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Abstract 
 
Model management offers a higher level interface 

than current techniques for metadata management, and 
generic operators drastically reduce amount of 
programming for metadata applications. The 
interactive nature of generic model management 
operators inevitably demands an intuitive 
representation. This paper proposes a visual 
representation for model management operators based 
on graph transformation. Graph transformation 
formalisms, as the theoretic foundation of many visual 
programming languages, can formally represent model 
management operators by visual and intuitive 
expressions. By using graphical representations users 
can easily comprehend and manipulate the operators 
and desired outputs. 

1. Introduction 

Tremendous data is available in heterogeneous 
formats, such as relational database schemas and XML 
documents. Engineers who manage information 
systems usually need to design, integrate, transform, or 
evolve these application artifacts that are used to define 
data formats and are called models or metadata, such 
as ER models, relational, and XML schemas. 
Traditional approaches to implementing data 
applications need to program specifically for the 
corresponding metadata, i.e. using object-at-a-time 
primitives, which are hard to develop, adapt, and 
evolve in different contexts. 

Model management is a new approach to metadata 
management that offers a higher level programming 
interface than current techniques [Ber00] and avoids 
object-at-a-time primitives. It aims at reducing the 
amount of programming needed for metadata intensive 
applications by treating models and mappings as 
abstractions that can be manipulated by generic 
operators. Generic model management treats these 
abstractions as bulk objects and offers high-level 
operators on various metadata applications [Ber03].  

Automated model management operators require a 
considerable implementation effort or sometimes are 
simply not feasible. For example, schema matching is 
ad hoc in nature [Bun92], and depends on the real-
world interpretation of the underlying data sources. 

Schema-matching tasks are typically performed 
manually, sometimes using a graphical tool [Rah01]. 
At best, some tools can detect matches semi-
automatically – even minor name and structure 
variations lead them astray [Bun92]. Other operators 
that are based on schema mappings have similar 
problems. Model management inherently requires 
human decision making. 

Currently model management operators are 
described and performed by underlying algorithms, 
which are mostly transparent to users, and there is no 
way for users to interact with the system to regulate the 
output. This implies that users have to comprehend and 
manually adjust the intermediate and final results. The 
complexity of data models and mappings often makes 
the task error-prone and time-consuming, and degrades 
the applicability of a model management system. The 
interactive nature of model management operations 
inevitably demands an intuitive representation of 
operators, and a graphical representation becomes a 
viable option. However there have been no formally 
defined graphical operators except informal 
descriptions and visualization of mappings. 

Graph offers intuitive means for describing data 
models. Graph transformation, as the theoretical 
foundation of many visual programming languages, is 
capable of formally defining how graphs should be 
built and how they evolve. Furthermore, the operators 
on data models can be defined by graph transformation. 
The graphical representation of operators and their 
transformation are intuitive, and perfectly match the 
interactive nature of model management operators.  

The recently developed Reserved Graph Grammar 
(RGG) formalism is powerful in expressing various 
types of diagrams, with a parsing complexity of 
polynomial time under a non-ambiguous condition 
[Zha97, Zha01b]. Based on the RGG, this paper 
presents a formal visual model management approach. 
The paper contributes to model management in the 
following aspects: 
• A generic visual representation of data models and 

mappings. The representation provides a formal 
syntax definition and verification mechanism for 
data models and mappings. 

• The first proposal that uses graph transformation to 
describe model management operators and provides 
intuitive interfaces for users to tune the result. 



  

• An interactive model management environment for 
users to create and customize operators for metadata 
applications by editing the graphical description of 
operators. 

This paper is organized as follows: Section 2 
introduces model management operators. Sections 3 
and Section 4 present a brief overview of the RGG and 
our model management framework. Section 5 proposes 
a graphical definition of data models and mappings. 
Section 6 applies graphical representations to model 
management operators. To demonstrate the parsing 
process of a graphically defined operator, Section 7 
presents a parsing example. Related work is reviewed 
and compared in Section 8, followed by the conclusion 
in Section 9. 

2. Model Management Operators 

The main model management operators are briefly 
described as follows [Ber03]: 
• Match – takes two models as input and returns a 

mapping between them. 
• Compose – takes a mapping between models A and 

B and a mapping between models B and C, and 
returns a mapping between A and C. 

• Diff – takes a model A and mapping between A and 
some model B, and returns the sub-model of A that 
does not participate in the mapping. 

• ModelGen – takes a model A, and returns a new 
model B that expresses A in a different 
representation (i.e. data model). 

• Merge – takes two models A and B and a mapping 
between them, and returns the union C of A and B 
along with mappings between C and A, and C and B. 
These operators are applied to models and 

mappings as a whole, rather than to their individual 
elements. The operators are generic in the sense that 
they can be utilized for different kinds of models and 
scenarios.  

Consider a typical example of building a data 
warehouse [Ber03]: Suppose we are given a mapping 
map1 from a data source S1 to a data warehouse SW, and 
wish to map a second source S2 to SW, where S2 is 
similar to S1 (Figure 1). First we call Match(S1, S2) to 
obtain a mapping map2 between S1 and S2, which 
shows where S2 is the same as S1. Second, we call 
Compose(map1, map2) to obtain a mapping map3 
between S2 and SW, which returns the mapping between 
SW and the objects of S2 corresponding to the objects of 
S1. To map the remaining objects of S2 to SW, we call 
Diff(S2, map3) to find the sub-model S3 of S2 that is not 
mapped by map3 to SW, and map4 to identify the 
corresponding objects between S2 and S3. We can then 
call other operators to generate a warehouse schema for 
S3 and merge it into SW. Comparing to programming the 

whole system 
for individual 
requirements, 
using model 
management 
reduces 
considerable 
programming effort by composing generic operators. 

3.  A Graph Grammar Formalism 

The reserved graph grammar formalism (RGG) 
[Zha97] is expressed in terms of node-edge diagrams, a 
node is organized into a two-level hierarchy as 
illustrated in Figure 2. A large rectangle is the first 
level called a super-vertex with embedded small 
rectangles as the second level called vertices. In a node, 
each vertex is uniquely identified. The name of a 
super-vertex distinguishes the type of nodes, similar to 
the type of variables in conventional programming 
languages. Edges are used to denote relationships 
between nodes. Either a vertex or a super-vertex can be 
the connecting point of an edge. In addition to the 
structural information, the RGG provides a means of 
associating data to nodes in terms of attributes.  

A RGG consists of a set of graph grammar rules, 
also called productions, each having two graphs that 
are called left graph and right graph as shown in 
Figure 2. A production can be applied to a given 
application (called host graph) in the form of an L-
application or R-application. A sub-graph in the host 
graph is called a redex if it is isomorphic to the left 
graph in an L-application or to the right graph in an R-
application. An L-application (R-application) to a host 
graph is to find in the host graph a redex of the left 
graph (right graph) of the production and replace the 
redex with the right graph (left graph) of the 
production. To identify graph elements to be reserved 
during the transformation process, we mark the vertex 
in a production graph corresponding to these elements 
by prefixing its label 
with a unique integer. 
If a vertex in a right 
graph is marked, it is 
allowed to be 
connected, in a host 
graph, to any node 
outside of the redex that matches the right graph. The 
marked vertex preserves its associated edges connected 
to the outside of the redex during parsing.  

Many data models are specified in diagrams with 
directed and attributed edges. To represent these data 
models, each RGG edge has two features: direction and 
attribute. An edge is denoted by a tuple E(s, a, t), 
where s is the source node, t is the target node, and a is 

Author 
B:1 

N 

 

has-a has-a has-a has-a 

Figure 2.  A graph transformation rule 
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the attribute of the edge. For the example in Figure 2, 
in the right graph of the production Author has two 
edges, i.e. edge (Author, has-a, Name) and edge 
(Author, has-a, Bio), where has-a describes the 
aggregation relationship between the source and target 
nodes. Attributes are hidden in most cases. A host 
graph is defined by a tuple G (N, E, A), where N is a set 
of labeled nodes, A is a set of attributes, and E is a set 
of edges E ⊆ N × A × N. A production rule is defined 
by a tuple of left graph and right graph, i.e. P (L, R), 
where L, R ⊆ G. A RGG consists of a set of production 
rules, i.e. GG = {Pi}. 

 The RGG offers a translation mechanism 
[Zha01a], i.e. graph transformation rules can specify 
the transformation from an input graph to a different 
graph as shown in Figure 2. On an input graph S and 
transformation rules P, one can apply P to S, i.e. A (S, 
P), and expect an output T, where T = A (S, P). Using 
the RGG transformation rules, one can visually 
program the transformation R of a graph S to another 
graph T. 

A parser performs transformation by searching a 
redex in the host graph and replacing it with the left 
graph until no more redex can be found. To achieve 
high performance and avoid ambiguity we employ the 
selection-free parsing algorithm (SFPA) developed by 
Zhang et al. [Zha97].  

4. Framework Overview 

Various data models and mappings are specified by 
different syntaxes, which are mostly defined in natural 
languages in spite of some formal attempts [Rek97]. 

Our model management framework provides a 
formal visual representation of data models and 
mappings defined by the RGG as inputs of model 
management operators. It exploits graph grammars in 
defining the syntax of data models. The parser would 
detect any syntax violation of input data models and 
mappings. The formal definition also gives a 
foundation for defining various model management 
operators by graph transformation. Inputs to an 
operator are viewed as a set of host graphs compliant to 
the predefined abstract syntax.  

In the framework, model management operators are 
specified at two levels, i.e. specific operator and 
generalized operator. A specific operator is a low level 
description of an operator on a specific input, and 
presents users a concrete image of the expected output 
and interface for tuning the result. A specific operator 
is automatically generated on specific inputs through a 
generalized operator that is at a high level abstraction, 
and can be applied to general inputs. The generalized 
operator graphically describes the algorithm used to 
transform the input to output of the operator, i.e. the 

algorithm is performed through a set of graph 
transformation rules. Since most model management 
operators require operations on mappings, i.e. results of 
the match operator, a generalized operator cannot 
produce perfect result without human intervention. But 
at a high level of abstraction, a generalized operator is 
hard to be adapted on specific inputs and is therefore 
necessary to cooperate with a customizable specific 
operator. 

The two-level hierarchy of operators defines two 
levels of system-user interactions, i.e. design level and 
operation level. At the design level, experts of model 
management and graph transformation describe the 
algorithm of an operator by graph transformation rules, 
i.e. generalized operator. At the operation level, users, 
such as DBAs, perform metadata-intensive 
management tasks by adjusting and executing specific 
operators, which are generated automatically from 
generalized operators (the process will be described in 
detail in Section 6). 

Figure 3 shows an overview of the framework, 
which embeds a set of predefined generalized 
operators. Users compose the operators by scripts or 
command line to construct metadata applications. 
According to the generalized operator the framework 
generates a set of specific rules as an interface to 
accept user’s customization.  During each step of the 
execution, users may adjust the customizable specific 
operators to obtain 
desired output rather 
than adjusting output 
directly which could 
be error-prone. After 
specific operators are 
parsed, a visual 
environment is 
generated, which 
produces final results 
of the operator. 

5. Graphical Representation of Models and 
Mappings 

Graphs are used to represent a wide range of data 
models, such as XML schemas [Zha01a], DTDs 
[Ger99], and mappings [Ber03]. The RGG can 
formally define the syntax of graphs and thus the 
syntax of data models and mappings.  

A data model contains a set of objects and various 
relations between the objects. An object could be an 
entity in ER models or an element in XML schemas, 
and a relation could be an “is-a” or “has-a” relation. 
Each object has an identity and type, and each relation 
has properties denoting its semantics, such as the min 
and max cardinality. 

 

Figure 3. Framework overview 
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Our framework represents a data model, e.g. ER 
model, by a host graph in terms of a directed node-edge 
diagram. A node represents an object, and an edge 
denotes a relation. A node has a name and a type 
corresponding to the object it represents. The attribute 
of an edge defines the relation between the two 
connected objects. 

Graphs of a kind of data model should be compliant 
to the syntax of that model. For example, two entities 
of an ER model cannot be connected directly. Such 
syntax is defined by graph grammar rules. The rules for 
XML Schemas can be found in our previous work 
[Son04] and similar rules can be constructed for other 
data models. With these rules, one can easily draw 
models under the syntax guidance of the RGG toolset 
[Zha01c]. 

A mapping, MapAB, defines how models A and B 
are related [Pot03] as shown in Figure 4. Many 
proposals use graphical metaphors to represent schema 
mappings like in Rondo [Mel03], and Clio [Mil01]. 
These mappings are shown to the user as sets of lines 
connecting the elements of two schemas. Such kind of 
representation is simple but not as powerful as SQL 
view [Mad03] or that of Bernstein [Ber03]. SQL view 
is not a generic representation for mappings among 
heterogeneous data sources, such as XML schemas. On 
the other hand, mappings are structured instead of flat 
bi-directional, and hard to be described by simple two-
way correspondences. The mapping structure described 
by Bernstein [Ber03] is an appropriate compromise, 
being generic and yet powerful for describing 
mappings.  

Our framework represents mappings as special data 
models. A mapping has only one relationship type, i.e. 
has-a relationship, and three element types, i.e. 
mapping element, reference element and helper 
element. A mapping element specifies how the two 
referenced models’ elements are related, such as 
equality, or similarity, such as node Equal in Figure 4.  
A reference element is a reference to the element of the 
two corresponding models, such as those nodes of 
Model A in Figure 4. The relationship between a 
mapping element and a reference element is denoted by 
a dashed line in this paper. A helper element is a make 
up element to represent extra semantics of a mapping. 
For example, Intros is a helper element indicating that 
Bio and Intro can be composed together to form a 
detailed and official description of Author as shown in 
Figure 4. 

The syntax of mappings is defined by a graph 
grammar as in Figure 5, which includes five production 
rules. The first production shows that the initial state of 
the mapping is a mapping element. Production <2> 
shows that each mapping element can be connected to 
and has the has-a relationship with more than one 

mapping element as vertex F is marked. Productions 
<3> and <5> define the relationship between the helper 
and mapping elements, i.e. they may have the has-a 
relationship in either direction. That a mapping element 
can have multiple reference elements is specified in 
Production <4>, and the relation between a mapping 
element and a reference element is denoted by a dashed 
edge in this paper.  

6. Operators by Graph Transformation 

Model management operators take data models and 
mappings as input and generate another set of data 
models and mappings as output, and are described by a 
set of graph 
transformation 
rules. This 
section will go 
through two 
operators, 
Merge and 
ModelGen, to 
illustrate the 
graphical 
representation 
of operators. 
The same 
principle 
applies to other 
operators. 

6.1.  Merge Operator 

Merge takes three inputs, i.e. model A, model B, 
and a mapping between A and B, and returns the union 
model C of A and B along with mappings between C 
and A, and between C and B [Ber03]. The input of 
merge is S = (A, B, MAB), which consists of three 
graphs representing model A, model B, and the 
mapping between A and B. After applying the merge 
to S, output T consists of five graphs, i.e. T = (A, B, C, 
M1, M2), where A, B are copies of input graphs, C 
represents the output union model, M1 and M2 
represent mappings between C and A, and between C 
and B. 
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Book 
D 

Author 
B 

N 

Name 
A 

Bio 
U 

Title 
C 

ISBN 
O 

EBook 
D 

Author 
B 

N 

FName 
A 

LName 
U 

BTitle 
C 

Summary 
O 

Intro 
U 

Equal 
D 

Equal 
B 

N 

Equal 
A 

Equal 
U 

Equal 
C 

Equal 
B 

N 

Equal 
A 

Intros 
B 

N 

Equal 
U 

Figure 4. A Mapping represented in RGG 
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The semantics of merge can be briefly described as 
follows: The output of merge is a model that retains 
all non-duplicated information in A, B, and MapAB; it 
collapses the redundant information declared by MapAB. 

Figure 6 shows a set of graph transformation rules 
for merging models A and B as defined in Figure 5. 
Each production rule shows what the result of merge 
should be. Production <1> defines that root nodes of 
input models, Book and Ebook, will produce an output 
data model with a root node Book, and two mappings. 
Productions <2> and <3> are similar to Production <1>, 
and copy the referenced node to the output and set a 
correspondence between the output and input models to 
form two output mappings. Production <4> merges the 
structured mappings by defining a new structure in the 
output model with the nodes referenced by the 
mapping element and constructing two mappings from 
elements in the input models to the constructed 
elements in the output models. Production <5> shows 
the transformation with a helper element (Intros in this 
case), and is similar to Production <4>. Productions 

<6> and <7> copy the input elements that have no 
reference in the input mapping to the output and 
establish a mapping between the original element and 
the copy. 

Comparing to an operator algorithm, the graph 
transformation rules intuitively and explicitly specify 
what the result should be, and therefore a user with 
little domain knowledge can manipulate the rules to 
meet the specific requirements. For example, if one 
wants to use EBook rather than Book as the root of the 
output data model, he/she can change the node Book in 
the left graph of Production <1> to EBook. 

6.2.  ModelGen Operator 

ModelGen takes a model A as input and returns a 
new model B based on a mapping between A and B 
[Ber03]. In our framework, ModelGen takes input S = 
(A, MAB), where A is a model, MAB is a mapping, and 
output is T = (B). ModelGen transforms from input 
graph S to T by applying a set of transformation rules P, 
i.e. T = A (S, P). 

For the input (A, MapAB) in the example of Figure 4, 
the ModelGen is described by the graph 
transformation rules in Figure 7. Productions  <1>, <2>, 
and <3> show that the result of a one-to-one 
correspondence is copied directly from the referenced 
elements of model B in the mapping. In Productions 
<4> and <5>, the reference elements in model A are 
mapped to elements in B via a complex structure of 
mapping elements or helper elements. For example, 
Production <4> produces new elements by duplicating 
reference elements of the mapping, e.g. LName and 
FName. 

The ModelGen on the input (A, MAB) does not 
produce model B accurately. It cannot produce element 
summary of the original model B, because the input S 
(A, MAB) has no such element. To maintain a high 
fidelity of 
the output 
model one 
can add 
summary 
to the left 
graph, so 
that the 
parser will 
produce the 
element 
missing in 
the output 
model. 
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Figure 6. Merge operator defined by graph transformation rules 
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Figure 7. ModelGen by graph transformation rules 
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ModelGen, are defined by transformation rules on 
specific inputs. It is easy and feasible for users to 
specify the specific transformation rules on small-scale 
inputs, but not for large data models. Therefore the 
framework automates the process of defining rules for 
specific inputs by exploiting traditional algorithms, or 
generalizing the specific graphical operators, as 
discussed in the following subsection. 

6.3.  Generalization of Operators 

This subsection describes the concept of operator 
generalization by going through the merge operator. 
Based on mappings, generalized graph transformation 
rules visually describe the algorithms for the 
corresponding operators at a level higher than specific 
operators. Ideally if we could define all the detailed 
algorithms of model operators by graph transformation 
rules, model management could be an automatic and 
visualized process. Due to the ad hoc nature, however, 
generalized operators still need to be customized for 
specific inputs, for example the ModelGen in Figure 7 
needs to add summary to Production <1> for an 
accurate output. 

Therefore generalization aims at describing 
algorithms of operators by graph transformation and 
when applied to a specific input, the parser generates 
the corresponding specific operators, which are 
customizable. The framework as shown in Figure 3 
could be fully interactive and also visualized.  

For example, merge could be generalized as shown 
in Figure 8, which defines 5 transformation rules. 
Unlike the merge algorithm, the transformation rules 
can be customized on the input. Generalized operators 
do not resolve conflicts, which are to be solved by 
specific operators. Production <1> merges an 
elementary mapping, i.e. one to one correspondence as 
Productions <1>, <2>, and <3> in Figure 6. The output 
consists of two mappings and one data model together 
with input elements. In the middle of the left graph of 
Production <1>, the reference element of the output 
model is a copy of one of the mapped input elements, 
the element in model A in this case. The remaining two 
output reference elements are copies of the 
corresponding input elements. Two mapping elements 
on top are output mappings, which map the middle 
reference element to the left and right reference 
elements. Production <2>, together with Production 
<4>, merges the structured mapping elements, such as 
the equal element of Production <4> in Figure 6. The 
merge is achieved by making the mapping element 
and the related reference element a composite element 
and then extracting the reference element to form the 
output elements in Production <4>. Similarly 
Productions <3> and <5> transform the structured 

helper elements by composing them in <3> and then 
extracting in <5>.  

When the rules are applied to a host graph, the 
parser will match the nodes in the host graph to the 
nodes of the same type in the right graph. For example 
equal in Figure 4 is a mapping element of Figure 8. 
Because the rules are based on the graph grammar in 
Figure 6, they can be applied to any host graphs 
conforming to the grammar. 

Similarly, the ModelGen operator in Figure 8 can 
be generalized and the generic model management 
visualized. But users cannot customize generalized 
operators like they do with specific operators. As 
shown in Figure 3, the two approaches are integrated in 
our framework, that provides a visual, generic, and 
customizable model management environment. 

7. A Parsing Example 

This section describes the transformation process of 
merging input data models and mapping that were 
illustrated in Figure 4. The corresponding merge 
operator is defined in Figure 6. The output includes 
models A and B (i.e. copies of input), output model C, 
and mappings MapAC and MapBC. 

The first redex found is that of Production <6> in 
Figure 6, i.e. ISBN of model A. The parser copies 
ISBN of the model and connects it to the mapping 
element Equal. A redex of Production <7> is found in 
the second step, which merges Summary element of 
model B. 

Production <5> is applied in the third step, which 
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merges mapping with helper elements. The helper 
element Intros and two connected mapping elements, 
Bio and Intro, are moved to the output model. Two 
mapping elements in MapAC and MapBC are connected 
to Bio and Intro respectively. In the forth and fifth 
steps, the parser applies Productions <4> and <3> 
respectively. 

Due to the space limit, only the last step is shown in 
Figure 9, when Production <1> is applied. The 
mapping between Book and EBook is found as a redex 
and replaced with two mappings. After the application 
of this rule, the output model C and two mappings 
between C and A, B are finally produced.  

8. Related Work 

Though model management is a relatively new 
research area, its promising and exciting potential has 
attracted much attention and made significant advances 
in several aspects since it was first proposed [Ber00]. 
In the transformation perspective, according to B�zivin 
[B�z03], model management may be considered the 3rd 
generation, with text scripts like the awk Unix 
command being the first generation and tree scripts like 
XSLT being the second. 

Various systems for model management have been 
presented. Cupid [Mad01, Mad03] and Clio [Mil01] 
match two models and output the mapping between 
them, i.e. performing the match operator.  Merge has 
been a hot spot in database research area for a long 
time. Buneman et al. described a theoretical foundation 
of merge [Bun92]. In the context of generic model 
management, there are various implementations of the 
operator, such as Pottinger’s approach, which presents 
the operator based on the BDK algorithm [Pot03], and 
data integration project Clio [Mil01] that is based on a 
query language specific to databases or XML schemas. 
Most of the approaches only concentrate on part of 
generic model management. 

Rondo [Mel03] is the first complete prototype of 
the generic model management system, in which 
Melnik et al. defined the key conceptual structure of 
models, mappings, and selectors. They presented an 
algorithm for the merge operator as an example, and 
applied it to XML schemas and SQL views. Rondo 

represents mapping between two data models by a set 
of correspondences, not as a model as in this paper. 
Comparing to our interactive and customizable 
framework, Rondo is like a black box to users and 
presents no intuitive interface for users to customize. 

Model management is also combined with peer-to-
peer computing technology [Ber02] and further used as 
an infrastructure for future Web data representation, 
notably the semantic Web [Hal03W]. Piazza [Hal03] 
offers a language for mediating between data sources 
over the semantic Web. Piazza describes mapping by 
an adapted query language and has more sophisticated 
mechanism to retrieve complex data from RDF and 
XML documents. The appropriate mapping language is 
derived from XQuery and is complicated for a Web 
page designer to map some Web pages to others. Users 
or designers have to solve conflicts manually. The 
complex query language could potentially hinder the 
deployment of the Piazza system. 

Using graphs to represent and manage data models 
is not new, and there are many proposals based on 
graph grammars. Rekers and Schürr presented an ER 
data model specified by layered graph grammars 
[Rek97]. Jahnke and Zundorf presented varlet, a 
database reverse engineering environment based on 
triple graph grammars [Jah98]. The varlet environment 
supports the analysis of legacy database systems, 
translation of any relational schema into a conceptual 
object-oriented schema. More recent work of 
Wermelinger and Fiadeiro [Wer02] focuses on 
software architecture reconfiguration using an 
algebraic approach, i.e. category theory. Consistency of 
model evolution based on real-time UML is further 
investigated by Engels et al. [Eng02]. These graph 
transformation based approaches address only specific 
aspects of model management. No graph-based generic 
model management system has been proposed. 

9. Conclusion 

This paper has presented a visual representation of 
data models and mappings using the RGG, and applied 
it to model management. Model management operators 
are specified by graph transformation rules at two 
levels, i.e. specific operator and generalized operator. 
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These two operation levels allow experts of data 
models and graph grammars to define the general rules 
of operators, and assist users to comprehend and 
manipulate the specific rules for tuning the result. 

The generic, interactive, and visualized model 
management framework formally defines model 
management operators and provides intuitive interfaces 
for users to customize the operators. The graphical 
representation of operators perfectly matches the 
interactive nature of model management activities.  

Our immediate future work includes the automatic 
translation of input textual data models to their 
graphical representations and implementation of 
operator generalization in the model management 
framework. 
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