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Section 1
Wave Equations

1.1 Introduction
This first section of these notes is intended as a very basic introduction to the theory of

wave equations, concentrating on the case of a single space dimension. We will start pretty
much from scratch, not assuming any prior experience with either the special terminology or
the techniques used in working with these equations. On the other hand, given the nature
of the audience, I will assume a fairly sophisticated general background in analysis.

An experienced applied mathematician can often tell a great deal about the behavior of
solutions to a wave equation from just a cursory look at its structure. My goal in the next
few sections is to disclose some of the secrets that make this possible.

What we mean by a wave equation will gradually be made more precise as we proceed.
At first, we will just a mean a certain kind of ordinary differential equation on the space
C∞(Rn, V ), where V is some finite dimensional vector space, usually R or C, (and generally
we will take n = 1). Thus the wave equation will look like:

(∗) ut = f(u),

where u signifies a point of C∞(Rn, V ), ut means du
dt , and f is a special kind of map of

C∞(Rn, V ) to itself, namely it is a “partial differential operator”, i.e., f(u)(x) is a smooth
function F (u(x), uxi

(x), uxixj
(x), . . .) of the values of u and certain of its partial derivatives

at x. (In fact, below the function F will almost always be a polynomial.) A solution of (∗)
is a smooth curve u(t) in C∞(Rn, V ), such that if we write u(t)(x) = u(x, t), then

∂u

∂t
(x, t) = F

(
u(x),

∂u

∂xi
(x, t),

∂2u

∂xi∂xj
(x, t), . . .

)
.

We will be interested in solving the so-called “Cauchy Problem” for such partial differ-
ential equations, i.e., finding a solution, in the above sense, with u(x, 0) some given element
u0(x) of C∞(Rn, V ). So far, this should more properly be called simply an “evolution equa-
tion”. In general such equations will describe evolving phenomena which are not wave-like
in character and, as we said above, it is only after certain additional assumptions are made
concerning the function F that it is appropriate to call such an evolution equation a wave
equation.

We will be interested of course in the obvious questions of existence, uniqueness, and
general properties of solutions of the Cauchy problem, but even more it will be the nature
and properties of certain special solutions that will concern us. In particular we will try to
understand the mechanism behind the remarkable behavior of the so-called soliton solutions
of certain special wave equations such as the Korteweg de Vries Equation (KdV), the Sine-
Gordon Equation (SGE), the Nonlinear Schrödinger Equation (NLS), and other so-called
“integrable equations”.
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As well as first order ODE on C∞(Rn, V ) we could also consider second and higher order
ODE, but these can be easily reduced to first order ODE by the standard trick of adding
more dependent variables. For example, to study the classic wave equation in one space
dimension, utt = c2uxx, a second order ODE, we can add a new independent variable v and
consider instead the first order system ut = v, vt = c2uxx (which we can put in the form (*)
by writing Ut = F (U), with U = (u, v), F (u, v) = (v, c2uxx)).

1.2 Travelling Waves and Plane Waves
Before discussing particular model wave equations, we will look at the kind of behavior we

expect to see in solutions. There are a number of important simplifications in the description
of wave propagation for the case of a single space dimension, and to develop a feeling for
many of the important concepts it is best to see them first without the extra complexities
that come with higher dimensions, so in what follows we will concentrate almost solely on
the case n = 1.

Let’s recall the basic intuitive idea of what is meant by “wave motion”. Suppose that
u(x, t) represents the “strength” or “amplitude” of some scalar physical quantity at the
spatial point x and time t. If you like, you can think of u as representing the height of
water in a canal. Then the graph of u0(x) = u(x, t0) gives a snapshot of u at time t0. It is
frequently the case that we can understand the evolution of u in time as representing the
propagation of the shape of this graph. In other words, for t1 close to t0, the shape of the
graph of u1(x) = u(x, t1) near x0 will be related in some simple way to the shape of u0 near
x0.

Perhaps the purest form of this is exhibited by a so-called travelling wave. This is a
function u of the form u(x, t) = f(x− ct) where f : R → V is a function defining the wave
shape, and c is a real number defining the propagation speed of the wave. Let us define the
profile of the wave at time t to be the graph of the function x �→ u(x, t). Then the initial
profile (at time t = 0) is just the graph of f , and at any later time t, the profile at
time t is obtained by translating each point (x, f(x)) of the initial profile ct units
to the right to the point (x + ct, f(x)). In other words, the wave profile of a travelling
wave just propagates by rigid translation with velocity c.

(We will see below that the general solution of the equation ut − cux is an arbitrary
travelling wave moving with velocity c, and that the general solution to the equation utt −
c2uxx is the sum (or “superposition”) of two arbitrary travelling waves, both moving with
speed |c|, but in opposite directions.)

There is a special kind of complex-valued travelling wave, called a plane wave, that plays
a fundamental rôle in the theory of linear wave equations. The general form of a plane wave
is u(x, t) = Aeiφei(kx−ωt), where A is a positive constant called the amplitude, φ ∈ [0, 2π) is
called the initial phase, and k and ω are two real parameters called the wave number and
angular frequency . (Note that k

2π is the number of waves per unit length, while ω
2π is the

number of waves per unit time.) Rewriting u in the form u(x, t) = Aeiφeik(x−ω
k t), we see

that it is indeed a travelling wave and that its propagation velocity is ω
k .

In studying a wave equation, one of the first things to look for is the travelling wave
solutions (if any) that it admits. For linear wave equations (with constant coefficients) we
will see that for each wave number k there is a unique angular frequency ω(k) for which the
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equation admits a plane wave solution, and the velocity ω(k)
k of this plane wave as a function

of k (the so-called dispersion relation of the equation) not only completely determines the
equation, but is crucial to understanding how solutions of the equation disperse as time
progresses. Moreover, the fact that there is a unique (up to a multiplicative constant)
travelling wave solution uk(x, t) = ei(kx−ω(k)t) for each wave number k will allow us to solve
the equation easily by representing the general solution as a superposition of these solutions
uk; this is the Fourier method.

1.2.1 Remark. For nonlinear wave equations, the travelling wave solutions are in general
severely restricted. Usually only special profiles, characteristic of the particular equation,
are possible for travelling wave solutions. In particular they do not normally admit any
solutions of the plane wave form Aeiφei(kx−ωt).

The concepts of travelling wave and plane wave still make sense when the spatial dimension
n is greater than one. Given an initial “profile” f : Rn → V , and a “direction” η ∈ Sn−1,
we can define the travelling wave u(x, t) with profile f and moving with speed γ in the
direction η by u(x, t) := f(x− γtη). Note that the graph of the function x �→ u(x, t) is just
the graph of f translated by γtη, so it indeed travels in the direction η with speed γ. If
we choose a basis vi for V , then we can write f as a finite sum f(x) =

∑d
i=1 fi(x)vi where

fi : Rn → C, thus essentially reducing consideration to the case V = C, so we will assume
that f is scalar valued in what follows.

If κ ∈ Sn−1 is a direction, then the fibers of the projection Πκ : x �→ x · κ of Rn onto R
foliates Rn by the hyperplanes x · κ = a orthogonal to κ. A profile, f : Rn → C, that is
constant on each such hyperplane is called a “plane wave profile”, and will be of the form
f(x) = g(x · κ) where g : R → C. If we define c = γκ · η, then the corresponding travelling
plane wave is f(x−γtη) = g(x ·κ− ct), i.e., just the travelling wave with profile g and speed
c on R, pulled back to Rn by Πκ.

The exponential plane wave u(x, t) = ei(kx−ωt) that we used for the case n = 1 has the
profile u(y, 0) = eiky. If we use this same profile for n > 1, i.e., define g(y) = eiky, then our
travelling waves will have the form eik(x·κ−ct) = ei(kx·κ−ωt) where, as above, ω = kc. If we
define ξ = kκ and recall that κ was a unit vector, then our travelling wave is uξ,ω(x, t) =
ei(x·ξ−ωt), where now the wave number is ‖ξ‖, and the speed, c, is related to the angular
frequency ω by c = ω

‖ξ‖ . At any point, x, uξ,ω(x, t) is periodic in t with frequency ω
2π , and

fixing t, uξ,ω(x, t) is periodic with period ‖ξ‖
2π along any line parallel to ξ. We shall see that

for n > 1 too, there is a dispersion relation associated to any linear wave equation, and
the Fourier magic still works; i.e., for each ξ there will be a unique frequency ω(ξ) such
that uξ(x, y) = uξ,ω(ξ)(x, t) is a solution of the wave equation, and we will again be able to
represent the general solution as a superposition of these special travelling wave solutions.

1.3 Some Model Equations
In this section we will introduce some of the more important model wave equations (and

classes of wave equations) that will be studied in more detail in later sections

1.3—Example 1. Perhaps the most familiar wave equation is utt − c2∆u = 0, and I
will refer to it as “The Classic Wave Equation”. Here ∆ is the Laplace operator, and the
operator ∂2

∂t2 − ∆ is called the wave operator, or D’Alembertian operator. We can reduce
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this to the first-order form considered above by replacing the one-component vector u by a
two-component vector (u, v) that satisfies the PDE (u, v)t = (v, c2∆u), i.e., the wave shape
u and velocity v satisfy the system of two linear PDE ut = v and vt = c2∆u. As we shall
see next, in one space dimension it is extremely easy to solve the Cauchy problem for the
Classic Wave Equation explicitly.

Namely, in one space dimension we can factor the wave operator, ∂2

∂t2 − c2 ∂2

∂x2 , as the
product( ∂

∂t − c ∂
∂x )( ∂

∂t + c ∂
∂x ). This suggests that we transform to so-called “characteristic

coordinates”, ξ = x − ct and η = x + ct, in which the wave equation becomes simply
∂2u
∂ξ∂η = 0. This clearly has the general solution u(ξ, η) = F (ξ) + G(η), so transforming back
to “laboratory coordinates” x, t, the general solution is u(x, t) = F (x − ct) + G(x + ct). If
the initial shape of the wave is u(x, 0) = u0(x) and its initial velocity is ut(x, 0) = v(x, 0) =
v0(x), then an easy algebraic computation gives the following very explicit formula:

u(x, t) =
1
2
[u0(x− ct) + u0(x + ct)] +

1
2c

∫ x+ct

x−ct

v0(ξ) dξ,

known as “D’Alembert’s Solution” of the Cauchy Problem for the Wave Equation in one
space dimension. Note the geometric interpretation in the important “plucked string” case,
v0 = 0; the initial profile u0 breaks up into the sum of two travelling waves, both with the
same profile u0/2, and one travels to the right with speed c and the other to the left with
speed c. (We shall see later that something similar happens when n > 1. One can again
decompose the initial shape, but now into a continuous superposition of shapes uκ, one for
each “direction” κ on the unit sphere Sn−1, and each uk then moves as a travelling wave
with the speed c in the direction ξ.)

! 1.3—Exercise 1. Derive D’Alembert’s solution. (Hint: u0(x) = F (x) + G(x), so
u′

0(x) = F ′(x) + G′(x), while v0(x) = ut(x, 0) = −cF ′(x) + cG′(x).)

1.3.1 Remark. There are a number of important consequences that follow easily from the
form of the D’Alembert solution:

a) The solution is well-defined for initial conditions (u0, v0) in the space of distributions,
and gives a flow on this much larger space.

b) The quantity
∫ ∞
−∞ |ut|2 + |ux|2 dx is a “constant of the motion”. More precisely, if this

integral is finite at one time for a solution u(x, t), then it is finite and has the same value
at any other time.

! 1.3—Exercise 2. Prove this.
(Hint: |ut(x, t)|2 + |ux(x, t)|2 = 2|F ′(x + ct)|2 + 2|G′(x− ct)|2.)

c) The “domain of dependence” of a point (x, t) of space-time consists of the interval [x −
ct, x+ ct]. That is, the value of any solution u at (x, t) depends only on the values u0 and
v0 in the interval [x− ct, x+ ct]. Another way to say this is that the “region of influence”
of a point x0 consists of the interior of the “light-cone” with vertex at x0, i.e., all points
(x, t) satisfying x0 − ct < x < x0 + ct. (These are the points having x0 in their domain
of dependence.) Still a third way of stating this is that the Classical Wave Equation has
signal propagation speed c, meaning that the value of a solution at (x, t) depends only on
the values of u0 and v0 at points x0 from which a signal propagating with speed c could
reach x in time t (i.e., points inside the sphere of radius ct about x.)
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1.3—Example 2. The “Linear Advection Equation”, ut − cux = 0. Using again the trick
of transforming to the coordinates, ξ = x−ct, η = x+ct, now the equation becomes ∂u

∂ξ = 0,
and hence the general solution is u(ξ) = constant, and the solution to the Cauchy Problem
is u(x, t) = u0(x− ct). As before we see that if u0 is any distribution then u(t) = u0(x− ct)
gives a well-defined curve in the space of distributions that satisfies ut− cux = 0, so that we
really have a flow on the space of distributions whose generating vector field is c ∂

∂x . Since
c ∂

∂x is a skew-adjoint operator on L2(R), it follows that this flow restricts to a one-parameter
group of isometries of L2(R), i.e.,

∫ ∞
−∞ u(x, t)2 dx is a constant of the motion.

! 1.3—Exercise 3. Prove directly that d
dt

∫ ∞
−∞ u(x, t)2 dx is zero. (Hint: It suffices to

show this when u0 is smooth and has compact support, since these are dense in L2. Now for
such functions we can rewrite the integral as

∫ ∞
−∞

∂
∂tu(x, t)2 dx and the result will follow if

we can show that ∂
∂tu(x, t)2 can be written for each t in the form d

dxh(x), where h is smooth
and has compact support.)

1.3.2 Remark. Clearly the domain of dependence of (x, t) is now just the single point
x− ct, the region of influence of x0 is the line x = x0 + ct, and the signal propagation speed
is again c. The main difference with Example 1 is that the Linear Advection Equation
describes wave moving in one direction with velocity c, while The Classic Wave Equation
describes wave moving in both directions with velocity c.

! 1.3—Exercise 4. (Duhamel’s Principle.) The homogeneous Linear Advection Equa-
tion describes waves moving to the right in a non-dispersive and and non-dissipative one-
dimensional linear elastic medium when there are no external forces acting on it. (The
italicised terms will be explained later.) If there is an external force, then the appropriate
wave equation will be an inhomogeneous version of the equation, ut − cux = F (x, t). Show
that the Cauchy Problem now has the solution u(x, t) = u0(x− ct) +

∫ t

0
F (x− ct + cξ, ξ) dξ.

1.3—Example 3. General Linear Evolution Equation, ut + P ( ∂
∂x )u = 0. Here P (ξ) is a

polynomial with complex coefficients. For example, if P (ξ) = −cξ then we get back the
Linear Advection Equation. We will outline the theory of these equations in a separate
subsection below where as we shall see, they can analyzed easily and thoroughly using the
Fourier Transform. It will turn out that to qualify as a wave equation, the odd coefficients
of the polynomial P should be real and the even coefficients pure imaginary, or more simply,
P (iξ) should be imaginary valued on the real axis. This is the condition for P ( ∂

∂x ) to be a
skew-adoint operator on L2(R).

1.3—Example 4. The General Conservation Law, ut = (F (u))x. Here F (u) can any
smooth function of u and certain of its partial derivatives with respect to x. For exam-
ple,if P (ξ) = a1ξ + · · · + anξn, we can get the linear evolution equation ut = P ( ∂

∂x )u by
taking F (u) = a1u + · · · + an

∂n−1u
∂xn−1 , and F (u) = −( 1

2u2 + δ2uxx) gives the KdV equation
ut + uux + δ2uxxx = 0 that we consider just below. Note that if F (u(x, t)) vanishes at
infinity then integration gives d

dt

∫ ∞
−∞ u(x, t) dx = 0, i.e.,

∫ ∞
−∞ u(x, t) dx is a “constant of the

motion”, and this is where the name “Conservation Law” comes from. We will be concerned
mainly with the case that F (u) is a zero-order operator, i.e., F (u)(x) = F (u(x)), where F
is a smooth function on R. In this case, if we let f = F ′, then we can write our Conser-
vation Law in the form ut = f(u)ux. In particular, taking f(ξ) = c (i.e., F (ξ) = cξ) gives
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the Linear Advection Equation ut = cux, while F (ξ) = − 1
2ξ2 gives the important Inviscid

Burgers Equation, ut + uux = 0.

There is a very beautiful and highly developed theory of such Conservation Laws, and
again we will devote a separate subsection to outlining some of the basic results from this
theory. Recall that for the Linear Advection Equation we have an explicit solution for
the Cauchy Problem, namely u(x, t) = u0(x − ct), which we can also write as u(x, t) =
u0(x − f(u(x, t))t), where f(ξ) = c. If we are incredibly optimistic we might hope that
we could more generally solve the Cauchy Problem for ut = f(u)ux by solving u(x, t) =
u0(x − f(u(x, t))t) as an implicit equation for u(x, t). This would mean that we could
generalize our algorithm for finding the profile of u at time t from the initial profile as follows:
translate each point (ξ, u0(ξ)) of the graph of u0 to the right by an amount f(u0(ξ))t to
get the graph of x �→ u(x, t). This would of course give us a simple method for solving any
such Cauchy Problems, and the amazing thing is that this bold idea actually works.
However, one must be careful. As we shall see, this algorithm (which goes under the name
“the method of characteristics”) contains the seeds of its own eventual failure. For a general
initial condition u0 and function f , we shall see that we can predict a positive time TB (the
so-called “breaking time”) after which the solution given by the method of characteristics
can no longer exist as a smooth, single-valued funtion.

1.3—Example 5. The Korteveg-de Vries (KdV) Equation, ut + uux + δ2uxxx = 0. If we
re-scale the independent variables by t → βt and x → γx, then the KdV equation becomes:

ut+
(

β

γ

)
uux+

(
β

γ3

)
δ2uxxx = 0,

so by appropriate choice of β and γ we can obtain any equation of the form ut + λuux +
µuxxx = 0, and any such equation is referred to as “the KdV equation”. A commonly
used choice that is convenient for many purposes is ut + 6uux + uxxx = 0, although the
form ut − 6uux + uxxx = 0 (obtained by replacing u by −u) is equally common. We will
use both these forms. This is surely one of the most important and most studied of all
evolution equations. It is over a century since it was shown to govern wave motion in
a shallow channel, but less than forty years since the remarkable phenomenon of soliton
interactions was discovered in studying certain of its solutions. Shortly thereafter the so-
called Inverse Scattering Transform (IST) for solving the KdV equation was discovered
and the equation was eventually shown to be an infinite dimensional completely integrable
Hamiltonian system. This equation, and its remarkable properties will be one of our main
objects of study.

1.3—Example 6. The Sine-Gordon Equation (SGE), utt − uxx = sin(u). This equation
is considerably older than KdV. It was discovered in the late eighteen hundreds to be
the master equation for the study of “pseudospherical” surfaces, i.e., surfaces of Gaussian
curvature K equal to −1 immersed in R3, and for that reason it was intensively studied
(and its solitons discovered, but not recognized as such) long before KdV was even known.
However it was only in the course of trying to find other equations that could be solved by
the IST that it was realized that SGE was also a integrable equation.

1.3—Example 7. The Nonlinear Schrödinger Equation, iut + uxx + u|u|2 = 0. This is
of more recent origin. It was the third evolution equation shown to have soliton behavior
and to be integrable, and recently has been intensively studied because it describes the
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propagation of pulses of laser light in optical fibers. The latter technology that is rapidly
becoming the primary means for long-distance, high bandwidth communication, which in
turn is the foundation of the Internet and the World Wide Web.

1.4 Linear Wave Equations—Dispersion and Dissipation
Evolution equations that are not only linear but also translation invariant (i.e., have

constant coefficients) can be solved explicitly using Fourier methods. They are interesting
both for their own sake, and also because they can serve as a tool for studying nonlinear
equations.

The general linear evolution equation has the form ut + P ( ∂
∂x )u = 0, where to begin

with we can assume that the polynomial P has coefficients that are smooth complex-valued
functions of x and t: P ( ∂

∂x )u =
∑r

i=1 ai(x, t)∂iu
∂xi . For each (x0, t0), we have a space-time

translation operator T(x0,t0) acting on smooth functions of x and t by T(x0,t0)u(x, t) =
u(x − x0, t − t0). We say that the operator P ( ∂

∂x ) is translation invariant if it commutes
with all the T(x0,t0).

! 1.4—Exercise 1. Show that the necessary and sufficient condition for P ( ∂
∂x ) to be

translation invariant is that the coefficients ai of P should be constant complex numbers.

1.4.1 Invariance Principles.

There are at least two good reasons to assume that our equation is translation invariant.
First, the eminently practical one that in this case we will be able to use Fourier transform
techniques to solve the initial value problem explicitly, and investigate in detail the nature
of its solutions.

But there is frequently an even more important philosophical reason for postulating trans-
lation invariance. Assume that we are trying to model the dynamics of some fundamental
physical field quantity u by an evolution equation of the above type. Thus x will denote
the “place where”, and t the “time when” the quantity has the value u(x, t). Now, if our
proposed physical law is indeed “fundamental”, it’s validity should not depend on where or
when it is applied—it will be the same on Alpha Centauri as on Earth, and the same in
a million years as it is today—we can even take that as part of the definition of what we
mean by fundamental. The way to give a precise mathematical formulation of this principle
of space-time symmetry or homogeneity is to demand that our equation should be invariant
under some transitive group acting on space and time.

But, like most philosophical discussions, this only begs a deeper question. How does it
happen that the space-time we live in appears to admit a simply-transitive abelian group
action under which the physical laws are invariant? On the level of Newtonian physics (or
Special Relativity) this is simply taken as axiomatic. General Relativity gives an answer that
is both more sophisticated and more satisfying. The basic symmetry principle postulated
is the Principle of Equivalence. This demands that the truly Fundamental Laws of Physics
should be invariant under the (obviously transitive) group of all diffeomorphisms of space-
time. Of course there are very few laws that are that fundamental—but Einstein’s Field
Equations for a (pseudo-)Riemannian metric on space-time is one of them, and the physical
evidence for its correctness is pretty overwhelming. In a neighborhood of any point of space-
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time we can then coordinatize space-time by using geodesic coordinates (i.e., by identifying
space-time with its tangent space at that point using the Riemannian exponential map). To
use Einstein’s lovely metaphor, we get into an elevator and cut the rope. In these natural
coordinates, the space-time appears flat to second order, and the translation group that
comes from the linear structure of the tangent space is an approximate symmetry group.

I will not try here to answer the still far deeper philosophical mystery of why our physical
world seems to be governed by laws that exhibit such remarkable symmetry. This is closely
related to what Eugene Wigner called “The Unreasonable Effectiveness of Mathematics in
the Natural Sciences” in a famous article by that name [W]. (For another view of this topic
see [H].) But I cannot help wondering if the so-called “Anthropic Principle” is not at least
part of the answer. Perhaps only a Universe governed by such symmetry principles manifests
the high degree of stability that is conducive to the evolution of the kind of self-cognizant,
intelligent life that would worry about this point. In other words: mathematicians, physi-
cists, and philosophers can exist to wonder about why such fundamental laws govern, only
in those universes where they do in fact govern.

In any case, we shall henceforth assume that P does in fact have constant complex
numbers as coefficients. If we substitute the Ansatz u(x, t) = ei(kx−ωt) into our linear
equation, ut + P ( ∂

∂x )u = 0, then we find the relation −iωu + P (ik)u = 0, or ω = ω(k) :=
1
i P (ik). For u(x, t) to be a plane wave solution, we need the angular frequency, ω, to be
real. Thus, we will have a (unique) plane wave solution for each real wave number k just
when 1

i P (ik) is real (or P (ik) is imaginary) for k on the real axis. This just translates into
the condition that the odd coefficients of P should be real and the even coefficients pure
imaginary. Let us assume this in what follows. As we shall see, one consequence will be that
we can solve the initial value problem for any initial condition u0 in L2, and the solution is a
superposition of these plane wave solutions—clearly a strong reason to consider this case as
describing honest “wave equations”, whatever that term should mean. Then we will follow
up by taking a look at what happens when we relax this condition.

The relation ω(k) := 1
i P (ik) relating the angular frequency ω and wave number k of

a plane wave solution of a linear wave equation is called the dispersion relation for the
equation. The propagation velocity of the plane wave solution with wave number k is called
the phase velocity at wave number k, and is given by the formula ω(k)

k = 1
ikP (ik) (which is

also sometimes referred to as the dispersion relation for the equation). It is important to
observe that the dispersion relation is not only determined by the polynomial P that defines
the evolution equation, but it conversely determines P .

Now let u0 be any initial wave profile in L2, so that u0(x) =
∫

û0(k)eikx dk, where
û0(k) = 1

2π

∫
u0(x)e−ikx dk is the Fourier Transform of u. Defining û(k, t) = e−P (ik)tû0(k),

we see that û(k, t)eikx = û0(k)eik(x−ω(k)
k t) is a plane wave solution to our equation with

initial condition û0(k)eikx. We now define u(x, t) (formally) to be the superposition of
these plane waves: u(x, t) ∼

∫
û(k, t)eikx dk. So far we have not really used the fact that

P (ik) is imaginary for k real, and this u(x, t) would still be a formal solution without
that assumption. The way we shall use the condition on P is to notice that it implies
|e−P (ik)t| = 1. Thus, |û(k, t)| = |û0(k)|, so û(k, t) is in L2 for all t, and in fact it has
the same norm as û0. It then follows from Plancherel’s Theorem that u(x, t) is in L2 for
all t, and has the same norm as u0. It is now elementary to see that our formal solution
u(x, t) is in fact an honest solution of the Cauchy Problem for our evolution equation, and
in fact defines a one-parameter group of unitary transformations of L2. (Another way to
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see this is to note that since ∂
∂x is a skew-adjoint operator on L2, so is any odd power or

i times any even power, so that P ( ∂
∂x ), is skew-adjoint and and hence exp(−P ( ∂

∂x )t) is a
one-parameter group of unitary transformations of L2. But a rigorous proof that ∂

∂x is a
skew-adjoint operator (and not just formally skew-adjopint) involves essentially the same
Fourier analysis.)

We next look at what can happen if we drop the condition that the odd coefficients of P
are real and the even coefficients pure imaginary.

Consider first the special case of the Heat (or Diffusion) Equation, ut − αuxx = 0, with
α > 0. Here P (x) = −αX2, so |e−P (ik)t| = |e−k2t|. Thus, when t > 0, |e−P (ik)t| < 1, and
|û(k, t)| < |û0(k)|, so again u(k, t) is in L2 for all t, but now ‖u(x, t)‖L2 < ‖u0(x)‖L2 . Thus
our solution is not a unitary flow on L2, but rather a contracting, positive semi-group. In
fact, it is easy to see that for each initial condition u0 ∈ L2, the solution tends to zero in
L2 exponentially fast as t → ∞, and in fact it tends to zero uniformly too. This so-called
dissipative behavior is clearly not very “wave-like” in nature, and the Heat Equation is not
considered to be a wave equation. On the other hand, the fact that the propagator |e−P (ik)t|
is so rapidly decreasing implies very strong regularity for the solution u(x, t) as a function
of x as soon as t > 0.

! 1.4—Exercise 2. Show that for any initial condition u0 in L2, the solution u(x, t)
of the Heat Equation is an analytic function of x for any t > 0. (Hint: If you know the
Paley-Wiener Theorem, this is of course an immediate consequence, but it is easy to prove
directly.)

What happens for t < 0? In this case |e−P (ik)t| = |e−k2t| is not an essentially bounded
function of k, and indeed grows more rapidly than any polynomial, so that multiplication
by it does not map L2 into itself. or any of the Sobolev spaces. In fact, it is immediate
from the above exercise, that if u0 ∈ L2 is not analytic, then there cannot be an L2 solution
u(x, t) of the Heat Equation with initial condition u0 on any non-trivial interval (−T, 0].

It is not hard to extend this analysis for the Heat Equation to any monomial P : P (X) =
anXn, where an = α+iβ. Then |e−P (ik)t| = |einαt||ein+1βt|. If n = 2m is even, this becomes
|e(−1)mαt|, while if n = 2m+1 is odd, it becomes |e(−1)(m+1)βt|. If α (respectively β) is zero,
we are back to our earlier case that gives a unitary flow on L2. If not, then we get essentially
back to the dissipative semi-flow behavior of the heat equation. Whether the semi-flow is
defined for t > 0 or t < 0 depends on the parity of m and the sign of α (repectively β).

! 1.4—Exercise 3. Work out the details.

We will now return to our assumption that P (D) is a skew-adjoint operator, i.e., the
odd coefficients of P (X) are real and the even coefficients pure imaginary. We next note
that this seemingly ad hoc condition is actually equivalent to a group invariance principle,
similar to translation invariance.

1.4.2 Symmetry Principles in General—and CPT in Particular.

One of the most important ways to single out important and interesting model equations
for study is to look for equations that satisfy various symmetry or invariance principles.
Suppose our equation is of the form E = 0 where E is some differential operator on a linear
space F of smooth functions, and we have some group G that acts on F . Then we say that
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the equation is G-invariant (or that G is a symmetry group for the equation) if the operator
E commutes with the elements of G. Of course it follows that if u ∈ F is a solution of E = 0,
then so is gu for all g in G.

As we have already noted, the evolution equation ut+P (D)u = 0 is clearly invariant under
time translations, and is invariant under spatial translations if and only if the coefficiends
of the polynomial P (X) are constant. Most of the equations of physical interest have
further symmetries, i.e., are invariant under larger groups, reflecting the invariance of the
underlyng physics under these groups. For example, the equations of pre-relativistic physics
are Gallilean invariant, while those of relativistic physics are Lorentz invariant. We will
consider here a certain important discrete symmetry that so far has proved to be universal
in physics.

We denote by T the “time-reversal” map (x, t) → (x,−t), and by P the analogous “par-
ity” or spatial reflection map (x, t) → (−x, t). These involutions act as linear operators on
functions on space-time by u(x, t) → u(x,−t) and u(x, t) → u(−x, t) respectively. There is a
third important involution, that does not act on space-time, but directly on complex-valued
functions; namely the conjugation operator C, mapping u(x, t) to its complex conjugate
u(x, t)∗. Clearly C, P, and T commute, so their composition CPT is also an involution
u(x, t) → u(−x,−t)∗ acting on complex-valued functions defined on space-time. We note
that CPT maps the function u(x, t) = ei(kx−ωt) (with real wave number k) to the function
u(x, t) = ei(kx−ω∗t), so it fixes such a u if and only if u is a plane wave.

! 1.4—Exercise 4. Prove that ut + P (D)u = 0 is CPT-invariant if and only if P (D) is
skew-adjoint, i.e., if and only if P (iξ) is pure imaginary for all real ξ. Check that the KdV,
NLS, and Sine-Gordon equation are also CPT-invariant.

1.4.3 Examples of Linear Evolution Equations.

1.4—Example 1. Choosing P (ξ) = cξ, gives the Linear Advection Equation ut + cux = 0.
The dispersion relation is ω(k)

k = P (ik)
ik = c, i.e., all plane wave solutions have the same

phase velocity c. For this example we see that û(k, t)eikx = û0(k)eik(x−ct), and since∫
û0(k)eikx dk = u0(x), it follows that u(x, t) =

∫
û(k, t)eik(x−ct) dk = u0(x − ct), giving

an independent proof of this explicit solution to the Cauchy Problem in this case.

The next obvious case to consider is P (ξ) = cξ + dξ3, giving the dispersion relation
ω(k)

k = P (ik)
ik = c(1 − (d/c)k2), and the wave equation ut + cux + duxxx = 0. This is

sometimes referred to as the “weak dispersion” wave equation. Note that the phase velocity
at wave number k is a constant, c, plus a constant times k2. It is natural therefore to
transform to coordinates moving with velocity c, i.e., make the substitution x �→ x− ct, and
the wave equation becomes ut +duxxx = 0. Moreover, by rescaling the independent variable
x we can get rid of the coefficient d. This leads us to our next example.

1.4—Example 2. P (ξ) = ξ3, gives the equation ut+uxxx = 0. Now the dispersion relation
is non-trivial; plane wave solutions with wave number k move with phase velocity ω(k)

k =
P (ik)

ik = −k2, so the Fourier components û0(k)eik(x+k2t) of u(x, t) with a large wave number
k move faster than those with smaller wave number, causing an initially compact wave profile
to gradually disperse as these Fourier modes move apart and start to interfere destructively.

It is not hard in this example to write a formula for u(x, t) explicitly in terms of u0,
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instead of û0, namely:

u(x, t) =
1

√
π 3
√

3t

∫ ∞

−∞
Ai

(
x− ξ

3
√

3t

)
u0(ξ) dξ.

Here Ai is the Airy function, a bounded solution of w′′−zw = 0 that can be defined explicitly
by:

Ai(z) =
1√
π

∫ ∞

0

cos
(

t3

3
+ tz

)
dw,

and it follows from this from this that v(x, t) = 1√
π 3√3t

Ai
(

x
3√3t

)
satisfies vt + vxxx = 0, and

limt→0 v(x, t) = δ(x).

1.4.4 Remark. More generally, for a wave equation ut +P ( ∂
∂x )u = 0, the solution, p(x, t),

of the Cauchy Problem with p(x, 0) = δ(x) is called the Fundamental Solution or Propagator
for the equation. It follows that the solution to the Cauchy problem for a general initial
condition is given by convolution with p, i.e., u(x, t) =

∫ ∞
−∞ p(x− ξ, t)u0(ξ) dξ.

! 1.4—Exercise 5. (General Duhamel Principle) Suppose p is the fundamental solution
for the homogeneous wave equation ut +P ( ∂

∂x )u = 0. Show that the solution to the Cauchy
Problem for the corresponding inhomogeneous equation ut + P ( ∂

∂x )u = F (x, t) is given by∫ ∞
−∞ p(x− ξ, t)u0(ξ) dξ +

∫ t

0
dτ

∫ ∞
−∞ p(x− ξ, t− τ)F (ξ, τ) dξ.

Before leaving linear wave equations we should say something about the important con-
cept of group velocity . We consider an initial wave packet, u0, that is synthesized from
a relatively narrow band of wave numbers, k, i.e., u0(x) =

∫ k0+ε

k0−ε
û0(k)eikx dk. Thus the

corresponding frequencies ω(k) will also be restricted to a narrow band around ω(k0), and
since all the plane wave Fourier modes are moving at approximately the velocity ω(k0)

k0
,

the solution u(x, t) of the Cauchy Problem will tend to disperse rather slowly and keep
an approximately constant profile f , at least for a short initial period. One might expect
that the velocity at which this approximate wave profile moves would be ω(k0)

k0
, the central

phase velocity, but as we shall now see, it turns out to be ω′(k0). To see this we expand
(kx− ω(k)t) in a Taylor series about k0:

(kx− ω(k)t) = (k0x− ω(k0)t) + (k − k0)(x− ω′(k0)t) + O((k − k0)2),

and substitute this in the formula u(x, t) =
∫ k0+ε

k0−ε
û0(k)ei(kx−ω(k)t) dk for the solution. As-

suming ε is small enough that the higher order terms in this expansion can be ignored in the
interval [k0−ε, k0 +ε] we get the approximation u(x, t) ≈ f(x−ω′(k0)t)ei(k0x−ω(k0)t), where
f(x) =

∫ k0+ε

k0−ε
û0(k)ei(k−k0)x = u0(x)e−ik0x dk. Thus, to this approximation, the solution

u(x, t) is just the plane wave solution of the wave equation having wave number k0, but
amplitude modulated by a traveling wave with profile f and moving at the group velocity
ω′(k0).

! 1.4—Exercise 6. Consider the solution u(x, t) to a linear wave equation that is the
superposition of two plane wave solutions, the first with wave number k0 and the second
with wave number k0 + ∆k, that is close to k0. Let ∆ω = ω(k0 + ∆k)− ω(k0). Show that
u(x, t) is (exactly!) the first plane wave solution amplitude modulated by a travelling wave
of profile f(x) = 1+ei∆kx and velocity ∆ω

∆k . (So that in this case there is no real dispersion.)
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1.4.5 Remark. In many important physical applications (e.g., light travelling in a trans-
parent medium such as an optical fiber) ω′′ < 0, i.e., the dispersion curve is convex upwards,
so that the phase velocity exceeds the group velocity, and high frequency plane waves are
slower than low frequency plane waves. Thus, wavelets enter the envelope of a group from
the left, and first grow and then diminish in amplitude as they pass through the group and
exit to the right. This is called normal dispersion, the opposite case ω′′ > 0 being referred
to as anomalous dispersion.

1.4—Example 3. De Broglie Waves.

Schrödinger’s Equation for a particle in one dimension, ψt = i h̄
2mψxx + 1

ih̄uψ, provides
an excellent model for comparing phase and group velocity. Here h = 6.626 × 10−34 Joule
seconds is Planck’s quantum of action, h̄ = h/2π, and u is the potential function, i.e.,
−u′(x) gives the force acting on the particle when its location is x. We will only consider
the case of a free particle, i.e., one not acted on by any force, so we take u = 0, and
Schrödinger’s Equation reduces to ψt + P ( ∂

∂x )ψ = 0, where P (ξ) = h̄
i

ξ2

2m . The dispersion
relation therefor gives vφ(k) = ω(k)

k = P (ik)
ik = h̄k

2m as the phase velocity of a plane wave
solution of wave number k, (a so-called de Broglie wave), and thus the group velocity is
vg(k) = ω′(k) = h̄k

m . Now the classical velocity of a particle of momentum p is p
m , and this

implies the relation p = h̄k between momentum and wave number. Since the wave-length
λ is related to the wave number by λ = 2π

k , this gives the formula λ = h
p for the so-called

de Broglie wave-length of a particle of momentum p. (This was the original de Broglie
hypothesis, associating a wave-length to a particle.) Note that the energy E of a particle
of momentum p is p2

2m , so E(k) = (h̄k)2

2m = h̄ω(k), the classic quantum mechanics formula
relating energy and frequency.

For this wave equation it is easy and interesting to find explicitly the evolution of a
Gaussian wave-packet that is initially centered at x0 and has wave number centerd at k0—
in fact this is given as an exercise in almost every first text on quantum mechanics. For the
Fourier Transform of the initial wave function ψ0, we take ψ̂0(k) = G(k − k0, σp), where

G(k, σ) =
1

(2π)
1
4
√

σ
exp

(
− k2

4σ2

)

is the L2 normalized Gaussian centered at the origin and having “width” σ. Then, as we
saw above, ψ(x, t), the wave function at time t, has Fourier Transform ψ̂(k, t) given by
ψ̂0(k)e−P (ik)t, and ψ(x, t) =

∫
ψ̂(k, t)eikx dk. Using the fact that the Fourier Transform

of a Gaussian is another Gaussian, we find easily that ψ(x, t) = A(x, t)eiφ(x,t), where the
amplitude A is given by A(x, t) = G(x − vgt, σx(t)). Here, as above, vg = vg(k0) = h̄k0

m is

the group velocity, and the spatial width σx(t) is given by σx(t) = h̄
2σp

(1+ 4σ4
p

h̄2
t2

m ). We recall
that the square of the amplitude A(x, t) is just the probability density at time t of finding
the particle at x. Thus, we see that this is a Gaussian whose mean (which is the expected
position of the particle) moves with the velocity of the classical particle. Note that we have
a completely explicit formula for the width σx(t) of the wave packet as a function of time, so
the broadening effect of dispersion is apparent. Also note that the Heisenberg’s Uncertainty
Principle, σx(t)σp ≥ h̄

2 is actually an equality at time zero, and it is the broadening of
disperion that makes it a strict inequality at later times.
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1.4.6 Remark. For a non-free particle (i.e., when the potential u is not a constant func-
tion) the Schrödinger Equation, ψt = i h̄

2mψxx + 1
ih̄uψ, no longer has coefficients that are

constant in x, so we don’t expect solutions that are exponential in both x and t (i.e., plane
waves or de Broglie waves). But the equation is still linear, and it is still invariant under time
translations, so do we expect to be able to expand the general solution into a superposition
of functions of the form ψE(x, t) = φ(x)e−i E

h̄ t. (We have adopted the physics convention,
replacing the frequency, ω, by E

h̄ , where E is the energy associated to that frequency.) If we
substitute this into the Schrödinger equation, then we see that the “energy eigenfunction”
(or “stationary wave function”) φ must satisfy the so-called time-independent Schrödinger
Equation, (− h̄2

2m
d2

dx2 + u)φ = Eφ. Note that this is just a second-order linear ODE, so
for each choice of E it will have a two-dimensional linear space of solutions. This linear
equation will show up with a strange twist when we solve the nonlinear KdV equation,
ut − 6uux + uxxx = 0, by the remarkable Inverse Scattering Method. Namely, we will see
that if the one-parameter family of potentials u(t)(x) = u(x, t) evolves so as to satisfy the
KdV equation, then the corresponding family of Schrödinger operators, (− h̄2

2m
d2

dx2 + u), are
unitarily equivalent, a fact that will play a key rôle in the Inverse Scattering Method. (Note
that the “time”, t, in the time-dependent Schrödinger Equation is not related in any way
to the t in the KdV equation.)

1.4.7 Remark. We next explain how to generalize the Fourier methods above for solving
linear PDE to the case n > 1. For simplicity, we will only consider the case of scalar
equations—i.e., we will assume that u is a complex-valued function (rather than one taking
values in some complex vector space V ), but the more general vector-valued case can be
handled similarly, (see the exercise below). As we saw earlier, the analog of plane waves in
more space dimensions are travelling waves of the form uξ,ω(x, t) = ei(x·ξ−ωt), where ξ ∈ Rn.
Now ξ

‖ξ‖ ∈ Sn−1 is the direction of the plane wave motion, the wave number is ‖ξ‖, and the
speed, c, is related to the angular frequency ω (which must be real) by c = ω

‖ξ‖ .

Suppose we have a constant coefficient linear wave equation, ut + P (D)u = 0. Here
P (X) =

∑
|α|≤r AαXα is a complex polynomial in X = (X1, . . . , Xn), and we are using

standard “multi-index notation”. Thus, α denotes an n-tuple of non-negative integers,
|α| = α1 + · · · + αn, Xα = Xα1

1 . . . Xαn
n , D = ( ∂

∂x1
, . . . ∂

∂xn
), and Dα = ∂|α|

∂x
α1
1 ...∂xαn

n
. Note

that Dαuξ,ω = (iξ)αuξ,ω, and hence P (D)uξ,ω = P (iξ)uξ,ω, where P (iξ) is the so-called
total symbol of P (D), i.e.,

∑
|α|≤r i|α|ξαAα. On the other hand, ∂

∂tuξ,ω = −iωuξ,ω, so uξ,ω

is a solution of ut + P (D)u = 0 if and only if ω = ω(ξ) = 1
i P (iξ), and this is now the

dispersion relation. Since ω must be real, if we want to have a plane wave solution for
each ξ, the condition as before is that P (iξ) must be pure imaginary for all ξ ∈ Rn. This
clearly is the case if and only if Aα is real for |α| odd, and imaginary for |α| even, and
this is also equivalent to requiring that P (D) be a skew-adjoint operator on L2(Rn,C). If
u0(x) =

∫
û(ξ)eix·ξ dξ in L2(R) is given, then u(x, t) =

∫
û(ξ)uξ,ω(ξ)(x, t) dξ solves the given

wave equation and u(x, 0) = u0(x). As in the case n = 1, the transformation U(t) mapping
u0 to u(t) = u(x, t) defines a one-parameter group of unitary transformations acting on
L2(Rn,C) with P (D) as its infinitesimal generator, i.e., U(t) = exp(tP (D)).

! 1.4—Exercise 7. Analyze the vector-valued wave equation ut + P (D)u = 0, with u
now a Cd-valued function. Again, P (X) =

∑
|α|≤r AαXα, the coefficients Aα now lying in

the space of linear operators on Cd (or d×d complex matrices). Show that for P (D) to be a
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skew-adjoint operator on L2(Rn,Cd) generating a one-parameter group of unitary operators
U(t), the total symbol P (iξ) =

∑
|α|≤r i|α|ξαAα must be skew-adjoint operator on Cd for

all ξ in Rn, and this in turn means that Aα is self-adjoint for |α| odd and skew-adjoint for
|α| even. Check this is equivalent to the CPT-invariance of ut + P (D)u = 0. Write an
explicit formula for U(t)u0 using vector-valued Fourier transforms.

1.4—Example 4. Finally we take a quick look at the classic linear wave equation, utt −
c2∆u = 0 with more spatial dimensions. If we substitute the plane wave Ansatz u(x, t) =
uξ,ω(x, t) = ei(x·ξ−ωt) into this equation, we find that (ω2 − c2 ‖ξ‖2)u = 0, so ω(k) = c ‖ξ‖,
or ω(k)

‖ξ‖ = c. Thus, all the plane wave solutions travel at the same speed, c, but now they can
travel with this speed in infinitely many different directions ξ, instead of just the two possible
directions (“right” and “left”) when n = 1. If we now take a Gaussian initial condition
u(x, 0) (and say assume that ut(x, 0) = 0) and analyze it into its Fourier components, we
see that because the various components all move with speed c but in different directions,
the original Gaussian wave packet will spread out and become dispersed.

Both a plucked piano string and the waves from a pebble dropped in a pond satisfy
the classic wave equation. But in the first case we observe two travelling waves race off in
opposite directions, maintaining their original shape as they go, while in the second we see
a circular wave pattern moving out from the central source, gradually losing amplitude as
the energy spreads out over a larger and larger circle.

! 1.4—Exercise 8. Show that utt−c2∆u = 0 is Lorentz invariant, conformally invariant,
and CPT-invariant

1.5 Conservation Laws
Let u(x, t) denote the density of some physical quantity at the point x and time t, and−→

φ (x, t) its flux, i.e., −→φ (x, t) ·−→n dA is the rate of flow of the quantity across a surface element
dA with unit normal −→n . Finally, let g(x, t) denote the rate at which the quantity is being
created at x at time t. Then, essentially by the meanings of these definitions, given any
region V with smooth boundary ∂V ,

d

dt

∫
V

u(x, t) dV =
∫

V

g(x, t) dV −
∫

∂V

−→
φ (x, t) · −→n dA,

which is the general form of a conservation law in integrated form. (Note that in the one
space dimensional case this becomes

∫ b

a
u(x, t) dx =

∫ b

a
g(x, t) dx− [φ(b, t)− φ(a, t)].) If u is

C1, then by Gauss’s Theorem,

∫
V

(
∂u(x, t)

∂t
+∇ · −→φ (x, t)

)
dV =

∫
V

g(x, t) dV,

so, dividing by the volume of V , and letting V shrink down on a point x we get the
corresponding differential form of the conservation law,

∂u(x, t)
∂t

+∇ · −→φ (x, t) = g(x, t),
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or in one space dimension, ut + φx = g. We will be mainly concerned with the case g = 0,
and we note that in this case it follows that if φ vanishes at infinity, then

∫ ∞
−∞ u(x, t) dt is

independent of t (which explains why this is called a conservation law).

As it stands, this is a single equation for two “unknown” functions u and φ, and is un-
derdetermined. Usually however we have some so-called “constitutive equation” expressing
φ in terms of u. In the most general case, φ(x, t) will be a function not only of u(x, t) but
also of certain partial derivatives of u with respect to x, however we will only consider the
case of constitutive equations of the form φ(x, t) = F (u(x, t)), where F is a smooth function
on R whose derivative F ′ will be denoted by f . Thus our conservation law finally takes the
form:

(CL) ut + f(u)ux = 0.

We will usually assume that f ′(u) ≥ 0, so that f is a non-decreasing function. This is
satisfied in most of the important applications.

1.5—Example 1. Take F (u) = cu, so f(u) = c and we get once again the Linear Advection
Equation ut − cux = 0. The Method of Characteristics below will give yet another proof
that the solution to the Cauchy Problem is u(x, t) = u0(x− ct).

1.5—Example 2. Take F (u) = 1
2u2, so f(u) = u and we get the important Inviscid

Burgers Equation, ut + uux = 0.

We will next explain how to solve the Cauchy Problem for such a Conservation Law
using the so-called Method of Characteristics. We look for smooth curves (x(s), t(s)) in
the (x, t)-plane along which the solution to the Cauchy Problem is constant. Suppose that
(x(s0), t(s0)) = (x0, 0), so that the constant value of u(x, t) along this so-called characteristic
curve is u0(x0). Then 0 = d

dsu((x(s), t(s)) = uxx′ + utt
′, and hence

dx

dt
=

x′(s)
t′(s)

= − ut

ux
= f(u(x(s), t(s)) = f(u0(x0)),

so the characteristic curve is a straight line of slope f(u0(x0)), i.e., u has the constant value
u0(x0) along the line Γx0 : x = x0 + f(u0(x0))t. Note the following geometric interpretation
of this last result: to find the wave profile at time t (i.e., the graph of the map
x �→ u(x, t)), translate each point (x0, u0(x0)) of the initial profile to the right
by the amount f(u0(x0))t. (This is what we promised to show in Example 1.3.4.) The
analytic statement of this geometric fact is that the solution u(x, t) to our Cauchy Problem
must satisfy the implicit equation u(x, t) = u0(x − tf(u(x, t))). Of course the above is
heuristic—how do we know that a solution exists?—but it isn’t hard to work backwards and
make the argument rigorous.

The idea is to first define “characteristic coordinates” (ξ, τ) in a suitable strip 0 ≤ t < TB

of the (x, t)-plane. We define τ(x, t) = t and ξ(x, t) = x0 along the characteristic Γx0 , so
t(ξ, τ) = τ and x(ξ, τ) = ξ + f(u0(ξ))τ . But of course, for this to make sense, we must show
that there is a unique Γx0 passing through each point (x, t) in the strip t < TB.

The easiest case is f ′ = 0, say f = c, giving the Linear Advection Equation, ut +cux = 0.
In this case, all characteristics have the same slope, 1/c, so that no two characteristics
intersect, and there is clearly exactly one characteristic through each point, and we can
define TB = ∞.
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From now on we will assume that the equation is “truly nonlinear”, in the sense that
f ′(u) > d > 0, so that f is a strictly increasing function.

If u′
0 is everywhere positive, then u0(x) is strictly increasing, and hence so is f(u0(x)).

In this case we can again take TB = ∞. For, since the slope of the characteristic Γx0 issuing
from (x0, 0) is 1

f(u0(x)) , it follows that if x0 < x1 then Γx1 has smaller slope than Γx0 , and
hence these two characteristics cannot intersect for t > 0, so again every point (x, t) in the
upper half-plane lies on at most one characteristic Γx0 .

Finally the interesting general case: suppose u′
0 is somewhere negative. In this case

we define TB to be the infimum of [−u′
0(x)f ′(u0(x))]−1, where the inf is taken over all x

with u′
0(x) < 0. For reasons that will appear shortly, we call TB the breaking time. As

we shall see, TB is the largest T for which the Cauchy Problem for (CL) has a solution
with u(x, 0) = u0(x) in the strip 0 ≤ t < T of the (x, t)-plane. It is easy to construct
examples for which TB = 0; this will happen if and only if there exists a sequence {xn} with
u′

0(xn) → −∞. In the following we will assume that TB is positive, and that in fact there is
a point x0 where TB = −1

u′
0(x0)f ′(u0(x0))

. In this case, we will call Γx0 a breaking characteristic.

Now choose any point x0 where u′
0(x0) is negative. For x1 slightly greater than x0, the

slope of Γx1 will be greater than the slope of Γx0 , and it follows that these two characteristics
will meet at the point (x, t) where x1 + f(u0(x1))t = x = x0 + f(u0(x0))t, namely when
t = − x1−x0

f(u0(x1))−f(u0(x0))
.

! 1.5—Exercise 1. Show that TB is the least t for which any two characteristics intersect
at some point (x, t) with t ≥ 0.

! 1.5—Exercise 2. Show that there is always at least one characteristic curve passing
through any point (x, t) in the strip 0 ≤ t < TB (and give a counterexample if u′

0 is not
required to be continuous).

Thus the characteristic coordinates (ξ, τ) are well-defined in the strip 0 ≤ t < TB of the
(x, t)-plane. Note that since x = ξ+f(u0(ξ))τ , ∂x

∂ξ = 1+f ′(u0(ξ))u′
0(ξ)τ , and ∂x

∂τ = f(u0(ξ)),
while ∂t

∂ξ = 0 and ∂t
∂τ = 1. It follows that the Jacobian of (x, t) with respect to (ξ, τ) is

∂x
∂ξ = 1+f ′(u0(ξ))u′

0(ξ), which is positive in 0 ≤ t < TB, so that (ξ, τ) are smooth coordinates
in this strip. On the other hand, if Γx0 is a breaking characteristic, then then the Jacobian
aproaches zero along Γx0 as t approaches TB, confirming that the characteristic coordinates
cannot be extended to any larger strip.

By our heuristics above, we know that the solution of the Cauchy Problem for (CL)
with initial value u0 should be given in characteristic coordinates by the explicit formula
u(ξ, τ) = u0(ξ), and so we define a smooth function u in 0 ≤ t < TB by this formula. Since
the map from (x, t) to (ξ, τ) is a diffeomophism, this also defines u as a smooth function
of x and t, but it will be simpler to do most calculations in characteristic coordinates. In
any case, since a point (x, t) on the characteristic Γξ satisfies x = ξ + f(u0(ξ))t, we see that
u = u(x, t) is the solution of the implicit equation u = u0(x − tf(u)). It is obvious that
u(x, 0) = u0(x), and we shall see next that u(x, t) satisfies (CL).

! 1.5—Exercise 3. Use the chain-rule: ux = uξ
∂ξ
∂x and ut = uξ

∂ξ
∂t to compute the partial
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derivatives ux and ut as functions of ξ and τ :

ut(ξ, τ) = − u′
0(ξ)f(u0(ξ))

1 + u′
0(ξ)f ′(u0(ξ))τ

and

ux(ξ, τ) =
u′

0(ξ)
1 + u′

0(ξ)f ′(u0(ξ))τ

and deduce from this that u actually satisfies the equation (CL) in 0 ≤ t < TB.

! 1.5—Exercise 4. Show that, along a breaking characteristic Γx0 , the value of ux at
the point x = x0 + f(u0(x0))t is given by u′

0(x0)TB
TB−t . (Note that this is just the slope of the

wave profile at time t over the point x.)

We can now get a qualitative but very precise picture of how u develops a singularity
as t approaches the breaking time TB, a process usually referred to as shock formation or
steepening and breaking of the wave profile.

Namely, let Γx0 be a breaking characteristic and consider an interval I around x0 where
u0 is decreasing. Let’s follow the evolution of that part of the wave profile that is originally
over I. Recall our algorithm for evolving the wave profile: each point (x, u0(x)) of the
initial profile moves to the right with a constant velocity f(u0(x)), so at time t it is at
(x+f(u0(x))t, u0(x)). Thus, the higher part of the wave profile, to the left, will move faster
than the lower part to the right, so the profile will bunch up and become steeper, until it
eventually becomes vertical or “breaks” at time TB when the slope of the profile actually
becomes infinite over the point x0 +f(u0(x0))TB. (In fact, the above exercise shows that the
slope goes to −∞ like a constant times 1

t−TB
.) Note that the values of u remain bounded

as t approaches TB. In fact, it is clearly possible to continue the wave profile past t = TB,
using the same algorithm. However, for t > TB there will be values x∗ where the vertical
line x = x∗ meets the wave profile at time t in two distinct points (corresponding to two
characteristics intersecting at the point (x∗, t)), so the profile is no longer the graph of a
single-valued function.

1.5.1 Remark. Despite the fact that ux blows up along a breaking characteristic as t → TB,
surprisingly the total variation of the function x �→ u(x, t) not only doesn’t blow up as t
approaches TB, it is actually a constant of the motion, i.e.,

∫
|ux(x, t)| dx =

∫
|u′

0(ξ)| dξ.
To see this, note that ∂x

∂ξ = 1 + f ′(u0(ξ))u′
0(ξ)t is clearly positive for t < TB, so that

|ux(x, t)| dx = |ux(ξ, τ)| ∂x
∂ξ dξ = |ux(ξ, τ)| (1+f ′(u0(ξ))u′

0(ξ)τ) dξ and use the above formula
for ux(ξ, τ). Thus, although |ux| gets very large as t approaches TB, it is only large on a set
of small measure.

For certain purposes it is interesting to know how higher derivatives uxx, uxxx, . . . behave
as t approaches TB along a breaking characteristic, (in particular, in the next section we
will want to compare uxxx with uux). These higher partial derivatives can be estimated in
terms of powers of ux using ∂

∂x = ∂
∂ξ (∂x

∂ξ )−1, and ∂x
∂ξ = 1 + f ′(u0(ξ))u′

0(ξ)τ .

! 1.5—Exercise 5. Show that along a breaking characteristic Γx0 , as t → TB, uxx =
O(u3

x) = O((t− TB)−3). Similarly, show that uxxx = O(u5
x) = O((t− TB)−5).

For more details on the formation of singularities in conservation laws and other PDEs see
[J] and [La2]. Below we will consider what happens after the breaking time TB . Although
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we can no longer have a smooth solution, it turns out that there may still be physically
meaningful solutions of the integrated form of the conservation law. But first we consider
an interesting example.

1.5—Example 3. Traffic Flow on a Highway.

We imagine an ideal, straight, infinitely long highway, modeled by the real line. To
simplify the analysis, we assume that there are no entrance or exit ramps, and we will smooth
out the discrete nature of the cars and model the traffic density and flux by approximating
continuous statistical averages. We choose an arbitrary origin, and we let u(x, t) denote the
density of cars at the point x at time t (in units of cars per kilometer), and we let φ(x, t)
denote the flux of cars, i.e., the rate at which cars are passing the point x at time t (in
units of cars per second). We will also want to consider the speed of the traffic at x at time
t, which we will denote by v(x, t) and measure it in kilometers per second. We have the
obvious relation φ = vu. If we choose any two points a and b along the highway, then clearly
we have the conservation law in integrated form, d

dt

∫ b

a
u(x, t) dx + φ(b, t)− φ(a, t) = 0; i.e.,

the rate of change of the total number of cars between a and b plus the rate at which cars
are coming in at b minus the rate at which they are leaving at a must be zero (since no cars
are leaving between a and b). Assuming u is smooth, and letting a and b approach x we get
the differential form of the conservation law, ut + φx = 0.

To proceed further we will need a constitutive relation, relating u and φ. It is natural
to try to model this using the intuitively observed “law” of traffic flow that the denser the
traffic, the slower drivers will travel. For simplicity, we assume that there is a maximum
velocity vmax (the “speed limit”) and a maximum density umax and we assume that the
speed at which drivers travel is vmax on an empty road (i.e., when u = 0), 0 when traffic is
bumper to bumper, (i.e., when u = umax) and linear in between. This leads to the relation
v(u) = vmax(1 − u/umax), and then using φ = vu we derive the constitutive relation,
φ(u) = F (u) = uv(u). The conservation law then takes the form ut + F ′(u)ux = ut +
(v(u) + uv′(u))ux = 0, or ut + vmax(1− 2u/umax)ux = 0.

Of course, traffic engineers use much more realistic models that take into account on and
off ramps, and use more sophisticated contitutive relations, but already with this model
one can see interesting phenomena such as the development of a “shock wave” as oncoming
traffic meets traffic stopped at a red light. We illustrate this below, after first introducing
the simplest kind of non-smooth solutions of conservation laws

1.5.2 Shock Wave Solutions and the Rankine-Hugoniot Jump Condition.

Let xs(t) denote a smooth curve C in the closed upper-half (x, t)-plane, defined for all
t ≥ 0, and so dividing the upper-half plane into two open regions, R− to the left and R+ to
the right. Let u(x, t) be a smooth solution of the conservation law ut + φx in the union of
these two regions. We assume that the restrictions u|R− and u|R+ each extend continuously
to the boundary curve C, although these two extensions do not necessarily agree. Given
a point p = (xs(t), t) on C, the difference between the limits u(x+

s , t) of u at p from the
right and the limit u(x−

s , t) from the left defines the “jump” [u](xs, t) = u(x+
s , t)− u(x−

s , t)
across C at this point. Since φ is given by a constitutive equation φ(x, t) = F (u(x, t)),
we also have a corresponding jump [φ](xs, t) = φ(x+

s , t) − φ(x−
s , t) in φ as we cross C. We

will call such a piecewise smooth solution u of the conservation law a shock wave solution
of the conservation law with shock path C if in addition to satisfying the equation in each
of R− and R+, it also satisfies the integrated form of the conservation law, i.e., for all
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a < b, d
dt

∫ b

a
u(x, t) dx + φ(b, t) − φ(a, t) = 0. By choosing a < xs(t) < b and breaking the

above integral into a sum corresponding to the sub-intervals [a, xs(t)] and [xs(t), b] (and
then letting a and b approach xs(t)), we can easily derive the following:

Rankine-Hugoniot Jump Condition. Let u be a shock wave solution of the conservation
law ut +φx with shock path C given by (xs(t), t). Then xs(t) satisfies the following ordinary
differential equation, known as the Rankine-Hugoniot Jump Condition:

dxs(t)
dt

=
[φ](xs, t)
[u](xs, t)

.

! 1.5—Exercise 6. A Shock Wave Solution of the Inviscid Burgers Equation. Let’s try
to solve the Inviscid Burgers Equation, ut + uux = 0, with the initial condition u0(x) = 1
for x < 0 and u0(x) = 1 for x ≥ 0. It is easy to see that there are pairs of characterisics
that meet after an arbitrarily short time, so TB = 0, and this can have no smooth solution.
Show that u(x, t) = 1 for x < t/2 and u(x, t) = 0 for x > t/2 is a shock wave solution with
shock path xs(t) = t/2.

! 1.5—Exercise 7. A Shock Wave at a Red Light. Consider highway traffic that is
backing up as it runs into a red light. Assume that the oncoming traffic has a constant
density u1, and at time t = 0 it runs into the stopped traffic which has density umax

beginning at x = 0 and extending to the right. Show that the shock curve is given by
xs(t) = −vmax( u1

umax
)t and the density is u1 to the left, and umax to the right. In other

words, traffic is backing up at the speed vmax( u1
umax

).

1.6 Split-Stepping
We now return to the KdV equation, say in the form ut = −uux − uxxx. If we drop the

nonlinear term, we have left the dispersive wave equation ut = −uxxx, that we considered
in the section on linear wave equations. Recall that we can solve its Cauchy Problem, either
by using the Fourier Transform or by convolution with an explicit fundamental solution that
we wrote in terms of the Airy function.

On the other hand, if we drop the linear term, we are left with the inviscid Burgers
Equation, ut = −uux, which as we know exhibits steepening and breaking of the wave
profile, causing a shock singularity to develop in finite time TB for any non-trivial initial
condition u0 that vanishes at infinity. Up to this breaking time, TB, we can again solve the
Cauchy Problem, either by the method of characteristics, or by solving the implicit equation
u = u0(x− ut) for u as a function of x and t.

Now, in [BS] it is proved that KdV defines a global flow on the Sobolev space H4(R)
of functions u : R → R having derivatives of order up to four in L2, so it is clear that
dispersion from the linear uxxx term must be counteracting the peaking from the nonlinear
uux term, preventing the development of a shock singularity.

In order to understand this balancing act better, it would be useful to have a method for
taking the two flows defined by ut = −uxxx and ut = −uux and combining them to define
the flow for the full KdV equation. (In addition, this would give us a method for solving
the KdV Cauchy Problem numerically.)
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In fact there is a very general technique that applies in such situations. In the pure
mathematics community it is usually referred to as the Trotter Product Formula, while
in the applied mathematics and numerical analysis communities it is called split-stepping.
Let me state it in the context of ordinary differential equations. Suppose that Y and Z
are two smooth vector fields on Rn, and we know how to solve each of the differential
equations dx/dt = Y (x) and dx/dt = Z(x), meaning that we know both of the flows φt

and ψt on Rn generated by X and Y respectively. The Trotter Product Formula is a
method for constructing the flow θt generated by Y + Z out of φ and ψ; namely, letting
∆t = t

n , θt = limn→∞(φ∆tψ∆t)n. The intuition behind the formula is simple. Think of
approximating the solution of dx/dt = Y (x) + Z(x) by Euler’s Method. If we are currently
at a point p0, to propagate one more time step ∆t we go to the point p0+∆t (Y (p0)+Z(p0)).
Using the split-step approach on the other hand, we first take an Euler step in the Y (p0)
direction, going to p1 = p0 + ∆t Y (p0), then take a second Euler step, but now from p1

and in the Z(p1) direction, going to p2 = p1 + ∆t Z(p1). If Y and Z are constant vector
fields, then this gives exactly the same final result as the simple full Euler step with Y + Z,
while for continuous Y and Z and small time step ∆t it is a good enough approximation
that the above limit is valid. The situation is more delicate for flows on infinite dimensional
manifolds, nevertheless it was shown by F. Tappert in [Ta] that the Cauchy Problem for
KdV can be solved numerically by using split-stepping to combine methods for ut = −uux

and ut = −uxxx.

[Tappert actually uses an interesting variant, known as Strang splitting, which was first
suggested in [St] to solve multi-dimensional hyperbolic problems by split-stepping one-
dimensional problems. One advantage of splitting in numerical analysis comes from the
greatly reduced effort required to solve the smaller bandwidth linear systems that arise when
implicit schemes are necessary to maintain stability, but in addition, Strang demonstrated
that second-order accuracy of the component methods need not be compromised by the
asymmetry of the splitting, as long as the pattern φ∆t

2
ψ∆t

2
ψ∆t

2
φ∆t

2
is used, to account for pos-

sible non-commutativity of Y and Z. (This may be seen by multiplying the respective expo-
nential series.) Serendipitously, when output is not required, several steps of Strang splitting
require only marginal additional effort: (φ∆t

2
ψ∆t

2
ψ∆t

2
φ∆t

2
)n = (φ∆t

2
ψ∆t(φ∆tψ∆t)n−1φ∆t

2
.]

Aside from such numerical considerations, split-stepping suggests a way to understand
the mechanism by which dispersion from uxxx balances shock formation from uux in KdV.
Namely, if we consider wave profile evolution under KdV as made up of a succession of pairs
of small steps (one for ut = −uux and the one for ut = −uxxx), then when u, ux, and uxxx

are not too large, the steepening mechanism will dominate. But recall that as the time t
approaches the breaking time TB, u remains bounded, and along a breaking characteristic
ux only blows up like (TB − t)−1 while uxxx blows up like (TB − t)−5. Thus, near breaking
in time and space, the uxxx term will dwarf the non-linearity and will disperse the incipient
shock. In fact, computer simulations do show just such a scenario playing out.
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Section 2
The Korteweg-de Vries Equation

We have seen that in the Korteweg-de Vries (or KdV) equation, ut + 6uux + uxxx = 0,
expresses a balance between dispersion from its third-derivative term and the shock-forming
tendency of its nonlinear term, and in fact many models of one-dimensional physical systems
that exhibit mild dispersion and weak nonlinearity lead to KdV as the controlling equation
at some level of approximation.

2.1 Early History, Exact Solutions, and Solitons
We will give here only a very abbreviated version of the historical origins of KdV. For

more details see [P] and further references given there.

As already mentioned, KdV first arose as the modelling equation for solitary gravity waves
in a shallow canal. Such waves are rare and not easy to produce, and they were apparently
only first noticed in 1834 (by the naval architect, John Scott Russell). Early attempts by
Stokes and Airy to model them mathematically seemed to indicate that such waves could
not be stable—and their very existence was at first a matter of debate. Later work by
Boussinesq and Rayleigh corrected errors in this earlier theory, and finally a paper in 1894
by Korteweg and de Vries [KdV] settled the matter by giving a convincing mathematical
argument that wave motion in a shallow canal is governed by KdV, and showing by explicit
computation that their equation admitted travelling-wave solutions that had exactly the
properties described by Russell, including the relation of height to speed that Russell had
determined experimentally in a wave tank he had constructed.

But it was only much later that the truly remarkable properties of the KdV equation
became evident. In 1954, Fermi, Pasta and Ulam (FPU) used one of the very first digi-
tal computers to perform numerical experiments on a one-dimensional, anharmonic lattice
model, and their results contradicted the then current expectations of how energy should
distribute itself among the normal modes of such a system [FPU]. A decade later, Zabusky
and Kruskal re-examined the FPU results in a famous paper [ZK]. They showed that, in
a certain continuum limit, the FPU lattice was approximated by the KdV equation. They
then did their own computer experiments, solving the Cauchy Problem for KdV with initial
conditions corresponding to those used in the FPU experiments. In the results of these sim-
ulations they observed the first example of a “soliton”, a term that they coined to describe
a remarkable particle-like behavior (elastic scattering) exhibited by certain KdV solutions.
Zabusky and Kruskal showed how the coherence of solitons explained the anomalous results
observed by Fermi, Pasta, and Ulam. But in solving that mystery, they had uncovered a
larger one; KdV solitons were unlike anything that had been seen before, and the search for
an explanation of their remarkable behavior led to a series of discoveries that changed the
course of applied mathematics for the next thirty years.

We next fill in some of the mathematical details behind the above sketch, beginning with
a discussion of explicit solutions to the KdV equation.

To find the travelling wave solutions of the KdV equation is straightforward; substituting
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the Ansatz u(x, t) = f(x − ct) into KdV gives the ODE −cf ′ + 6ff ′ + f ′′′, and adding
as boundary condition that f should vanish at infinity, a routine computation leads to the
two-parameter family of travelling-wave solutions u(x, t) = 2a2 sech2(a(x− 4a2t + d)).

! 2.1—Exercise 1. Carry out the details of this computation. (Hint: Get a first integral
by writing 6ff ′ = (3f2)′.)

These are the solitary waves seen by Russell, and they are now usually referred to as the
1-soliton solutions of KdV. Note that their amplitude, 2a2, is just half their speed, 4a2,
while their “width” is proportional to a−1; i.e., taller solitary waves are thinner and move
faster.

These solutions were found by Korteweg and de Vries, who also carried out the more
complicated calculations that arise when one assumes periodicity instead of decay as a
boundary condition. The profile of the periodic travelling wave is given in terms of the
Jacobi elliptic function cn,

u(x, t) = 2a2k2 cn2(a(x− 4(2k2 − 1)a2t)),

and following Korteweg and de Vries they are called cnoidal waves. Here 0 ≤ k ≤ 1 is the
modulus of the elliptic function cn. Note that as the modulus k → 1, cn converges to sech,
and so the cnoidal waves have the solitary wave as a limiting case.

Next, following M . Toda [To], we will “derive” the n-soliton solutions of KdV. We
first rewrite the 1-soliton solution as u(x, t) = 2 ∂2

∂x2 log cosh(a(x − 4a2t + δ), or u(x, t) =
2 ∂2

∂x2 log K(x, t) where K(x, t) = (1 + e2a(x−4a2t+δ)).

We now try to generalize, looking for solutions of the form u(x, t) = 2 ∂2

∂x2 log K(x, t), with
K of the form K(x, t) = 1 + A1e

2η1 + A2e
2η2 + A3e

2(η1+η2), where ηi = ai(x − 4a2
i t + di),

and we are to choose the Ai and di by substituting in KdV and seeing what works.

! 2.1—Exercise 2. Show that KdV is satisfied for u(x, t) of this form and for arbitrary
choices of A1, A2, a1, a2, d1, d2, provided only that we define

A3 =
(

a2 − a1

a1 + a2

)2

A1A2.

The solutions of KdV that arise in this way are called the 2-soliton solutions of KdV.

! 2.1—Exercise 3. Show that if we take Ai = 1
2ai

then K(x, t) = detB(x, t), where
B(x, t) is the 2× 2 matrix, Bij(x, t) = δij + 1

ai+aj
eηi+ηj .

Yes, you’ve guessed it, this generalizes in the obvious way. If we define an n× n matrix
B(x, t) with the matrix elements defined in the same way, then u(x, t) = 2 ∂2

∂x2 log detB(x, t)
is a solution of KdV for all choices of ai and di, and this 2n-parameter family of solutions
is called the n-soliton solutions of KdV.

Of course this is a complete swindle! Only knowing the answer in advance allowed us
to make the correct choice of Ansatz for K. Later we shall see how to get the n-soliton
family of solutions for KdV in a completely straightforward way using the Inverse Scattering
Method.
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But, for now, we want to look more closely at the 2-soliton solutions, and more specifically
their asymptotic behavior as t approaches ±∞. We could do this for an arbitrary 2-soliton,
but for simplicity let us take a1 = a2 = 3.

! 2.1—Exercise 4. Show that for these choices of a1 and a2,

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)
[cosh(3x− 36t) + 3 cosh(x− 28t)]2

,

so in particular u(x, 0) = 6 sech2(x).

! 2.1—Exercise 5. Show that for t large and negative u(x, t) is asymptotically equal to
2 sech2(x−4t−φ)+8 sech2(x−16t+ φ

2 ), while for t large and positive u(x, t) is asymptotically
equal to 2 sech2(x− 4t + φ) + 8 sech2(x− 16t− φ

2 ), where φ = log(3)/3. (This is hard. For
the solution see [To], Chapter 6.)

Note what this says. If we follow the evolution from −T to T (where T is large and
positive), we first see the superposition of two 1-solitons; a larger and thinner one to the
left of and overtaking a shorter, fatter, and slower-moving one to the right. Around t = 0
they merge into a single lump (with the shape 6 sech2(x)), and then they separate again,
with their original shapes restored, but now the taller and thinner one is to the right. It is
almost as if they had passed right through each other—the only effect of their interaction is
the pair of phase shifts—the slower one is retarded slightly from where it would have been,
and the faster one is slightly ahead of where it would have been. Except for these phase
shifts, the final result is what we might expect from a linear interaction. It is only if we
see the interaction as the two solitons meet that we can detect its highly nonlinear nature.
(Note that at time t = 0, the maximum amplitude, 6, of the combined wave is actually less
than the maximum amplitude, 8, of the taller wave when they are separated.) But of course
the really striking fact is the resilience of the two individual solitons—their ability to put
themselves back together after the collision. Not only is no energy radiated away, but their
actual shapes are preserved.

(Remarkably, on page 384 of Russell’s 1844 paper, there is a sketch of a 2-soliton inter-
action experiment that Russell had carried out in his wave tank!)

We shall see later that every initial profile u0 for the KdV equation can be thought of as
made up of two parts: an n-soliton solution for some n, and a dispersive “tail”. The tail is
transient, i.e., it rapidly tends to zero in the sup norm (although its L2 norm is preserved),
while the n-soliton part behaves in the robust way that is the obvious generalization of the
2-soliton behavior we have just analyzed.

Now back to the computer experiment of Zabusky and Kruskal. For numerical reasons,
they chose to deal with the case of periodic boundary conditions—in effect studying the
KdV equation ut + uux + δ2uxxx = 0 (which they label (1) ) on the circle instead of on
the line. For their published report, they chose δ = 0.022 and used the initial condition
u(x, 0) = cos(πx). With the above background, it is interesting to read the following extract
from their 1965 report, containing the first use of the term “soliton”:

(I) Initially the first two terms of Eq. (1) dominate and the classical overtaking
phenomenon occurs; that is u steepens in regions where it has negative slope. (II)
Second, after u has steepened sufficiently, the third term becomes important and serves
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to prevent the formation of a discontinuity. Instead, oscillations of small wavelength
(of order δ) develop on the left of the front. The amplitudes of the oscillations grow,
and finally each oscillation achieves an almost steady amplitude (that increases linearly
from left to right) and has the shape of an individual solitary-wave of (1). (III) Finally,
each “solitary wave pulse” or soliton begins to move uniformly at a rate (relative to
the background value of u from which the pulse rises) which is linearly proportional
to its amplitude. Thus, the solitons spread apart. Because of the periodicity, two or
more solitons eventually overlap spatially and interact nonlinearly. Shortly after the
interaction they reappear virtually unaffected in size or shape. In other words, solitons
“pass through” one another without losing their identity.Here we have a nonlinear
physical process in which interacting localized pulses do not scatter irreversibly.

2.2 Constants of the Motion for the KdV Flow
After the appearance of the Zabusky-Kruskal paper, attempts were quickly made to

understand what it was that was special about KdV that led to the soliton phenomenon.
Perhaps because soliton behavior involved the conservation of shape, one conjecture was that
the KdV flow might have unusually many constants of the motion, and a search was begun
for “polynomial conservation laws”, i.e, polynomials P (u, ux, uxx, . . .) in u and its spatial
partial derivatives such that

∫ ∞
−∞ P (u(x, t), ux(x, t), uxx(x, t), . . .) dx would be independent

of t for all solutions u(x, t) of KdV that vanish sufficiently rapidly at infinity.

We have seen that a sufficient condition for this is that any solution of KdV should
satisfy a conservation law with P as the density, i.e., there should exist a corresponding flux,
J(u, ux, uxx, . . .), such that the equation ∂

∂tP + ∂
∂xJ should follow as a formal consequence

of the KdV equation. If this is the case, then we will call u a conserved density for KdV.

Now KdV is itself a conservation law: ut+(3u2+uxx)x = 0, so u is one conserved density.
Also, if we multiply KdV through by u, we can rewrite the result as ( 1

2u2)t + (2u3 + uuxx−
1
2u2

x)x = 0, so u2 is a second conserved density for KdV. Finally multiplying KdV by u2 and
adding the result to ux times the x derivative of KdV, we find that (−u3 + 1

2u2
x) is a third

conserved density for KdV, with associated flux (− 9
2u4 − 3u2uxx + 6uu2

x + uxuxxx − 1
2u2

xx).
For future reference we will name these conserved densities F̃1(u) = u, F̃2(u) = u2, and
F̃3(u, ux) = −u3 + 1

2u2
x.

These three were classical, in the sense that they were well-known long before the
Zabusky-Kruskal paper. In fact, as we shall see below, they represent important conserved
physical quantities in the case that KdV is modelling a wave in a shallow canal. A fourth
conserved density was found by Whitham, and Zabusky and Kruskal discovered two more.
This was prior to the existence of symbolic manipulation computer programs programs such
as Macsyma, and by now the computations were getting horrendous. Still, with remarkable
perseverance and effort the number was eventually raised to eleven, before Miura, using
generating function methods, finally showed that these were in fact the first elements of an
infinite sequence of conserved densities, F̃k(u, ux, uxx, . . .) for KdV.

It is still not easy to prove the existence of the F̃k, and we will not attempt to do so here,
but rather refer the interested reader to Chapter 1 of [La3]. There was naturally speculation
that KdV could somehow be regarded as an infinite dimensional Hamiltonian sytem, with
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one of the functionals Fk(u) =
∫ ∞
−∞ F̃k(u) dx playing the rôle of the Hamiltonian, and all of

them being in involution, and that turned out to be the case.

Let u(x, t) be a solution of KdV that along with all its derivatives vanishes at infinity, and
let us imagine u as measuring the height of a wave in a narrow channel (above the level of
undisturbed water). If we regard the water as incompressible, then u(x, t) dx is proportional
to the mass of water in the wave between x and x + dx (at time t), so we can identify the
constant of the motion

∫
u(x, t) dx with the total mass of water in the wave, and we will

denote it by µ(u).

! 2.2—Exercise 1. Show that the 1-soliton with parameter a has mass 4a.

We expect that the linear momentum carried by the wave should also be a constant of
the motion. How do we compute it? It is natural to define the center of mass of the wave
at time t by x̄u(t) = 1

µ(u)

∫
xu(x, t) dx.

! 2.2—Exercise 2. Show that x̄u(t) moves with constant velocity. Equivalently, show
that Pu =

∫
xut(x, t) dx is another constant of the motion.

In [To], Toda calls Pu the total momentum of the wave, but this does not seem physically
justified to me. It suggests that the velocity of the center of mass is the same as the average
translational velocity of the water particles in the x direction, as if the water were moving
along with the wave. In fact, in the approximation used to derive the KdV equation, the
x-component of velocity of the water particle located at x at time t is proportional to the
wave height u(x, t), so that the total x-momentum of the wave is actually

∫
u2(x, t) dx.

This leaves the third classical constant of the motion:
∫

(u3 − 1
2u2

x) dx; we would like to
give it some physical interpretation—and total energy is the obvious suspect. I don’t see
any convincing argument to identify it with the sum of the kinetic and potential energy of
the wave, but on the other hand we will see in the next section that in our representation
of KdV as a Hamiltonian system, this constant of the motion is the Hamiltonian function,
and of course in classical mechanics that is the rôle normally played by the total energy.

2.3 KdV as a Hamiltonian System
I will assume below that the reader is familiar with the basic facts concerning symplectic

manifolds and Hamiltonian systems, including the infinite dimensional case, however I have
included an appendix in which these concepts are reviewed.

We shall now see how to view KdV as a Hamiltonian system in a simple and natural
way. It turns out that this Hamiltonian system has a key property one would expect from
any generalization to infinite dimensions of the concept of complete integrability in the
Liouville sense, namely the existence of infinitely many functionally independent constants
of the motion that are in involution. (Later, in discussing the inverse scattering method, we
will indicate how complete integrability was proved in a more precise sense by Fadeev and
Zakharov [ZF]; they demonstrated that the “scattering data” for the KdV equation obey
the characteristic Poisson bracket relations for the action-angle variables of a completely
integrable system.)

For simplicity, we shall take as our phase space P for KdV the Schwartz space, S(R), of
rapidly decreasing functions u : R → R, although a much larger space would be possible.
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As mentioned earlier, it is proved in [BS] that KdV defines a global flow on the Sobolev
space H4(R) (see also [Ka1], [Ka2]), and it is not hard to see that P is an invariant subspace
of this flow. For u, v in P we will denote their L2 inner product

∫ ∞
−∞ u(x)v(x) dx by 〈u, v〉

and we define
Ω(u, v) =

1
2

∫ ∞

−∞
(v(x)∫u(x)− u(x)∫v(x)) dx,

where ∫u(x) =
∫ x

−∞ u(y) dy denotes the indefinite integral of u. (For the periodic KdV
equation we take P to be all smooth periodic functions of period 2π and replace the

∫ ∞
−∞

by
∫ 2π

0
.)

We denote by ∂ the derivative operator, u �→ u′, so ∂ ∫u = u, and
∫ ∞
−∞ ∂u = 0 for

functions u that vanish at infinity. We will also write u(k) for ∂ku, but for small k we shall
also use u = u(0) , ux = u(1) , uxx = u(2) , etc.

There is a simple but important relation connecting Ω, ∂, and the L2 inner product,
namely:

Ω(∂u, v) = 〈u, v〉 .

! 2.3—Exercise 1. Prove this. (Hint: Show that ∂(u∫v) = (∂u) ∫v+u v,
∫ ∞
−∞ ∂(u∫v) = 0,

and Ω(∂u, v) = (1/2)
∫ ∞
−∞(v u− (∂u)∫v).)

One important consequence of this is the weak non-degeneracy of Ω. For, if ivΩ is zero,
then in particular 〈u, v〉 = Ω(∂u, v) = −Ω(v, ∂u) = −(ivΩ)(∂u) = 0 for all u, so v = 0.

Ω is clearly a skew-bilinear form on P . Since P is a vector space, we can as usual identify
P with its tangent space at every point, and then Ω becomes a “constant” 2-form on P .
Since it is constant, of course dΩ = 0.

A second consequence of Ω(∂u, v) = 〈u, v〉 is that if F : P → R is a smooth function (or
“functional”) on P that has a gradient ∇F with respect to the flat Riemannian structure
on P defined by the L2 inner product, then the symplectic gradient of F also exists.

Recall that dF , the differential of F , is the 1-form on P defined by

dFu(v) =
d

dε

∣∣∣∣
ε=0

F (u + εv),

and the gradient of F is the vector field dual to dF with respect to the L2 inner product
(if such a vector field indeed exists), i.e., it is characterized by (dF )u(v) = 〈(∇F )u, v〉.
Similarly, the symplectic gradient of F (if it exists) is the dual to dF with respect to Ω, i.e.,
it satisfies (dF )u(v) = Ω((∇s F )u, v). Since 〈(∇F )u, v〉 = Ω((∂(∇F )u), v), it follows that if
(∇F )u exists then (∇s F )u also exists and equals ∂((∇F )u).

2.3.1 Remark. Since P is not complete with respect to the L2 norm, it is not automatic
that a continuous linear functional on P can be represented as the inner product with some
element of P . Thus, the existence of a gradient vector field corresponding to a particular
function F requires proof.

We shall only consider functions F : P → R of the type normally considered in the
Calculus of Variations, i.e., of the form:

F (u) =
∫ ∞

−∞
F̃ (u, ux, uxx, . . .) dx,
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where F̃ : Rk+1 → R is a polynomial function without a constant term. Then the usual
integration by parts argument of the Calculus of Variations shows that such an F has a
gradient, given by:

(∇F )u =
∂F̃

∂u
− ∂

(
∂F̃

∂ux

)
+ ∂2

(
∂F̃

∂uxx

)
− . . . .

2.3.2 Remark. The above formula is written using the standard but somewhat illogical
conventions of the Calculus of Variations and needs a little interpretation. F̃ is a function
of variables y = (y0, y1, y2, . . . yk), and for example ∂F̃/∂uxx really means the function on
R whose value at x is ∂F̃/∂y2 evaluated at y = (u(0)(x), u(1)(x), u(2)(x), . . . u(k)(x)).

From what we saw above, the symplectic gradient of such an F exists and is given by:

(∇s F )u = ∂

(
∂F̃

∂u

)
− ∂2

(
∂F̃

∂ux

)
+ ∂3

(
∂F̃

∂uxx

)
− . . . .

Now a smooth function on a symplectic manifold is called Hamiltonian if it has a sym-
plectic gradient, so what we have shown is that all such Calculus of Variations functionals
on P are Hamiltonian and define the Hamiltonian flow u̇ = (∇s F )u, where u(t) denotes a
smooth curve in P . If instead of u(t)(x) we write u(x, t), this symbolic ODE in the manifold
P becomes the PDE:

ut = ∂

(
∂F̃

∂u

)
− ∂2

(
∂F̃

∂ux

)
+ ∂3

(
∂F̃

∂uxx

)
− . . . .

In particular if we take F̃ = F̃3(u, ux) = −u3 + u2
x/2 , then we get the KdV equation in

standard form: ut = ∂(−3u2)− ∂2(ux) = −6u ux − uxxx.

Recall that if two smooth real-valued functions F and G on a symplectic manifold P are
both Hamiltonian, then they determine a third function on P , called their Poisson bracket ,
defined by: {F, G} = Ω(∇s G,∇s F ), and it is easy to show that this is also a Hamiltonian
function and in fact ∇s {F, G} = [∇s F,∇s G], (cf. the appendix.)

Specializing again to the case that P is the Schwartz space S(R), with the symplectic
structure defined above, we get the following formula for the Poisson Bracket:

{F, G} = Ω(∇s G,∇s F ) = Ω(∂∇G, ∂∇F ) = 〈∇G, ∂(∇F )〉

! 2.3—Exercise 2. Note that the density F̃3 above, that gives the KdV equation, is
just the third of the classical conserved densities for KdV. Show that in fact all three of
the functionals Fi (corresponding to the densities F̃1(u) = u, F̃2(u) = u2, and F̃3(u, ux) =
−u3 + 1

2u2
x) are in involution.

In fact, it turns out that the whole sequence of functionals Fi coming from the conserved
densities F̃i found by Miura are all in involution. (For the proof see [La3].)

2.4 KdV as a Lax Equation
In developing the Inverse Scattering Transform Gardner, Greene, Kruskal and Miura

[GGKM] showed that there was an intimate relation between the KdV equation and the
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time-independent Schrödinger operators − d2

dx2 + u—namely if a one-parameter family of
potentials u(x, t) evolved according to the KdV equation, then the corresponding one-
parameter L(t) of self-adjoint operators on L2(R) that are given by the Schrödinger op-
erators with potentials u(t)(x) = u(x, t) (i.e., L(t)ψ(x) = − d2

dx2 ψ(x) + u(x, t)ψ(x)) are
isospectral. Peter Lax [La1] took this observation one step further. He showed that one
could recast the KdV equation in a form now known as a Lax Equation, and as such it is
equivalent to the statement that the L(t) are evolving by unitary equivalence, i.e., there is
a smooth one-parameter family, U(t), of unitary operators on L2(R) such that U(0) = I
and L(t) = U(t)L(0)U(t)−1. We will first develop the concept of a Lax Equation in an
abstract setting, and then apply these considerations to the KdV situation. By the way, in
the following it will be convenient to take KdV in the form ut − 6uux + uxxx = 0.

Suppose we have a smooth one-parameter family U(t) of unitary transformations of a
Hilbert space H with U(0) = I. Ut(t), the derivative of U(t), is a tangent vector at U(t) of
the group U(H) of unitary transformations of H, so B(t) = Ut(t)U(t)−1 = Ut(t)U(t)∗ is a
tangent vector to U(H) at the identity, I. Differentiating UU∗ = I gives UtU

∗ + UU∗
t = 0,

and since Ut = BU and U∗
t = U∗B∗, 0 = BUU∗ + UU∗B∗, so B∗ = −B; i.e., B(t) is a

family of skew-adjoint operators on H. Conversely, a smooth map t �→ B(t) of R into the
skew-adjoint operators defines a time-dependent right invariant vector field XU (t) = B(t)U
on U(H) and so (at least in finite dimensions) a smooth curve U(t) of unitary operators
starting from I such that Ut(t) = B(t)U(t).

Now suppose that L(0) is a self-adjoint operator on H, and define a family of conjugate
operators L(t) by L(t) = U(t)L(0)U(t)−1, so L(0) = U(t)∗L(t)U(t). Differentiating the
latter with respect to t, 0 = U∗

t LU + U∗LtU + U∗LUt = U∗(−BL + Lt + LB)U . Hence,
writing [B, L] = BL−LB as usual for the commutator of B and L, we see that L(t) satisfies
the so-called Lax Equation, Lt = [B, L].

Given a smooth family of skew-adjoint operators B(t), the Lax Equation is a time-
dependent linear ODE in the vector space S of self-adjoint operators on H, whose special
form expresses the fact that the evolution is by unitary conjugation. Indeed, since the
commutator of a skew-adjoint operator and a self-adjoint operator is again self-adjoint, B(t)
defines a time-dependent vector field, Y , on S by Y (t)(L) = [B(t), L]. Clearly a smooth
curve L(t) in S satisfies the Lax Equation if and only if it is a solution curve of Y . By
uniqueness of solutions of linear ODE, the solution L(t) of this ODE with initial condition
L(0) must be the one-parameter family U(t)L(0)U(t)−1 constructed above.

Given any ψ(0) in H, define ψ(t) = U(t)ψ(0). Since U(t)L(0) = L(t)U(t), it follows that
if ψ(0) is an eigenvector of L(0) belonging to the eigenvalue λ, then ψ(t) is an eigenvalue
of L(t) belonging to the same eigenvalue λ. Differentiating the relation defining ψ(t) gives
ψt = Bψ(t), so we may consider ψ(t) to be defined as the solution of this linear ODE with
initial value ψ(0). Since this is one of the main ways in which we will use Lax Equations,
we will restate it as what we shall call the:

Isospectral Principle. Let L(t) and B(t) be smooth one-parameter families of self-adjoint
and skew-adjoint operators respectively on a Hilbert space H, satisfying the Lax Equation
Lt = [B, L], and let ψ(t) be a curve in H that is a solution of the time-dependent linear
ODE ψt = Bψ. If the initial value, ψ(0), is an eigenvector of L(0) belonging to an eigenvalue
λ, then ψ(t) is an eigenvector of L(t) belonging to the same eigenvalue λ.

We now apply the above with H = L2(R). We will see that if u satisfies KdV, then
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the family of Schrödinger operators L(t) on H defined above satisfies the Lax Equation
Lt = [B, L], where

B(t)ψ(x) = −4ψxxx(x) + 3 (u(x, t)ψx(x) + (u(x, t)ψ(x))x) ,

or more succinctly, B = −4∂3 + 3(u∂ + ∂u). Here and in the sequel it is convenient to use
the same symbol both for an element w of the Schwartz space, S(R), and for the bounded
self-adjoint multiplication operator v �→ wv on H. Since H is infinite dimensional and our
operators B and L are unbounded on H, some care is needed for a rigorous treatment. But
this is relatively easy. Note that all the operators involved have the Schwartz space as a
common dense domain.)

Note that since ∂ is skew-adjoint, so is any odd power, and in particular 4∂3 is skew-
adjoint. Also, the multiplication operator u is self-adjoint, while the anti-commutator of a
self-adjoint and a skew-adjoint operator is skew-adjoint, so u∂ + ∂u and hence B is indeed
skew-adjoint.

Since clearly Lt = ut, while ut−6uux+uxxx = 0 by assumption, to prove that Lt = [B, L]
we need only check that [B, L] = 6uux − uxxx.

! 2.4—Exercise 1. Prove this. (Hint: [B, L] = 4[∂3, ∂2]− 4[∂3, u]− 3[u∂, ∂2]+3[u∂, u]−
3[∂u, ∂2] + 3[∂u, u], so it will suffice to verify the following six commutator relations:
[∂3, ∂2] = 0, [∂3, u] = uxxx + 3uxx∂ + 3ux∂2, [u∂, ∂2] = −uxx∂ − 2ux∂2, [u∂, u] = uux,
[∂u, ∂2] = −3uxx∂ − 2ux∂2 − uxxx, and [∂u, u] = uux.

Let us now apply the Isospectral Principle to this example.

KdV Isospectrality Theorem. Suppose u(x, t) is a solution of the KdV equation,

ut − 6uux + uxxx = 0,

whose initial value u(x, 0) is in the Schwartz space S(R), and that ψ(x) is an eigenfunction
of the Schrödinger Equation with potential u(x, 0) and eigenvalue λ:

− d2

dx2
ψ(x) + u(x, 0)ψ(x) = λψ(x).

Let ψ(x, t) be the solution of the evolution equation ψt = Bψ, i.e.,

∂ψ

∂t
= −4

∂3ψ

∂x3
+ 3

(
u(x, t)

∂ψ

∂x
(x, t) +

∂

∂x
(u(x, t)ψ(x, t))

)

with the initial value ψ(x, 0) = ψ(x). Then ψ(x, t) is an eigenfunction for the Schrödinger
Equation with potential u(x, t) and the same eigenvalue λ:

−ψxx(x, t) + u(x, t)ψ(x, t) = λψ(x, t),

and moreover, if ψ(x) is in L2, then the L2 norm of ψ(·, t) is independent of t. Finally,
ψ(x, t) also satisfies the first-order evolution equation

ψt − (4λ + 2u)ψx + uxψ = 0.
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PROOF. Except for the final statement this is an immediate application of the Isospec-
trality Principle. Differentiating the eigenvalue equation for ψ(x, t) with respect to x gives
ψxxx = uxψ + (u − λ)ψx, and substituting this into the assumed evolution equation for ψ
gives the asserted first-order equation for ψ.

By the way, I should re-emphasize that the essential point is that when a potential
evolves via KdV, the corresponding Schrödinger operators are isospectral, and this is already
clearly stated in [GGKM]. Lax’s contribution was to explain the mechanism behind this
remarkable fact and to formulate it in a way that was easy to generalize. In fact, almost all
generalizations of the phenomena first recognized in KdV have used the Lax Equation as a
jumping-off place.

2.5 The KdV Heierarchy
Let me explain why you should find the Lax form of the KdV equation striking and more

that a little surprising. Let’s examine both sides of the equation Lt = [B, L] carefully. On
the left, since the self-adjoint operator L(t) is the constant (in time) second order differential
operator −∂2 plus the zero-order operator multiplication by u(t), its time derivative, Lt,
is the zero-order operator multiplication by ut. On the right we have the difference of the
two fifth order differential operators B(t)L(t) and L(t)B(t). Now of course the operators
L(t) and B(t) do not commute, but since they are acting on scalar-valued functions, the
top-order (i.e., fifth order) terms (or “symbols”) of their products is independent of the
order of composition by a well-known trivial calculation. Thus, [B, L] should be a fourth
order operator! What happened to the terms of order one, two, three, and four? Of course
they have miraculously cancelled (as you will have noticed if you did the above exercise)
due to the special form of B(t). The fact that the zero order“right hand side”, 6uux− uxxx

of the KdV equation ut = 6uux − uxxx can be written as the commutator of L(t) and a
third order operator B(t) is what should have surprised you, it is what accounts for the
remarkable “integrability” properties of KdV. If you replace B(t) by another skew-adjoint
third order operator that is not just a multiple of B(t) you will see that it is never of order
zero. But what if we replace B(t) with some higher order differential operator?

Peter Lax asked and answered this question in [La1], the paper in which he first derived
the above Lax form of the KdV equation. The natural generalization for B, Lax points out,
is an operator Bj of order 2j +1 of the form a∂2j+1 +

∑j
i=1(bi∂

2i−1 +∂2i−1bi), where the bi

are polynomials in u and its partial derivatives. If we demand that [L, Bj ] be a zero order
operator, multiplication by some polynomial Kj(u) in u and its derivatives, this gives j
conditions that uniquely determine the b1, . . . , bj . For j = 0 we get B0 = ∂ and K0(u) = ux,
so the analogue of the KdV equation is just the linear advection equation ut = ux which
is therefore also called the “zero-th flow of the KdV Heierarchy. Of course B1 = B, and
KdV itself is the “first flow of the KdV Heierarchy”, and in general the evolution equation
ut = Kj(u) is referred to as the j-th flow of the KdV Heierarchy . What is more, it turns
out that each of these higher order KdV flows is a Hamiltonian flow on our phase space
S(R) with respect to the symplectic structure we have described above. The corresponding
Hamiltonian functions Fj : S(R) → R are all Calculus of Variations functionals, i.e., they
are of the form Fj(u) =

∫ ∞
−∞ F̃j(u) dx, where F̃j(u) is a polynomial differential operator of

order j. By now you probably won’t be surprised to learn that these Fj are all in involution
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(so all the flows of the KdV heierarchy commute), and hence each Fj is a conserved quantity
for the KdV flow. In fact, F1, F2, F3 are the classical conserved quantities of KdV, and the
higher Fj are just the sequence of conserved quantities discovered in [GGKM].
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Section 3
Introduction to the Inverse Scattering Transform

3.1 The Scattering Data and its Evolution
We now fix a “potential function” u in the Schwartz space S(R) and look more closely at
the space Eλ(u) of λ eigenfunctions of the Schrödinger operator with this potential. By
definition, Eλ(u) is just the kernel of the linear operator Lu(ψ) = −d2ψ

dx2 + uψ − λψ acting
on the space C∞(R), and by the elementary theory of second-order linear ODE it is, for
each choice of λ, a two-dimensional linear subspace of C∞(R). Using the special form of
Lu we can describe Eλ(u) more precisely. We will ignore the case λ = 0, and consider the
case of positive and negative λ separately.

Suppose λ = −κ2, κ > 0. Note that any ψ in Eλ(u) will clearly be of the form ψ(x) =
aeκx +be−κx in any interval on which u vanishes identically. Thus if u has compact support,
say u(x) = 0 for |x| > M , then we can find a basis {ψ+

λ,−∞, ψ−
λ,−∞} for Eλ(u) such that

ψ±
λ,−∞(x) = e±κx, (or equivalently, ψ+

λ,−∞(x)e∓κx = 1) for x < −M . Similarly there is a
second basis {ψ+

λ,∞, ψ−
λ,∞} for Eλ(u) such that ψ±

λ,∞(x) = e±κx (or ψ±
λ,∞(x)e∓κx = 1) for

x > M .

When u does not have compact support, but is only rapidly decreasing then, by an
argument that we will sketch below, it follows that there still exist two bases for Eλ(u)
{ψ+

λ,−∞, ψ−
λ,−∞}, {ψ+

λ,∞, ψ−
λ,∞} such that ψ±

λ,−∞(x) ∼ e±κx at −∞ and ψ±
λ,∞(x) ∼ e±κx at

+∞ (i.e., limx→−∞ ψ±
λ,−∞(x)e∓κx = 1 and limx→∞ ψ±

λ,∞(x)e∓κx = 1).

Using these bases it is easy to detect when λ is a so-called “discrete eigenvalue” of Lu,
i.e., when Eλ(u) contains a non-zero element ψ of L2(R). Let us define functions f(λ) and
c(λ) by ψ+

λ,−∞ = f(λ)ψ+
λ,∞ + c(λ)ψ−

λ,∞. We can assume ψ has L2 norm one, and since
ψ−

λ,−∞ blows up at −∞ while ψ+
λ,∞ blows up at ∞, ψ must be both a multiple of ψ+

λ,−∞
and of ψ−

λ,∞, and since ψ �= 0 it follows that f(λ) = 0. Conversely, if f(λ) = 0 then
ψ+

λ,−∞ = c(λ)ψ−
λ,∞ decays exponentially both at ∞ and −∞ and so we can normalize it to

get an element of Eλ(u) with L2 norm one. Thus the discrete eigenvalues of Lu are precisely
the roots of the function f .

It follows from standard arguments of Sturm-Liouville theory that in fact Lu has only
finitely many discrete eigenvalues, λ1, . . . , λN , with corresponding L2 normalized eigenfunc-
tions ψ1, . . . , ψN , and these determine so-called “normalization constants” c1, . . . , cN by
ψn = cnψ−

λn,∞, i.e., if we write λn = −κ2
n, then cn is characterized by ψn(x) ∼ cne−κnx as

x →∞. We note that the ψn and hence the normalization constants cn are only determined
up to sign, but we will only use c2

n in the Inverse Scattering Transform.

For λ = k2, k > 0 there are similar considerations. In this case if u(x) vanishes for
|x| > M then any element of Eλ(u) will be of the form aeikx + be−ikx for x < −M and also
of the form ceikx+de−ikx for x > M . If u is only rapidly decaying then this time we can find
two bases {ψ+

λ,−∞, ψ−
λ,−∞} and {ψ+

λ,∞, ψ−
λ,∞} for Eλ(u) such that ψ±

λ,−∞(x) ∼ e±ikx at −∞
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while ψ±
λ,∞(x) ∼ e±ikx at +∞. Then ψ−

λ,−∞ = αψ−
λ,∞+βψ+

λ,∞, where α can be shown to be
non-zero. Dividing by α we get a particular eigenfunction ψk, called the Jost solution, with
the special asymptotic behavior ψk(x) ∼ a(k)e−ikx as x → −∞ and ψk(x) ∼ e−ikx+b(k)eikx

as x →∞.

The functions a(k) and b(k) are called the transmission coefficient and reflection coeffi-
cient respectively, and b(k) together with the above normalizing constants c1, . . . cn make
up the “Scattering Data”, S(u) for u.

While it may seem intuitively clear that the bases ψ±
λ,±∞ must exist, to give rigorous

asymptotic arguments required for the proof of the crucial theorem on the time evolution
of the Scattering Data it is essential to supply precise definitions of these bases, and we do
this next.

For a warm-up, consider the simpler problem of the first order ODE Luψ = dψ
dx − uψ.

If we make the substitution ψ = eλxφ, then the eigenvalue equation Lu(ψ) = λψ becomes
dφ
dx = uφ, so (assuming u depends on a parameter t) we have φ(x, t) = exp(

∫ x

−∞ u(ξ, t) dξ).
Note that limx→−∞ φ(x, t) = 1 while limx→∞ φ(x, t) = exp(

∫ ∞
0

u(ξ, t) dξ) = c(t). If ψ(x, t)
is an eigenfunction of Lu it follows that ψ(x, t) ∼ c(t)eλx (i.e., limx→∞ ψ(x, t)e−λx = c(t)).
But moreover, since u(x, t) is rapidly decaying we can even differentiate under the integral
sign to obtain ψt(x, t) ∼ c′(t)eλx .

If an asymptotic relation depends on a parameter, one cannot in general differentiate
with respect to that parameter unless one knows that the asymptotic relation holds uni-
formly in the parameter, and since we will need to derive a relation similar to the above
for eigenfunctions of Schrödinger operators, we must now make an argument similar to the
above (but a somewhat more complicated) to justify differentiation in that case.

If we make the substitution ψ = φe−κx in our eigenvalue equation ψxx = κ2ψ + uψ, then
we get after simplifications φxx − 2κφx = uφ, or ∂(∂ − 2κ)φ = uφ. Recall the method of
solving the inhomogeneous equation ∂(∂ − 2κ)φ = f by “variation of parameters”. Since 1
and e2κx form a basis for the solutions of the homogeneous equation, we look for a solution
of the form φ = Θ1 + Θ2e

2κx, and to make the system determined we add the relation
Θ′

1 + Θ′
2e

2κx = 0. This leads to the equations Θ′
1 = − f

2κ and Θ′
2 = f

2κe2κx so the solution
to the inhomogeneous equation is just φ = − 1

2κ

∫ x

0
f(ξ) dξ + e2κx

2κ

∫ x

0
f(ξ)e−2κx dξ.

If we now take f = uφ (and use φe−κx = ψ) then we get the relation

φ(x, t) =
1
2κ

∫ 0

x

u(ξ, t)φ(ξ, t) dξ − e2κx

2κ

∫ 0

x

u(ξ, t)ψ(ξ, t)e−κx dξ.

Assuming that −κ2 is a discrete eigenvalue, and that ψ has L2 norm 1, uψ will also be
in L2 and we can estimate the second integral using the Schwartz Inequality. We see that
in fact |

∫ 0

x
u(ξ)ψ(ξ)e−κx dξ| < O(e−κx), so the second term is O(eκx), and it follows that

ψ(x, t) ∼ c(t)eκx at −∞ where c(t) = φ(−∞, t) = 1
2κ

∫ 0

−∞ u(ξ, t)φ(ξ, t) dξ. In other words,
the normalizing constant is well defined. But what is more important, it also follows that
if u(x, t) satisfies KdV, then the normalizing constant c(t) for a fixed eigenvalue −κ2 is
a differentiable function of t and satisfies ψt(x, t) ∼ c′(t)eκx. This follows from the fact
that we can differentiate the formula for c(t) under the integral sign because u is rapidly
decreasing.

Note that differentiating the relation ψeκx = φ gives ψxeκx = φx − κψ. But the formula
for φ shows that φx converges to zero at −∞, so ψx(x, t) ∼ −κc(t)eκx. From the KdV
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Isospectrality Theorem, we know that if u(x, t) satisfies KdV, then ψ(x, t) satisfies ψt −
(−4κ2 + 2u)ψx + uxψ = 0 It follows that the left hand side times eκx converges to c′(t) +
4κ2(−κc(t)) as x →∞ and hence c′(t)− 4κ3c(t) = 0, so c(t) = c(0)e4κ3t.

By a parallel argument (which we omit) it follows that the transmission and reflec-
tion coefficients are also well defined and that the Jost solution ψk(x, t) satisfies (ψk)t ∼
at(k, t)e−ikx at −∞ and (ψk)t ∼ bt(k, t)eikx at ∞, and then one can show from the KdV
Isospectrality Theorem that the transmission coefficients are constant, while the reflection
coefficients satisfy b(k, t) = b(k, 0)e8ik3t.

! 3.1—Exercise 1. Supply the omitted proof.

Theorem on Evolution of the Scattering Data. Let u(t) = u(x, t) be a smooth curve
in S(R) satisfying the KdV equation ut−6uux +uxxx = 0 and assume that the Schrödinger
operator with potential u(t) has discrete eigenvalues−κ2

1, . . . ,−κ2
N whose corresponding nor-

malized eigenfunctions have normalization constants c1(t), . . . , cn(t). Let the transmission
and reflection coefficients of u(t) be respectively a(k, t) and b(k, t). Then the transmission
coefficients are all constants of the motion, i.e., a(k, t) = a(k, 0), while the Scattering Data,
cn(t) and b(k, t), satisfy:

1) cn(t) = cn(0)e4κ3
nt,

2) b(k, t) = b(k, 0)e8ik3t.

We note a striking (and important) fact: not only do we now have an explicit and simple
formula for the evolution of the scattering data S(u(t)) when u(t) evolves by the KdV
equation, but further this formula does not require any knowledge of u(t).

The fact that the transmission coefficients a(k) are constants of the motion while the
logarithms of the reflection coefficients, b(k) vary linearly with time suggest that perhaps
they can somehow be regarded as action-angle variables for the KdV equation, thereby
identifying KdV as a completely integrable system in a precise sense. While a(k) and b(k)
are not themselves canonical variables, Zakharov and Fadeev in [ZF] showed that certain
functions of a and b did satisfy the Poisson commutation relations for action-angle variables.
Namely, the functions p(k) = (k/π) log |a(k)|2 = (k/π) log[1 + |b(k)|2] and q(k) = arg(b(k))
satisfy {p(k), q(k′)} = δ(k − k′) and {p(k), p(k′)} = {q(k), q(k′)} = 0.

The above formula for the evolution of the Scattering Data is one of the key ingredients
for The Inverse Scattering Method, and we are finally in a position to describe this elegant
algorithm for solving the Cauchy problem for KdV.

The Inverse Scattering Method.

To solve the KdV initial value problem ut−6uux+uxxx = 0 with given initial potential
u(x, 0) in S(R):

1) Apply the “Direct Scattering Transform”. That is, find all the discrete eigenval-
ues −κ2

1, . . . ,−κ2
N for the Schrödinger operator with potential u(x, 0), and the the

Scattering Data S(u(x, 0))for u(x, 0), consisting of the normalizing constants cn(0)
and the reflection coefficients b(k, 0).

2) Use the explicit evolution formulae: cn(t) = cn(0)e4κ3
nt and b(k, t) = b(k, 0)e8ik3t,

to find the scattering data S(u(x, t)).
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3) Use the Inverse Scattering Transform (described in the next section) to compute
u(t) from S(u(x, t)).

3.2 The Gelfand-Levitan-Marchenko Equation
Recovering the potential u of a Schrödinger operator Lu from the Scattering Data S(u) was
not something invented for the purpose of solving the KdV initial value problem. Rather,
it was a question of basic importance to physicists doing Cyclotron experiments, and the
theory was worked out in the mid-1950’s by Kay and Moses [KM], by Gelfand and Levitan
[GL], and Marchenko [M].

Denote the discrete eigenvalues of u by −κ2
1, . . . ,−κ2

N , the normalizing constants by
c1, . . . , cN , and the reflection coefficients by b(k), and define a function

B(ξ) =
N∑

n=1

c2
ne−κnξ +

1
2π

∫ ∞

−∞
b(k)eikξ dk.

Inverse Scattering Theorem. The potential u can be recovered using the formula u(x) =
−2 d

dxK(x, x), where K(x, z) is the unique function on R × R that is zero for z < x and
satisfies the Gelfand-Levitan-Marchenko Integral Equation:

(GLM) K(x, z) + B(x + z) +
∫ ∞

−∞
K(x, y)B(y + z) dy = 0.

Below we will demonstrate how the Inverse Scattering Method can be used to get formulas
for the KdV multi-solitons by solving the GLM equation explicitly for the case of reflection-
less potentials. But first a couple of general remarks about solving the GLM equation. We
assume in the following that B is rapidly decreasing.

Let C(R×R) denote the Banach space of bounded, continuous real-valued functions on
R×R with the sup norm. Define FB : C(R×R) → C(R×R) by the formula

FB(K)(x, z) = −B(x + z)−
∫ ∞

−∞
K(x, y)B(y + z) dy.

Then K satisfies the Gelfand-Levitan-Marchenko equation if and only if it is a fixed-point of
FB . It is clear that FB is Lipschitz with constant ‖B‖L1 , so if ‖B‖L1 < 1 then by the Banach
Contraction Principle the Gelfand-Levitan-Marchenko equation has a unique solution, and
it is the limit of the sequence Kn defined by K1(x, z) = −B(x + z), Kn+1 = FB(Kn).

Secondly, we note that if the function B is “separable” in the sense that it satisfies an
identity of the form B(x + z) =

∑N
n=1 Xn(x)Zn(z), then the Gelfand-Levitan-Marchenko

equation takes the form:

K(x, z) +
N∑

n=1

Xn(x)Zn(z) +
N∑

n=1

Zn(z)
∫ ∞

x

K(x, y)Xn(y) dy = 0.
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and it follows that K(x, z) must have the form K(x, z) =
∑N

n=1 Ln(x)Zn(z). If we substitute
this for K in the previous equation and define anm(x) =

∫ ∞
x

Zm(y)Xn(y) dy then we have
reduced the problem to solving N linear equations for the unknown functions Ln, namely:
Ln(x) + Xn(x) +

∑N
m=1 anm(x)Lm(x) = 0, or Xn(x) +

∑N
m=1 Anm(x)Lm(x) = 0, where

Anm(x) = δnm + anm(x). Thus finally we have:

K(x, x) = −
N∑

n=1

Zn(x)
N∑

m=1

A−1
nm(x)Xm(x).

3.3 An Explicit Formula for KdV Multi-Solitons.
A potential u is called “reflectionless” if all the reflection coefficients are zero. Because of the
relation b(k, t) = b(k, 0)e8ik3t, it follows that if u(x, t) evolves by KdV and if it is reflectionless
at t = 0 then it is reflectionless for all t. If the discrete eigenvalues of such a potential are
−κ2

1, . . . ,−κ2
N and the normalizing constants are c1, . . . , cN , then B(ξ) =

∑N
n=1 c2

ne−κnξ, so
B(x + z) =

∑N
n=1 Xn(x)Zn(z), where Xn(x) = c2

ne−κnx, and Zn(z) = e−κnz and we are in
the separable case just considered. Recall that:

anm(x) =
∫ ∞

x

Zm(y)Xn(y) dy

=c2
n

∫ ∞

x

e−(κn+κm)y dy

=c2
n

e−(κn+κm)x

(κn + κm)
,

and that
Anm(x) =δnm + anm(x)

=δnm + c2
n

e−(κn+κm)x

(κn + κm)
.

Differentiation gives d
dxAnm(x) = −c2

ne−(κn+κm)x, so by the formula above:

K(x, x) = −
N∑

n=1

Zn(x)
N∑

m=1

A−1
nm(x)Xm(x)

=
N∑

n=1

e−κnx
N∑

m=1

A−1
nm(x)(−c2

me−κmx)

=
N∑

n=1

N∑
m=1

A−1
nm

d

dx
Amn(x)

= tr
(

A−1(x)
d

dx
A(x)

)

=
1

det(A(x))
d

dx
det A(x)

=
d

dx
log detA(x).
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and so u(x) = −2 d
dxK(x, x) = −2 d2

dx2 log detA(x).

If N = 1 and we put κ = κ1 it is easy to see that this formula reduces to our earlier
formula for travelling wave solutions of the KdV equation: u(x, t) = −κ2

2 sech2(κ(x− κ2t)).
We can also use it to find explicit solutions u(x, t) for N = 2. Let gi(x, t) = exp(κ3

i t− κix),
and set A = (κ1−κ2)

2

(κ1+κ2)2
, then

u(x, t) = −2
κ2

1g1 + κ2
2g2 + 2(κ1 − κ2)2g1g2 + Ag1g2(κ2

1g2 + κ2
2g1)

(1 + g1 + g2 + Ag1g2)2
.

For general N the solutions u(x, t) that we get this way are referred to as the pure N -
soliton solutions of the KdV equation. It is not hard to show by an asymptotic analysis
that for large large negative times and large positive times they behave as a superposition
of the above travelling wave solutions, and that after the larger, faster moving waves have
all passed through the slower moving shorter ones and they have become well-separated, the
only trace of their interactions are certain predictable “phase-shifts”, i.e., certain constant
translations of the locations of their maxima from where they would have been if they had
not interacted.
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Section 4
The ZS-AKNS Scheme

4.1 Zero Curvature Lax Equations
In this section, we will explain a general technique developed Zakharov and Shabat and by

Ablowitz, Kaup, Newell, and Segur for generating Lax Equations of a special type (called
ZCC, or Zero Curvature Condition equations). The Cauchy Problem for ZCC equations
can be solved using a generalization of the Inverse Scattering Transform. Zakharov and
Shabat introduced this method to study an important special equation (the so-called Non-
linear Schrödinger Equation, or NLS) [ZS], and soon thereafter Ablowitz, Kaup, Newell,
and Segur [AKNS1] showed that one relatively minor modification of the Zakharov and
Shabat approach recovers the theory of the KdV equation, while another leads to an Inverse
Scattering Theory analysis for a third very important evolution equation, the Sine-Gordon
Equation (SGE). They went on [AKNS2] to develop the Zakharov and Shabat technique
into a general method for PDE with values in 2× 2-matrix groups [AKNS2], and Zakharov
and Shabat further generalized it to the case of n × n-matrix groups. Following current
custom, we will refer to this method as the ZS-AKNS Scheme.

To prepare for the introduction of the ZS-AKNS Scheme, we next develop the infra-
structure on which Zero Curvature Equations are based. We fix a matrix Lie Group G and
denote its Lie algebra by G. That is, G is some closed subgroup of the group GL(n,C) of all
n×n complex matrices, and G is the set of all n×n complex matrices, X, such that exp(X)
is in G. If you feel more comfortable working with a concrete example, think of G as the
group SL(n,C) of all n × n complex matrices of determinant 1, and G as its Lie algebra
sl(n,C) of all n × n complex matrices of trace zero. In fact, for the original ZS-AKNS
Scheme, G = SL(2,C) and G = sl(2,C), and we will carry out most of the later discussion
with these choices, but for what we will do next the precise nature of G is irrelevant.

Let ∇ be a flat connection for the trivial principal bundle R2 ×G. Then we can write
∇= d− ω, where ω is a 1-form on R2 with values in the Lie algebra G. Using coordinates
(x, t) for R2 we can then write ω = A dx+B dt where A and B are smooth maps of R2 into
G.

If X is a vector field on R2, then the covariant derivative operator in the direction X is
∇X = ∂X − ω(X), and in particular, the covariant derivatives in the coordinate directions
∂
∂x and ∂

∂t are ∇ ∂
∂x

= ∂
∂x −A and ∇∂

∂t
= ∂

∂t −B.

Since we are assuming that ∇ is flat, it determines a global parallelism. If (x0, t0) is any
point of R2, then we have a map ψ : R2 → G, where ψ(x, t) is the parallel translation
operator from (x0, t0) to (x, t). Considered as a section of our trivial principal bundle, ψ is
covariant constant, i.e., ∇X ψ = 0 for any tangent vector field X. In particular, taking X
to be ∂

∂x and ∂
∂t gives the relations ψx = Aψ and ψt = Bψ.

There are many equivalent ways to express the flatness of the connection ∇. On the
one hand the curvature 2-form dω − ω ∧ ω is zero. Equivalently, the covariant derivative
operators in the ∂

∂x and ∂
∂t directions commute, i.e., [ ∂

∂x − A, ∂
∂t − B] = 0, or finally,
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equating the cross-derivatives of ψ, (Aψ)t = ψxt = ψtx = (Bψ)x. Expanding the latter
gives Atψ +Aψt = Bxψ +Bψx or Atψ +ABψ = Bxψ +BAψ, and right multiplying by ψ−1

we arrive at the so-called “Zero-Curvature Condition”: At−Bx +[A, B] = 0. Rewriting this
as −At = −Bx + [B,−A], and noting that [B, ∂

∂x ] = −Bx, we see that the Zero-Curvature
Condition has an equivalent formulation as a Lax Equation:

(ZCC)
(

∂

∂x
−A

)
t

=
[
B,

∂

∂x
−A

]
,

and it is ZCC that plays the central rôle in the ZS-AKNS Scheme.

Recall what ZCC is telling us. If we look at t as a parameter, then the operator ∂
∂x −

A(x, t0) is the covariant derivative in the x-direction along the line t = t0, and the Lax
Equation ZCC says that as a function of t0 these operators are all conjugate. Moreover the
operator ψ(t0, t1) implementing the conjugation between the time t0 and the time t1 satisfies
ψt = Bψ, which means it is parallel translation from (x, t0) to (x, t1) computed by going
“vertically” along the curve t �→ (x, t). But since ∂

∂x −A(x, t0) generates parallel translation
along the horizontal curve x �→ (x, t0), what this amounts to is the statement that parallel
translating horizontally from (x0, t0) to (x1, t0) is the same as parallel translation vertically
from (x0, t0) to (x0, t1) followed by parallel translation horizontally from (x0, t1) to (x1, t1)
followed by parallel translation vertically from (x1, t1) to (x1, t0). Thus, in the case of ZCC,
the standard interpretation of the meaning of a Lax Equation reduces to a special case of the
theorem that if a connection has zero curvature, then the holonomy around a contractible
path is trivial.

4.2 Some ZS-AKNS Examples
The ZS-AKNS Scheme is a method for solving the initial value problem for certain

(hierarchies of) evolution equations on a space of “potentials” P . In general P will be of
the form S(R, V ), where V is some finite dimensional real or complex vector space, i.e.,
each potential u will be a map x �→ u(x) of Schwartz class from R into V . (A function u
with values in V is of Schwartz class if, for each linear functional H on V , the scalar valued
function H◦u is of Schwartz class, or equivalently if, when we write u in terms of a fixed basis
for V , its components are of Schwartz class.) The evolution equations in question are of the
form ut = F (u) where the map F : P → P is a “polynomial differential operator”—i.e., it
has the form F (u) = p(u, ux, uxx, . . .), where p is a polynomial mapping of V to itself.

When we say we want to solve the initial value (or “Cauchy”) problem for such an
equation, we of course mean that given u0 = u(x, 0) in P we want to find a smooth map
t �→ u(t) = u(x, t) of R to P with u(0) = u0 and ut(x, t) = p(u(x, t), ux(x, t), uxx(x, t), . . .).
In essence, we want to think of F as a vector field on P and construct the flow φt that it
generates. (Of course, if P were a finite dimensional manifold, then we could construct the
flow φt by solving a system of ODE’s, and as we shall see, the ZS-AKNS Scheme allows us
in certain cases to solve the PDE ut = p(u, ux, uxx, . . .) by reducing it to ODE’s.)

The first and crucial step in using the ZS-AKNS Scheme to study a particular such
evolution equation consists in setting up an interpretation of A and B so that the equation
ut = p(u, ux, uxx, . . .) becomes a special case of ZCC.

To accomplish this, we first identify V with a subspace of G (so that P = S(R, V )
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becomes a subspace of S(R,G)), and define a map u �→ A(u) of P into C∞(R,G) of the
form A(u) = const + u, so that if u depends parametrically on t, then ( ∂

∂x −A(u))t = −ut.

Finally (and this is the difficult part) we must define a map u �→ B(u) of P into C∞(R,G)
so that [B(u), ∂

∂x −A(u)] = −p(u, ux, uxx, . . .).

To interpret the latter equation correctly, and in particular to make sense out of the
commutator bracket in a manner consistent with our earlier interpretation of A and B,
it is important to be clear about the interpretation A(u) and B(u) as operators, and in
particular to be precise about the space on which they are operating. This is just the space
C∞(R,gl(2,C)) of smooth maps ψ of R into the space of all complex 2×2 matrices. Namely,
we identify A(u) with the zero-order differential operator mapping ψ to A(u)ψ, the pointwise
matrix product of A(u)(x) and ψ(x), and similarly with B(u). (This is a complete analogy
with the KdV situation, where in interpreting the Schrödinger operator, we identified our
potential u with the operator of multiplication by u.) Of course ( ∂

∂xψ)(x) = ψx.

We will now illustrate this with three examples: the KdV equation, the Nonlinear
Schrödinger Equation (NLS), and the Sine-Gordon Equation (SGE). In each case V will
be a one-dimensional space that is embedded in the space of off-diagonal complex matrices(

0 b
c 0

)
, and in each case A(u) = aλ + u, where λ is a complex parameter, and a is the

constant, diagonal, trace zero matrix a =
(
−i 0
0 i

)
.

Example 1. [AKNS1] Take u(x) =
(

0 q(x)
−1 0

)
, and let

B(u) = aλ3 + uλ2 +
(

i
2q i

2qx

0 − i
2q

)
λ +

(
qx

4
−q2

2 − qxx

4
q
2

qx

4

)
.

Then an easy computation shows that ZCC is satisfied if and only if q satisfies KdV in the
form qt = − 1

4 (6qqx + qxxx).

Example 2. [ZS] Take u(x) =
(

0 q(x)
−q̄(x) 0

)
, and let

B(u) = aλ2 + uλ +
(

i
2 |q|2 i

2qx
i
2 q̄x − i

2 |q|2
)

.

In this case ZCC is satisfied if and only if q(x, t) satisfies the so-called Nonlinear Schrödinger
Equation (NLS) qt = i

2 (qxx + 2|q|2q).

Example 3. [AKNS1] Take u =
(

0 − qx(x)
2

qx(x)
2 0

)
, and let B(u) = 1

λv where v(x) =

i
4

(
cos q(x) sin q(x)
sin q(x) − cos q(x)

)
. In this case, ZCC is satisfied if and only if q satisfies the Sine-

Gordon Equation (SGE) in the form qxt = sin q.
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Appendix A
Symplectic Manifolds and Hamiltonian Systems

If P is a finite dimensional smooth manifold, then a symplectic structure for P is a closed
non-degenerate 2-form Ω on P . Non-degenerate means that at each point p of P , the map
v �→ ivΩ = Ω(v, ) of TPp to its dual T ∗Pp is a linear isomorphism. It then follows that
if F : P → R is a smooth real-valued function on P , then there is a uniquely determined
vector field X on P such that iXΩ = dF , and we call X the symplectic gradient of F and
denote it by ∇s F .

By an important theorem of Darboux, ([Ar], Chapter 8) in the neighborhood of any
point of P there exist “canonical coordinates” q1, . . . , qn, p1, . . . , pn in which Ω has the form∑

i dpi ∧ dqi, and in these coordinates ∇s H =
∑

i(
∂H
∂pi

∂
∂qi

− ∂H
∂qi

∂
∂pi

), or equivalently the
solution curves of ∇s H satisfy Hamilton’s equations dpi

dt = −∂H
∂qi

, dqi

dt = ∂H
∂pi

.

We next recall some facts about Lie derivatives. If X is a smooth vector field on a smooth
manifold M , generating a flow φt, and if T is any smooth tensor field on M , then the Lie
derivative of T with respect to X is the tensor field L

X
T = d

dt |t=0φ
∗
t (T ). If L

X
T = 0, then

we shall say that “X preserves T”, for this is the necessary and sufficient condition that
the flow φt preserve T , i.e., that φ∗

t (T ) = T for all t. There is a famous formula of Cartan
for the Lie derivative operator L

X
restricted to differential forms, identifying it with the

anti-commutator of the exterior derivative operator d and the interior product operator iX :

L
X

= diX + iXd.

If θ is a closed p-form, this gives L
X

θ = d(iXθ), so X preserves θ if and only if the (p− 1)-
form iXθ is closed. In particular this demonstrates the important fact that a vector field
X on a symplectic manifold P is symplectic (i.e., preserves the symplectic form, Ω) if and
only if iXΩ is a closed 1-form (and hence, at least locally, the differential of a smooth
function). The well known identity L[X,Y ] = [L

X
,L

Y
] implies that the space of symplectic

vector fields on P is a Lie algebra, which we can think of as the Lie algebra of the group
of symplectic diffeomorphisms of P . It is an interesting and useful fact that the space of
Hamiltonian vector fields on P , i.e., those for which iXΩ is an exact form, dF , is not only a
linear subspace, but is even a Lie subalgebra of the symplectic vector fields, and moreover
the commutator subalgebra of the symplectic vector fields is included in the Hamiltonian
vector fields. To demonstrate this we shall show that if iXΩ and iY Ω are closed forms,
then i[X,Y ]Ω is not only closed but even exact, and in fact it is the differential of the
function Ω(Y, X). First, using the fact that Lie derivation satisfies a Leibnitz formula
with respect to any natural bilinear operation on tensors (so in particular with respect
to the interior product), L

X
(iY Ω) = i(L

X
Y )Ω + iY (L

X
Ω). Thus, since L

X
Y = [X, Y ] and

L
X

Ω = 0, L
X

(iY Ω) = i[X,Y ]Ω. Finally, since d(iY Ω) = 0, Cartan’s formula for L
X

(iY Ω) gives
i[X,Y ]Ω = diX(iY Ω) = d(Ω(Y, X)).

5.0.1 Remark. Cartan’s Formula can be proved easily as follows. There is an important
involutory automorphism ω �→ ω̄ of the algebra A of differential forms on a manifold.
Namely, it is the identity on forms of even degree and is minus the identity on forms of odd
degree. A linear map ∂ : A → A is called an anti-derivation if ∂(λω) = ∂λ ∧ ω + λ̄ ∧ ∂ω. It
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is of course well-known that the exterior derivative, d, is an anti-derivation (of degree +1),
and an easy check shows that the interior product iX is an anti-derivation (of degree −1).
Moreover, the anti-commutator of two anti-derivations is clearly a derivation, so that L

X

and diX + iXd are both derivations of A, and hence to prove they are equal it suffices to
check that they agree on a set of generators of A. But A is generated by forms of degree zero
(i.e., functions) and the differentials of functions, and it is obvious that L

X
and diX + iXd

agree on these.

We shall also have to deal with symplectic structures on infinite dimensional manifolds.
In this case we still require that Ω is a closed form and we also still require that Ω is weakly
non-degenerate, meaning that for each point p of P , the map v �→ ivΩ of TPp to TP ∗

p

is injective. In finite dimensions this of course implies that Ω is strongly non-degenerate—
meaning that the latter map is in fact an isomorphism—but that is rarely the case in infinite
dimensions, so we will not assume it. Thus, if F is a smooth function on P , it does not
automatically follow that there is a symplectic gradient vector field ∇s F on P satisfying
Ω((∇s F )p, v) = dFp(v) for all v in TPp—this must be proved separately. However, if a
symplectic gradient does exist, then weak non-degeneracy shows that it is unique. In the
infinite dimensional setting we call a function F : P → R a Hamiltonian function if it
has a symplectic gradient, and vector fields of the form ∇s F will be called Hamiltonian
vector fields. Obviously the space of Hamiltonian functions is linear, and in fact the formula
d(FG) = FdG+GdF shows that it is even an algebra, and that ∇s(FG) = F ∇s G+G∇s F .
We shall call a vector field X on P symplectic if the 1-form iXΩ is closed but not necessarily
exact, for as we have seen, this is the condition for the flow generated by X to preserve Ω.

Of course if P is a vector space, the distinction between Hamiltonian and symplectic
disappears: if iXΩ is closed, then H(p) =

∫ 1

0
Ωtp(Xtp, p) dt defines a Hamiltonian function

with ∇s H = X. Moreover, in this case it is usually straightforward to check if iXΩ is closed.
Given u, v in P , consider them as constant vector fields on P , so that [u, v] = 0. Then the
formula dθ(u, v) = u(θ(v))− v(θ(u))− θ([u, v]) for the exterior derivative of a 1-form shows
that symmetry of d

dt

∣∣
t=0

Ω(Xp+tu, v) in u and v is necessary and sufficient for iXΩ to be closed
(and hence exact). In case Ω is a constant form (i.e., Ωp(u, v) is independent of p) , then
d
dt

∣∣
t=0

Ω(Xp+tu, v) = Ω((DXp)(u), v), where (DX)p(u) = d
dt

∣∣
t=0

Xp+tu is the differential of
X at p. Since Ω is skew-symmetric in u and v, this shows that if Ω is constant, then X is
Hamiltonian if and only if (DX)p is “skew-adjoint” with respect to Ω.

If two smooth real-valued functions F1 and F2 on a symplectic manifold P are Hamil-
tonian, i.e., if they have symplectic gradients ∇s F1 and ∇s F2, then they determine a third
function on P , called their Poisson bracket , defined by:

{F1, F2} = Ω(∇s F2,∇s F1).

The formula i[X,Y ]Ω = d(Ω(Y, X)) shows that the Poisson bracket is also a Hamiltonian
function, and in fact

∇s {F1, F2} = [∇s F1,∇s F2].

What this formula says is that Hamiltonian functions F : P → R are not only a commuta-
tive and associative algebra under pointwise product, but also a Lie algebra under Poisson
bracket, and F �→ ∇s F is a Lie algebra homomorphism of this Lie algebra onto the Lie
algebra of Hamiltonian vector fields on P . In particular, we see that the Poisson bracket
satisfies the Jacobi identity,

{{F1, F2} , F3}+ {{F2, F3} , F1}+ {{F3, F2} , F1} = 0,
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and the Leibnitz Rule ∇s(FG) = F ∇s G + G∇s F gives:

{F1, F2F3} = {F1, F2}F3 + F2 {F1, F3} ,

which we will also call the Leibnitz Rule.

Since {F1, F2} = Ω(∇s F2,∇s F1) = dF2(∇s F1) = ∇s F1(F2), we can interpret the Poisson
bracket of F1 and F2 as the rate of change of F2 along the solution curves of the vector field
∇s F1. If we are considering some fixed Hamiltonian system dx

dt = ∇s Hx on P , then we can
write this as dF

dt = {H, F}, and we see that the vanishing of the Poisson bracket {H, F} is
the necessary and sufficient condition for F to be a constant of the motion. By the Jacobi
Identity, a corollary to this observation is that the Poisson Bracket of two constants of the
motion is also a constant of the motion. And since {H, H} = 0, H itself is always a constant
of the motion.

Since the Poisson bracket is skew-symmetric, {F1, F2} is zero if and only if {F2, F1} is
zero, and in this case we say that F1 and F2 are in involution. More generally k Hamiltonian
functions F1, . . . , Fk are said to be in involution if all of the Poisson brackets {Fi, Fj} vanish.
Note that since ∇s {Fi, Fj} = [∇s Fi,∇s Fj ], if the Fi are in involution then the vector fields
∇s Fi commute, i.e., [∇s Fi,∇s Fj ] = 0, or equivalently the flows they generate commute.
In particular we see that if F1, . . . , Fn are in involution and if each ∇s Fi generates a one-
parameter group of diffeomorphisms φi

t of P , then (t1, . . . , tn) �→ φ1
t1 ◦ φ2

t2 ◦ . . . ◦ φn
tn

defines
a symplectic action of the abelian group Rn on P .

Suppose P is a symplectic manifold of dimension 2n and that there exist n functions Fi

such that the dFi are everywhere linearly independent. If the functions Fi are in involution
with each other and with a function H, then the so-called Arnold-Liouville Theorem ([Ar],
Chapter 10) states that the Hamiltonian system ∇s H is completely integrable in the sense
mentioned earlier, i.e., there exist action-angle variables q1, . . . , qn, p1, . . . , pn . In fact, com-
plete integrability of a 2n dimensional Hamiltonian system is often defined as the existence
of n functionally independent constants of the motion in involution.
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Appendix B
Wave Equations as Continuum Limits of Lattice Models

Introduction.

In this appendix we will indicate one way that physically natural wave equations can be
deduced more or less directy from first principles. While, much of what we do below can be
generalized to n space dimensions, we shall as usual, concentrate on the 1-dimensional case.

We imagine a 1-dimensional physical medium that it may help to think of as a stretched
piano wire or a steel bar of small cross-section, but as we shall see later there are other
useful interpretations. We think of this initially as a continuum that is placed along the
x-axis from 0 to its length H. We assume that the property of this system that interests us
can be described by a “scalar field” u, that we will usually take to be real-valued (although
the case that u is complex-valued is also of interest). The value of u at the point x ∈ [0, H]
and time t is u(x, t). The time evolution of the system will then be described by some sort
of evolution PDE for u of the general form utt = F (u) or ut = G(u), and we want to deduce
the general form of the right hand side from basic physical laws.

Our strategy will be to take an atomistic viewpoint—real physical media after all are
discrete, not continuous, made up of particles (“molecules”) arranged in space with a very
small average distance h separating nearest neighbors. In our simplified model, we will
suppose that there are N identical particles, located at the lattice points pi = ih where
0 ≤ i ≤ N − 1, and h = H/(N − 1). We shall refer to the particle at pi as Pi.

We assume each Pi is a Newtonian particle with a mass m and that the property we are
concerned with is associated to a degree of freedom of the particle that is uncoupled from its
other degrees of freedom, and that we will denote by xi. We do not at this point fix a a precise
interpretation of xi in terms of say the spatial location of the particle Pi. In a particular
model, it will often represent the deviation of Pi from an equilibrium configuration. The
relation between the field u and the particles Pi is that u should interpolate the values xi

at the points pi, i.e., u(pi, t) = xi(t).

Note that if the density of our medium is ρ then the mass of a length h between pi and
pi+1 is m = ρh, which we think of as being concentrated in the particle Pi. Eventually we
will to pass to a continuum limit by letting N tend to infinity (and hence h → 0), keeping
the density, ρ, fixed.

Since the evolution of the xi in time is governed by Newton’s Third Law of Motion,“force
= mass × acceleration”, i.e., mẍi = Fi, to specify a model, we must specify the force, Fi, on
each particle Pi. Assuming the system is isolated, Fi will be a sum of terms, Fi =

∑
j Fi,j ,

where Fi,j is the force on the particle Pi due to the particle Pj , and by Newton’s Second
Law, equating action and reaction, Fij = −Fji. We will restrict attention to the case of so-
called nearest-neighbor interactions. This means that we assume Fij = 0 unless Pj is one of
the two nearest neighbors of Pj , i.e., j = i+1 or j = i−1, so Fi = Fi,i+1 +Fi,i−1 = Fi,i+1−
Fi−1,i. Since the particle are identical, there is a “universal” force law expressing Fi,i+1 as
a fixed function of xi and xi+1. We will make the natural assumption that our force law is
translation invariant, so it only depends on the difference xi − xi+1: Fi,i+1 = F (xi − xi+1),
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where F (0) = 0. Thus Fi = F (xi−xi+1)−F (xi−1−xi), and to complete the specification of
a model, we may specify either the force function F , or equivalently the potential function
V (r) = −

∫ r

0
F (y) dy (in terms of which F (y) = −V ′(y) ).

Now, as we remarked above, in the models we shall consider, xi will be a measure of the
deviation from equilibrium of Pi. In particular, if all the xi are zero, then all the forces Fi

will also be zero, and it follows that V ′(0) = 0, or in other words 0 is a critical point of
V , so V has the Taylor expansion V (y) = k

2y2 + R(y)y3 near 0. We shall assume that in
fact 0 is a non-degenerate minimum of V , i.e., k > 0. Physically this means that taking all
xi equal 0 gives a stable equilibrium of the system, in the sense that any small deviation
from this state will create forces that drive the system back towards equilibrium. Since
V ′(y) = ky + S(y)y2 (where S(y) = yR′(y) + 3R(y)), and F = −V ′,

Fi =V ′(xi−1 − xi)− V ′(xi − xi+1)
=k(xi+1 + xi−1 − 2xi) + T (xi−1, xi, xi+1),

where T (xi−1, xi, xi+1) = S(xi−1 − xi)(xi−1 − xi)2 − S(xi − xi+1)(xi − xi+1)2.

The constant k has the interpretation of the spring constant for a piece of the medium
of length h, so if κ is the Young’s modulus for the medium (the spring constant for a piece
of unit length) then k = κ/h. (If you halve the length of a spring, it becomes twice as hard
to stretch it.) So, if we write c =

√
κ
ρ and recall that m = ρh, we have k

m = c2 1
h2 , and we

can rewrite the above formula for Fi as

1
m

Fi = c2

(
xi+1 + xi−1 − 2xi

h2

)
+

1
m

T (xi−1, xi, xi+1.)

Let us first consider the case the case where our medium rigorously satisfies Hooke’s Law,
i.e., the remainder term R(y) (and hence also S and T ) are identically zero. (Or else assume
that the deviations from equilibrium are so small that the quadratic terms in the xi can be
ignored.) Thus the forces Fi are linear, and Newton’s Equations of Motion become simply

ẍi = c2

(
xi+1 + xi−1 − 2xi

h2

)
.

We can now easily “pass to the continuum limit”. That is, by letting N tend to infinity
(so h tends to zero) we can derive a PDE for the function u(x, t) If we take x = pi, then
by definition u(x, t) = xi(t) and since pi + h = pi+1 while pi − h = pi−1, the latter form of
Newton’s equations gives:

utt(x, t) = c2 u(x + h, t) + u(x− h, t)− 2u(x, t)
h2

.

Next recall Taylor’s formula:

f(x± h) = f(x)± hf
′
(x) +

h2

2!
f

′′
(x)± h3

3!
f

′′′
(x) +

h4

4!
f

′′′′
(x) + O(h5).

If we now take f(x) = u(x, t), this gives:

u(x + h, t) + u(x− h, t)− 2u(x, t)
h2

= uxx(x, t)+
(

h2

12

)
uxxxx(x, t) + O(h4),
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so letting h → 0, we find utt = c2uxx, i.e., u satisfies the linear wave equation, with
propagation speed c.

Example. Longitudinal vibrations (sound waves) in a metal bar.

In this interpretation of the above, we assume that the atoms are in equilibrium when
the all the particles Pi are in the locations pi, and that the actual positions of the particles
at time t are Xi(t) = pi + xi(t). Note that the particles are moving longitudinally (i.e.,
along the length of the medium). This models the sound vibrations in a clamped metal bar
when it is struck at one end.

Example. Transverse vibrations of a stretched wire (piano string).

In this interpretation we assume that the articles are constrained to move orthogonally
to the medium. That is, the particles are in equilibrium when located at the points (pi, 0)
of the xy-plane, and the actual position of the particle at time t is (pi, xi(t)). If we think of
this as a stretched piano wire and if the tension along the string is T , then Fi is the vertical
or y-component of the tension, which is

T
(xi − xi+1)√

h2 + (xi − xi+1)2
=

T

h

(xi − xi+1)√
1 + (xi−xi+1

h )2
.

If we assume that the slope of the wire, xi − xi+1/h, is small compared with 1, we can
approximate this by T

h (xi−xi+1), which reduces to the general case above if we take k = T
h ,

i.e., if we identify T with the Young’s modulus κ. It follows that with the above assumption
that the slope of the wire is small, we again get a wave equation with the propogation speed
c equal to

√
T
ρ .

Exercise. The Sine-Gordon Equation as a continuum limit.

If we put a piano wire under tension and clamp the ends, then it resists twisting as well
as stretching. If attach a pendulum Pi at each of the points pi, we get a lattice of torsion
pendulums, and we let xi denote the angle that the Pi makes with a fixed direction, say
the vertical. In this case mi should measure moment of inertia of Pi around the wire, and
Fi the torque on Pi due to the twisting of the wire between Pi and Pi+1. (We neglect
the external force of gravity.) Show that the Sine-Gordon equation can be obtained as a
continuum limit this lattice. (See Remoissenet, M., Waves Called Solitons: Concepts and
Experiments, Springer, 1994.)

Exercise. The Lagrangian approach to finding continuum limits.

The kinetic energy of our nearest neighbor lattice is K = m
2

∑
i ẋ2

i , and the potential
energy is U = k

2

∑
i((xi − xi+1)2 + (xi−1 − xi)2). Show that as N → ∞, these approach

respectively to K = ρ
2

∫ 9

0
ut(x, t)2 dx and U = κ

2

∫ 9

0
ux(x, t)2 dx, and hence the action of

the system (in a time interval [a, b]) converges to A =
∫ b

a
dt

∫ 9

0
(ρ
2ut(x, t)2 − κ

2 ux(x, t)2) dx.
Show that the Euler-Lagrange equations for extremalizing this action is just the linear wave
equation for u derived above.

So far we have only dealt with the case of a harmonic lattice, that is one with quadratic
potential. We are now going to generalize this by looking at the effect of the next (i.e.,
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cubic) term in the potential function V . That is, we are now going to assume that we
have a slightly anharmonic lattice, with potential function V (y) = k

2y2 + α
3 y3, so the force

is F (y) = −ky − αy2, and Fi = k(xi+1 + xi−1 − 2xi)[1 + α(xi+1 − xi−1)], and Newton’s
Equations now take the form:

(FPU) ẍi = c2

(
xi+1 + xi−1 − 2xi

h2

)
[1 + α(xi+1 − xi−1)].

which we will refer to as the Fermi-Pasta-Ulam lattice equations, after the three mathe-
maticians and physicists who studied it numerically in 1955, using one of the first digital
computers.

Finding a good continuum limit for this non-linear lattice is a lot more sophisticated
than one might at first expect after the easy time we had with the linear case. In fact the
approach to the limit has to be handled with considerable skill to avoid inconsistent results,
and it involves several non-obvious steps.

As before we let u(x, t) denote the function measuring the displacement at time t of
the particle with equilibrium position x, so if x = pi then, by definition, xi(t) = u(x, t),
xi+1(t) = u(x+h, t), and xi−1(t) = u(x−h, t). Of course ẍi = utt(x, t) and, as noted earlier,
Taylor’s Theorem with remainder gives

xi+1 + xi−1 − 2xi

h2
=

u(x + h, t) + u(x− h, t)− 2u(x, t)
h2

= uxx(x, t)+
(

h2

12

)
uxxxx(x, t) + O(h4).

By a similar computation

α(xi+1 − xi−1) = (2αh)ux(x, t)+
(

αh3

3

)
uxxx(x, t) + O(h5),

so substitution in (FPU) gives

(
1

c2

)
utt − uxx = (2αh)uxuxx+

(
h2

12

)
uxxxx + O(h4).

As a first attempt to derive a continuum description for the FPU lattice in the non-linear
case, it is tempting to just let h approach zero and assume that 2αh converges to a limit ε.
This would give the PDE

utt = c2(1 + εux)uxx

as our continuum limit for the FPU Lattice equations and the non-linear generalization of
the wave equation. But this leads to a serious problem. This equation is familiar in applied
mathematics—it was studied by Rayleigh in the last century—and it is easy to see from
examples that its solutions develop discontinuities (shocks) after a time on the order of
(εc)−1, which is considerably shorter than the time scale of the almost periods observed in
the Fermi-Pasta-Ulam experiments. It was Zabusky who realized that the correct approach
was to retain the term of order h2 and study the equation

(ZK)
(

1

c2

)
utt − uxx = (2αh)uxuxx+

(
h2

12

)
uxxxx.
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If we differentiate this equation with respect to x and make the substitution v = ux, we see
that it reduces to the more familiar Boussinesq equation

(
1

c2

)
vtt = vxx + αh

∂2(v2)
∂x2

+
(

h2

12

)
vxxxx,

(The effect of the fourth order term is to add dispersion to the equation, and this smoothes
out incipient shocks before they can develop.)

It is important to realize that, since h �= 0, (ZK) cannot logically be considered a true
continuum limit of the FPU lattice. It should rather be regarded as an asymptotic approx-
imation to the lattice model that works for small lattice spacing h (and hence large N).
Nevertheless, we shall now see how to pass from (ZK) to a true continuum description of
the FPU lattice.

The next step is to notice that, with α and h small, solutions of (ZK) should behave
qualitatively like solutions of the linear wave equation utt = c2uxx, and increasingly so as
α and h tend to zero. Now the general solution of the linear wave equation is of course
u(x, t) = f(x + ct) + g(x − ct), i.e., the sum of an arbitrary left moving traveling wave
and an arbitrary right moving traveling wave, both moving with speed c. Recall that it is
customary to simplify the analysis in the linear case by treating each kind of wave separately,
and we would like to do the same here. That is, we would like to look for solutions u(x, t)
that behave more and more like (say) right moving traveling waves of velocity c—and for
longer and longer periods of time—as α and h tend to zero.

It is not difficult to make precise sense out of this requirement. Suppose that y(ξ, τ)
is a smooth function of two real variables such that the map τ �→ y(·, τ) is uniformly
continuous from R into the bounded functions on R with the sup norm—i.e., given ε > 0
there is a positive δ such that |τ − τ0| < δ implies |y(ξ, τ) − y(ξ, τ0)| < ε. Then for
|t− t0| < T = δ/(αhc) we have |αhct−αhct0| < δ, so |y(x− ct, αhct)−y(x− ct, αhct0)| < ε.
In other words, the function u(x, t) = y(x − ct, αhct) is uniformly approximated by the
traveling wave u0(x, t) = y(x− ct, αhct0) on the interval |t− t0| < T (and of course T →∞
as α and h tend to zero). To restate this a little more picturesquely, u(x, t) = y(x−ct, αhct)
is approximately a traveling wave whose shape gradually changes in time. Notice that if
y(ξ, τ) is periodic or almost periodic in τ , the gradually changing shape of the approximate
traveling wave will also be periodic or almost periodic.

To apply this observation, we define new variables ξ = x − ct and τ = (αh)ct. Then by
the chain rule, ∂k/∂xk = ∂k/∂ξk, ∂/∂t = −c(∂/∂ξ− (αh)∂/∂τ), and ∂2/∂t2 = c2(∂2/∂ξ2−
(2αh)∂2/∂ξ∂τ) + (αh)2∂2/∂τ2).

Thus in these new coordinates the wave operator transforms to:

1
c2

∂2

∂t2
− ∂2

∂x2
= −2αh

∂2

∂ξ∂τ
+ (αh)2

∂2

∂τ2
,

so substituting u(x, t) = y(ξ, τ) in (ZK) (and dividing by −2αh) gives:

yξτ −
(

αh

2

)
yττ = −yξyξξ−

(
h

24α

)
yξξξξ,

and, at last, we are prepared to pass to the continuum limit. We assume that α and h tend
to zero at the same rate, i.e., that as h tends to zero, the quotient h/α tends to a positive
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limit, and we define δ = limh→0

√
h/(24α). Then αh = O(h2), so letting h approach zero

gives yξτ + yξyξξ + δ2yξξξξ = 0. Finally, making the substitution v = yξ we arrive at the
KdV equation:

(KdV ) vτ + vvξ + δ2vξξξ = 0.

Remark. Note that if we re-scale the independent variables by τ → βτ and ξ → γξ, then
the KdV equation becomes:

vτ+
(

β

γ

)
vvξ+

(
β

γ3

)
δ2vξξξ = 0,

so by appropriate choice of β and γ we can obtain any equation of the form vτ+λvvξ+µvξξξ =
0, and any such equation is referred to as “the KdV equation”. A commonly used choice that
is convenient for many purposes is vτ +6vvξ+vξξξ = 0, although the form vτ−6vvξ+vξξξ = 0
(obtained by replacing v by −v) is equally common. We will use both these forms.

Let us recapitulate the relationship between the FPU Lattice and the KdV equation.
Given a solution xi(t) of the FPU Lattice we get a function u(x, t) by interpolation—i.e.,
u(ih, t) = xi(t), i = 0, . . . , N . For small lattice spacing h and non-linearity parameter α there
will be solutions xi(t) so that the corresponding u(x, t) will be an approximate right moving
traveling wave with slowly varying shape, i.e., it will be of the form u(x, t) = y(x− ct, αhct)
for some smooth function y(ξ, τ), and the function v(ξ, τ) = yξ(ξ, τ) will satisfy the KdV
equation vτ + vvξ + δ2vξξξ = 0, where δ2 = h/(24α).
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Appendix C
Solving Wave Equations Numerically:

The Pseudospectral Method

Introduction.

So-called pseudospectral methods, for the numerical integration of evolution equations, use
discrete Fourier transforms instead of finite differencing to evaluate spatial derivatives (an
excellent early article is [FW]). A surprising fact is that these methods often work very well
for nonlinear equations. The time-stepping for pseudospectral methods is accomplished by
a classical differencing scheme that can in principle be either explicit or implicit, but for
the usual stability reasons, an implicit method such as Crank-Nicolson (the trapezoidal rule)
is usually preferred. However, when the equation is nonlinear, the solution of the implicit
equations that arise can present a problem. One approach is to employ split-stepping; use
Crank-Nicolson plus Gaussian elimination for the linear terms, but fall back to an explicit
method for the nonlinear terms. An alternative approach (pioneered in [WMGS] and that
we refer to as the WMGS method) is to treat the linear and nonlinear terms together, write
the implicit equation in fixed-point form, and then solve it by an iteration scheme.

WGMS originally developed their method to solve the initial value problems for the KdV
and KP equations with periodic boundary conditions, and we became aware of their tech-
nique via [S], in which D. H. Sattinger reports on a modifiied WGMS method for solving
the KdV equation developed in collaboration with Yi Li. In this paper, we will discuss a
generalization of the WGMS algorithm to treat the initial value problem for a fairly broad
class of evolutionary PDE that are “weakly nonlinear”, in the sense that their nonlinear
terms are a lower order perturbation of the linear part (see below for a precise definition)
and we will prove a convergence theorem for the iteration method that is at the heart of the
WGMS algorithm.

Weakly Nonlinear PDE of Evolution.

Let U denote a finite dimensional complex inner product space and V a vector space of
U -valued functions on R. Usually we will work in a fixed orthonormal basis (e1, . . . , en) for
U and use it to identify U with Cn, so that elements u of V can be considered as n-tuples
(u1, . . . , un) of complex-valued functions. (If n = 1 we shall say we are in the scalar case and
we then identify u with u1.)

We will specify V more precisely later, but the elements of V will admit derivatives up
to a certain order, and they will in most cases be required to be 2π-periodic, in which case
we shall also consider them as functions on the unit circle in the complex plane. If u(t) is a
curve in V we will also write u(x, t) for u(t)(x). As usual we think of t as denoting time and
x as space. We denote by D the differentiation operator ∂

∂x and we also write ui
x = Dui,

ui
xx = D2ui, etc., and of course ut = ∂u

∂t .

We will be considering “evolution equations” of the form ut = F (u), where F : V → V
should be thought of as a vector field on V , and its form will be a smooth function (usually
polynomial) of the ui and their derivatives, Duj , D2uk, . . .. Usually F (u) will the sum of a
“dominant” linear differential operator, and a nonlinear part that we can consider as a “small

51



perturbation” of this linear part. By a linear differential operator on V we will always mean
an operator of the form u �→ L(u) = (L1(u), . . . ,Ln(u)) where Li(u) =

∑n
j=1 Li

j(D)uj . Here
each Li

j(X) is a polynomial with constant coefficients in an indeterminate X. In the scalar
case L(u) = L(D)u and we will often use L(D)u to denote L(u) in the general case too.

The simplest kind of nonlinear operator that we shall consider is a zero order nonlinear
operator, by which we will mean a map of the form u �→ G(u) = (G1(u), . . . Gn(u)), where
Gi(u)(x) = Gi(u1(x), . . . , un(x)) and Gi(Y1, . . . , Yn) is either a constant coefficient polyno-
mial on Cn or more generally an entire function of these variables (i.e., given by a power
series that converges for all values of (Y1, . . . , Yn)). Of course, care must be taken to make
sure that if u ∈ V then also G(u) ∈ V . When we come to the rigorous proofs, we will assume
that V is one of the Sobolev Hilbert spaces Hm(R, U) for m > 1

2 , and since it is well-known
that Hm(R,C) is a Banach algebras, it follows easily that G is a smooth map of Hm(R, U)
to itself. The most general kind of nonlinearity that we will consider will be one that can
be factored into a composition of the form M(D)G(u) where M(D) is a linear differential
operator as above and G(u) is a zero order nonlinearity.

If L(X) =
∑9

m=1 amXm is a complex polynomial, then the differential operator L(D)
is called formally skew-adjoint if 〈L(D)u1, u2〉 = −〈u1, L(D)u2〉 whenever u1 and u2 are
smooth maps of R into U with compact support. Here 〈u, v〉 denotes the L2 inner product,
i.e., 〈u, v〉 :=

∫ ∞
−∞ 〈u(x), v(x)〉 dx. Integration by parts shows that D is skew-adjoint. More-

over an odd power of a formally skew-adjoint operator (and i times an even power) is clearly
again formally skew-adjoint, so it follows that L(D) is formally skew-adjoint if and only if
the coefficients am are real for m odd and imaginary for m even, i.e., if and only if L(ik) is
imaginary for all real k, and it is this last condition that we shall use.

Definition A system of partial differential equation of the form:

(WNWE) ui
t = Li(D)ui + M iGi(u).

is called a weakly nonlinear wave equation if:

1) Each Li(D) is a formally skew-adjoint operator and the polynomials Li(X) all have the
same degree, H,

2) degree M i(X) < H,

3) Gi(0) = 0, so that u(x, t) ≡ 0 is a solution of (WNWE).

In what follows we will denote the minimum difference, H−degree M i(X), by q. For the most
part, we will be dealing with the case n = 1, in which case we put L = L1 and M = M1

1 ,
so H = degree L and q = degree L− degree M , and a weakly nonlinear wave equation has the
form:

(WNWE) ut = L(D)u + M(D)G(u).

Two important examples are the Korteweg-deVries Equation:

(KdV ) ut = −uxxx − uux = −D3u− 1
2
D(u2),
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and the Nonlinear Schrödinger Equation:

(NLS) ut = iuxx + i|u|2u = iD2u + i|u|2u.

In the former case we have L(X) = −X3, M(X) = − 1
2X, G(X) = X2, and in the latter,

L(X) = iX2, M(X) = i, G(X) = |X|2X.

In the next section we will see that the Sine-Gordon Equation:

(SGE) utt = uxx + sinu

also can be regarded as a weakly nonlinear wave equation.

The Sine-Gordon Equation

A natural reduction of the linear wave equation to a system of first order PDE is ∂u
∂t = ∂v

∂x ,
∂v
∂t = ∂u

∂x . in fact, ∂2

∂t2 u = ∂
∂t

∂
∂xv = ∂

∂x
∂
∂tv = ∂2

∂x2 u.

This suggests that to find a representation of Sine-Gordon as a weakly nonlinear wave
equation, we should start with systems of the form ∂u

∂t = ∂v
∂x + F (u, v), ∂v

∂t = ∂u
∂x + G(u, v) or

∂
∂t (u, v) = L(u, v) + (F (u, v), G(u, v)) where F and G are entire functions on C×C, and of
course F (0, 0) = G(0, 0) = 0. We will next show that with appropriate choice of F and G
we do indeed get Sine-Gordon, and moreover that essentially the only other equations of the
form utt = uxx + Γ(u) that arise in this way are the Klein-Gordon equation, utt = uxx + u,
and the Sinh-Gordon equation utt = uxx + sinhu.

Starting out as above, ∂2u
∂t2 = ∂

∂t (
∂v
∂x + F (u, v)) = ∂

∂x
∂v
∂t + F1

∂u
∂t + F2

∂v
∂t = ∂2u

∂x2 + (F1F +
F2G) + ∂u

∂x (G1 + F2) + ∂v
∂x (G2 + F1). For the latter to be of the form utt = uxx + Γ(u) we

must have ∂
∂v (F1F + F2G) = 0, G1 = −F2, and G2 = −F1, in which case utt = uxx + Γ(u)

with Γ = F1F + F2G.

Next note that these conditions on F and G give F11 = −G21 = −G12 = F22, or in
other words, F is a solution of the one-dimensional wave equation, and hence a sum of a left
moving wave and a right-moving wave: F (u, v) = h(u+v)+k(u−v). Then using G1 = −F2,
and G2 = −F1 it follows that G(u, v) = k(u − v) − h(u + v), where h(0) = k(0) = 0
in order to make F (0, 0) = G(0, 0) = 0. The condition ∂

∂v (F1F + F2G) = 0 now gives
∂
∂v (h′(u + v)k(u− v) + h(u + v)k′(u− v)) = 0 or h′′(u + v)k(u− v) = h(u + v)k′′(u− v), or
h′′(u+v)
h(u+v) = k′′(u−v)

k(u−v) . Since u + v and u− v are coordinates, the only way the last relation can
hold identically is for both sides to be a constant λ, i.e. h′′ = λh and k′′ = λk.

If λ is negative, say λ = −ω2, then since h(0) = k(0) = 0, it follows that h(u) = A sin(ωu)
and k(u) = B sin(ωu). If we choose ω = 1

2 and A = B = 1 we get F (u, v) = sin(u
2 + v

2 ) +
sin(u

2 − v
2 ) = 2 sin u

2 cos v
2 and similarly G(u, v) = −2 cos u

2 sin v
2 , and this gives the system

of partial differential equations ∂u
∂t = ∂v

∂x + 2 sin u
2 cos v

2 , ∂v
∂t = ∂u

∂x − 2 cos u
2 sin v

2 , and we
will leave it to the reader to check that if (u, v) is a solution of this system, then u is a
solution of the Sine-Gordon equation. (Other choices of A, B, and ω lead to equations that
can be transformed to the Sine-Gordon equation by a simple re-scaling of independent and
dependent variables. Similarly taking λ = 0 gives the Klein-Gordon equation, and λ positive
gives Sinh-Gordon.)
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While this system of PDE for u and v is not in the form (WNWE), if we define u1 = u+v
and u2 = u− v, then u1 and u2 satisfy:

u1
t = +u1

x + 2 sin(u1

2 − u2

2 ),

u2
t = −u2

x + 2 sin(u1

2 + u2

2 ).

which is manifestly in the form (WNWE), with L1(X) = D, L2(X) = −D, and M i(X) = 1,
and moreover we can recover u from u1 and u2 by u = u1+u2

2 .

To simplify the exposition, we will from now on assume we are in the scalar case, n = 1
and that G is a polynomial. The modifications needed for the general case are obvious.

The Generalized WGMS Method (Heuristics).

Let us assume that for some particular example of (WNEE) we know that there is a unique
solution u(t) with the initial condition u(0) ∈ V . Let ∆t be close to zero, and let us look
for a time-stepping algorithm that, given a sufficiently good approximation to u(t) as input
will produce an approximation to u(t′) = u(t + ∆t) as output. If we integrate (WNEE) with
respect to t, from t to t′, and use the trapezoidal rule to approximate the integrals on the
right hand side, we find:

u(t′)− u(t) = ∆t
2 L(D)[u(t) + u(t′)]

+ ∆t
2 M(D)[G(u(t)) + G(u(t′))]

or
(I − dL(D))u(t′) = (I + dL(D))u(t)

+ dM(D)[G(u(t)) + G(u(t′))],

which we can rewrite as:

u(t′) = Cu(t) + B[G(u(t)) + G(u(t′))]

where d = ∆t
2 , B = dM(D)

I−dL(D) , and C = I+dL(D)
I−dL(D) is the Cayley transform of the skew-adjoint

operator dL(D). We note that the skew-adjointness of L(D) assures that I − dL(D) is
invertible, and that C is a unitary operator. In fact, as we shall see shortly, on the Fourier
transform side, both C and B become simple multiplication operators, whose properties are
obvious from those of the polynomials L(X) and M(X).

Next, for each u in V , we define a map Hu : V → V by

Hu(w) := Cu + B[G(u) + G(w)],

and we note that the equation above becomes Hu(t)(u(t′)) = u(t′), i.e., u(t′), which is what
we are trying to compute, is a fixed-point of Hu(t).

Now, we permit ourselves a little optimism—we assume that u(t′) is in fact a contracting
fixed point of Hu(t). If this is so then, for ∆t small, u(t) will be close to u(t′), and we can
expect that iterating Hu(t) starting at u(t), will produce a sequence that converges to u(t′).
This the essence of the WGMS time-stepping algorithm (generalized to WNEE).

For this to work as a numerical method, we must be able to compute Hu efficiently, and
that is where the Fourier Transform comes in. Let us write F for the Fourier Transform,
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mapping V isomorphically onto V̂ , and F−1 for its inverse. We define operators Ĉ = FCF−1

and B̂ = FBF−1 on V̂ . Then FHu(w) = FCF−1F(u)+FBF−1F [G(u)+G(w)], so we can
rewrite Hu as:

Hu(w) = F−1(Ĉû + B̂F [G(u) + G(w)]),

where û = F(u) is the Fourier Transform of u.

Assuming that we have a good algorithm for computing F and F−1 (e.g., the Fast Fourier
Transform), it is now clear that it is easy and efficient to calculate Hu, and hence to carry out
the iteration. Indeed, calculating G(u) and G(w) at a point x is just a matter of evaluating
the polynomial G at u(x) and w(x). And since M(X) and L(X) are constant coefficient
polynomials, the operators Ĉ and B̂ are diagonal in the Fourier basis ek(x) = eikx, i.e., they
are multiplication operators, by the rational functions 1+dL(ik)

1−dL(ik) and dM(ik)
1−dL(ik) respectively.

Since L(D) is by assumption skew-adjoint, L(ik) is pure imaginary, so the denominator
1−dL(ik) does not vanish. Moreover the function 1+dL(ik)

1−dL(ik) clearly takes it values on the unit
circle, and since L(X) has degree greater than M(X), it follows that while the nonlinearity
G(w) may push energy into the high frequency modes of the Fourier Transform, multiplication
by dM(ik)

1−dL(ik) acts as a low-pass filter, attenuating these high frequency modes and giving the
WGMS method excellent numerical stability.

Proof that Hu is a Contraction.

In this section we will justify the above optimism by showing that, with a proper choice of
the space V , a suitable restriction of the mapping Hu does indeed satisfy the hypotheses of
the Banach Contraction Theorem provided ‖u‖ and ∆t are sufficiently small. The space we
will choose for V is the Sobolev Hilbert space Hm = Hm(S1, V ), with m > 1

2 . We recall that
this is the Hilbert space of all functions u in L2(S1, V ) such that ‖u‖2m =

∑
k(1+k2)

m
2 |û(k)|2

is finite, where as before, û(k) are the Fourier coefficients of u.

The principal property of these spaces that we shall need is that Hm(S1,R) is a commu-
tative Banach algebra under pointwise multiplication when m > 1

2 (cf. [A], Theorem 5.23,
or [P]). As a first consequence, it follows that if P : V → V is a polynomial mapping, then
u �→ P (u) is a map of Hm to itself, and moreover ‖P (u)‖m < C ‖u‖r

m, where r is the degree
of P . We will permit ourselves the abuse of notation of denoting this latter map by P , and it
is now elementary to see that it is Frechet differentiable, and in fact that DPu(v) = P ′(u)v,
where P ′ is the derivative of P . (This will follow if we can show that there is an algebraic
identity of the form P (X +Y ) = P (X)+P ′(X)Y +Q(X, Y )Y 2, for some polynomial Q in X
and Y . But it is clearly enough to check this for monomial P , in which case it is immediate
from the binomial theorem.)

Let us denote by BR the ball of radius R in Hm. Then as an immediate consequence of
the preceeding remarks we have:

Proposition 1. For any R > 0 there exist positive constants C1 and C2 such that for all u
in BR, ‖G(u)‖m < C1 and ‖DGu‖ < C2 .

It will be important for us to have a good estimate of how the norm of B depends on ∆t.

Proposition 2. Given T > 0, there is a positive constant C3 such that the norm of the
operator B on Hm satisfies ‖B‖ < C3∆t

q
� , for all ∆t < T , where H = degree(L(X)) and

q = degree(L(X))− degree(M(X)). Thus lim∆t→0 ‖B‖ = 0.
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PROOF. It is clear that the Fourier basis ek(x) = eikx is orthogonal with respect to the
Hm inner-product (though not orthonormal, except for the case H0 = L2). Thus, since all
constant coefficient differential operators are diagonalized in this basis, we can compute their
norms on Hm by taking the maximum absolute values of their eigenvalues on the ek. In the
case of B, we have already seen that these eigenvalues are dM(ik)

1−dL(ik) . Since d = ∆T
2 , to prove

the proposition it will suffice to show that dM(ik)
1−dL(ik) < C3d

q
� for all real k and all d < 2T .

Writing L(X) =
∑9

j=0 bjX
j and M(X) =

∑9−q
j=0 ajX

j , let us define parametric fam-

ilies of polynomials Lc and Mc for c ≥ 0 by Lc(X) =
∑9

j=0(c
9−jbj)Xj and Mc(X) =∑9−q

j=0(c
9−q−jaj)Xj . Now note that if we define δ = d

1
� then (since δ9−j(δX)j = dXj) clearly

Lδ(δX) = dL(X), and similarly Mδ(δX) = δqdM(X), so dM(ik)
1−dL(ik) = δq Mδ(iδk)

1−Lδ(iδk) , and to com-

plete the proof it will suffice to show that the family of rational functions Rc(x) = Mc(ix)
1−Lc(ix) is

uniformly bounded for 0 ≤ c ≤ (∆T/2)
1
� and x real. If R̃ is the one-point compactification

of R and we define Rc(∞) = 0, then since the denominator of Rc(X) never vanishes and has
degree greater than the numerator, if follows that (c, x) �→ R(c, x) is continuous and hence
bounded on the compact space [0, (∆T/2)

1
� ]× R̃.

Theorem. Given R > 0 there exist positive r and T such that Hu is a contraction mapping
of BR into itself provided that u is in Br and ∆t < T . Moreover there is a uniform contraction
constant K < 1 for all such u and ∆t.

PROOF. From Proposition 1 and the definition of Hu it follows that Hu is differentiable
on Hm and that D(Hu)v = B ◦ DGv. Then, again by Proposition 1, ‖D(Hu)v‖ < C2 ‖B‖
for all u in BR, and so by Proposition 2, ‖D(Hu)v‖ < C2C3∆t

q
� . Given K < 1, if we choose

T <
(

K
C2C3

) �
q

then ‖D(Hu)v‖ < K on the convex set BR and hence K is a contraction
constant for Hu on BR, and it remains only to show that if we choose r sufficiently small,
and perhaps a smaller T then Hu also maps BR into itself for u in Br.

But using the definition of Hu again, it follows that

‖Hu(w)‖m < ‖Cu‖m + ‖B‖ (‖G(u)‖m + ‖G(w)‖m),

and recalling that C is unitary on Hm, it follows from Propositions 1 and 2 that ‖Hu(w)‖m <

r + 2C1C3T
q
� . Thus Hu will map BR into itself provided r + 2C1C3T

q
� < R, i.e., provided

r < R and T <
(

R−r
2C2C3

) �
q

.

Numerics.

There are several types of numerical errors inherent in the WGMS algorithm. The first
and most obvious is the error in approximating the integral of the right hand side of the
equation using the trapezoidal rule.

A second “truncation” error occurs when we stop the fixed point iteration after a finite
number of steps.

In actually implementing the WGMS algorithm to solve an initial value program nu-
merically, one usually chooses an integer N of the form 2e, and works in the space VN of
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“band-limited” functions u whose Fourier coefficients û(k) vanish for |k| > N/2. Of course,
VN is in all the Sobolev spaces. If we start with an initial condition u0 not actually in VN

then there will be an aliasing error when the initial Fast Fourier Transform projects it into
VN . Also, since the WGMS method does not rigorously preserve VN , there will be further
such errors at each time step.

Of course it is important to investigate the magnitude of these various local errors, see
how they propogate, and get a bound for the global error.
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