

Model Management Through Graph Transformation

Guanglei SONG Kang ZHANG Jun KONG
Department of Computer Science, University of Texas at Dallas

Richardson, Texas 75083-0688 USA
{gxs017800, kzhang, jxk019200}@utdallas.edu

Abstract

Model management offers a higher level interface

than current techniques for metadata management, and
generic operators drastically reduce amount of
programming for metadata applications. The
interactive nature of generic model management
operators inevitably demands an intuitive
representation. This paper proposes a visual
representation for model management operators based
on graph transformation. Graph transformation
formalisms, as the theoretic foundation of many visual
programming languages, can formally represent model
management operators by visual and intuitive
expressions. By using graphical representations users
can easily comprehend and manipulate the operators
and desired outputs.

1. Introduction

Tremendous data is available in heterogeneous
formats, such as relational database schemas and XML
documents. Engineers who manage information
systems usually need to design, integrate, transform, or
evolve these application artifacts that are used to define
data formats and are called models or metadata, such
as ER models, relational, and XML schemas.
Traditional approaches to implementing data
applications need to program specifically for the
corresponding metadata, i.e. using object-at-a-time
primitives, which are hard to develop, adapt, and
evolve in different contexts.

Model management is a new approach to metadata
management that offers a higher level programming
interface than current techniques [Ber00] and avoids
object-at-a-time primitives. It aims at reducing the
amount of programming needed for metadata intensive
applications by treating models and mappings as
abstractions that can be manipulated by generic
operators. Generic model management treats these
abstractions as bulk objects and offers high-level
operators on various metadata applications [Ber03].

Automated model management operators require a
considerable implementation effort or sometimes are
simply not feasible. For example, schema matching is
ad hoc in nature [Bun92], and depends on the real-
world interpretation of the underlying data sources.

Schema-matching tasks are typically performed
manually, sometimes using a graphical tool [Rah01].
At best, some tools can detect matches semi-
automatically – even minor name and structure
variations lead them astray [Bun92]. Other operators
that are based on schema mappings have similar
problems. Model management inherently requires
human decision making.

Currently model management operators are
described and performed by underlying algorithms,
which are mostly transparent to users, and there is no
way for users to interact with the system to regulate the
output. This implies that users have to comprehend and
manually adjust the intermediate and final results. The
complexity of data models and mappings often makes
the task error-prone and time-consuming, and degrades
the applicability of a model management system. The
interactive nature of model management operations
inevitably demands an intuitive representation of
operators, and a graphical representation becomes a
viable option. However there have been no formally
defined graphical operators except informal
descriptions and visualization of mappings.

Graph offers intuitive means for describing data
models. Graph transformation, as the theoretical
foundation of many visual programming languages, is
capable of formally defining how graphs should be
built and how they evolve. Furthermore, the operators
on data models can be defined by graph transformation.
The graphical representation of operators and their
transformation are intuitive, and perfectly match the
interactive nature of model management operators.

The recently developed Reserved Graph Grammar
(RGG) formalism is powerful in expressing various
types of diagrams, with a parsing complexity of
polynomial time under a non-ambiguous condition
[Zha97, Zha01b]. Based on the RGG, this paper
presents a formal visual model management approach.
The paper contributes to model management in the
following aspects:
• A generic visual representation of data models and

mappings. The representation provides a formal
syntax definition and verification mechanism for
data models and mappings.

• The first proposal that uses graph transformation to
describe model management operators and provides
intuitive interfaces for users to tune the result.

• An interactive model management environment for
users to create and customize operators for metadata
applications by editing the graphical description of
operators.

This paper is organized as follows: Section 2
introduces model management operators. Sections 3
and Section 4 present a brief overview of the RGG and
our model management framework. Section 5 proposes
a graphical definition of data models and mappings.
Section 6 applies graphical representations to model
management operators. To demonstrate the parsing
process of a graphically defined operator, Section 7
presents a parsing example. Related work is reviewed
and compared in Section 8, followed by the conclusion
in Section 9.

2. Model Management Operators

The main model management operators are briefly
described as follows [Ber03]:
• Match – takes two models as input and returns a

mapping between them.
• Compose – takes a mapping between models A and

B and a mapping between models B and C, and
returns a mapping between A and C.

• Diff – takes a model A and mapping between A and
some model B, and returns the sub-model of A that
does not participate in the mapping.

• ModelGen – takes a model A, and returns a new
model B that expresses A in a different
representation (i.e. data model).

• Merge – takes two models A and B and a mapping
between them, and returns the union C of A and B
along with mappings between C and A, and C and B.
These operators are applied to models and

mappings as a whole, rather than to their individual
elements. The operators are generic in the sense that
they can be utilized for different kinds of models and
scenarios.

Consider a typical example of building a data
warehouse [Ber03]: Suppose we are given a mapping
map1 from a data source S1 to a data warehouse SW, and
wish to map a second source S2 to SW, where S2 is
similar to S1 (Figure 1). First we call Match(S1, S2) to
obtain a mapping map2 between S1 and S2, which
shows where S2 is the same as S1. Second, we call
Compose(map1, map2) to obtain a mapping map3
between S2 and SW, which returns the mapping between
SW and the objects of S2 corresponding to the objects of
S1. To map the remaining objects of S2 to SW, we call
Diff(S2, map3) to find the sub-model S3 of S2 that is not
mapped by map3 to SW, and map4 to identify the
corresponding objects between S2 and S3. We can then
call other operators to generate a warehouse schema for
S3 and merge it into SW. Comparing to programming the

whole system
for individual
requirements,
using model
management
reduces
considerable
programming effort by composing generic operators.

3. A Graph Grammar Formalism

The reserved graph grammar formalism (RGG)
[Zha97] is expressed in terms of node-edge diagrams, a
node is organized into a two-level hierarchy as
illustrated in Figure 2. A large rectangle is the first
level called a super-vertex with embedded small
rectangles as the second level called vertices. In a node,
each vertex is uniquely identified. The name of a
super-vertex distinguishes the type of nodes, similar to
the type of variables in conventional programming
languages. Edges are used to denote relationships
between nodes. Either a vertex or a super-vertex can be
the connecting point of an edge. In addition to the
structural information, the RGG provides a means of
associating data to nodes in terms of attributes.

A RGG consists of a set of graph grammar rules,
also called productions, each having two graphs that
are called left graph and right graph as shown in
Figure 2. A production can be applied to a given
application (called host graph) in the form of an L-
application or R-application. A sub-graph in the host
graph is called a redex if it is isomorphic to the left
graph in an L-application or to the right graph in an R-
application. An L-application (R-application) to a host
graph is to find in the host graph a redex of the left
graph (right graph) of the production and replace the
redex with the right graph (left graph) of the
production. To identify graph elements to be reserved
during the transformation process, we mark the vertex
in a production graph corresponding to these elements
by prefixing its label
with a unique integer.
If a vertex in a right
graph is marked, it is
allowed to be
connected, in a host
graph, to any node
outside of the redex that matches the right graph. The
marked vertex preserves its associated edges connected
to the outside of the redex during parsing.

Many data models are specified in diagrams with
directed and attributed edges. To represent these data
models, each RGG edge has two features: direction and
attribute. An edge is denoted by a tuple E(s, a, t),
where s is the source node, t is the target node, and a is

Author
B:1

N

has-a has-a has-a has-a

Figure 2. A graph transformation rule

Author
B:1

N

Title
A

Intro
U

:=

<1>

Name
A

Bio
U

 map1

3. map4

S1 SW

S2 S3

Given: S1, S2, map1, SW
1. map2 = M atch(S1,S2)
2. map3 =

Compose(map1,map2)
3. <S3, map4> = Diff(S2,

map3)

1. map2 2. map3

Figure 1. Using model management to help
generate a data warehouse loading script

the attribute of the edge. For the example in Figure 2,
in the right graph of the production Author has two
edges, i.e. edge (Author, has-a, Name) and edge
(Author, has-a, Bio), where has-a describes the
aggregation relationship between the source and target
nodes. Attributes are hidden in most cases. A host
graph is defined by a tuple G (N, E, A), where N is a set
of labeled nodes, A is a set of attributes, and E is a set
of edges E ⊆ N × A × N. A production rule is defined
by a tuple of left graph and right graph, i.e. P (L, R),
where L, R ⊆ G. A RGG consists of a set of production
rules, i.e. GG = {Pi}.

 The RGG offers a translation mechanism
[Zha01a], i.e. graph transformation rules can specify
the transformation from an input graph to a different
graph as shown in Figure 2. On an input graph S and
transformation rules P, one can apply P to S, i.e. A (S,
P), and expect an output T, where T = A (S, P). Using
the RGG transformation rules, one can visually
program the transformation R of a graph S to another
graph T.

A parser performs transformation by searching a
redex in the host graph and replacing it with the left
graph until no more redex can be found. To achieve
high performance and avoid ambiguity we employ the
selection-free parsing algorithm (SFPA) developed by
Zhang et al. [Zha97].

4. Framework Overview

Various data models and mappings are specified by
different syntaxes, which are mostly defined in natural
languages in spite of some formal attempts [Rek97].

Our model management framework provides a
formal visual representation of data models and
mappings defined by the RGG as inputs of model
management operators. It exploits graph grammars in
defining the syntax of data models. The parser would
detect any syntax violation of input data models and
mappings. The formal definition also gives a
foundation for defining various model management
operators by graph transformation. Inputs to an
operator are viewed as a set of host graphs compliant to
the predefined abstract syntax.

In the framework, model management operators are
specified at two levels, i.e. specific operator and
generalized operator. A specific operator is a low level
description of an operator on a specific input, and
presents users a concrete image of the expected output
and interface for tuning the result. A specific operator
is automatically generated on specific inputs through a
generalized operator that is at a high level abstraction,
and can be applied to general inputs. The generalized
operator graphically describes the algorithm used to
transform the input to output of the operator, i.e. the

algorithm is performed through a set of graph
transformation rules. Since most model management
operators require operations on mappings, i.e. results of
the match operator, a generalized operator cannot
produce perfect result without human intervention. But
at a high level of abstraction, a generalized operator is
hard to be adapted on specific inputs and is therefore
necessary to cooperate with a customizable specific
operator.

The two-level hierarchy of operators defines two
levels of system-user interactions, i.e. design level and
operation level. At the design level, experts of model
management and graph transformation describe the
algorithm of an operator by graph transformation rules,
i.e. generalized operator. At the operation level, users,
such as DBAs, perform metadata-intensive
management tasks by adjusting and executing specific
operators, which are generated automatically from
generalized operators (the process will be described in
detail in Section 6).

Figure 3 shows an overview of the framework,
which embeds a set of predefined generalized
operators. Users compose the operators by scripts or
command line to construct metadata applications.
According to the generalized operator the framework
generates a set of specific rules as an interface to
accept user’s customization. During each step of the
execution, users may adjust the customizable specific
operators to obtain
desired output rather
than adjusting output
directly which could
be error-prone. After
specific operators are
parsed, a visual
environment is
generated, which
produces final results
of the operator.

5. Graphical Representation of Models and
Mappings

Graphs are used to represent a wide range of data
models, such as XML schemas [Zha01a], DTDs
[Ger99], and mappings [Ber03]. The RGG can
formally define the syntax of graphs and thus the
syntax of data models and mappings.

A data model contains a set of objects and various
relations between the objects. An object could be an
entity in ER models or an element in XML schemas,
and a relation could be an “is-a” or “has-a” relation.
Each object has an identity and type, and each relation
has properties denoting its semantics, such as the min
and max cardinality.

Figure 3. Framework overview

Data
Models

Mappings
 Generalized

Graphical
Operators

Users
Customize

Output Data
Models and/or

Mappings

 Auto Generate

 Data Input

Specific
Graphical
Operators

Our framework represents a data model, e.g. ER
model, by a host graph in terms of a directed node-edge
diagram. A node represents an object, and an edge
denotes a relation. A node has a name and a type
corresponding to the object it represents. The attribute
of an edge defines the relation between the two
connected objects.

Graphs of a kind of data model should be compliant
to the syntax of that model. For example, two entities
of an ER model cannot be connected directly. Such
syntax is defined by graph grammar rules. The rules for
XML Schemas can be found in our previous work
[Son04] and similar rules can be constructed for other
data models. With these rules, one can easily draw
models under the syntax guidance of the RGG toolset
[Zha01c].

A mapping, MapAB, defines how models A and B
are related [Pot03] as shown in Figure 4. Many
proposals use graphical metaphors to represent schema
mappings like in Rondo [Mel03], and Clio [Mil01].
These mappings are shown to the user as sets of lines
connecting the elements of two schemas. Such kind of
representation is simple but not as powerful as SQL
view [Mad03] or that of Bernstein [Ber03]. SQL view
is not a generic representation for mappings among
heterogeneous data sources, such as XML schemas. On
the other hand, mappings are structured instead of flat
bi-directional, and hard to be described by simple two-
way correspondences. The mapping structure described
by Bernstein [Ber03] is an appropriate compromise,
being generic and yet powerful for describing
mappings.

Our framework represents mappings as special data
models. A mapping has only one relationship type, i.e.
has-a relationship, and three element types, i.e.
mapping element, reference element and helper
element. A mapping element specifies how the two
referenced models’ elements are related, such as
equality, or similarity, such as node Equal in Figure 4.
A reference element is a reference to the element of the
two corresponding models, such as those nodes of
Model A in Figure 4. The relationship between a
mapping element and a reference element is denoted by
a dashed line in this paper. A helper element is a make
up element to represent extra semantics of a mapping.
For example, Intros is a helper element indicating that
Bio and Intro can be composed together to form a
detailed and official description of Author as shown in
Figure 4.

The syntax of mappings is defined by a graph
grammar as in Figure 5, which includes five production
rules. The first production shows that the initial state of
the mapping is a mapping element. Production <2>
shows that each mapping element can be connected to
and has the has-a relationship with more than one

mapping element as vertex F is marked. Productions
<3> and <5> define the relationship between the helper
and mapping elements, i.e. they may have the has-a
relationship in either direction. That a mapping element
can have multiple reference elements is specified in
Production <4>, and the relation between a mapping
element and a reference element is denoted by a dashed
edge in this paper.

6. Operators by Graph Transformation

Model management operators take data models and
mappings as input and generate another set of data
models and mappings as output, and are described by a
set of graph
transformation
rules. This
section will go
through two
operators,
Merge and
ModelGen, to
illustrate the
graphical
representation
of operators.
The same
principle
applies to other
operators.

6.1. Merge Operator

Merge takes three inputs, i.e. model A, model B,
and a mapping between A and B, and returns the union
model C of A and B along with mappings between C
and A, and between C and B [Ber03]. The input of
merge is S = (A, B, MAB), which consists of three
graphs representing model A, model B, and the
mapping between A and B. After applying the merge
to S, output T consists of five graphs, i.e. T = (A, B, C,
M1, M2), where A, B are copies of input graphs, C
represents the output union model, M1 and M2
represent mappings between C and A, and between C
and B.

Model A Model B Mapping A and B

Book
D

Author
B

N

Name
A

Bio
U

Title
C

ISBN
O

EBook
D

Author
B

N

FName
A

LName
U

BTitle
C

Summary
O

Intro
U

Equal
D

Equal
B

N

Equal
A

Equal
U

Equal
C

Equal
B

N

Equal
A

Intros
B

N

Equal
U

Figure 4. A Mapping represented in RGG

Helper
Element

A

B

:=

<2>

Figure 5. Mapping as a model defined by a Graph Grammar

Mapping
Element

E

F

Mapping
Element

E

F:1 Mapping
Element

E

F

:=

<1> initial

Mapping
Element

A

B

Mapping
Element

E

F:1

Reference
Element

E

F

Mapping
Element

E

F:1 Mapping
Element

E

F

:=

<3>

Helper
Element

E

F:1

:=

<5>

Mapping
Element

A

B

Helper
Element

E

F

Mapping
Element

E

F

λ

<4>

:=

The semantics of merge can be briefly described as
follows: The output of merge is a model that retains
all non-duplicated information in A, B, and MapAB; it
collapses the redundant information declared by MapAB.

Figure 6 shows a set of graph transformation rules
for merging models A and B as defined in Figure 5.
Each production rule shows what the result of merge
should be. Production <1> defines that root nodes of
input models, Book and Ebook, will produce an output
data model with a root node Book, and two mappings.
Productions <2> and <3> are similar to Production <1>,
and copy the referenced node to the output and set a
correspondence between the output and input models to
form two output mappings. Production <4> merges the
structured mappings by defining a new structure in the
output model with the nodes referenced by the
mapping element and constructing two mappings from
elements in the input models to the constructed
elements in the output models. Production <5> shows
the transformation with a helper element (Intros in this
case), and is similar to Production <4>. Productions

<6> and <7> copy the input elements that have no
reference in the input mapping to the output and
establish a mapping between the original element and
the copy.

Comparing to an operator algorithm, the graph
transformation rules intuitively and explicitly specify
what the result should be, and therefore a user with
little domain knowledge can manipulate the rules to
meet the specific requirements. For example, if one
wants to use EBook rather than Book as the root of the
output data model, he/she can change the node Book in
the left graph of Production <1> to EBook.

6.2. ModelGen Operator

ModelGen takes a model A as input and returns a
new model B based on a mapping between A and B
[Ber03]. In our framework, ModelGen takes input S =
(A, MAB), where A is a model, MAB is a mapping, and
output is T = (B). ModelGen transforms from input
graph S to T by applying a set of transformation rules P,
i.e. T = A (S, P).

For the input (A, MapAB) in the example of Figure 4,
the ModelGen is described by the graph
transformation rules in Figure 7. Productions <1>, <2>,
and <3> show that the result of a one-to-one
correspondence is copied directly from the referenced
elements of model B in the mapping. In Productions
<4> and <5>, the reference elements in model A are
mapped to elements in B via a complex structure of
mapping elements or helper elements. For example,
Production <4> produces new elements by duplicating
reference elements of the mapping, e.g. LName and
FName.

The ModelGen on the input (A, MAB) does not
produce model B accurately. It cannot produce element
summary of the original model B, because the input S
(A, MAB) has no such element. To maintain a high
fidelity of
the output
model one
can add
summary
to the left
graph, so
that the
parser will
produce the
element
missing in
the output
model.

So far
two
operators,
Merge and

:=

<1>

:=

<2>

:=

<3>

<4>

:=

:=

<5>

:=

:=

<6>

<7>

Figure 6. Merge operator defined by graph transformation rules

Book
A

Author
A:2

L

Name
A:1

Bio
A:2

Title
A:2

ISBN
A:1

EBook
B

Author
B:3

M

BTitle
B:3

Summary
B:1

Intro
B:3

Equal
E

Equal
C:1

N

Equal
A

Equal
A

Intros
B

N

Book
A

Equal
G

Book
C

EBook
B

Equal
F

Equal
D:1

Equal
D:1

Equal
D:1

Title
A:2

Title
A:2

BTitle
B:3

Author
A:2

L
Author

B:3

M

Equal
C:1

N

Author
A:2

L
Equal

C:1

N

Equal
C:1

N

FName
A:2

LName
A:3

Equal
A

Equal
A

Equal
C:1

N

Equal
A

Equal
A

Equal
C:1

N

Name
A:1

FName
A:2

LName
A:3

FName
A:2

LName
A:3

Name
A:1

Equal
A

Equal
A

Equal
U

Intros
C:1

N

Equal
U

Intro
U

Bio
U

Bio
A:2

Intro
B:3

ISBN
A:1

Equal
A

ISBN
A:1

Summary
B:1

Summary
B:1

Equal
A

:=

<1> :=

<2>

:=
<3>

<4>

:=

:=

<5>

Figure 7. ModelGen by graph transformation rules

Book
A

Author
A:2

L

Name
A:1

Bio
A:2

Title
A:2

EBook
B

Author
B:3

M

BTitle
B:3

Intro
B:3

Equal
E

Equal
C:1

N

Equal
A

Equal
A

EBook
B

Equal
D:1

BTitle
B:3

Author
B:3

M

Equal
C:1

N

FName
A:2

LName
A:3

FName
A:2

LName
A:3

Equal
U

Intros
C:1

N

Equal
U

Intro
U

ModelGen, are defined by transformation rules on
specific inputs. It is easy and feasible for users to
specify the specific transformation rules on small-scale
inputs, but not for large data models. Therefore the
framework automates the process of defining rules for
specific inputs by exploiting traditional algorithms, or
generalizing the specific graphical operators, as
discussed in the following subsection.

6.3. Generalization of Operators

This subsection describes the concept of operator
generalization by going through the merge operator.
Based on mappings, generalized graph transformation
rules visually describe the algorithms for the
corresponding operators at a level higher than specific
operators. Ideally if we could define all the detailed
algorithms of model operators by graph transformation
rules, model management could be an automatic and
visualized process. Due to the ad hoc nature, however,
generalized operators still need to be customized for
specific inputs, for example the ModelGen in Figure 7
needs to add summary to Production <1> for an
accurate output.

Therefore generalization aims at describing
algorithms of operators by graph transformation and
when applied to a specific input, the parser generates
the corresponding specific operators, which are
customizable. The framework as shown in Figure 3
could be fully interactive and also visualized.

For example, merge could be generalized as shown
in Figure 8, which defines 5 transformation rules.
Unlike the merge algorithm, the transformation rules
can be customized on the input. Generalized operators
do not resolve conflicts, which are to be solved by
specific operators. Production <1> merges an
elementary mapping, i.e. one to one correspondence as
Productions <1>, <2>, and <3> in Figure 6. The output
consists of two mappings and one data model together
with input elements. In the middle of the left graph of
Production <1>, the reference element of the output
model is a copy of one of the mapped input elements,
the element in model A in this case. The remaining two
output reference elements are copies of the
corresponding input elements. Two mapping elements
on top are output mappings, which map the middle
reference element to the left and right reference
elements. Production <2>, together with Production
<4>, merges the structured mapping elements, such as
the equal element of Production <4> in Figure 6. The
merge is achieved by making the mapping element
and the related reference element a composite element
and then extracting the reference element to form the
output elements in Production <4>. Similarly
Productions <3> and <5> transform the structured

helper elements by composing them in <3> and then
extracting in <5>.

When the rules are applied to a host graph, the
parser will match the nodes in the host graph to the
nodes of the same type in the right graph. For example
equal in Figure 4 is a mapping element of Figure 8.
Because the rules are based on the graph grammar in
Figure 6, they can be applied to any host graphs
conforming to the grammar.

Similarly, the ModelGen operator in Figure 8 can
be generalized and the generic model management
visualized. But users cannot customize generalized
operators like they do with specific operators. As
shown in Figure 3, the two approaches are integrated in
our framework, that provides a visual, generic, and
customizable model management environment.

7. A Parsing Example

This section describes the transformation process of
merging input data models and mapping that were
illustrated in Figure 4. The corresponding merge
operator is defined in Figure 6. The output includes
models A and B (i.e. copies of input), output model C,
and mappings MapAC and MapBC.

The first redex found is that of Production <6> in
Figure 6, i.e. ISBN of model A. The parser copies
ISBN of the model and connects it to the mapping
element Equal. A redex of Production <7> is found in
the second step, which merges Summary element of
model B.

Production <5> is applied in the third step, which

<2>

Figure 8. Generalized graph transformation rules for merge operator

Mapping
Element

E:2

D:5

<1>

Reference
Element

B:3

F:6

Mapping
Element

E:3

C:2

Mapping
Element

B

C:2

<3>

Helper
Element

E:3

F:1

:=

Mapping
Element

A

B:2

Reference
Element

A:1

C:4

Mapping
Element

E:2

D:5

Reference
Element

A:1

D:5

Reference
Element

A:1

C:4

Mapping
Element

E:2

D:5

Reference
Element

B:3

F:6

:=

Mapping
Element

E:3

F:1
:=

Helper
Element

E:3

B:2

Composite
Element

B

C:2

Composite
Element

B

C:2

Mapping
Element

E:3

C:2

Composite
Element

B

C:2

Reference
Element

A:1

C:4

Reference
Element

A:1

C:4

Reference
Element

A:1

C:4

Mapping
Element

E:3

C:2

Mapping
Element

E:3

C:2

Mapping
Element

E:3

C:2

Mapping
Element

E:3

C:2

Reference
Element

A:1

C:4

Reference
Element

A:1

C:4

Reference
Element

A:1

D:5

Reference
Element

A:1

D:5

Helper
Element

E:3

C:2

Composite
Element

B

C:2

Reference
Element

A:1

C:4

Reference
Element

A:1

C:4

Mapping
Element

E:3

C:2

Mapping
Element

E:3

C:2

Reference
Element

A:1

C:4

Reference
Element

A:1

C:4

<4>

:=

<5>

:=

merges mapping with helper elements. The helper
element Intros and two connected mapping elements,
Bio and Intro, are moved to the output model. Two
mapping elements in MapAC and MapBC are connected
to Bio and Intro respectively. In the forth and fifth
steps, the parser applies Productions <4> and <3>
respectively.

Due to the space limit, only the last step is shown in
Figure 9, when Production <1> is applied. The
mapping between Book and EBook is found as a redex
and replaced with two mappings. After the application
of this rule, the output model C and two mappings
between C and A, B are finally produced.

8. Related Work

Though model management is a relatively new
research area, its promising and exciting potential has
attracted much attention and made significant advances
in several aspects since it was first proposed [Ber00].
In the transformation perspective, according to B�zivin
[B�z03], model management may be considered the 3rd
generation, with text scripts like the awk Unix
command being the first generation and tree scripts like
XSLT being the second.

Various systems for model management have been
presented. Cupid [Mad01, Mad03] and Clio [Mil01]
match two models and output the mapping between
them, i.e. performing the match operator. Merge has
been a hot spot in database research area for a long
time. Buneman et al. described a theoretical foundation
of merge [Bun92]. In the context of generic model
management, there are various implementations of the
operator, such as Pottinger’s approach, which presents
the operator based on the BDK algorithm [Pot03], and
data integration project Clio [Mil01] that is based on a
query language specific to databases or XML schemas.
Most of the approaches only concentrate on part of
generic model management.

Rondo [Mel03] is the first complete prototype of
the generic model management system, in which
Melnik et al. defined the key conceptual structure of
models, mappings, and selectors. They presented an
algorithm for the merge operator as an example, and
applied it to XML schemas and SQL views. Rondo

represents mapping between two data models by a set
of correspondences, not as a model as in this paper.
Comparing to our interactive and customizable
framework, Rondo is like a black box to users and
presents no intuitive interface for users to customize.

Model management is also combined with peer-to-
peer computing technology [Ber02] and further used as
an infrastructure for future Web data representation,
notably the semantic Web [Hal03W]. Piazza [Hal03]
offers a language for mediating between data sources
over the semantic Web. Piazza describes mapping by
an adapted query language and has more sophisticated
mechanism to retrieve complex data from RDF and
XML documents. The appropriate mapping language is
derived from XQuery and is complicated for a Web
page designer to map some Web pages to others. Users
or designers have to solve conflicts manually. The
complex query language could potentially hinder the
deployment of the Piazza system.

Using graphs to represent and manage data models
is not new, and there are many proposals based on
graph grammars. Rekers and Schürr presented an ER
data model specified by layered graph grammars
[Rek97]. Jahnke and Zundorf presented varlet, a
database reverse engineering environment based on
triple graph grammars [Jah98]. The varlet environment
supports the analysis of legacy database systems,
translation of any relational schema into a conceptual
object-oriented schema. More recent work of
Wermelinger and Fiadeiro [Wer02] focuses on
software architecture reconfiguration using an
algebraic approach, i.e. category theory. Consistency of
model evolution based on real-time UML is further
investigated by Engels et al. [Eng02]. These graph
transformation based approaches address only specific
aspects of model management. No graph-based generic
model management system has been proposed.

9. Conclusion

This paper has presented a visual representation of
data models and mappings using the RGG, and applied
it to model management. Model management operators
are specified by graph transformation rules at two
levels, i.e. specific operator and generalized operator.

Model A Model B MapAC Model C MapBC

Book
D

Author
B

N

Name
A

Bio
U

Title
C

ISBN
O

EBook
D

Author
B

N

FName
A

LName
U

BTitle
C

Summary
O

Intro
U

Equal
B

N

Equal
A

Equal
B

N

Equal
A

Figure 9. Last step of the parsing process for merge operator

ISBN
O

Equal
C

Summary
O

Equal
C

Bio
U

Intros
B

N

Intro
U

Equal
C

Equal
C

Name
A

FName
A

LName
U Equal

A

Equal
B

N

Equal
A

Equal
B

N

Author
B

N Title
C

Equal
C

Equal
C

Equal
D

Equal
D

Book
D

These two operation levels allow experts of data
models and graph grammars to define the general rules
of operators, and assist users to comprehend and
manipulate the specific rules for tuning the result.

The generic, interactive, and visualized model
management framework formally defines model
management operators and provides intuitive interfaces
for users to customize the operators. The graphical
representation of operators perfectly matches the
interactive nature of model management activities.

Our immediate future work includes the automatic
translation of input textual data models to their
graphical representations and implementation of
operator generalization in the model management
framework.

Acknowledgments

We are very grateful to Phil Bernstein for his
insightful feedbacks and comments on an earlier
version of the paper, which have helped us to improve
the paper. The work is partially supported by the
National Science Foundation under grant number IIS-
0218738.

References
[Ber00] P. A. Bernstein, A. Halevy, and R. A. Pottinger, A
Vision for Management of Complex Models, SIGMOD
Record, 29(4), 2000, 55-63.

[Ber02] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.
M., L. Serafini, and I. ihrayeu, Data Management for Peer-to-
Peer Computing: A Vision, Proc. 5th Int. Workshop on the
Web and Databases, Madison, Wisconsin, Jun 2002, 89-94.

[Ber03] P.A. Bernstein, Applying Model Management to
Classical Meta Data Problems, Proc. 2003 CIDR Conf.,
Asilomar, CA, Jan, 2003, 209-220.

[B�z03] J. B�zivin, E. Breton, G. Dup�, P. Valduriez, The
ATL Transformation-based Model Management Framework,
Research Report No.03.08, Universit� de Nantes, Sep. 2003.

[Bun92] P. Buneman, S.B. Davidson and A. Kosky,
Theoretical Aspects of Schema Merging, Proc. 3rd Int. Conf.
Extending Database Technology, Vienna, Austria, Mar.
1992, 152-167.

[Eng02] G. Engels, R. Heckel, J.M. Küster, and L.
Groenewegen, Consistency-Preserving Model Evolution
Through Transformations, UML’02, LNCS 2460, Springer,
212-227.

[Ger99] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S.
Paraboschi, and L. Tanca, XML-GL: A Graphical Language
for Querying and Restructuring XML Documents, Proc. 8th
Int. World Wide Web Conf., Toronto, Canada, May 1999,
1171-1187.

[Hal03] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov,
Schema Mediation in Peer Data Management Systems, Proc.
Int. Conf. Data Engineering, ICDE, 2003, 505-518.

[Hal03W] A. Halevy, Z. Ives, I. Tatarinov and P. Mork,
Piazza: Data Management Infrastructure for Semantic-Web
Applications, Proc. Int. World Wide Web Conf., Budapest,
Hungary, May 2003, 556-567.

[Jah98] J. H. Jahnke and A. Zudorf, Using Graph Grammars
for Building the Varlet Database Reverse Engineering
Environment, Technical Report tr-ri-98-201, University of
Paderborn, 1998.

[Mad01] J. Madhavan, P. A. Bernstein, and E. Rahm,
Generic Schema Matching Using Cupid, Proc. 27th VLDB
Conf., Roma, Italy, Sep, 2001, 49-58.

[Mad03] J. Madhavan and A. Y. Halevy, Composing
Mappings Among Data Sources, Proc. 29th VLDB Conf.,
Berlin, German, Sep 2003, 572-583.

[Mel03] S. Melnik, E. Rahm, and P. A. Bernstein, Rondo: A
Programming Platform for Generic Model Management,
Proc. SIGMOD 2003 Conf., San Dieago, CA, June 2003,
193-204.

[Mil01] R. J. Miller, M. A. Hernandez, L. M. Haas, L. Yan,
C. Ho, R. Fagin, and L. Popa, The Clio Project: Managing
Heterogeneity, SIGMOD Record, 30(1), March 2001, 78-83.

[Pot03] R. A. Pottinger and P. A. Bernstein, Merging Models
Based on Given Correspondences, Proc. 29th VLDB Conf.,
Berlin, Germany, 2003, 826-873.

[Rah01] E. Rahm and P.A. Bernstein, On Matching Schemas
Automatically. MSR Tech. Report MSR-TR-2001-17, 2001,
http://www.research.microsoft.com/pubs.

[Rek97] J. Rekers and A. Schürr, Defining and Parsing
Visual Languages with Layered Graph Grammars, J. Visual
Languages and Computing, 8(1), 1997, 27-55.

[Son04] G.L. Song and K. Zhang, Visual XML Schemas
Based on Reserved Graph Grammars, Proc. Int. Conf.
Information Technology: Coding and Computing, Las Vegas,
NV, April 5 -7, 2004, 687- 691.

[Wer02] M. Wermelinger and J.L. Fiadeiro, A Graph
Transformation Approach to Software Architecture
Reconfiguration, Science of Computer Programming, 44,
133-155, 2002.

[Zha97] D.Q. Zhang and K. Zhang, Reserved Graph
Grammar: A Specification Tool for Diagrammatic VPLs,
Proc. 13th IEEE Symp. Visual Languages, Capri, Italy, 23-26
Sep. 1997, 284-291.

[Zha01a] K. Zhang, D-Q. Zhang, and Y. Deng, A Visual
Approach to XML Document Design and Transformation,
Proc. 2001 IEEE Symp. Human-Centric Computing
Languages and Environments, Stresa, Italy, 5-7 Sep.
2001, 312-319.

[Zha01b] D. Q. Zhang, K. Zhang, and J. Cao, A Context-
sensitive Graph Grammar Formalism for the Specification of
Visual Languages, The Computer J., 44(3), 2001, 186-200.

[Zha01c] K. Zhang, D-Q. Zhang, and J. Cao, Design,
Construction, and Application of a Generic Visual Language
Generation Environment, IEEE Trans. Software Engineering,
27(4), April 2001, 289-307.

