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Abstract   Origins and development of 3D-BASIS (3-Dimensional BASe Isolated 

Structures) was initially envisioned by the need for an efficient tool for nonlinear 

dynamic analysis of three-dimensional base isolated structures, particularly in 

solving the highly nonlinear bidirectional stick-slip hysteretic response of a 

collection of sliding isolation bearings and the resulting response of the 

superstructure, as this was not available at that time. The primary challenge was to 

solve the stick-slip behavior of friction bearings—modeled using a differential 

equation (Bouc-Wen Model) due to its efficiency in representing constant 

Coulomb friction or variable velocity depended friction by using a very small 

yield displacement during the stick phase resulting in very high tangential stiffness 

followed by a very small tangential stiffness during the sliding phase—and the 

resulting stiff differential equations. A challenge that is compounded when 

biaxial-friction is modeled, wherein even the traditional method of using Gear’s 

method to solve stiff differential equations breaks down—a problem that was 

vexing the research team at University at Buffalo trying to solve the problem at 

that time. The answer was the development of the novel pseudo-force solution 

algorithm along with a semi-implicit Runge-Kutta method to solve the difficult 

problem. The efficient solution procedure is needed primarily for the nonlinear 

isolation system consisting of (1) sliding and/or elastomeric bearings, (2) fluid 

dampers, (3) other energy dissipation devices, while the superstructure is 

represented by three dimensional superstructure model appropriately condensed 

(where only master nodes at the center of mass of the floor are retained). This 

chapter describes the origins, development of 3D-BASIS and its impact. 

1 Introduction     

Base isolation involves the introduction of isolation bearings and energy 

dissipating devices between the superstructure and its foundation. The laterally 

flexible isolation system shifts the fundamental period—considering an equivalent 

linear isolation system—of the structure beyond its fixed base period and the 

predominant periods of the ground motion.  The period lengthening to typically 2 
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to 4 sec is sufficient to reflect the earthquake energy. Energy dissipation in the 

isolation system is then useful in limiting the displacement response. The isolation 

bearings generally exhibit material nonlinearities and under certain conditions 

may also exhibit geometric nonlinearities. However, these nonlinearities are 

restricted to the isolation system. The superstructure is typically designed to 

exhibit elastic behavior.  

This chapter presents a brief overview of the analytical modeling techniques 

used in the nonlinear dynamic analysis of base isolated structures. The localized 

nonlinearities at the base allow condensation of the linear superstructure to a small 

number of master degrees of freedom. All the nonlinear bearings and devices are 

explicitly modeled. 

Mechanical properties of isolation bearings are described in detail. Material, 

friction, geometric and contact nonlinearities in the isolation system are discussed. 

Analytical models used for characterizing the behavior of isolation bearings and 

devices are presented. Formulation of the combined linear superstructure and 

nonlinear isolation system and solution procedure is presented. Computer 

programs that are most popularly used are described briefly. 

2 Base isolation systems     

Base isolation systems have gained wide acceptance [1-4]. The isolation 

bearings are typically connected between columns and foundation as shown in 

Figure 1. The isolation system is designed to be very stiff in the vertical direction. 

The isolation system is designed to provide adequate initial stiffness under service 

loads, such as wind load, and to provide greater flexibility past yielding of the 

isolation bearings under strong ground motion or seismic loads.  

 

Fig. 1 – Isolation System Details Including Elastomeric Bearing and Damper 
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There are two basic types of isolation bearings: elastomeric bearings and 

sliding bearings. Elastomeric bearings consist of laminated rubber layers and steel 

shim plates. Two types of elastomeric bearings that have been implemented in 

structures are the high damping rubber bearing and the lead rubber bearing. In 

both types the laminated rubber provides the lateral flexibility. The isolation 

system level displacements increase due to the lateral flexibility. Adding energy 

dissipation capacity reduces the isolation system displacements. The energy 

dissipation capacity is provided by the inherent damping capacity of the rubber in 

high damping bearings. In lead-rubber bearings, which are typically manufactured 

with low damping rubber, the cylindrical lead plug within the rubber unit provides 

the energy dissipation capacity. Moreover, supplemental energy dissipating 

devices, primarily in the form of fluid viscous dampers, have been used in 

isolation systems to substantially enhance damping in applications in areas of very 

high seismicity.  

Sliding bearings consist of Teflon or similar materials sliding on a stainless 

steel surface. Two types of sliding bearings that have been implemented in 

structures are the Friction Pendulum Sliding (FPS) bearings, spherically shaped 

sliding bearings, and the flat sliding bearings. Sliding bearings dissipate energy 

due to friction. Restoring force is provided by the spherical sliding surface in the 

FPS system or by added springs in the system with flat sliding bearings. 

3 Material/Friction nonlinearities of base isolation bearings and 

devices     

3.1 Elastomeric Bearings 

Elastomeric bearings are typically made of natural rubber and are classified 

into low damping and high damping bearings. The low damping bearings exhibit 

shear stiffness which is effectively linear to large shear strains (>100%). The 

damping is in the range of 2 to 5 % of critical.  Lead-rubber bearings are made up 

of low damping natural rubber with a lead core.  The lead core is provided to 

increase the energy dissipation capacity to about 20 to 30% of critical. The 

idealized force displacement behavior of a lead-rubber bearing can be 

characterized as bilinear hysteretic as shown in Figure 2. The high initial stiffness 

offers rigidity under wind load and low level seismic load. The characteristic 

strength, Q = ApYL , where Ap is the lead plug area and YL is the effective shear 

yield stress of lead.  The post yielding stiffness, Kp, is typically higher than the 

shear stiffness of the bearing without the lead core 
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Where, Ar is the bonded rubber area,  t is the total rubber thickness, G is the 

shear modulus of rubber, and f is a factor larger than unity. Under proper 

conditions, f, may be equal to or less than 1.15. Moreover, the initial elastic 

stiffness, Ke, ranges between 6.5 to 10 times the post-yielding stiffness. 

 

Fig. 2 – Lead Rubber Bearing: Bilinear Force-Displacement Loop 

 Fig. 3 – High Damping Bearing: Force Displacement Loop with Stiffening 

The stiffness and energy dissipation characteristics of high damping bearings 

are highly nonlinear and dependent on shear strain as shown in Figure 3. The high 
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damping bearings are made up of specially compounded rubber, which provides 

effective damping of 10 to 15 % of critical. The high damping bearings have high 

shear stiffness at low shear strains (< 20%) for rigidity under wind load and low 

level seismic load. The shear stiffness is typically lower in the range of 20 to 120 

% shear strains. At large shear strains, the shear stiffness increases due to strain 

crystallization process in the rubber. The damping in high damping bearings is 

best characterized by a combination of hysteretic and viscous behavior. In the 

virgin stage and during the first cycle of movement, the bearings exhibit higher 

stiffness and damping than in the following cycles. The stiffness stabilizes by the 

third cycle, resulting in stable properties termed as scragged properties. Scragging 

of the bearings is the result of internal changes in the rubber. Recovery to the 

unscragged (virgin) properties occurs following sufficient time. The scragged state 

of the bearings can be modeled by a bilinear hysteretic model for shear strains of 

up to 200%.  The stiffening behavior (see Figure 3) beyond this strain can also be 

modeled using more complex models [5-7]. The current technique used to model 

high damping bearings is to perform multiple analysis with bilinear hysteretic 

models; the parameters of the bilinear hysteretic models are determined at specific 

shear strain amplitudes. The bilinear model parameters can be established from 

test data of prototype bearings. These properties are the shear modulus, G, and the 

equivalent damping ratio,  (defined as the energy dissipated in a cycle of motion 

divided by 4 and by the maximum kinetic energy) under scragged conditions. G, 

is related to the post yielding stiffness pK   

                                                                            

 
' r
p

GA
K

t



 (2) 

The parameters of the model may be determined by use of the mechanical 

properties of G and  at a specific strain- for example parameters corresponding to 

the design displacement. The post yielding stiffness, pK  , is determined from (2), 

where as the characteristic strength, Q, may be related to the mechanical 

properties by assuming bilinear hysteretic behavior   
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Where, the yield displacement, Dy, is between 0.05 and 0.1 times the total 

rubber thickness and D is the design displacement. The yield force, Fy, is given by

        

 
'

pFy Q K Dy   (4) 

and the post to pre-yielding stiffness ratio is given by 
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Elastomeric bearings have finite vertical stiffness that affects the vertical 

response of the isolated structure. The vertical stiffness of an elastomeric bearing 

can be estimated as follows 

 
c r

v

E A
k

t



 (6) 

Where, Ec is the compression modulus. 

 
Fig. 4 – Friction Pendulum Bearing: Force-Displacement Loop (includes Friction and 

Recentering Force) 

 

Fig. 5 – Variation of Coefficient of Friction as a function of velocity of sliding and pressure 
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3.2 Sliding Bearings 

Two types of sliding bearings are the flat sliding bearings with restoring force 

devices and the friction pendulum bearings (FPS) shown in Figure 4. Flat sliding 

bearing is made up of Teflon sliding on a flat stainless steel surface. The 

recentering capability is provided by additional elastic springs. The FPS bearing, 

shown in Figure 4, is made up of a composite material sliding on a spherical 

surface with radius of curvature R, which provides the recentering force. The 

behavior of FPS bearing can be represented by 

 sgn ( )s

N
F U N U

R
   (7) 

Where, F is the force in the bearing,U andU are the displacement and 

velocity, respectively, s is the coefficient of sliding friction (dependent on 

velocity and pressure) and N is the normal load on the bearing. It should be noted 

that for flat sliding bearings R is infinite. The coefficient of friction of sliding 

bearings depends on a number of parameters of which the composition of the 

sliding interface, bearing pressure and velocity of sliding (as shown in Figure 5) 

are the most important. For interfaces consisting of polished stainless steel in 

contact with Teflon or composites the coefficient of friction may be described by 

[8] 

  max max min( )exps f f f a U      (8) 

Where the parameters minf and maxf  describe, respectively, the coefficients of 

friction at essentially zero and large velocities of sliding and under constant 

pressure. Parameters minf , maxf  and a  depend on the bearing pressure, although 

only the dependency of maxf  on pressure is of practical significance. 

 

Fig. 6 – Triple Friction Pendulum Isolator 
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Fig. 7 – Force (f) - Displacement (u) Behavior  of Triple Friction Pendulum Isolator 

More recently Fenz and Constantinou [9,10], Morgan and Mahin [11], Ray and 

Reinhorn [12] and Dao et al. [13] have studied the triple friction pendulum 

isolation bearing that has an inner slider and articulated sliders sliding inside 

concave sliding surfaces as shown in Figure 6, and developed detailed analytical 

models with force-displacement behavior as shown in Figure 7.  

3.3 Fluid Viscous Dampers 

Fluid dampers [14] are used to enhance the damping in the isolation system 

and are connected between the base and foundation as shown in Figure 1. Fluid 

viscous dampers produce force by forcing fluid (typically silicone oil) through 

orifice passages as shown in Figure 8. It is possible to shape the orifice passages 

[14] in such a way as to produce an output force of the type 

 sgn( )F C U U


  (9) 

Where C = damping coefficient,  is in the range of 0.5 to 1.0 and the 

representative force-displacement loops are shown in Figure 8. 
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Fig. 8 – Fluid Damper: Force Displacement Loop (Velocity Dependent Damping Force) 

4 Modeling material/friction nonlinearities of isolation bearings     

Models with bilinear hysteretic characteristics can represent the behavior of 

elastomeric bearings. Several models have been used to represent the uniaxial and 

biaxial behavior of elastomeric isolation bearings. The uniaxial and biaxial 

behavior of elastomeric bearings have been modeled by Nagarajaiah [15], 

Nagarajaiah et al. [16,17] using a viscoplasticity based modified Bouc-Wen model 

[18-20]. In the biaxial model forces FX and FY are mobilized during the motion 

along the X and Y directions, respectively, of the elastomeric bearing:                                   

(1 )             (1 )X x x Y y y

Fy Fy
F U FyZ F U FyZ

Dy Dy
         (10) 

in which  is the post-yielding to pre-yielding stiffness ratio, Fy 
 
is the yield 

force and Dy   is the yield displacement. Zx and Zy are dimensionless variables 

governed by the following differential equations, which were proposed by [20] 
. . . . . .

2

. . . . . .
2

0

0

y xx x x x x x y x y x y

yy y y y y y x x y x y x

Dy Z U Z Z U Z U Z Z U Z Z AU

Dy Z U Z Z U Z U Z Z U Z Z AU

   

   

     

     

(11) 

Parameters A,  and  are dimensionless—A/()=1 is chosen—and ,x yU U  

and 
. .

,x yU U  represent, respectively, the displacements and velocities that occur 
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at the isolation bearing. It can also be shown that the interaction curve of this 

biaxial model is circular.  

In sliding bearings Teflon undergoes a small elastic shear deformation (less 

than 2 mm) before sliding commences. The small shear deformation of Teflon 

renders a finite but high elastic stiffness to the hysteretic loop, which can be 

captured by a hysteretic model. A hysteretic model for sliding bearings, which can 

account for the variation of coefficient of friction with velocity and bearing 

pressure observed in Teflon sliding bearings, has been presented by [6,8,16,21].  

FPS bearings have been modeled using the hysteretic model in (11) with yield 

displacement, Dy, being very small (typically less than 2 mm)                                                                

 ,                X x s x Y y s y

N N
F U NZ F U NZ

R R
      (12) 

Where, s  is the coefficient of sliding friction and N is the normal load on the 

bearing. The normal load consists of gravity load, W, the effect of vertical ground 

acceleration, 
..

,vU and the additional seismic load, Psl, due to overturning moment 

 

..

1 v slU P
N W

g W

 
   
 
 

 (13) 

Where, g is the acceleration due to gravity. It should be noted that for flat 

sliding bearings R is infinite and (12) collapses to the model described in 

Constantinou et al. [8] and Nagarajaiah et al. [16] and experimentally verified by 

Mokha et al. [21]. A representative biaxial force-displacement behavior of flat 

slider is shown in Figure 9. The eight shaped biaxial behavior is observed to have 

significant effect on the force-displacement behavior in the X direction. 

Plasticity based models have been used to model isolation elements [22]. 

Modified rate models have been used to represent the behavior of high damping 

bearings including stiffening [6,7]. 
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Fig. 9 – Biaxial Force-Displacement Behavior of Flat Sliding Bearing: (a) Biaxial 

Displacement Profile, (b) Force-Displacement Response – X Direction; (c) Force-

Displacement Response – X Direction 

5 Geometric nonlinearities of base isolation bearings     

5.1 Axial Load – Horizontal Displacement Effects     

The elastomeric bearings when subjected to large axial forces and lateral 

horizontal displacements exhibit nonlinear and unstable behavior. This behavior is 

due to a combination of both geometric and material nonlinearities. The shear-

force and horizontal displacement, F-u, curves are shown in Figures 10 and 11.  

The connection of elastomeric bearings can be either doweled or bolted to the 

column above and foundation below, which influences the behavior of the 

bearing. In doweled bearings rollover occurs and the displacement at which it 

commences can be calculated [23]. The rollover behavior can be modeled by 

including the P- effects. In addition, since the bearing cannot sustain upward 

axial force because of doweled connection, uplift needs to be considered (as 

shown in Figure 11).  

Sliding bearings are stable even under large displacements. The change is axial 

load effects the coefficient of friction. Tsopelas et al. [6] and Nagarajaiah [24] 

have modeled the influence of axial load on the coefficient of friction. 
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Fig. 10 – Large Axial Load-Horizontal Displacement Behavior of Elastomeric Bearings: (a) 

Bearing; (b) Horizontal Force-Displacement Behavior; (c) Critical Load as a Function of 

Horizontal Displacement 

 
Fig. 11 – Large Axial Load-Horizontal Displacement Behavior of Elastomeric Bearings 

with Rollover: (a) Bearing with Rollover; (b) Horizontal Force- Displacement Behavior 

with Rollover; (c) Vertical Force–Vertical Displacement Behavior 
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6 Modeling geometric nonlinearities of isolation bearings     

The axial load effect on elastomeric bearings has been modeled using linear 

models [25]. A nonlinear analytical model has been developed by Nagarajaiah et 

al. [26], based on Koh-Kelly model, to include the effect of axial load and 

horizontal displacement. The large axial load horizontal behavior leads reduction 

in stiffness due to increasing axial load and reduction in critical axial load due to 

large horizontal displacement as shown in Figure 10.  

The critical load and horizontal displacement, Pcr-u, curves using the nonlinear 

analytical model developed by Nagarajaiah et al. [26] are shown in Figure 10 (c) 

which demonstrates that the bearing critical load drops with increasing horizontal 

displacement.  The equilibrium paths demonstrate unstable post-critical behavior 

as observed in the experimental results. The critical load occurs at the limit point 

of each equilibrium path and horizontal tangential stiffness is zero at the limit 

point. The critical load drops with increasing horizontal displacement because the 

equilibrium paths are unstable. More details can be found in Constantinou et al. 

[5]. 

7 Contact nonlinearities of base isolation systems 

7.1 Uplift 

Uplift occurs in doweled elastomeric bearings and in sliding bearings, due to 

loss of contact at the bearing as the column experiences axial tension forces 

(Figure 11(c)). This loss of contact is reestablished as the cycle of motion reverses 

with compression forces in the column.  Uplift is generally beneficial and reduces 

the base shear forces further [24]. The effect of uplift can be modeled using a 

contact element with only compression stiffness ([24,27-29], SAP [22]). 

7.2 Pounding 

The isolation gap (see Figure 1) around the base isolated structure is provided 

to permit the maximum design displacement. Long period motions, as observed in 

1994 Northridge earthquake and other recent earthquakes, could cause large base 

displacements. In such cases, unless appropriate measures are taken, pounding can 

occur accompanied by varying degree of damage to the superstructure. In the 

measured response of base isolated structures, subjected to Northridge earthquake, 

pounding has been observed when the isolation gap was not fully functional. The 

effect of pounding can be modeled by using gap elements [30]. 
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Fig. 12 – (a) Asymmetric Base Isolated Structure Excited by Bidirectional Ground Motion, 

(b) Displacement Coordinates 

8 Superstructure and isolation system modeling and solution 

procedures 

The formulation and pseudoforce solution algorithm developed by Nagarajaiah 

[15], Nagarajaiah et al. [16,17], which has been implemented in widely used 

computer program 3D-BASIS [16] for analyzing base isolated structures, is 

presented next. This is followed by brief description of the Ritz vector formulation 

and solution algorithm developed by Wilson [28] for the widely used computer 

programs SAP-ETABS [22]. 
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8.1 Linear Superstructure and Nonlinear Isolation System 

The superstructure, shown in Figure 12, is treated as a linear elastic system. The 

superstructure and the base are modeled with three degrees of freedom per floor at 

the center of mass as shown in Figure 12(a). The base and floors are assumed to 

be infinitely rigid in plane. The isolation system consisting of elastomeric or 

friction isolation bearings is modeled using discrete nonlinear biaxial elements. 

The equations of motion for the elastic superstructure are expressed in the 

following form 

 
.. . .. ..

( )g bM u Cu Ku M R u u      (14) 

Where, M , C , K are the superstructure mass, damping, and stiffness matrices in 

the fixed base condition, and R is the influence matrix. Furthermore, 
.. .

, ,u u and u 

represent the floor acceleration, velocity, and displacement vectors relative to the 

base, bu the vector of base acceleration relative to the ground, and gu  the vector 

of ground acceleration (see Figure 12(b)). 

The equations of motion for the base are as follows 

 
.. .. .. .. ..

[ ( )] ( ) 0T
b g b gb b b b bR M u R u u M u u C u K u f         (15) 

Where, bM = the diagonal mass matrix of the rigid base, bC = the resultant 

damping matrix of viscous isolation elements, bK = the resultant stiffness matrix 

of elastic isolation elements, and f = the global vector containing the forces 

mobilized in the nonlinear isolation elements with appropriate transformations. 

Employing modal reduction  

 *u u  (16) 

Where,  = the modal matrix, normalized with respect to the mass matrix, *u

= the modal displacement vector relative to the base. Combining eqns. (14) to 

(16), the following matrix equation is obtained 
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* * *T T T T

T T
b b bb bb

T

gT

b

M MR u u u OC O K O

u u u fO C O KR M R MR M

MR
u

R MR M

      





            
              

            

 
   

  
 (17) 

      Since the modal matrix   is normalized with respect to mass, the following 

diagonal matrices are obtained 
T M I   , 

2T K    and 2TC   , 

where   = diagonal matrix of natural frequencies of the fixed base structure,  = 

diagonal matrix of damping ratios of the fixed base structure. The formulation in 

(17) developed by [15] facilitates efficient solution using pseudoforce algorithm. 

8.2 Pseudoforce Formulation and Solution Algorithm 

Eqn. (17) can be written as follows: 

 

 t t t t tMu Cu Ku f P     (18) 

At time t+ t 

 

 t t t t t t t t t tMu Cu Ku f P         (19) 

Written in incremental form 

 t t t t t t t t t t t t t tM u C u K u f P Mu Cu Ku f               (20) 

 

Where , ,M C K ,and P  represent the reduced mass, damping, stiffness, and 

load matrices in (20). Furthermore, the state of motion of modal superstructure 

and base is represented by vectors , ,t t tu u u  in (17). 

The incremental nonlinear global force vector t tf   in (20) is unknown. This 

global vector is brought on to the right hand side of (20) and treated as a 

pseudoforce vector. The two-stage solution algorithm developed by [15] involves 

the following steps: the solution of equations of motion using the unconditionally 

stable Newmark's constant average acceleration method, in the first stage and the 

solution of differential equations governing the behavior of the nonlinear isolation 

elements using the unconditionally stable semi-implicit Runge-Kutta method [31], 

suitable for solutions of stiff differential equations, in the second stage. 

Furthermore, an iterative procedure consisting of corrective pseudoforces is 

employed within each time step until global equilibrium is achieved. The 

pseudoforce method with iteration is efficient due to the coefficient matrix of the 
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equation of motion is formed and factorized only once at the beginning of the 

solution and repeatedly used. The method is particularly efficient due to the 

localized nonlinearities in the isolation elements that exist only at the base of the 

structure. The pseudoforce method converges to the correct solution even when 

severe nonlinearities such as planar sliding behavior along with biaxial effects are 

present. The method yields results of comparable accuracy of the predictor-

corrector method [15].  

 The developed solution algorithm is as follows: 

1. Initial Conditions. 

    a. Form stiffness matrix K , mass matrix M , and damping matrix C . 

Initialize ,o ou u  

and  
ou . 

b. Select time step t , set parameters 0.25   and 0.5  , and calculate 

the integration constants: 

 

1 2 32

4 5 6

1 1 1
,      ,      

( ) 2

,      ,      1
2

a a a
t t

a a a t
t

  

  

  

  
 

 
     

  

 

   c. Form the effective stiffness matrix 

 
*

1 4K a M a C K    (21) 

          

d. Triangularize 
*K  using Gaussian elimination (only if the time step is 

different from the previous step). 

2. Iteration at each time step. 

a. Assume the global pseudoforce vector 

 0i

t tf    

in iteration i =1. 

b. Calculate the effective load vector at time t t : 

    *

2 3 5 6

i

t t t t t t t t t tP P f M a u a u c a u a u          (22) 

  

  t t t t t t t tP P Mu Cu Ku f        (23) 

  

c. Solve for displacements at time t t : 

 
* *i

t t t tK u P    (24) 

          

d. Update the state of motion at time t t : 
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1 2 3

4 5 6

i

t t t t t t t

i

t t t t t t t

i

t t t t t

u u a u a u a u

u u a u a u a u

u u u

 

 

 

    

    

  

 (25) 

e. Compute the state motion at each bearing and solve for the nonlinear 

forces at each bearing using the semi-implicit Runge-Kutta method. 

f. Compute the nonlinear global force vector at the center of mass of the base
1i

t tf 

 . 

g. Compute 

 

1

.max

i i

t t t tf f
error

ref f



  
  (26) 

         

Where,   is the Euclidean norm. 

h. If error tolerance, further iteration is needed; iterate starting from step 2a 

and use 
1i

t tf 

  as the pseudoforce vector and the state of motion at time t, 

,t tu u and
tu . 

If error tolerance, no further iteration is needed; update the nonlinear global 

force vector
1i

t t t t tf f f 

   , reset time step if necessary, and go to step 2a if 

the time step is not reset or 1b if the time step is reset. 

9 Semi-implicit Runge-Kutta procedure in 3D-BASIS 

The semi-implicit Runge-Kutta procedure in 3D-BASIS [15, 16, 17] was 

developed by the author as a part of his Ph.D. dissertation [15], based on the 

original work of Rosenbrock [31]. The Bouc-Wen hysteretic model presented in 

equation (10) for uniaxial case (equation (11a-11b) for biaxial case) can be 

represented as follows: 

 
1 2 3z a a z a z     (27) 

The numerical procedure involves the following steps: Compute 

 2updated t rz z C k    (28) 

Where, 
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1 1

1 1
,   

1 1
r t r updated

t t

k t z l t z
dz dz

t C t C
dz dz

   
      

      
                  

          

    Evaluate constants C1 and C2 using Rosenbrock’s procedure [31] and Taylor 

series [see [15] for futher details]. Calculate constants. Formulate 

      1 2 31,1t P t tz z A A z A z
 

     (29) 

With 

 

   

2

1 2 3

updated t

updated updated updated

z z C RK

z A A z A z
 

  

  
 (30) 

Where, 

    
1

2 3

1

,     

1

t t
t

t

z t dz
RK z A A

dzdz
C t

dz





   
  
    

  

 

Recalculate and then update  

 0.75 0.25
tt tz z RK RL       (31) 

Where, 

    
1

2 3

1

,        

1

updated t
t

t

z t dz
RL z A A

dzdz
C t

dz





   
  
    

  

 

This innovative solution procedure has been used by many other researchers at 

University at Buffalo, since its development by the author [32].
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In summary the algorithm is summarized in the following table. 

 
 

10 3D-BASIS suite of computer programs 

The presented formulation and solution algorithm has been implemented in—

the most widely used software for analyzing base isolated structures—the class of 

computer programs 3D-BASIS [16,17], 3D-BASIS-M [33], 3D-BASIS-ME [34], 

and 3D-BASIS-TABS [35,36].  3D-BASIS-TABS is a combination of 3D-BASIS 

and ETABS—a widely used building analysis software [37]. 3D-BASIS-TABS 

offers the advantage of modeling the superstructure using linear elastic beam, 
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column, and shear wall elements, while 3D-BASIS, 3D-BASIS-M, and 3D-

BASIS-ME can only model the superstructure using the condensed version with 3 

degrees of freedom per floor. 3D-BASIS-M and 3D-BASIS-ME offer the 

advantage of analyzing multiple buildings on a common isolation basemat, with 

the isolation system below, while only a single building on isolation system can be 

analyzed using 3D-BASIS and 3D-BASIS-TABS. Most recent in the series is 3D-

BASIS-ME-MB, which includes the capability of model uplift [38]. 3D-BASIS 

class of programs are distributed through the Multidisciplinary Center for 

Earthquake Engineering, Buffalo, and National Information Service for 

Earthquake Engineering, University of California, Berkeley. 

11 ETABS and SAP 

The formulation in the widely used ETABS is similar to that of 3D-BASIS, but 

for the use of Ritz modal vectors instead of eigenvectors. Time history analysis is 

performed by mode superposition method. The modal equations are integrated by 

a method, which is exact for a linear variation of the load during the time step. The 

forces in the nonlinear elements are calculated at the end of each time step.  The 

forces are treated as pseudoforces and brought on to the right hand side of the 

equations of motion.  Iteration is then performed within the time step until 

convergence is achieved.  

The most recent version of the widely used SAP series and ETABS series [37] 

are computer programs SAP and ETABS [22]. ETABS is a linear building 

analysis computer program and SAP is a finite element computer program. The 

programs have linear elastic beam, shell, plane, and solid elements. Their latest 

versions ETABS and SAP have discrete nonlinear elements. The nonlinear 

elements in the program include uniaxial and biaxial plasticity element, viscous 

damper element with nonlinear exponent on velocity term, gap (compression only) 

and hook (tension only) element, biaxial plasticity element, biaxial element for 

friction and/or pendulum behavior [29]. These elements allow analysis of 

complete three dimensional superstructure models with localized nonlinear 

elements such as elastomeric and friction isolators and damping devices. ETABS 

and SAP use a similar solution procedure to that used in 3D-BASIS. SAP and 

ETABS [22] are proprietary computer programs of Computers and Structures Inc., 

Berkeley, CA. 

 

12 Key Innovations 

The acronym 3D-BASIS stands for 3D-BASe Isolated Structures, coined by 

the author in 1989. Several key innovations in formulation and computational 
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techniques, needed in the development of 3D-BASIS, have been summarized in 

this chapter. Briefly, 

1. New Nonlinear/Inelastic Analytical Models for Elastomeric 

Bearings, Sliding Bearings, Three Dimensional Sliding and 

Elastomeric Base Isolated Structures 

2. Formulation of the Pseudo-force Solution Algorithm, Semi-Implicit 

Algorithm, and proof of Convergence using Closed Form Solutions 

[15] 

3. Due to highly nonlinear biaxial interaction for sliding isolation 

bearings, the differential equations become very stiff and even 

Gear’s predictor-corrector method for stiff differential equation fails 

4. Formulated a new stable semi implicit integration method based on 

Rosenbrock’s [31] method 

5. Integration Coefficients 0.78886751 and -1.1547005 were derived 

originally by Nagarajaiah [15] to maintain a fourth order truncation 

error 

6. Verification using extensive shake table test results. 

 

13 3D-BASIS used for Analysis of Important Base Isolation 

Projects Around the World: 

3D-BASIS for Nonlinear Dynamic Analysis of Base Isolated Structures has 

been cited in several important code related documents [FEMA 273/274 [39], 

ATC 33, NEHRP, NIST]. "The most widely used computer program for analyzing 

base isolated structures today is the 3D-BASIS suite of programs..." is a direct 

quote from the book on “Earthquake Resistant Design with Rubber” by Professor 

James M. Kelly, 1997 [2]—see page 234. 

 

3D-BASIS has been used for analysis and design of numerous projects around 

the world; the most important of which are listed below. 

• U. S. Court of Appeals, San Francisco, CA, 1990-1991 

• LNG Tanks, Greece, 1994 

• San Francisco International Airport, CA, 1996 

• ATATURK International Airport in Istanbul, Turkey, 2000 

• Statue of Hermes, Museum at Olympia, Greece, 2004 

• Mills Peninsula Hospital, Burlingame, CA, 2005-Currently Complete 

• Washington Hospital, Fremont, CA, 2005-Currently Complete 

• Stanford University Hospital, CA, 2008 – Currently complete 

• Lunskoye and Piltun Offshore Oil Platforms, Sakhalin, Russia, 2008 – 

 Currently Complete 

• San Francisco General Hospital, CA, 2011 – under construction 
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• Arkundagi Offshore Oil Platform, Sakhalin, Russia, 2013 – Under 

Construction 

12 Concluding remarks 

3D-BASIS release was significant milestone in nonlinear dynamic analysis of 

three-dimensional base isolated structures, particularly in solving the highly 

nonlinear bidirectional stick-slip hysteretic response of a collection of sliding 

isolation bearings and the resulting response of the superstructure.  In this chapter 

techniques used in the nonlinear dynamic analysis of base isolated structures in 

3D-BASIS have been presented. These techniques developed by the author and 

other researchers have been implemented in the latest NEHRP Guidelines / 

Commentary for the Seismic Rehabilitation of Buildings (Ballot Version) FEMA 

273/274 [39].  The presented nonlinear dynamic techniques and computer 

programs have been widely used in the analysis and design of many new and 

retrofit base isolation projects around the United States and also around the world. 

In summary, 

• 3D-BASIS has had a unique impact on nonlinear dynamic analysis of 

base isolated structures around the world 

• SAP uses the similar formulation as in 3D-BASIS; for more detail refer 

to Wilson et al. [28] and SAP-ETABS [22]. 

• The latest version of 3D-BASIS—3 D-BASIS-MB-ME—Includes Triple 

Pendulum Model, uplift and new response prediction and display features. 

Results from OpenSees [40] and SAP-ETABS [22], which are widely used 

currently in earthquake engineering simulation, are verified using 3D-BASIS suite 

of programs by many researchers and practitioners [41]. In addition now that 

Structural Health Monitoring is being adopted steadily more real measured data 

will become available to validate and verify any future developments [30,42]. 

Acknowledgments   3D-BASIS suite of computer programs would not have been possible 

without the vision of Professor Andrei Reinhorn. 3D-BASIS suite of computer programs has 

been realized by the sustained efforts of the author, Professor Andrei Reinhorn, and his 
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