (to the `1 norm) are, the more slowly the
algorithms converge. Therefore, in order to make these algorithms converge faster,
the smooth approximation to the `1 norm cannot be too accurate. Consequently, one
cannot obtain a sparse solution by solving the minimization problem with a smoothed
norm. However, sparsity is important in many cases of `1 regularization problems.
Moreover, some nice properties induced by the `1 term in these minimization problems
will be lost. For example, the `1 norm term yields a solution with large strongly
homogeneous zones, as shown in [55,56].

Another difficulty for the analysis based approach of (1.7) and (1.8) is that the
term |Du| is not separable. Therefore, one cannot simply use the soft thresholding
as one normally does in the synthesis based approach, since it is impossible to keep
any sequence staying in the range of D after applying a thresholding operator. An
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iterative method to find a solution in the range of D for a special case of (1.7), where
H(u) = 1

2‖u− f‖
2, was proposed by [23] by exploring duality.

A different approach was proposed in [47]. In fact, two algorithms, called split
Bregman algorithms, were given in [47] to solve (1.7) and (1.8) respectively. Fur-
thermore, they were shown to be powerful in [47, 69] when these two algorithms are
applied to various PDE based image restoration approaches, e.g., the ROF model and
nonlocal PDE models. One of the objectives of this paper is to give a convergence
analysis of these two algorithms when the number of inner iterations is chosen to
be one. Another objective is to apply models (1.7) and (1.8) to frame based image
restoration, especially, frame based image deblurring and image inpainting.

We now discuss all these in more detail. As mentioned above, compared with the
synthesis based approach, the `1 norm of |Du| involved in (1.7) and (1.8) is neither
smooth nor separable. To overcome this, one transfers (1.7) and (1.8) to problems
involving only separable nonsmooth terms. In particular, one first replaces the term
|Du| in (1.7) and (1.8) by a separable one |d| and then adds a new constraint d = Du
into (1.7) and (1.8). Hence, (1.7) becomes

min
u
|d|+H(u) subject to d = Du, (1.9)

and (1.8) becomes

min
u
|d| subject to Au = f ; d = Du. (1.10)

Then either the constraint d = Du is approximated (cf. [66]), or a method for con-
strained minimizations with a separable nonsmooth objective function is employed
(cf. [47]).

In order to solve (1.9), an iterative algorithm based on the Bregman distance with
an inexact solver was proposed in [47]. This leads to the alternating split Bregman
iteration for (1.9). When the number of inner iterations is chosen to be one in this
alternating split Bregman iteration, it becomes

uk+1 = arg minuH(u) + λ
2 ‖Du− d

k + bk‖22,
dk+1 = arg mind |d|+ λ

2 ‖d−Du
k+1 − bk‖22,

bk+1 = bk + δ(Duk+1 − dk+1).
(1.11)

Since this iteration is for the unconstrained minimization problem (1.9), we call it
the unconstrained split Bregman method. The split Bregman iteration for (1.9) was
demonstrated in [47] to be an efficient tool for solving problems arising from TV
norm minimization problems of PDE based models for image restoration, such as
denoising. Since H(u) is convex and differentiable, the subproblem in the first line
is easy to solve. Further, noting that the first term of the subproblem in the second
line is the `1 norm, the subproblem in the second line can be solved by a simple soft
shrinkage. Both of these make the iteration efficient and fast for many problems that
are difficult to solve by other means. Besides its speed, the split Bregman method has
several advantages. It has a relatively small memory footprint compared to second
order methods that require explicit representations of the Hessian matrix. Also, the
method is easy to code. Both of these characteristics make this split Bregman method
a practical algorithm for large scale problems.

As for the solution of (1.10), a split Bregman method for (1.10) was also intro-
duced in [47]. When we fix the number of inner iterations to be one, that iteration
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becomes 
uk+1 = arg minu µ

2 ‖Au− f + ck‖2 + λ
2 ‖Du− d

k + bk‖22,
dk+1 = arg mind |d|+ λ

2 ‖d−Du
k+1 − bk‖22,

bk+1 = bk + δb(Duk+1 − dk+1),
ck+1 = ck + δc(Auk+1 − f).

(1.12)

Again, as shown in [47], the split Bregman iteration for (1.10) performs extremely
well in the problems arising from, e.g., magnetic resonance imaging reconstruction
from sparse samples. Since this iteration is for the constrained minimization problem
(1.10), we call it the constrained split Bregman method. Again, the subproblems
involved in this method are very easy to solve: the first step is equivalent to solving
a system of linear equations, and the second step is a simple shrinkage. Therefore,
the constrained split Bregman method has the same advantages as the unconstrained
one.

When D is an invertible matrix, the analysis based and the synthesis based ap-
proaches can be transferred from one to the other. For example, by letting R = D−1,
(1.7) and (1.8) are equivalent to (1.2) and (1.3) respectively. However, for nonin-
vertible matrices D and/or R, the analysis based and the synthesis based approaches
cannot be transferred from one to the other. In fact, it was observed in, for exam-
ples, [32, 42] that there is a gap between the analysis based and the synthesis based
approaches. Both of them have their own favorable data sets and applications. In
general, it is hard to draw the conclusion as to which approach is better, without spec-
ifying the applications and the data sets. However, numerical simulation results show
that the analysis based approach tends to generate smoother images in application. It
is natural, since the coefficient Du is quite often able to be linked with the smoothness
of the underlying image. Meanwhile, the synthesis approach tends to explore more
sparsity. In fact, a model that bridges the analysis based and the synthesis based
approaches in image inpainting and deconvolution was proposed in [8, 10, 11, 15]. We
forgo the detailed discussion here, and interested readers should consult [8, 10,11,15]
or the last section of this paper for details.

In this paper, we will give a convergence analysis for iterations (1.11) and (1.12).
Furthermore, both algorithms will be applied to deriving frame based image restora-
tion algorithms. The rest of the paper is organized as follows. In Section 2, we will
derive split Bregman methods (1.11) and (1.12) from the Bregman iteration with in-
exact inner solvers. In Section 3, we prove the convergence of split Bregman methods.
The new applications of split Bregman methods to frame based image restoration are
illustrated in Section 4.

2. Formulation. In this section, we derive split Bregman methods (1.11) and
(1.12) from the Bregman iteration with inexact inner solvers, where the number of
inner iterations is chosen to be one. We start with an introduction to the Bregman
iteration in Section 2.1, and then split Bregman methods are described in Section 2.2.

Iterative algorithms involving the Bregman distance were introduced to image and
signal processing by, e.g., [21] and by many other authors. See [57] for an overview.
In [57], a Bregman iteration was proposed for the nondifferentiable TV energy for
image restoration. Then, in [68], it was shown to be remarkably successful for `1
norm minimization problems in compressive sensing. To further improve the perfor-
mance of the Bregman iteration, a linearized Bregman iteration was invented in [36];
see also [68]. More details and an improvement called “kicking” of the linearized
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Bregman iteration were described in [58], a rigorous theory was given in [12,13], and
applications to frame based image deblurring can be found in [14]. Moreover, in [7],
the linearized Bregman iteration was successfully applied to matrix completion (see
e.g. [18]) to obtain an efficient singular value thresholding algorithm. Split Bregman
iterations were introduced in [47], which extended the utility of the Bregman itera-
tion and the linearized Bregman iteration to minimizations of more general `1 based
regularizations including TV, Besov norms, and sums of such things. Other variants
of Bregman iterations include Bregmanized operator splitting (BOS) and precondi-
tioned BOS (PBOS); see [69]. Wavelet based denoising using the Bregman iteration
was introduced in [67], and it was further extended by using translation invariant
wavelets in [53].

2.1. Bregman iteration. Since split Bregman methods are motivated by the
Bregman method, we start with the Bregman iteration. It is based on the concept
of the Bregman distance [6]. For any convex function J(u), the Bregman distance is
defined by

BpJ(u, v) = J(u)− J(v)− 〈u− v, p〉, where p ∈ ∂J(v). (2.1)

In general BpJ(u, v) 6= BpJ(v, u) and the triangle inequality is not satisfied, so BpJ(u, v)
is not a distance in the usual sense. However it does measure the closeness between
u and v in the sense that BpJ(u, v) ≥ 0 and BpJ(u, v) ≥ BpJ(w, v) for all points w on
the line segment connecting u and v.

The goal of the Bregman iteration is to solve the general constrained convex
minimization problem

min
u

J(u) subject to Lu = f, (2.2)

where J(u) is a convex energy, and L is a linear operator. Traditionally, this problem
may be solved by continuation methods, where we solve sequentially the unconstrained
problems minu J(u) + λk

2 ‖Lu− f‖
2. By choosing a predefined sequence {λk}k∈Z that

tends to infinity, we get a solution of the constrained minimization problem (2.2).
The idea of the Bregman iteration is also to transfer the constrained problem (2.2)

into a series of unconstrained ones. Instead of varying the regularization parameter
λk as in continuation methods, the Bregman iteration fixes this parameter and varies
the data. More explicitly, given u0 = 0 and p0 = 0, we iteratively solve

uk+1 = arg min
u

Bp
k

J (u, uk) +
λ

2
‖Lu− f‖2

= arg min
u

J(u)− J(uk)− 〈u− uk, pk〉+
λ

2
‖Lu− f‖2.

(2.3)

In order that (2.3) is well defined for k+1, it must hold that pk+1 ∈ ∂J(uk+1). Define

pk+1 = pk − λLT (Luk+1 − f). (2.4)

By differentiating the energy in (2.3), we obtain that pk+1 ∈ ∂J(uk+1). Iteration
(2.3) together with (2.4) is the Bregman iteration. In [57], the authors analyzed the
convergence of the Bregman iterative scheme. In particular, it is shown that, under
fairly weak assumptions on J(·), ‖Luk − f‖ → 0 as k → ∞. The Bregman iteration
has several nice denoising properties which were discussed and proved in [57,68].
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The Bregman iteration has several advantages over traditional penalty function
and continuation methods. First, the Bregman iteration converges very quickly when
applied to certain types of objective functions, especially for problems involving an
`1 regularization term. A nice explanation of why this is true was given in [47].
When the Bregman iteration converges quickly, we need only solve a small number of
unconstrained problems. The second (and perhaps most significant) advantage of the
Bregman iteration over continuation methods is that the value of λ in (2.3) remains
constant. We can therefore choose a value for λ that minimizes the condition number
of the subproblems, resulting in fast convergence for iterative optimization methods,
such as Newton or Gauss–Seidel. The Bregman iteration also avoids the problem
of numerical instabilities that occur as λk → ∞ that arise when using continuation
methods.

The Bregman iteration (2.3) and (2.4) can be reformulated into a compact form.
By p0 = 0 and (2.4), we obtain pk+1 = −λLT

∑k+1
i=1 (Lui − f). Substitute this into

(2.3), and it yields

uk+1 = arg min
u

J(u) +
λ

2

∥∥∥∥∥Lu− f +
k∑
i=1

(Lui − f)

∥∥∥∥∥
2

.

Let bk =
∑k
i=1(Lui − f) and u0 = 0. Then, we get a compact form of the Bregman

iteration (2.3) and (2.4) as follows: Given b0 = 0 and u0 = 0,{
uk+1 = arg minu J(u) + λ

2 ‖Lu− f + bk‖2,
bk+1 = bk + (Luk+1 − f).

(2.5)

It is this form that will be used in the remaining part of this paper.
Since there is generally no explicit expression for the solution of the submini-

mization problem involved in (2.5), one has to employ iterative algorithms to solve
it. Different approximations to the solution of the sub minimization problem in (2.5)
lead to different new algorithms. Here, we briefly recall two of them before we get to
split Bregman iterations. The first one is the Bregmanized operator splitting (BOS)
algorithm introduced in [69], which solves the sub minimization problems by using the
proximal forward-backward splitting iteration (1.4) with one executing step in each
iteration. More precisely, the BOS algorithm is

vk+1 = uk − δλLT (Luk − f + bk),
uk+1 = arg minu δJ(u) + 1

2‖u− v
k+1‖2,

bk+1 = bk + (Luk+1 − f).
(2.6)

A preconditioned version of BOS is also introduced in [69], and the convergence anal-
ysis is also given there.

If the term 1
2‖Lu−f‖

2 in (2.3) is approximated by 1
2δ‖u−(uk−δLT (Luk−f))‖2,

we obtain{
uk+1 = arg minu J(u)− J(uk)− 〈u− uk, pk〉+ λ

2δ‖u− (uk − δLT (Luk − f))‖2,
pk+1 = pk − λLT (Luk+1 − f).

(2.7)
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This can be shown to be BOS. Note that pk+1 does not belong to ∂J(uk+1). By
adjusting the second equation in (2.7) to keep pk+1 ∈ ∂J(uk+1), one gets{
uk+1 = arg minu J(u)− J(uk)− 〈u− uk, pk〉+ λ

2δ‖u− (uk − δLT (Luk − f))‖2,
pk+1 = pk − λ

δ (uk+1 − uk)− λLT (Luk+1 − f).
(2.8)

Denote vk = δ
λp

k + uk. Then (2.8) becomes the second algorithm, the linearized
Bregman iteration for J(u):{

vk+1 = vk − δLT (Luk − f),
uk+1 = arg minu λ

2 ‖u− v
k+1‖2 + δJ(u).

(2.9)

When J(u) is the `1 norm as in the synthesis based approach, the subminimization
problems involved in the BOS algorithm (2.6) and the linearized Bregman algorithm
(2.9) can be solved by scalar shrinkages. Hence, these algorithms are easy to imple-
ment and are efficient. However, when J(u) is |Du| as in the analysis based approach,
there is no such simple solver for the subminimization problems involved. Hence,
the BOS algorithm (2.6) and the linearized Bregman iteration (2.9) are not simple
anymore. One has to use inner iterative solvers to solve subminimizations involved
there, so the efficiency of (2.6) and (2.9) depends heavily on the inner solvers. This
is one of the reasons why we are using the split Bregman iterations for the analysis
based approach.

2.2. Split Bregman methods. The goal of split Bregman methods [47] is to
extend the utility of the Bregman iteration and the linearized Bregman iteration to
minimizations of more general `1 regularization in the form of (1.7) and (1.8). The
basic idea is to introduce an intermediate variable d such that Du = d, and the term
|Du| in (1.7) and (1.8) is separable and easy to minimize. Then the Bregman iteration
with an inexact solver is applied.

2.2.1. Unconstrained minimization problem. The unconstrained minimiza-
tion problem (1.7) is transferred into a constrained one (1.9). Then, the Bregman
iteration (2.5) for solving (1.9) can be written as follows: let u0 = 0, d0 = 0, and
b0 = 0, and define the sequence (uk, dk, bk) by{

(uk+1, dk+1) = arg minu,d |d|+H(u) + λ
2 ‖Du− d+ bk‖2,

bk+1 = bk + (Duk+1 − dk+1).
(2.10)

The convergence of (2.10) was shown in [47, 52] under the assumption that the sub-
problem in the first step is solved exactly. However, in practice, it is not so easy to
find the exact solution of the subproblem

(uk+1, dk+1) = arg min
u,d
|d|+H(u) +

λ

2
‖Du− d+ bk‖2.

One commonly used method to solve it is the alternative minimization, or a block
nonlinear Gauss–Seidel algorithm. Therefore, we get an algorithm as follows:

for n = 1 to N
uk+1 ← arg minuH(u) + λ

2 ‖Du− d
new + bk‖22,

dk+1 ← arg mind |d|+ λ
2 ‖d−Du

new − bk‖22,
end
bk+1 = bk + (Duk+1 − dk+1),

(2.11)
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where dnew (respectively unew) is either dk+1 (respectively uk+1) if it is available or
dk (respectively uk) otherwise.

As pointed out in [47], it is not desirable to solve the first subproblem to full
convergence; i.e., N is not infinity in (2.11). Intuitively, the reason for this is that if
the error in our solution for this subproblem is small compared to ‖bk−b∗‖2, where b∗

is the “true b,” then this extra precision will be “wasted” when the Bregman parameter
is updated. In fact, it was found empirically in [47] that for many applications optimal
efficiency is obtained when only one iteration of the inner loop is performed (i.e. N = 1
in (2.11)).

In a special case when DTD = I and H(u) = µ
2 ‖u − f‖

2 (this corresponds to
frame based image denoising), the convergence of (2.11) with N = 1 was analyzed
in [62]. In this case, one simply apply the idea of forward-backward splitting in [35].
Recently, we became aware that a proof of the convergence of (2.11) with N = 1 was
given in [61]. The idea is to reformulate (1.11) as a Douglas–Rachford splitting on
the dual problem.

We will give the convergence proof of the constrained split Bregman method
(1.12) in Section 3.1. With a slight modification, the proof leads to a proof of the
convergence of (1.11) in Section 3.2. More precisely, it yields a convergence proof of
the iteration 

uk+1 = arg minuH(u) + λ
2 ‖Du− d

k + bk‖22,
dk+1 = arg mind |d|+ λ

2 ‖d−Du
k+1 − bk‖22,

bk+1 = bk + δ(Duk+1 − dk+1)

whenever 0 < δ ≤ 1. When δ = 1, it becomes the unconstrained split Bregman
iteration (2.11) with N = 1.

2.2.2. Constrained minimization problem. The Bregman iteration (2.5) for
the constrained minimization problem (1.8) can be formulated as follows: Given c0 = 0
and u0 = 0, define

{
uk+1 = arg minu |Du|+ µ

2 ‖Au− f + ck‖2,
ck+1 = ck + (Auk+1 − f).

(2.12)

In the first step, we have to solve subproblems

uk+1 = arg min
u
|Du|+ µ

2
‖Au− f + ck‖2,

which is a special case of (1.7). These subproblems are solved by the unconstrained
alternating split Bregman method (2.11) with N = 1, i.e., by the iteration


uk+1 = arg minu µ

2 ‖Au− f + ck‖2 + λ
2 ‖Du− d

k + bk‖22,
dk+1 = arg mind |d|+ λ

2 ‖d−Du
k+1 − bk‖22,

bk+1 = bk + (Duk+1 − dk+1).
9



Combining this inner solver with the outer iteration (2.12), we obtain the constrained
split Bregman method for (1.8) as follows:

for m = 1 to M
uk+1 ← arg minu µ

2 ‖Au− f − c
k‖2 + λ

2 ‖d
new −Du− bnew‖22,

dk+1 ← arg mind |d|+ λ
2 ‖d−Du

new − bnew‖22,
bk+1 ← bnew + (Dunew − dnew),

end
ck+1 = ck + (Auk+1 − f).

(2.13)

Here bnew (respectively unew and dnew) is either bk+1 (respectively uk+1 and dk+1) if
it is available or bk (respectively uk and dk) otherwise.

For applications in image restoration, it is not necessary to solve each uncon-
strained subproblem entirely to numerical precision. Therefore, M is a finite integer.
Furthermore, when parameter values are properly chosen, it has been found in [47]
that the outer loop of this algorithm need only be executed a small number of times.
As a result, this algorithm is very fast when properly chosen parameter values are
used.

In Section 3, we will prove that one just needs to pick M = 1 in (2.13) to ensure
the convergence of (2.13). In fact, we will prove that iteration (1.12), which is

uk+1 = arg minu µ
2 ‖Au− f + ck‖2 + λ

2 ‖Du− d
k + bk‖22,

dk+1 = arg mind |d|+ λ
2 ‖d−Du

k+1 − bk‖22,
bk+1 = bk + δb(Duk+1 − dk+1),
ck+1 = ck + δc(Auk+1 − f),

converges when µ > 0, λ > 0, 0 < δb ≤ 1, and 0 < δc < 2. In particular, when
δb = δc = 1, it becomes the constrained split Bregman iteration (2.13) with M = 1.

3. Convergence. In this section, we prove the convergence of (1.11) and (1.12).
Similar to the arguments in [7] for the linearized Bregman and in [69] for the BOS,
split Bregman methods (1.11) and (1.12) can be recast as inexact Uzawa algorithms.
Inexact Uzawa algorithms have been analyzed in, for examples, [1, 4, 5, 20, 33, 50, 51].
The available analyses seem to be either for linear saddle point problems (cf. [1,
4, 5, 20, 50, 51]) or for strongly convex function minimizations (cf. [33, 51]). Models
(1.7) and (1.8) are neither linear saddle point problems nor strongly convex function
minimization problems. Therefore, we cannot directly use methods in the literature
for proving (1.11) and (1.12). However, some ideas in the literature can still be used.
For example, our analysis here is motivated by [33] for inexact Uzawa algorithms for
linear saddle point problems, which is also closely related to the approach of [69] for
the convergence analysis of the (preconditioned) BOS algorithm.

While we were preparing the final version of this paper, we were referred to [61],
where an independent, but different, proof of the convergence of (1.11) had been given
recently by reformulating (1.11) as a Douglas–Rachford splitting on the dual problem.
This led us to reorganizing the paper as presented now, i.e. giving a detailed proof of
the convergence of (1.12) and an outline of the proof of the convergence of (1.11) by
using an approach similar to but different from that in [61].

3.1. Convergence of iteration (1.12). In this subsection, we prove the con-
vergence of (1.12) for the constrained minimization problem (1.8). For this, we note

10



that, since all the subproblems involved in (1.12) are convex, the first order optimality
condition gives the following fact:

0 = µAT (Auk+1 − f + ck) + λDT (Duk+1 − dk + bk),
0 = pk+1 + λ(dk+1 −Duk+1 − bk), with pk+1 ∈ ∂|dk+1|,
bk+1 = bk + δb(Duk+1 − dk+1),
ck+1 = ck + δc(Auk+1 − f),

(3.1)

which will be used in the proof of the next result.
Theorem 3.1. Assume that there exists at least one solution u∗ of (1.8). Assume

that µ > 0, λ > 0, 0 < δb ≤ 1, and 0 < δc < 2. Then, the following properties for the
constrained split Bregman iteration (1.12) hold:

lim
k→+∞

‖Auk − f‖ = 0, lim
k→+∞

|Duk| = |Du∗|. (3.2)

Furthermore,

lim
k→+∞

‖uk − u∗‖ = 0 (3.3)

whenever (1.8) has a unique solution.
Proof. Let

L(u,w) = |Du|+ 〈w,Au− f〉

be the Lagrangian of (1.8) with w being the Lagrangian multiplier. Since there exists
at least one solution u∗ of (1.8) by the assumption, the KKT condition asserts that
there must exist a vector w∗ such that{

0 = DT p∗ +ATw∗, with p∗ ∈ ∂|d∗|, where d∗ = Du∗,
Au∗ = f.

(3.4)

Let b∗ = p∗/λ and c∗ = w∗/µ. Then (3.4) leads to
0 = µAT (Au∗ − f + c∗) + λDT (Du∗ − d∗ + b∗),
0 = p∗ + λ(d∗ −Du∗ − b∗), with p∗ ∈ ∂|d∗|,
b∗ = b∗ + δb(Du∗ − d∗),
c∗ = c∗ + δc(Au∗ − f).

(3.5)

This means that u∗, d∗, b∗, c∗ is a fixed point of (1.12).
Denote the errors by

uke = uk − u∗, dke = dk − d∗, cke = ck − c∗, bke = bk − b∗.

Subtracting the first equation of (3.1) by the first equation of (3.5), we obtain

0 = µAT (Auk+1
e + cke) + λDT (Duk+1

e − dke + bke).

Taking the inner product of the left- and right- hand sides with respect to uk+1
e , we

have

0 = µ‖Auk+1
e ‖2+λ‖Duk+1

e ‖2−λ〈DT dke , uk+1
e 〉+µ〈AT cke , uk+1

e 〉+λ〈DT bke , uk+1
e 〉. (3.6)
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The same manipulations applied to the second equation of (3.1) and the second equa-
tion of (3.5) lead to

0 = 〈pk+1 − p∗, dk+1 − d∗〉+ λ‖dk+1
e ‖2 − λ〈Duk+1

e , dk+1
e 〉 − λ〈bke , dk+1

e 〉, (3.7)

where pk+1 ∈ ∂|dk+1| and p∗ = λb∗ ∈ ∂|d∗|. By summing (3.6) and (3.7), we get

0 = µ‖Auk+1
e ‖2 + 〈pk+1 − p∗, dk+1 − d∗〉+ µ〈AT cke , uk+1

e 〉
+ λ
(
‖Duk+1

e ‖2 + ‖dk+1
e ‖2 − 〈Duk+1

e , dke + dk+1
e 〉+ 〈bke ,Duk+1

e − dk+1
e 〉

)
.

(3.8)

Furthermore, by subtracting the fourth equation of (3.1) by the fourth equation of
(3.5), we have

ck+1
e = cke + δcAu

k+1
e ,

which leads to

‖ck+1
e ‖2 = ‖cke‖2 + δ2

c‖Auk+1
e ‖2 + 2δc〈cke , Auk+1

e 〉,

and further

〈cke , Auk+1
e 〉 =

1
2δc

(
‖ck+1
e ‖2 − ‖cke‖2

)
− δc

2
‖Auk+1

e ‖2. (3.9)

Similarly, the same manipulations applied to the third equation of (3.1) and the third
equation of (3.5) yield

〈bke ,Duk+1
e − dk+1

e 〉 =
1

2δb

(
‖bk+1
e ‖2 − ‖bke‖2

)
− δb

2
‖Duk+1

e − dk+1
e ‖2. (3.10)

Substituting (3.9) and (3.10) into (3.8), we have

µ

2δc

(
‖cke‖2 − ‖ck+1

e ‖2
)

+
λ

2δb

(
‖bke‖2 − ‖bk+1

e ‖2
)

=µ
(

1− δc
2

)
‖Auk+1

e ‖2 + 〈pk+1 − p∗, dk+1 − d∗〉

+ λ

(
‖Duk+1

e ‖2 + ‖dk+1
e ‖2 − 〈Duk+1

e , dke + dk+1
e 〉 − δb

2
‖Duk+1

e − dk+1
e ‖2

)
.

(3.11)

By summing the above equation from k = 0 to k = K, we get

µ

2δc

(
‖c0e‖2 − ‖cK+1

e ‖2
)

+
λ

2δb

(
‖b0e‖2 − ‖bK+1

e ‖2
)

=µ
(

1− δc
2

) K∑
k=0

‖Auk+1
e ‖2 +

K∑
k=0

〈pk+1 − p∗, dk+1 − d∗〉

+ λ

(
1− δb

2

K∑
k=0

‖Duk+1
e − dk+1

e ‖2 +
1
2

K∑
k=0

‖Duk+1
e − dke‖2 +

1
2
‖dK+1
e ‖2

)
− λ

2
‖d0
e‖2.

(3.12)

Since pk+1 ∈ ∂|dk+1| and p∗ ∈ ∂|d∗|, and | · | is convex, we have

〈pk+1 − p∗, dk+1 − d∗〉 ≥ 0 ∀k. (3.13)
12



Therefore, all terms involved in (3.12) are nonnegative. This fact leads to the following
inequality:

µ

2δc
‖c0e‖2 +

λ

2δb
‖b0e‖2 +

λ

2
‖d0
e‖2

≥ µ
(

1− δc
2

) K∑
k=0

‖Auk+1
e ‖2 +

K∑
k=0

〈pk+1 − p∗, dk+1 − d∗〉+
λ

2

K∑
k=0

‖Duk+1
e − dke‖2.

(3.14)

This leads to the following conclusions: it follows from (3.14) and the assumptions of
µ > 0 and 0 < δc < 2 that

+∞∑
k=0

‖Auk+1
e ‖2 < +∞.

This, together with Auk+1
e = Auk+1 − f , leads to the first equation in (3.2) holding,

i.e.,

lim
k→+∞

‖Auk+1 − f‖ = 0.

Second, (3.14) also leads to

+∞∑
k=0

〈pk+1 − p∗, dk+1 − d∗〉 < +∞,

and hence

lim
k→+∞

〈pk − p∗, dk − d∗〉 = 0. (3.15)

Recall that, for any convex function J , the Bregman distance (2.1) satisfies

BpJ(u, v) +BqJ(v, u) = 〈q − p, u− v〉 ∀p ∈ ∂J(v), q ∈ ∂J(u). (3.16)

This, together with (3.15) and the nonnegativity of the Bregman distance, implies
that limk→+∞Bp

∗

|·| (d
k, d∗) = 0, i.e.,

lim
k→+∞

|dk| − |d∗| − 〈dk − d∗, p∗〉 = 0. (3.17)

Moreover, since λ > 0, (3.12) also asserts that
∑K
k=0 ‖Duk+1

e − dke‖2 < +∞, which
implies that limk→+∞ ‖Duk+1

e − dke‖ = 0. By Du∗ = d∗, we conclude that

lim
k→+∞

‖Duk+1 − dk‖ = 0. (3.18)

Since | · | is continuous, by (3.17) and (3.18), we obtain

lim
k→+∞

|Duk| − |Du∗| − 〈Duk −Du∗, p∗〉 = 0. (3.19)

Furthermore, since Auk → f and Au∗ = f ,

lim
k→+∞

〈Auk −Au∗, w∗〉 = 0.
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Summing this with (3.19) yields

0 = lim
k→+∞

|Duk| − |Du∗| − 〈Duk −Du∗, p∗〉 − 〈Auk −Au∗, w∗〉

= lim
k→+∞

|Duk| − |Du∗| − 〈uk − u∗,DT p∗ +ATw∗〉

= lim
k→+∞

|Duk| − |Du∗|,

(3.20)

where the last equality comes from 0 = DT p∗ +ATw∗ in (3.4). This gives the second
equation in (3.2).

Next, we prove (3.3) by assuming that (1.8) has a unique solution. It is proved
by contradiction. Let w∗ be the vector in (3.4). Define

E(u) := L(u,w∗) + ‖Au− f‖2 = |Du|+ 〈w∗, Au− f〉+ ‖Au− f‖2

Then E(u) is a convex and continuous function. Also, since (u∗, w∗) is a saddle point
of L(u,w) and Au∗ = f , we have E(u) ≥ E(u∗). In case of u 6= u∗, it holds that
E(u) > E(u∗). This can be seen from the following. When u 6= u∗, if Au = f ,
then E(u) > E(u∗) follows immediately from the uniqueness of the solution of (1.8);
otherwise, ‖Au− f‖2 > 0 = ‖Au∗ − f‖2 and therefore

E(u) = L(u,w∗)+‖Au−f‖2 ≥ L(u∗, w∗)+‖Au−f‖2 > L(u∗, w∗)+‖Au∗−f‖2 = E(u∗).

Now we suppose that (3.3) does not hold, so there exists a subsequence uki such
that ‖uki − u∗‖ > ε for some ε > 0 and for all i. Then, E(uki) > min{E(u) :
‖u− u∗‖ = ε}. Indeed, let v be the intersection of the sphere {u : ‖u− u∗‖ = ε} and
the line segment from u∗ to uki ; then there exists a positive number t ∈ (0, 1) such
that v = tu∗ + (1− t)uki . By the convexity of E and the definition of u∗, we have

E(uki) > tE(u∗) + (1− t)E(uki) ≥ E(tu∗ + (1− t)uki) = E(v)
≥ min{E(u) : ‖u− u∗‖ = ε}.

Denote ũ = arg min{E(u) : ‖u− u∗‖ = ε}. By applying (3.2), we have

E(u∗) = lim
i→+∞

E(uki) ≥ E(ũ) > E(u∗),

which is a contradiction.
Here are some remarks on Theorem 3.1. Assume that | · | is the `1 norm and D

has a left inverse (e.g., D is a tight frame). Since |Du| is equivalent to its `2 norm in
finite-dimensional spaces, |Du| is equivalent to the `2 norm of u. This leads to the
fact that the convex energy functional |Du| is coercive. Hence (1.8) has at least one
solution. Consequently, (3.2) in Theorem 3.1 implies that, while Auk converges to f ,
the energy |Duk| of uk converges to the minimum value of |Du| subject to Au = f .
In other words, the constrained split Bregman algorithm (1.12) reaches a solution
that is arbitrarily close to the constraint and has an energy arbitrarily close to the
minimum energy as long as sufficiently many iterations are executed. Since the key
for model (1.8) is to find a solution that attains the minimum of the energy functional
|Du| subject to Au = f , (3.2) implies that algorithm (1.12) is the right one for this.
Furthermore, it is easy to show that {uk}k∈Z has a convergent subsequence. Indeed,
since |Du| is equivalent to its `2 norm, (3.2) implies that uk is bounded. Hence,
there exists a convergent subsequence of {uk}k∈Z. Finally, when A is invertible, the
sequence uk converges. This follows from Theorem 3.1, because (1.8) has a unique
solution.
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3.2. Convergence of iteration (1.11). Our proof presented in Section 3.1 can
be modified to prove the convergence of (1.11).

Similar to Section 3.1, we note that, since all the subproblems involved in (1.11)
are convex, the first order optimality condition gives

0 = ∇H(uk+1) + λDT (Duk+1 − dk + bk),
0 = pk+1 + λ(dk+1 −Duk+1 − bk), with pk+1 ∈ ∂|dk+1|,
bk+1 = bk + δ(Duk+1 − dk+1).

(3.21)

This simple observation will be used in our proof of the convergence of the uncon-
strained split Bregman method (1.11). Since the proof is similar to the proof of
(1.12), we will omit some computational details. However, we will give enough details
to understand the idea of the proof.

Theorem 3.2. Assume that there exists at least one solution u∗ of (1.7). Assume
that 0 < δ ≤ 1 and λ > 0. Then, we have the following properties for the unconstrained
split Bregman iteration (1.11):

lim
k→+∞

|Duk|+H(uk) = |Du∗|+H(u∗). (3.22)

Furthermore,

lim
k→+∞

‖uk − u∗‖ = 0 (3.23)

whenever (1.7) has a unique solution.
Proof. Let u∗ be an arbitrary solution of (1.7). By the first order optimality

condition, u∗ must satisfy

0 = DT p∗ +∇H(u∗), (3.24)

where p∗ ∈ ∂|d∗| with d∗ = Du∗. Let

b∗ =
1
λ
p∗.

We obtain 
0 = ∇H(u∗) + λDT (Du∗ − d∗ + b∗),
0 = p∗ + λ(d∗ −Du∗ − b∗), with p∗ ∈ ∂|d∗|,
b∗ = b∗ + δ(Du∗ − d∗).

(3.25)

Therefore, u∗, d∗, b∗ is a fixed point of (3.21) of the unconstrained split Bregman
iteration (1.11). Consequently, if the unconstrained split Bregman iteration converges,
it converges to a solution of (1.7), as stated in [47].

Denote the errors by

uke = uk − u∗, dke = dk − d∗, bke = bk − b∗.

An argument similar to the corresponding part of the proof of Theorem 3.1 allows us
15



obtain

λ

2δ
(
‖b0e‖2 − ‖bK+1

e ‖2
)

=
K∑
k=0

〈∇H(uk+1)−∇H(u∗), uk+1 − u∗〉+
K∑
k=0

〈pk+1 − p∗, dk+1 − d∗〉

+ λ

(
1− δ

2

K∑
k=0

‖Duk+1
e − dk+1

e ‖2 +
1
2

K∑
k=0

‖Duk+1
e − dke‖2 +

1
2
‖dK+1
e ‖2

)
− λ

2
‖d0
e‖2.

(3.26)

Note that all terms involved in the above equation are nonnegative. This observation
leads to the following inequality:

λ

2δ
‖b0e‖2 +

λ

2
‖d0
e‖2 ≥

K∑
k=0

〈∇H(uk+1)−∇H(u∗), uk+1 − u∗〉. (3.27)

By assumption λ > 0, we have
∑+∞
k=0〈∇H(uk+1)−∇H(u∗), uk+1−u∗〉 < +∞, which

leads to

lim
k→+∞

〈∇H(uk)−∇H(u∗), uk − u∗〉 = 0. (3.28)

This, together with (3.16) and the nonnegativity of the Bregman distance, implies
that limk→+∞B

∇H(u∗)
H (uk, u∗) = 0, i.e.,

lim
k→+∞

H(uk)−H(u∗)− 〈uk − u∗,∇H(u∗)〉 = 0. (3.29)

Similarly, we can prove that limk→+∞Bp
∗

|·| (d
k, d∗) = 0, i.e.,

lim
k→+∞

|dk| − |d∗| − 〈dk − d∗, p∗〉 = 0, (3.30)

and

lim
k→+∞

‖Duk+1 − dk‖ = 0. (3.31)

Since | · | is continuous, by (3.30) and (3.31), we obtain

lim
k→+∞

|Duk| − |Du∗| − 〈Duk −Du∗, p∗〉 = 0. (3.32)

Summing this and (3.29), it yields

lim
k→+∞

(
|Duk|+H(uk)

)
−
(
|Du∗|+H(u∗)

)
− 〈uk − u∗,∇H(u∗) +DT p∗〉 = 0. (3.33)

This, together with (3.24), proves (3.22).
Next, we prove (3.23) by assuming that (1.7) has the unique solution u∗. It is

proved by contradiction. Let E(u) = |Du| + H(u). Then E(u) is a convex, lower
semicontinuous function. The remainder of the proof follows the same argument as
the proof of (3.3) in the proof of Theorem 3.1.
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Assume that | · | is the `1 norm and D has a left inverse (e.g., D is a tight frame).
Similar to the corresponding discussion in Section 3.1, this theorem implies that the
energy |Duk| + H(uk) of uk converges to the minimum value of |Du| + H(u). In
other words, the unconstrained split Bregman algorithm (1.11) reaches a solution
that has an energy arbitrarily close to the minimum energy with a sufficient number
of iterations. This shows that one can get the right solution numerically by (1.11).
Furthermore, uk has a convergent subsequence, as |Duk| and ‖uk‖ are bounded. Fi-
nally, when H(u) = ‖Au − f‖2, which is commonly used in many applications, and
when A is invertible, uk converges to the unique solution of (1.7).

4. Frame based image restoration. In this section, we will apply iterations
(1.11) and (1.12) to derive algorithms for frame based image restoration, especially
image deblurring and image inpainting. Furthermore, image denoising and image
decomposition are also discussed as special cases of image inpainting. Frame based
image restoration has been studied in [7,8,10,14,15,26,31,40,43,45]. While algorithms
in [14, 31, 40, 43, 45] are the model of the synthesis based approach, algorithms in
[7, 8, 10,15,26] balance the synthesis based and the analysis based approaches.

Our focus here is on the analysis based approach by using split Bregman algo-
rithms. As pointed out in [11, 42] and mentioned before, it is hard to determine
which one is better between the analysis based and the synthesis based approaches.
It depends on the applications at hand. In general, the synthesis based approach
emphasizes the full sparsity of the frame coefficient, and the analysis based approach
emphasizes the smoothness of the image since it penalizes the `1 norm of the canonical
frame coefficients that normally is linked with the smoothness of solutions. There is
also a choice that balances these two approaches as given in [7,8,10,15,26]. Neverthe-
less, some simulations for various algorithms based on different models are given. We
will see that split Bregman iterations (1.11) and (1.12) provide convenient tools for
the analysis based approach of image restoration. Hence, it enriches the discussions
in the literature on the analysis based approach for image restorations.

4.1. Frames and framelets. Real images usually have sparse approximations
under some tight frame systems. Examples of tight frames that can sparsely approx-
imate images are curvelets [16, 17], orthonormal wavelets [37], translation invariant
wavelets [34], and framelets [39, 59]. Tight frames are redundant orthogonal bases in
Rn. The row vectors of D ∈ Rm×n form a tight frame in an Euclidean space if and
only if DTD = I. The matrix D and DT are the analysis operator and the synthesis
operator respectively. In general, DDT 6= I. The redundancy of the tight frame leads
to robust signal representations in which partial loss of the data can be tolerated
without adverse effects; see, for example, [8, 10, 26, 34, 37, 39]. Since the system D is
redundant, for a given image u, there are infinitely many representations d such that
u = DT d. Among them, the one Du is called the canonical frame coefficient of u.

We will use the tight frame system that is derived from the filter banks of framelets
(wavelet tight frames) constructed in [39, 59]. In the rest of this subsection, we give
a brief introduction to the concept of framelet. To save notations, we use the same
lowercase letter to denote a function in L2(R2) and its discrete version in Rn.

A countable set X ⊂ L2(R) is called a tight frame of L2(R) if

f =
∑
h∈X

〈f, h〉h ∀f ∈ L2(R), (4.1)

where 〈·, ·〉 is the inner product of L2(R). For given Ψ := {ψ1, . . . , ψr} ⊂ L2(R), the
affine (or wavelet) system is defined by the collection of the dilations and the shifts
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Fig. 4.1. Piecewise linear framelets.
φ ψ

1
ψ

2

of Ψ as

X(Ψ) := {ψ`,j,k : 1 ≤ ` ≤ r; j, k ∈ Z} with ψ`,j,k := 2
j/2
ψ`(2j · −k). (4.2)

When X(Ψ) forms a tight frame of L2(R), it is called a tight wavelet frame, and ψ`,
` = 1, . . . , r, are called the (tight) framelets.

To construct a set of framelets, usually, one starts from a compactly supported
refinable function φ ∈ L2(R) (a scaling function) with a refinement mask τφ satisfying

φ̂(2·) = τφφ̂.

Here φ̂ is the Fourier transform of φ, and τφ is a trigonometric polynomial with
τφ(0) = 1; i.e., a refinement mask of a refinable function must be a lowpass filter. For
a given compactly supported refinable function, the construction of a tight framelet
system is to find a finite set Ψ that can be represented in the Fourier domain as

ψ̂(2·) = τψφ̂

for some 2π-periodic τψ. The unitary extension principle (UEP) of [59] says that
X(Ψ) in (4.2) generated by Ψ forms a tight frame in L2(R) provided that the masks
τφ and {τψ}ψ∈Ψ satisfy

τφ(ω)τφ(ω + γπ) +
∑
ψ∈Ψ

τψ(ω)τψ(ω + γπ) = δγ,0, γ = 0, 1, (4.3)

for almost all ω in R. While τφ corresponds to a lowpass filter, {τψ}ψ∈Ψ must cor-
respond to highpass filters by the UEP. The sequences of Fourier coefficients of τψ,
as well as τψ itself, are called framelet masks. In our implementation, we adopt
the piecewise linear B-spline framelet constructed in [59]. The refinement mask is
τφ(ω) = cos2(ω2 ), whose corresponding lowpass filter is h0 = 1

4 [1, 2, 1]. Two framelets
are τψ1 = −

√
2i
2 sin(ω) and τψ2 = sin2(ω2 ), whose corresponding highpass filters are

h1 =
√

2
4

[1, 0,−1], h2 =
1
4

[−1, 2,−1].

The associated refinable function and framelets are given in Figure 4.1. With a one-
dimensional framelet system for L(R), the two-dimensional framelet system for L2(R2)
can be easily constructed by tensor products of one-dimensional framelets.

In the discrete setting, a discrete image f is considered as the coefficients {fi =
〈f, φ(· − i)〉} up to a dilation, where φ is the refinable function associated with the
framelet system, and 〈·, ·〉 is the inner product in L2(R2). The L-level discrete framelet
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decomposition of f is then the coefficients {〈f, 2−L/2φ(2−L · −j)〉} at a prescribed
coarsest level L, and the framelet coefficients are

{〈f, 2−l/2ψi(2−l · −j)〉, 1 ≤ i ≤ r2 − 1}

for 0 ≤ l ≤ L. This decomposition can be written into a linear operator applied to
the discrete image f , i.e., Df with D ∈ Rk×n. By the UEP (4.3), DTD = I; thus the
row vectors of D form a tight frame system in Rn. In our implementations, we use
a multilevel tight framelet decomposition without downsampling under the Neumann
(symmetric) boundary condition. The detailed description can be found in [10,22].

4.2. Image deblurring. In this section, we give some new applications of split
Bregman methods to frame based image deblurring by the analysis based approach. In
other words, we want to find the underlying image u from its noisy blurred observation
f in (1.1), where A is a convolution operator, by solving problems in the form of (1.7)
or (1.8).

We assume that we are given a tight frame D under which real images have sparse
representations. Since the tight frame system D is redundant and has a left inverse
DT , we can have different approaches: the analysis based and the synthesis based
approaches. Although our focus here is on the computational side of the analysis
based approach, we will give some simulation results for the synthesis based approach
for reference.

4.2.1. Algorithms for the analysis based approach. In the analysis based
approach, we solve one of the following minimization problems:

min
u
‖Du‖1 +

µ

2
‖Au− f‖2 (4.4)

and

min
u
‖Du‖1 subject to ‖Au− f‖2 ≤ σ2. (4.5)

In other words, we minimize the `1 norm of the canonical coefficient ‖Du‖1 with
reasonable constraints.

Since (4.4) is a special case of (1.7), one can use the unconstrained split Bregman
method to solve it. Recall that DTD = I. Then, the unconstrained alternating split
Bregman method (1.11) for solving (4.4) becomes

uk+1 =
(
µATA+ λI

)−1(
µAT f + λDT (dk − bk)

)
,

dk+1 = T 1
λ

(Duk+1 + bk),
bk+1 = bk + δ(Duk+1 − dk+1).

(4.6)

Because A is a convolution operator, the first step in (4.6) is solved by the fast Fourier
transform if the circular boundary condition is used or by the discrete cosine transform
if the Neumann boundary condition is used. Also, the second step is an entrywise soft
thresholding. Therefore, at each step, the computational cost of (4.6) is O(n log n),
where n is the number of pixels of the image. A preliminary result for algorithm (4.6)
was shown in [14].

Since |·| = ‖·‖1 and D is a tight frame, (4.4) has a solution. Hence, it follows from
Theorem 3.2 that the energy ‖Duk‖1 + µ

2 ‖Au
k − f‖2 converges to the corresponding

minimum value of the energy functional ‖Du‖1 + µ
2 ‖Au − f‖2. Furthermore, the
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boundedness of the sequence {uk}k∈Z asserts that there exists at least one convergent
subsequence of {uk}k∈Z. Finally, when A is invertible, the sequence uk converges
to the unique solution of (4.5). We further remark that, in many image deblurring
applications, A is usually invertible, although the condition number is large.

To solve (4.5), one can use the Bregman iteration (2.12) for the equality con-
strained minimization problem (1.8) with an early stopping criterion

‖Auk − f‖2 ≤ σ2 (4.7)

to find a good approximate solution of (4.5). This approach has already been used
and discussed in, for example, [14, 47, 57, 68], when Bregman or linearized Bregman
iterations are used . Since the constrained split Bregman method (1.11) is essentially
the Bregman iteration (2.12) with the split Bregman method as an inner solver, we
apply (1.11) with the stopping criterion (4.7) to solve (4.5). This leads to the following
iteration: 

uk+1 =
(
µATA+ λI

)−1(
µAT (f − ck) + λDT (dk − bk)

)
,

dk+1 = T 1
λ

(Duk+1 + bk),
bk+1 = bk + δb(Duk+1 − dk+1),
ck+1 = ck + δc(Auk+1 − f).

(4.8)

We stop it whenever (4.7) is satisfied. Similar to the discussion for (4.6), the cost of
algorithm (4.8) at each step is also O(n log n).

A similar discussion as before leads to the following: (4.5) has a solution; for
{uk}k∈Z defined in (4.8), Auk converges to f , and the energy ‖Duk‖1 converges to
the minimum value of the energy functional ‖Du‖1; there is at least one convergent
subsequence of {uk}k∈Z; finally, when A is invertible, the sequence uk converges to
the unique solution of (4.5).

4.2.2. Algorithms for the synthesis based approach. We review some al-
gorithms for the synthesis based approach that are used here. Since the tight frame
satisfies DTD = I, DT is a synthesis operator. Therefore, the synthesis based ap-
proach is to solve one of the following minimization problems:

min
d
‖d‖1 +

µ

2
‖ADT d− f‖2 (4.9)

and

min
d
‖d‖1 subject to ‖ADT d− f‖2 ≤ σ2. (4.10)

The solution of (1.1) is taken as u = DT d.
Since (4.9) is a special case of (1.2), one can use (1.4) to solve it. This is essentially

the approach in [31, 40]; see also [24, 35, 46, 49]. This leads to the following iterative
algorithm:

dk+1 = Tδ
(
dk − δµDAT (ADT dk − f)

)
, (4.11)

where T is the soft-thresholding operator defined in (1.5).
For the model (4.10), we use a modified linearized Bregman iteration (1.6) with

an early stopping criterion as suggested by [14]. More precisely, given d0 = c0 = 0,
we iterate as {

ck+1 = ck − δDAT (AAT + λI)−1(ADT dk − f),
dk+1 = Tµ(ck+1)

(4.12)
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until the error is within the noise level, e.g., ‖ADT dk−f‖2 ≤ σ2. Here (AAT +λI)−1

serves as a preconditioner to accelerate the convergence.

4.2.3. Balanced approaches. While it depends on applications to determine
whether to use the synthesis based or the analysis based approach, there is a third
choice that balances these two approaches, and it can be helpful. This approach is
initiated in [25–27] and developed in [8–10, 15, 22, 25–27] for various applications. A
typical deblurring algorithm in the above references is given as follows:

uk+1 = DTTµD
(
uk − δAT (Auk − f)

)
. (4.13)

It was proved that the coefficient dk := TδD
(
uk − δµAT (Auk − f)

)
converges to a

solution of the minimization problem

min
d
µ‖d‖1 +

1
2
‖(I −DDT )d‖2 +

δ

2
‖ADT d− f‖2. (4.14)

The second term penalizes the distance of the frame coefficient d to the range of D.
This term makes (4.14) balance the synthesis based and the analysis based approaches.
To see this, we consider a more general approach, which has been proposed in [7,15],
by introducing a relative weight γ before the second term as follows:

min
d
µ‖d‖1 +

γ

2
‖(I −DDT )d‖2 +

δ

2
‖ADT d− f‖2. (4.15)

Corresponding iterative algorithms that converge to the solution of (4.15) are also
developed in [7, 15].

In this model, when γ = 0, (4.15) becomes the synthesis based approach (4.9),
while when γ = ∞, the tight frame coefficient d must be in the range of D; hence
(4.15) becomes the analysis based approach. Therefore, (4.15) is between the analysis
based and the synthesis based approaches, and so is (4.14) as a special case of (4.15).
See [11,15] for more details.

4.2.4. Numerical simulations. Simulation results for the algorithms discussed
in previous sections are shown in Figures 4.2 and 4.3. Here the tight frame D is gen-
erated by the masks of the piecewise linear framelet of [59]. In all the numerical
experiments here and hereafter, the iterations are stopped when (4.7) is satisfied or
the relative error is smaller than 5 × 10−4 for algorithms solving constrained mini-
mization problems, and they are stopped when ‖u

k+1−uk‖
‖f‖ ≤ 10−4 is met for the other

algorithms.
Split Bregman methods for the analysis based approach take only a few steps

of iterations to give out good results. Furthermore, since the computational cost
of one iteration of the split Bregman methods (4.6) and (4.8) is only O(n log n),
split Bregman methods are very efficient algorithms for models (4.4) and (4.5) in the
analysis based approach.

It can be seen from Figures 4.2 and 4.3 that the images restored by the analysis
based approach are smoother and have fewer artifacts. This is mainly because the
minimization is taken in the range of the analysis operator (i.e. among canonical
coefficients of the frame system used) in the analysis based approach. The norm
of a canonical coefficient is usually linked with the smoothness of the corresponding
solution; hence, implicitly, the analysis based approach penalizes the regularity of the
underlying image. This is also shown in the restored image based on the balanced
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(a) Noisy blurred image, 9 × 9
average kernel, noise std σ = 3,
PSNR=22.51dB.

(b) Analysis based approach by
(4.6), 19 iters, PSNR=26.40dB,
CPU time=14.6s.

(c) Analysis based approach by
(4.8), 16 iters, PSNR=26.49dB,
CPU time=12.4s.

(d) Synthesis based ap-
proach by (4.12), 11 iters,
PSNR=26.21dB, CPU time
7.1s.

(e) Synthesis based ap-
proach by (4.11), 179
iters, PSNR=26.08dB, CPU
time=119.4s.

(f) Balanced approach
by (4.13), 171 iters,
PSNR=26.21dB, CPU
time=107.3s.

Fig. 4.2. Deblurring results for 256× 256 Goldhill image.

approach, as there is a penalty term that penalizes the distance to the canonical
coefficient. The fact that the balanced methods given smoother restored images has
already been observed in, e.g., [8–10,15,22,25–27]. As mentioned before, the algorithm
in [14] (i.e. iteration (4.12)) is the synthesis based approach. Since it penalizes the
sparsity of the frame coefficient (normally not the canonical coefficient), it lacks the
penalty of the smoothness. The artifacts in the restored image were removed by a
bilateral filter in [14].

Finally, we note that, among all the algorithms, those involving the Bregman dis-
tance (cf. (b)–(d) in Figures 4.2 and 4.3) take many fewer steps than other algorithms.
This again shows that iterations based on the Bregman distance (e.g. linearized and
splitting Bregman iterations) are particularly efficient for various types of `1 mini-
mization as observed in [47].

4.3. Image inpainting. In this section, we apply split Bregman methods to
frame based image inpainting. Inpainting refers to problems of filling in the missing
part in images. Let Λ be the region of known pixels. Then, we want to recover u from

PΛu = PΛf,

where PΛ is a projection, or more precisely, a diagonal matrix with diagonals 1 if the
corresponding pixel is known or 0 otherwise. It arises, for example, from removing
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(a) Noisy blurred image, disk
kernel of radius 4, noise std σ =
3, PSNR=22.10dB.

(b) Analysis based approach by
(4.6), 18 iters, PSNR=25.30dB,
CPU time=13.8s.

(c) Analysis based approach by
(4.8), 16 iters, PSNR=25.37dB,
CPU time=12.5s.

(d) Synthesis based ap-
proach by (4.12), 12 iters,
PSNR=25.32dB, CPU
time=7.7s.

(e) Synthesis based ap-
proach by (4.11), 168
iters, PSNR=24.92dB, CPU
time=113.2s.

(f) Balanced approach
by (4.13), 155 iters,
PSNR=25.00dB, CPU
time=99.9s.

Fig. 4.3. Deblurring results for 256× 256 Boat image.

scratches in photos, in restoring ancient drawings, and in filling in the missing pixels
of images transmitted through a noisy channel. We need to extract information such
as edges and textures from the observed data to fill in the missing part such that
shapes and patterns are consistent in the human vision. There are basically two
kinds of methods for image inpainting. The first one is the variational or PDE based
method [2, 29, 30]. The other one is the wavelet based method [10, 43, 48]. Our tight
frame falls into the second category. We also remark that many of the variational or
PDE based methods can also be understood as analysis based approaches under more
general transforms.

Our focus here is on the analysis based approach. Other formulations such as the
synthesis based approach or the balanced approach of image inpainting can be found
in, e.g., [11,43]. For the analysis based approach, we solve a constrained minimization
problem

min
u
‖Du‖1 subject to PΛu = PΛf. (4.16)

By letting A = PΛ and | · | = ‖ · ‖1, this problem is transferred into a problem in the
form of (1.8). By applying (1.12) to image inpainting, we obtain an algorithm for
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image inpainting as follows:
uk+1 =

(
µPΛ + λI

)−1(
µPΛ(f − ck) + λDT (dk − bk)

)
,

dk+1 = T 1
λ

(Duk+1 + bk),
bk+1 = bk + δb(Duk+1 − dk+1),
ck+1 = ck + δcPΛ(uk+1 − f).

(4.17)

Since µPΛ + λI is a diagonal matrix, it is easy to be inverted; hence (4.17) can be
easily implemented.

Since | · | = ‖ · ‖1 and D is a tight frame, the previous discussions assert that
(4.16) has a solution. By applying Theorem 3.1 and the discussions following it, we
conclude that PΛu

k converges to PΛf . Moreover, the energy ‖Duk‖1 converges to
the minimum value of the energy functional ‖Du‖1, and there exists at least one
convergent subsequence of {uk}k∈Z.

The simulation result of (4.17) for the image inpainting is shown in Figure 4.4,
where D is generated by the piecewise linear framelet masks. It takes only 51 iter-
ations to give a very good inpainted image. Notice that, in each step of (4.19), the
computational cost is only O(n log n), where n is the number of pixels. Therefore,
(4.17) is a very efficient and effective algorithm for image inpainting.

A simulation result by the algorithm from [44,45] for the synthesis based approach,
which is essentially (4.11) with A = PΛ and the parameters µ, δ changing step by step,
is also given in Figure 4.4. We also show in Figure 4.4 a result by the algorithm for
the balanced approach, which is (4.13) with A = PΛ as proposed in [10]. Here again,
the analysis based approach generates a visually smoother restored image.

4.4. Cartoon-texture image inpainting. Real images usually have two lay-
ers, namely, the cartoon part and the texture part. The former one refers to the
piecewise smooth part of images, while the latter one models the oscillating part.
These two layers have very different characteristics; see [3, 54, 64]. Hence, we need to
use more than one system to represent the image with both cartoon and texture, and
adapt the inpainting algorithms to more than one tight frame systems. More precisely,
we use two tight frames, say D1 and D2, that can represent sparsely the cartoon and
texture parts of the image respectively. While it is known that framelets of [39, 59],
curvelets of [17], and translation invariant wavelets [34] can represent the cartoon
part sparsely, it is hard to say which system can represent the texture part sparsely.
However, it is believed that overlapped local discrete cosine transforms (LDCTs) can
sparsely approximate the texture part; see, e.g., [43,63]. Here again, we focus on the
analysis based approach, and the other approaches can be found in [11,43,63].

The analysis based approach is to solve the following constrained minimization
problem:

min
u1,u2

µ1‖D1u1‖1 + µ2‖D2u2‖1 subject to PΛ(u1 + u2) = PΛf, (4.18)

where u1 and u2 are the cartoon and the texture parts of the image respectively. By
letting

u =
[
u1

u2

]
, A =

[
PΛ PΛ

]
, D =

[
D1 0
0 D2

]
, |u| = µ1‖u1‖1 + µ2‖u2‖1,

(4.18) is transferred into a problem in the form of (1.8). By applying (1.12), we obtain
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(a) Observed 256× 256 image. (b) Analysis based approach by (4.17), 51 iters,
PSNR=33.86dB, CPU time=10.1s.

(c) Synthesis based approach by (4.11), 639 iters,
PSNR=32.43dB, CPU time=219.6s.

(d) Balanced approach by (4.13), 329 iters,
PSNR=33.82dB, CPU time=46.0s.

Fig. 4.4. Image inpainting results.

the following algorithm for simultaneous cartoon and texture image inpainting

uk+1
1 =

1
λ(λ+ 2µ)

PΛ

((
λµPΛf − µ(µ+ λ)ck1 + µ2ck2

)
+ λ(µ+ λ)DT1 (dk1 − bk1)− λµDT2 (dk2 − bk2)

)
+ (I − PΛ)DT1 (dk1 − bk1),

uk+1
2 =

1
λ(λ+ 2µ)

PΛ

((
λµPΛf − µ(µ+ λ)ck2 + µ2ck1

)
+ λ(µ+ λ)DT2 (dk2 − bk2)− λµDT1 (dk1 − bk1)

)
+ (I − PΛ)DT2 (dk2 − bk2),

dk+1
1 = Tµ1

λ
(D1u

k+1
1 + bk1),

dk+1
2 = Tµ2

λ
(D2u

k+1
2 + bk2),

bk+1
1 = bk1 + δb(D1u

k+1
1 − dk+1

1 ),
bk+1
2 = bk2 + δb(D2u

k+1
2 − dk+1

2 ),
ck+1
1 = ck1 + δc(PΛu

k+1
1 − PΛf),

ck+1
2 = ck2 + δc(PΛu

k+1
2 − PΛf).

(4.19)
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Similar to the inpainting algorithm with one frame system, we have that PΛ(uk1 +
uk2) converges to PΛf . Furthermore, the energy µ1‖D1u

k
1‖1 + µ2‖D2u

k
2‖1 converges

to the minimum value of the energy functional µ1‖D1u1‖1 + µ2‖D2u2‖1, and there
exists at least one convergent subsequence of {uk1 , uk2}k∈Z.

In the simulations, the frame system D1 is generated by the piecewise linear
framelet filter masks and D2 is an LDCT. Two simulation results of (4.19) are given
in Figures 4.5 and 4.6. It takes fewer than 100 iterations to give a very good inpainted
result, where both the cartoon part (e.g. the legs of the table in Figure 4.5) and the
texture part (e.g. the clothes of the girl in Figure 4.5) are well preserved. As a by-
product, the cartoon part and the texture part of the inpainted image are also shown.
We see that the two layers are very well separated. Note that, in each step of (4.19),
the computational cost is only O(n log n), where n is the number of pixels. Therefore,
(4.19) is a very efficient and effective algorithm for simultaneous cartoon and texture
image inpainting.

In the following, we give two special cases of the simultaneous cartoon and texture
inpainting, namely, the cartoon-texture image decomposition and the cartoon-texture
denoising. When Λ is the whole domain, i.e., PΛ = I, the simultaneous cartoon-
texture inpainting algorithm (4.19) becomes a cartoon-texture image decomposition
algorithm. The result is shown in Figure 4.7, which again shows that the split Bregman
method is very efficient for decomposing images into their cartoon and texture parts.

When Λ is the whole domain, i.e., PΛ = I, and there is noise, the model of
image inpainting becomes denoising. Correspondingly, the constrained split Bregman
algorithm (4.19) with an early stopping criterion becomes a cartoon-texture denoising
algorithm.

Finally, we can also use the unconstrained split Bregman algorithm for the anal-
ysis based approach for image inpainting, carton-texture image decomposition, and
image denoising. For simplicity, we next employ the unconstrained split Bregman
algorithm to get a denoising scheme. More precisely, we consider to solve the uncon-
strained minimization algorithm

min
u1,u2

µ1‖D1u1‖1 + µ2‖D2u2‖1 +
1
2
‖u1 + u2 − f‖22.

Then by choosing

u =
[
u1

u2

]
, A =

[
I I

]
, H(u) =

1
2
‖Au−f‖22, |u| = µ1‖u1‖1+µ2‖u2‖1,D =

[
D1

D2

]
and applying (1.11), we obtain another cartoon-texture denoising algorithm as follows:

uk+1
1 = 1

λ(λ+2)

(
(1 + λ)DT1 (dk1 − bk1)− λDT2 (dk2 − bk2) + f

)
,

uk+1
2 = 1

λ(λ+2)

(
(1 + λ)DT2 (dk2 − bk2)− λDT1 (dk1 − bk1) + f

)
,

dk+1
1 = Tµ1

λ
(D1u

k+1
1 + bk1),

dk+1
2 = Tµ2

λ
(D2u

k+1
2 + bk2),

bk+1
1 = bk1 + δb(D1u

k+1
1 − dk+1

1 ),
bk+1
2 = bk2 + δb(D2u

k+1
2 − dk+1

2 ).

(4.20)

Simulation results of the split Bregman methods (4.19) and (4.20) are given in
Figure 4.8. Again, this shows that they are very efficient for denoising images while
preserving textures.
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(a) Observed 512× 512 image (b) Inpainted by (4.19), 67 iters,
PSNR=33.77dB, CPU time=71.5s.

(c) Cartoon part of (b) (d) Texture part of (b)

Fig. 4.5. Simultaneous cartoon and texture inpainting by the split Bregman method.
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Fig. 4.7. Simultaneous cartoon and texture inpainting by the split Bregman method. The
number of iterations is 44 for the images in the left column and 64 for those in the right column,
and the CPU times are 12.3s, and 69.1s, respectively.
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[21] A. E. Çetin, Reconstruction of signals from Fourier transform samples, Signal Process., 16
(1989), pp. 129–148.

[22] A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math., 106 (2007),
pp. 529–587.

31



[23] A. Chambolle, An algorithm for total variation minimization and applications, J. Math.
Imaging Vision, 20 (2004), pp. 89–97.

[24] A. Chambolle, R. A. DeVore, N.-y. Lee, and B. J. Lucier, Nonlinear wavelet image pro-
cessing: variational problems, compression, and noise removal through wavelet shrinkage,
IEEE Trans. Image Process., 7 (1998), pp. 319–335.

[25] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen, Wavelet algorithms for high-resolution image
reconstruction, SIAM J. Sci. Comput., 24 (2003), pp. 1408–1432.

[26] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen, Tight frame: an efficient
way for high-resolution image reconstruction, Appl. Comput. Harmon. Anal., 17 (2004),
pp. 91–115.

[27] R. H. Chan, Z. Shen, and T. Xia, A framelet algorithm for enhancing video stills, Appl.
Comput. Harmon. Anal., 23 (2007), pp. 153–170.

[28] T. F. Chan, G. H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-
based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977 (electronic).

[29] T. F. Chan and J. Shen, Mathematical models for local nontexture inpaintings, SIAM J. Appl.
Math., 62 (2001/02), pp. 1019–1043 (electronic).

[30] T. F. Chan and J. Shen, Image processing and analysis, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2005. Variational, PDE, wavelet, and stochastic
methods.

[31] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, A variational formulation for
frame-based inverse problems, Inverse Problems, 23 (2007), pp. 1495–1518.

[32] S. S. Chen, D. L. Donoho, and M. A. Saunders, Atomic decomposition by basis pursuit,
SIAM Rev., 43 (2001), pp. 129–159 (electronic). Reprinted from SIAM J. Sci. Comput. 20
(1998), no. 1, 33–61 (electronic).

[33] X. Chen, Global and superlinear convergence of inexact Uzawa methods for saddle point prob-
lems with nondifferentiable mappings, SIAM J. Numer. Anal., 35 (1998), pp. 1130–1148
(electronic).

[34] R. R. Coifman and D. L. Donoho, Translation-invariant de-noising, in Wavelets and Statis-
tics, A. Antoniadis and G. Oppenheim, eds., vol. 103 of Lecture Notes in Statistics, New
York, 1995, Springer-Verlag, pp. 125–150.

[35] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting,
Multiscale Model. Simul., 4 (2005), pp. 1168–1200 (electronic).

[36] J. Darbon and S. Osher, Fast discrete optimization for sparse approximations and deconvo-
lutions, 2007. preprint.

[37] I. Daubechies, Ten lectures on wavelets, vol. 61 of CBMS-NSF Regional Conference Series in
Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, 1992.

[38] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–
1457.

[39] I. Daubechies, B. Han, A. Ron, and Z. Shen, Framelets: MRA-based constructions of wavelet
frames, Appl. Comput. Harmon. Anal., 14 (2003), pp. 1–46.

[40] I. Daubechies, G. Teschke, and L. Vese, Iteratively solving linear inverse problems under
general convex constraints, Inverse Probl. Imaging, 1 (2007), pp. 29–46.

[41] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–1306.
[42] M. Elad, P. Milanfar, and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse

Problems, 23 (2007), pp. 947–968.
[43] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, Simultaneous cartoon and texture

image inpainting using morphological component analysis (MCA), Appl. Comput. Harmon.
Anal., 19 (2005), pp. 340–358.

[44] M. Fadili and J.-L. Starck, Sparse representations and bayesian image inpainting, in Proc.
SPARS’05, Vol. I, Rennes, France, 2005.

[45] M. Fadili, J.-L. Starck, and F. Murtagh, Inpainting and zooming using sparse representa-
tions, The Computer Journal, 52 (2009), pp. 64–79.

[46] M. A. T. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image restoration,
IEEE Trans. Image Process., 12 (2003), pp. 906–916.

[47] T. Goldstein and S. Osher, The Split Bregman Algorithm for L1 Regularized Problems,
SIAM J. Imaging Sci., 2 (2009), pp. 323–343.

[48] O. G. Guleryuz, Nonlinear approximation based image recovery using adaptive sparse re-
constructions and iterated denoising – part II: Adaptive algorithms, IEEE Trans. Image
Process., 15 (2006), pp. 555–571.

[49] E. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for l1-minimization: methodology

32



and convergence, SIAM J. Optim., 19 (2008), pp. 1107–1130.
[50] Q. Hu and J. Zou, Two new variants of nonlinear inexact Uzawa algorithms for saddle-point

problems, Numer. Math., 93 (2002), pp. 333–359.
[51] Q. Hu and J. Zou, Nonlinear inexact Uzawa algorithms for linear and nonlinear saddle-point

problems, SIAM J. Optim., 16 (2006), pp. 798–825 (electronic).
[52] R.-Q. Jia, H. Zhao, and W. Zhao, Convergence analysis of the Bregman method for the

variational model of image denoising, Appl. Comput. Harmon. Anal., (27) 2009, pp. 367–
379.

[53] M. Li, B. Hao, and X. Feng, Iterative regularization and nonlinear inverse scale space based
on translation invariant wavelet shrinkage, Int. J. Wavelets Multiresolut. Inf. Process., 6
(2008), pp. 83–95.

[54] Y. Meyer, Oscillating patterns in image processing and nonlinear evolution equations, vol. 22
of University Lecture Series, American Mathematical Society, Providence, RI, 2001. The
fifteenth Dean Jacqueline B. Lewis memorial lectures.

[55] M. Nikolova, Local strong homogeneity of a regularized estimator, SIAM J. Appl. Math., 61
(2000), pp. 633–658 (electronic).

[56] M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Applica-
tion to the processing of outliers, SIAM J. Numer. Anal., 40 (2002), pp. 965–994 (elec-
tronic).

[57] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method
for total variation-based image restoration, Multiscale Model. Simul., 4 (2005), pp. 460–489
(electronic).

[58] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration for compressed
snsing and sparse denoising, Commu. Math. Sci., to appear.

[59] A. Ron and Z. Shen, Affine systems in L2(Rd): the analysis of the analysis operator, J.
Funct. Anal., 148 (1997), pp. 408–447.

[60] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Phys. D, 60 (1992), pp. 259–268.

[61] S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage, in Pro-
ceedings of SSVM ’09, Lecture Notes in Comput. Sci. 5567, Springer, Berlin, 2009, pp. 464–
476.

[62] S. Setzer and G. Steidl, Split Bregman method, gradient descent reprojection method and
Parseval frames, 2008. preprint.

[63] J.-L. Starck, M. Elad, and D. L. Donoho, Image decomposition via the combination of
sparse representations and a variational approach, IEEE Trans. Image Process., 14 (2005),
pp. 1570–1582.

[64] L. A. Vese and S. J. Osher, Modeling textures with total variation minimization and oscil-
lating patterns in image processing, J. Sci. Comput., 19 (2003), pp. 553–572. Special issue
in honor of the sixtieth birthday of Stanley Osher.

[65] C. Vogel and M. Oman, Fast, robust total variation-based reconstruction of noisy, blurred
images, IEEE Trans. Image Process., 7 (1998), pp. 813–824.

[66] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for
total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.

[67] J. Xu and S. J. Osher, Iterative regularization and nonlinear inverse scale space applied to
wavelet-based denoising, IEEE Trans. Image Process., 16 (2007), pp. 534–544.

[68] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for `1-
minimization with applications to compressed sensing, SIAM J. Imaging Sci., 1 (2008),
pp. 143–168.

[69] X. Zhang, M. Burger, X. Bresson, and S. Osher, Bregmanized Nonlocal Regularization for
Deconvolution and Sparse Reconstruction, 2009. UCLA CAM Report (09-03).

33


