
Chapter 2

ADVANCED FORENSIC FORMAT:
AN OPEN, EXTENSIBLE FORMAT
FOR DISK IMAGING

S. Garfinkel, D. Malan, K. Dubec, C. Stevens and C. Pham

Abstract This paper describes the Advanced Forensic Format (AFF), which is
designed as an alternative to current proprietary disk image formats.
AFF offers two significant benefits. First, it is more flexible because it
allows extensive metadata to be stored with images. Second, AFF im-
ages consume less disk space than images in other formats (e.g., EnCase
images). This paper also describes the Advanced Disk Imager (AImage),
a new program for acquiring disk images that compares favorably with
existing alternatives.

Keywords: Disk imaging, image storage, Advanced Forensic Format (AFF)

1. Introduction

Most forensic practitioners work with just one or a few disks at a
time. A wife might bring her spouse’s laptop to an examiner to make
a copy a few days before she files for divorce. Police might raid a drug
dealer’s apartment and seize a computer that was used for contacting
suppliers. In these cases, it is common practice to copy the drive’s
contents sector-for-sector into a single file, a so-called “raw” or “dd”
copy. Some practitioners make a sector-for-sector copy of the original
disk to a second drive that is the same size as the original.

Raw images are widely used because they work with practically every
forensic tool available today. However, raw images are not compressed,
as a result, they can be very large—even if the drive itself contained very
little data.

The obvious way to solve the problem of data storage is to use a file
compressor like gzip [9] or bzip2 [20]. But neither gzip nor bzip2 allow



18 ADVANCES IN DIGITAL FORENSICS – II

random access within a compressed file. Because many forensic tools
require random access to captured data just like a file system requires
random access to a physical disk, disk images that are compressed must
be decompressed before they can be used.

A second problem with raw images is the storage of data about the
image itself, i.e., its metadata. Because a raw image is a sector-for-sector
copy of the drive under investigation, the file cannot store metadata
such as the drive’s serial number, the name of the investigator who
performed the acquisition, or the date on which the disk was imaged.
When metadata is not stored in the image file itself, there is a chance that
it will become separated from the image file and lost—or even confused
with the metadata of another drive.

After evaluating several of the existing alternatives for storing disk im-
ages, we decided to create the new Advanced Forensic Format (AFFTM)
for our forensic work. AFF is open and extensible, and unencumbered by
patents and trade secrets. Its open-source implementation is distributed
under a license that allows its code to be freely integrated into other
open-source and propriety programs.

AFF is extensible—new features can be added in a manner that main-
tains forward and backward compatibility. This extensibility allows older
programs to read AFF files created by newer programs, and it allows
newer AFF programs to read older AFF files that lack newer features.

This paper presents our research on the design and implementation
of AFF. We have used AFF to store more than one terabyte of data
from imaged hard drives using less than 200 GB of storage. We are
currently working to improve the functionality and performance of the
AFF implementation and associated tools.

2. Related Work

Several formats exist for forensic images, but none offers AFF’s com-
bination of openness and extensibility. This section surveys the most
common formats in use today. Some commercially-available tools sup-
port formats other than their own. Nevertheless, support for proprietary
formats, which is often the result of reverse engineering, tends to be in-
complete.

2.1 EnCase Format

Guidance Software’s EnCase Forensic [12] is perhaps the de facto stan-
dard for forensic analysis in law enforcement. It uses a proprietary for-
mat for images based on ASR Data’s Expert Witness Compression For-
mat [4]. EnCase’s Evidence File format (Figure 1) contains a physical



Garfinkel, et al. 19

Figure 1. EnCase format.

bitstream of an acquired disk, prefixed with a “Case Info” header, inter-
laced with CRCs for every block of 64 sectors (32 KB), and followed by
a footer containing an MD5 hash for the entire bitstream. The header
contains the date and time of acquisition, examiner’s name, notes on
the acquisition, and an optional password; the header concludes with its
own CRC.

The EnCase format is compressible and searchable. Compression is
block-based [17], and “jump tables” and “file pointers” are maintained
in the format’s header or between blocks “to enhance speed” [14]. Disk
images can be split into multiple files (e.g., for archival to CD or DVD).

A limitation of the EnCase format is that image files must be less than
2 GB in size. As a result, EnCase images are typically stored in direc-
tories with the individual file’s given names (e.g., FILE.E01, FILE.E02,
etc.). The format also limits the type and quantity of metadata that can
be associated with an image. Some vendors have achieved limited com-
patibility by reverse-engineering the format; however, these attempts are
generally incomplete.

Table 1. Comparison of AFF and EnCase (all values in MB).

Zeroes Shakespeare Random

-X1 28 2879 6301

AFF -X6 6 2450 6301

-X9 6 2443 6301

Encase
“Good” 33 3066 6303

“Best” 12 2846 6303

Table 1 compares the sizes of AFF and EnCase images of a 6 GB hard
drive. The hard drive was filled with: (i) all zeroes, (ii) the complete
works of William Shakespeare repeated approximately 1,200 times, and
(iii) random data. AFF used gzip compression performed at levels “1,”
“6” and “9” with aimage -X1, -X6 and -X9 options. EnCase compression
was performed using the “Good” and “Best” levels.



20 ADVANCES IN DIGITAL FORENSICS – II

2.2 Forensic Toolkit (FTK) Formats

AccessData’s Forensic Toolkit (FTK) [1] is a popular alternative to
EnCase. It supports the storage of disk images in EnCase’s file format
or SMART’s file format (Section 2.9), as well as in raw format and an
older version of Safeback’s format (Section 2.7).

2.3 ILook Formats

ILook Investigator v8 [15] and its disk-imaging counterpart, IXim-
ager, offer three proprietary, authenticated image formats: compressed
(IDIF), non-compressed (IRBF) and encrypted (IEIF). Few technical
details have been disclosed publicly. However, IXimager’s online docu-
mentation [15] provides some insights: IDIF “includes protective mech-
anisms to detect changes from the source image entity to the output
form” and supports “logging of user actions within the confines of that
event.” IRBF is similar to IDIF, except that disk images are left un-
compressed. IEIF encrypts disk mages. To facilitate compatibility with
ILook Investigator v7 and other forensic tools, IXimager allows for the
transformation of each of these formats into raw format.

2.4 ProDiscover Format

Technology Pathways’ ProDiscover family of security tools [23] uses
the ProDiscover Image File Format [22]. It consists of five parts: a 16-
byte image file header, which includes a signature and version number for
an image; a 681-byte image data header, which contains user-provided
metadata about the image; image data, which comprises a single block
of uncompressed data or an array of blocks of compressed data; an array
of compressed blocks sizes (if the image data is compressed); and i/o
log errors describing any problems during the image’s acquisition. The
format is fairly well documented, but it is not extensible.

2.5 PyFlag Format

PyFlag [17] is a “Forensic and Log Analysis GUI” developed by the
Australian Department of Defence. It uses sgzip, a seekable variant of
the gzip format. (PyFlag can also read and write ASR Data’s Expert
Witness Compression Format [19].) By compressing blocks (32 KB by
default) individually, sgzip allows for rapid accessing of a disk image by
forensic software without the need to first decompress the entire image.
The format does not associate metadata with images [18, 19].



Garfinkel, et al. 21

2.6 RAID Format

Relatively few technical details of DIBS USA’s Rapid Action Imaging
Device (RAID) [8] are publicly available. It offers “built-in integrity
checking” and is designed to create an identical copy in raw format of
one disk on another. The copy can then “be inserted into a forensic
workstation” [7].

2.7 SafeBack Format

SafeBack [3] is a DOS-based utility designed to create exact copies
of entire disks or partitions. It offers a “self-authenticating” format for
images, whereby SHA-256 hashes are stored along with data to ensure
the integrity of images. SafeBack’s developers claim that the software
“safeguards the internally stored SHA-256 values” [3].

2.8 SDi32 Format

Vogon International’s SDi32 [25] imaging software is designed to be
used with write-blocking hardware. It is capable of making identical
copies of disks to tape, disk or file, with optional CRC32 and MD5
fingerprints. The copies are stored in raw format.

2.9 SMART Formats

SMART [5] is a software utility for Linux designed by the original au-
thors of Expert Witness (now sold under the name EnCase) [12]. It can
store disk images as pure bitstreams (compressed or uncompressed) or
in ASR Data’s Expert Witness Compression Format [4]. Images in the
latter format can be stored as a single file or in multiple segment files,
consisting of a standard 13-byte header followed by a series of sections,
each of type “header,” “volume,” “table,” “next” or “done.” Each sec-
tion includes its type string, a 64-bit offset to the next section, its 64-bit
size, padding, and a CRC, in addition to actual data or comments, if
applicable. Although the format’s “header” section supports free-form
notes, an image can have only one such section (in its first segment file
only).

2.10 Comparison of Formats

Table 1 provides a comparison of the features offered by various file
formats. A format is considered to be “non-proprietary” if its specifi-
cation is publicly available. It is “extensible” if it supports the storage
of arbitrary metadata. It is “seekably compressed” if it can be searched
without being uncompressed in its entirety. A bullet (•) indicates sup-



22 ADVANCES IN DIGITAL FORENSICS – II

Table 2. Summary of features supported by various file formats.

Extensible Non-Proprietary Compressed & Seekable

AFF • • •

EnCase •

ILook ? •

ProDiscover • •

PyFlag • •

RAID •

SafeBack ? ?

SDi32 •

SMART •

port for a feature, while a question mark (?) indicates that support for
a feature is not disclosed publicly. FTK is omitted because it uses other
tools’ formats.

2.11 Digital Evidence Bags

Turner proposed the concept of a Digital Evidence Bag (DEB) [24] as
a “wrapper” or metaformat for storing digital evidence from disparate
sources. The DEB format consists of a directory that includes a tag file,
one or more index files, and one or more bag files. The tag file is a text file
that contains metadata such as the name and organization of the forensic
examiner, hashes for the contained information, and data definitions.
Several prototype tools have been created for DEBs, including a bag
viewer and a selective imager.

3. Advanced Forensic Format

The Advanced Forensic Format (AFF) is a single, flexible format that
can be used for a variety of tasks. This section discusses AFF’s design
goals and its two-layered architecture that helps achieve the design goals.

3.1 AFF Goals

The specific design goals for AFF are provided below. We believe that
AFF delivers on all these goals.

Ability to store disk images with or without compression.

Ability to store disk images of any size.

Ability to store metadata within disk images or separately.



Garfinkel, et al. 23

Ability to store images in a single file of any size or split among
multiple files.

Arbitrary metadata as user-defined name/value pairs.

Extensibility.

Simple design.

Multiple platform, open source implementation.

Freedom from intellectual property restrictions.

Provisions for internal self-consistency checking, so that part of
an image can be recovered even if other parts are corrupted or
otherwise lost.

Provisions for certifying the authenticity of evidence files with tra-
ditional hash functions (e.g., MD5 and SHA-1) and advanced dig-
ital signatures based on X.509(v)3 certificates.

3.2 AFF Layers

Many of the design goals are accomplished by partitioning the AFF
format into two layers: the disk-representation layer and the data-storage
layer. The disk-representation layer defines a schema that is used for
storing disk images and associated metadata. The data-storage layer
specifies how the named AFF segments are stored in an actual file. We
have developed two data-storage implementations.

3.2.1 AFF Disk-Representation Layer. AFF’s disk-repre-
sentation layer defines specific segment names that are used for repre-
senting all the information associated with a disk image. Each AFF
segment consists of a segment name, a 32-bit “flag,” and a data pay-
load. The name and the data payload can be between 0 and 232

− 1 =
4,294,967,295 bytes long. In practice, segment names are less than 32
bytes, while the data payload is less than 16 MB.

AFF 1.0 supports two kinds of segments: metadata segments, which
are used for holding information about the disk image, and data seg-
ments called “pages,” which are used for holding the imaged disk infor-
mation itself.

Metadata segments can be created when a disk is accessioned or after
a disk is imaged. For example, device sn is the name of the segment
used to hold the disk’s serial number, while date acquired holds the
time that the disk image was acquired.



24 ADVANCES IN DIGITAL FORENSICS – II

Two special segments are accession gid, which holds a 128-bit glob-
ally unique identifier that is different each time the disk imaging program
is run, and badflag, which holds a 512-byte block of data that identifies
blocks in the data segments that are “bad” (i.e., cannot be read). The
existence of the badflag makes it possible for forensic tools to distin-
guish between sectors that cannot be read and sectors that are filled
with NULLs or another form of constant data, something that is not
possible with traditional disk forensic tools. Tools that do not support
the badflag will interpret each “bad” sector as a sector that begins
with the words “BAD SECTOR” followed by random data; these sec-
tors can thus be identified as being bad if they are encountered by a
human examiner. Alternatively, AFF can be configured to return bad
sectors as sectors filled with NULLs. Table 3 provides a complete list of
the segment names defined in AFF 1.0.

Data segments hold the actual data copied from the disk being exam-
ined. All data segments must be the same size; this size is determined
when the image file is created and stored in a segment named pagesize.
Although pagesize can be any value, common choices are 220 (1 MB)
and 224 (16 MB).

Segments are given sequential names page 0, page 1, . . ., page n,
where n is as large as is necessary. The segment (page) number and byte
offset within the uncompressed segment of any 512-byte sector i in the
AFF file are determined by the formulas:

page number =
i × 512

pagesize
(1)

offset = (i × 512) − (page #) × pagesize (2)

AFF data pages can be compressed with the open-source zlib [10]
or they can be left uncompressed. The data page’s 32-bit flag encodes
if the page is compressed or not. Compressed AFF files consume less
space but take more time to create; this is because the time taken to
write uncompressed data is typically shorter than the combined time
taken to compress data and write the compressed data. Interestingly,
compressed files can actually be faster to read than uncompressed files
as modern computers can read and uncompress data faster than they
can read the equivalent uncompressed data of a hard drive. The decision
to compress or not to compress can be made when an image is acquired.
Alternatively, an uncompressed file can be compressed later.

Checksums and signatures can be used to certify that data in the
image data segments has not been accidentally or intentionally modified



Garfinkel, et al. 25

Table 3. AFF segments defined in the AFF 1.0 specification.

Segment Name AFFLIB Symbol Meaning

Housekeeping Segments

— AF IGNORE Ignore this segment; zero-length name.

dir AF DIRECTORY AFF directory; should be the last segment.

AFF Segments (pertaining to the entire image)

pagesize AF SEGSIZE Size (in bytes) of each uncompressed AFF
data page is stored in segment “flag” field.

imagesize AF IMAGESIZE Size (in bytes) of the complete image is
stored in the segment data area. (8-byte
value).

badsectors AF BADSECTORS Number of 512-byte sectors in the image
that were marked as “bad.”

badflag AF BADFLAG 512-byte flag that is used to denote sectors
in the image file that could not be read
from the media.

blanksectors AF BLANKSECTORS Number of sectors in the image file that
are completely blank (i.e., filled with 512
ASCII NULLs.)

AFF Pages (repeated for each data segment)

page%d AF PAGE The actual data of page %d. Data is com-
pressed if the AF PAGE COMPRESSED bit in the
flag is set.

page md5 %d AF PAGE MD5HASH MD5 of the uncompressed page.

page md5 sig%d AF PAGE MD5SIG PKCS7 signature of page %d’s MD5.

page sha1 %d AF PAGE SHA1HASH SHA-1 of the uncompressed page.

page sha1 sig%d AF PAGE SHA1SIG PKCS7 signature of page %d’s SHA-1.

Some AFF Segments created by the Advanced Disk Imager

case num AF CASE NUM Case number for EnCase compatibility.

image gid AF IMAGE GID A unique 128-bit image identifier.

imaging commandline AF IMAGING COMMAND LINE Complete command used to create image.

imaging date AF IMAGING DATE Date and time when imaging was started.

imaging notes AF IMAGING NOTES Notes made by the forensic examiner when
the imaging was started.

imaging device AF IMAGING DEVICE Device used as the source of the image.



26 ADVANCES IN DIGITAL FORENSICS – II

after it was acquired. AFF 1.0 supports two modes of certification:
hashes and digital signatures.

It is common practice in the forensic community to record MD5 or
SHA-1 hashes of an image. AFF 1.0 allows these hashes to be recorded
for the entire image and for each individual data segment. The hash
values are stored in specially named segments.

AFF 1.0 provides an additional level of certification by supporting the
inclusion of PKCS #7 [16] digital signatures. These signatures can also
be recorded for the entire disk image and for individual data segments.
Because signatures are calculated on uncompressed data, it is possible
to acquire and digitally sign a disk image and then compress the image
without compromising the integrity of the digital signatures.

3.2.2 AFF Data-Storage Layer. The data-storage layer
handles the task of storing the actual AFF segments. AFF 1.0 has two
storage formats. The AFF 1.0 Binary Format specifies that segments
are stored sequentially in one or more files. AFF 1.0 XML, on the other
hand, stores information in the XML format. The binary files are smaller
and faster than the XML files. However, the standardized format of the
XML files makes them easier to use with non-forensic tools. In practice,
it is possible to store the actual disk image in an AFF binary file and
the disk’s metadata in an XML file, although this does introduce the
possibility that the two files might become separated.

The original plan for AFF’s Binary Format was to use an open-source
B-tree implementation like Berkeley DB (BDB), the GNU Database
Manager (GDBM), or a similar system to store the segments as a series
of name/value pairs. But BDB and GDBM are distributed under the
GNU Public License, which is unacceptable to many commercial soft-
ware developers. (A licensed version of BDB with fewer restrictions can
be obtained from SleepyCat Software [21], but not for free.) The Apache
SDBM database has no such restrictions. However, our tests indicate
that SDBM creates sparse files exceeding 100 GB when used to store
just a few GB of image data. Note that because the files are sparse,
they do not take up all the space on disk. However, if a file is copied
to another disk, the unmapped sectors are filled with zeroes. Another
concern is that the layout of information in a B-tree file might be too
complex to explain in court, should the need arise.

Consequently, we adopted a simple approach for storing AFF seg-
ments in a binary file. Each AFF 1.0 binary file consists of a header
followed by zero or more binary AFF segments. Each binary AFF seg-
ment consists of a header, a variable-length segment name, a 32-bit flag,
a variable-length data area, and a segment footer. The segment’s length



Garfinkel, et al. 27

Figure 2. AFF file schematic. Figure 3. AFF segment schematic.

is stored in the header and footer, allowing for rapid bidirectional seeking
as only the headers and the footers need to be read.

Figures 2 and 3 present schematic representations of an AFF file and
segment, respectively. The AFF file schematic shows the file’s header
and AFF segments. The AFF segment schematic shows the segment’s
header, name, data and segment tail. Including the segment’s length at
the beginning and the end makes it possible to rapidly seek through a
large AFF file without having to read all of the data in each segment.

The AFF XML 1.0 Format is a simplistic encoding of name/value
segments as a series of XML objects. This XML encoding can be pro-
duced automatically from an AFF binary file using the afxml tool that
we have developed.



28 ADVANCES IN DIGITAL FORENSICS – II

4. AFF Library and Tools

AFFLIBTM is an implementation of AFF 1.0 written in C/C++. To
avoid forcing the programmer to understand segments, data segments,
compression, etc., AFFLIB implements a simple abstraction that makes
the AFF image file appear as two resources: a simple name/value data-
base that can be accessed with traditional put and get semantics and a
stream that can be accessed using af open(), af read(), and af seek()

function calls. If af open() is used to open a non-AFF file, the library
defaults to a pass-through mode of operation, allowing AFF-aware pro-
grams to work equally well with raw files.

AFFLIB also supports an af write function call—even across com-
pressed data segments—which makes it easier to write disk imaging pro-
grams.

The AFF source code comes with a set of tools including AImage:
Advanced Disk Imager (aimage), a program for converting AFF meta-
data into XML (afxml), a program for converting raw images to AFF
images and back (afconvert).

In addition, we have modified Sleuth Kit [6] to work with AFF files.
The modifications are relatively minor and have already been incorpo-
rated into Sleuth Kit’s distribution. When run interactively, no perfor-
mance degradation is noticeable—not even on compressed AFF files.

5. Advanced Disk Imager

In the early days of our forensics work, we acquired disk images using
the Unix dd [2] program. Although running dd with the correct argu-
ments can be very fast, the program has several shortcomings. The dd

program does not automatically retry read attempts on bad sectors. If
there is a bad region on the disk, dd attempts to plod its way through
the region, which can take a very long time. It is easy to corrupt a disk
by accidentally reversing or otherwise mistyping the values of the if=

and of= arguments. Finally, dd does not capture forensic metadata such
as the serial number of a hard drive or even the time of the acquisition.

Consequently, we decided to create a new disk imaging program. Our
Advanced Disk Imager (aimage) was developed specifically for the de-
manding task of imaging large numbers of hard drives purchased on the
secondary market. We have tested aimage on several hundred different
hard drives and have found it to be a very powerful disk-imaging tool.

Written in C++, aimage is designed to be run from the command
line. It can image any device that is visible to the operating system. The
program can also create an image from data sent to it over a network
using an unencrypted or encrypted TCP connection.



Garfinkel, et al. 29

Figure 4. Screenshot of aimage in action.

The aimage program can create a raw file (in the so-called “dd” for-
mat), an AFF file, or both files at the same time. The program offers
a real-time display on a 80×24 screen detailing the status of the image
capture. By using a text-based interface, aimage can be run from a
bootable Linux distribution on computers that do not support the X
Window System. A screenshot of aimage is shown in Figure 4.

A sophisticated error-handling system causes aimage to read large
data blocks unless it encounters an error, in which case it switches to
a smaller block size and attempts to re-read the data. If it encounters
too many errors in a row the program goes to the end of the disk and
attempts to image the remaining disk sectors in reverse. This approach,
pioneered by the dd rescue [11] forensics program, works well to re-
cover disks that have a single region of bad blocks. A future version
of aimage will allow the remaining bad region to be further bisected so
that additional good blocks can be recovered.

The aimage program calculates MD5 and SHA-1 hashes of a disk as
the disk is imaged. Plans are underway to implement digital signatures
as prescribed by the AFF standard.

6. Conclusions

The Advanced Forensic Format (AFF) is an attractive, tested system
for storing forensic disk images. With the Advanced Disk Imager we



30 ADVANCES IN DIGITAL FORENSICS – II

have collected images from nearly a thousand hard drives over the past
year. AFF’s tools have enabled us to work with these images quickly,
efficiently and at a very high level. AFFLIB’s support of additional file
formats, e.g., EnCase and Expert Witness, permits the tools to be used
for a variety of disk image formats without the need for modification or
translation. AFF and AFFLIB may be downloaded from www.afflib.org.

Acknowledgements

Brian Carrier and Peter Wayner provided useful feedback on the ini-
tial design of the AFF system. Basis Technology Corp. provided sub-
stantial funding for the AFF effort. Simson Garfinkel was supported by
a fellowship from the Center for Research on Computation and Soci-
ety, Division of Engineering and Applied Sciences, Harvard University.
David Malan was partially supported by NSF Trusted Computing Grant
CCR-0310877. The support of this work by Michael Smith of Harvard
University is greatly appreciated. AFF and AFFLIB are trademarks of
Simson Garfinkel and Basis Technology, Inc.

References

[1] AccessData, Forensic Toolkit (www.accessdata.com/products/ftk).

[2] Apple Developer Connection, dd, BSD General Commands Manual
(developer.apple.com/documentation/Darwin/Reference/Manpages
/man1/dd.1.html).

[3] Armor Forensics, SafeBack (www.forensics-intl.com/safeback.html).

[4] ASR Data Acquisition and Analysis, Expert Witness Compres-
sion Format Specification (www.asrdata.com/SMART/whitepaper
.html), April 7, 2002.

[5] ASR Data Acquisition and Analysis, SMART (www.asrdata.com/
SMART).

[6] B. Carrier, The Sleuth Kit & Autopsy: Forensic Tools for Linux and
other Unixes (www.sleuthkit.org), 2005.

[7] DIBS USA, Computer Forensics (www.dibsusa.com).

[8] DIBS USA, DIBS RAID – Rapid Action Imaging Device (www.dibs
usa.com/products/raid.html).

[9] J. Gailly and M. Adler, The gzip Home Page (www.gzip.org), 2003.

[10] J. Gailly and M. Adler, zlib (v.1.2.3) (www.zlib.net), 2005.

[11] K. Garloff, dd rescue (www.garloff.de/kurt/linux/ddrescue), Au-
gust 28, 2004.



Garfinkel, et al. 31

[12] Guidance Software, EnCase Forensic (www.guidancesoftware.com
/products/ef index.asp).

[13] Guidance Software, EnCase Forensic Edition User Manual, Version
4 (www.guidancesoftware.com/support/downloads.asp).

[14] Guidance Software, EnCase Legal Journal, April 2004.

[15] Internal Revenue Service, ILook v8 – Computer Forensic Applica-
tion, IRS Criminal Investigation Division – Electronic Crimes, Wash-
ington, DC (www.ilook-forensics.org/homepage.html).

[16] B. Kaliski and K. Kingdon, Extensions and Revisions to PKCS #7
(ftp.rsasecurity.com/pub/pkcs/pkcs-7/pkcs-7v16.pdf), 1997.

[17] PyFlag, Advanced Open Standard Forensics Format (pyflag.source
forge.net/Documentation/articles/forensic format.html).

[18] PyFlag, Disk Forensics (pyflag.sourceforge.net/Documentation/tu
torials/forensics.html).

[19] PyFlag, PyFlag IO Sources (pyflag.sourceforge.net/Documentation
/manual/iosource.html).

[20] J. Seward, bzip2 and libbzip2 (www.bzip.org/index.html).

[21] Sleepycat Software (www.sleepycat.com).

[22] Technology Pathways, ProDiscover Image File Format (v.1.3) (www
.techpathways.com/uploads/ProDiscoverImageFileFormatv4.pdf).

[23] Technology Pathways, The ProDiscover Family of Computer Secu-
rity Tools (www.techpathways.com/DesktopDefault.aspx?tabindex
=3&tabid=12).

[24] P. Turner, Unification of digital evidence from disparate sources
(digital evidence bags), Proceedings of the Fifth Annual Digital

Forensics Research Workshop, 2005.

[25] Vogon International, Imaging Software (www.vogon-forensic-hard
ware.com/forensic-hardware/data-capture/advanced-imaging-softw
are.htm).


