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ABSTRACT

We present novel algorithms for parallel testing of code that takes
structurally complex test inputs. The algorithms build on the Korat
algorithm for constraint-based generation of structurally complex
test inputs. Given an imperative predicate that specifies the desired
structural constraints and a finitization that bounds the desired input
size, Korat performs a systematic search to generate all test inputs
(within the bounds) that satisfy the constraints. We present how
to generate test inputs with a parallel search in Korat and how to
execute test inputs in parallel, both off-line (when the inputs are
saved on disk) and on-line (when execution immediately follows
generation).

The inputs that Korat generates enable bounded-exhaustive test-
ing that checks the code under test exhaustively for all inputs within
the given bounds. We also describe a novel methodology for re-
ducing the number of equivalent inputs that Korat can generate.
Our development of parallel Korat and the methodology for reduc-
ing equivalent inputs are motivated by testing an application devel-
oped at Google. The experimental results on running parallel Korat
across up to 1024 machines on the Google’s infrastructure show
that parallel test generation and execution can achieve significant
speedup, up to 543.55 times.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools; D.1.3 [Programming
Techniques]: Concurrent Programming—parallel programming

General Terms: Algorithms, Performance, Reliability

Keywords: Parallel testing, Korat, bounded-exhaustive testing, test
data generation

1. INTRODUCTION

Software testing is an important part of software development
and can account for more than 50% of the development cost [3].
Two main activities in testing are fest generation, which creates
tests to be executed, and text execution, which executes the tests to
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check the code under test. While test execution is often automated
and can easily handle a large number of tests, test generation is
typically manual and thus tedious and error-prone when generating
a large number of tests.

Manual generation of test inputs is particularly hard for code that
takes structurally complex inputs. For example, code that manipu-
lates XML documents—e.g., an XPath compiler [40]—effectively
takes as input XML parse trees that need to satisfy complex syntac-
tic and semantics constraints for valid XML documents. As another
example, a code unit that operates on complex data structures—
e.g., a set implemented as a red-black tree—takes inputs that are
structural (consisting of objects linked in a tree) and need to satisfy
complex invariants (prescribed by the red-black coloring of the tree
nodes).

We have previously developed two approaches, TestEra [19, 21,
41] and Korat [4, 29, 30, 33], for automated generation of struc-
turally complex test inputs. Both approaches are constraint-based:
they allow the users to manually write only the constraints that de-
scribe the desired properties of test inputs, and a tool then automat-
ically generates a large number of such inputs. TestEra uses con-
straints written in a declarative language [15] and has been applied
only by academic researchers [19,21,41]. Korat uses constraints
written in an imperative language, such as Java or C#, and has been
applied in industry [40,43].

Both TestEra and Korat can generate all test inputs within given
small bounds. Such test inputs enable bounded-exhaustive testing
that checks the code under test exhaustively within given bounds.
Such testing previously revealed faults in several real-world appli-
cations, including a protocol for dynamic networks [20], a con-
straint analyzer for a declarative language [21], an XPath com-
piler [40], and a fault-tree analyzer [41].

This paper focuses on Korat. Given an imperative predicate that
specifies the desired structural integrity constraints and a finitiza-
tion that bounds the desired test input size, Korat generates all test
inputs (within the bounds) for which the predicate returns true. Ko-
rat performs a systematic search of the predicate’s input space and
attempts to prune from the search and generation equivalent inputs,
which only increase the testing time but do not increase the chance
to reveal a fault [46]. The Korat tool for Java is publicly available
at http://mir.cs.uiuc.edu/korat. (The FSE group at Microsoft
Research implemented the Korat algorithm for the AsmL and .NET
languages as a part of the SpecExplorer tool publicly available at
http://research.microsoft.com/specexplorer).

This paper presents two significant improvements of Korat: (1) a
set of algorithms for parallel testing and (2) a methodology for gen-



erating fewer equivalent inputs. The direct motivation for our im-
provements was testing an application developed at Google. At
a high level, the application takes as input a graph that represents
links between entities and requires each input graph to be a directed
acyclic graph (DAG). To generate test inputs for this application
with the Korat tool [33] requires representing DAGs and specify-
ing their properties in Java. A direct use of the previous version of
Korat results in sequential testing and generates a large number of
equivalent test inputs.

We describe four algorithms that enable parallel test generation
and execution using Korat. The algorithms consider the cases when
the generation and execution are performed either off-line (the gen-
eration writes the inputs to the disk, and the execution reads them
from the disk) or on-line (the generation produces the inputs that
the execution immediately consumes). The ability of Korat to ef-
ficiently enumerate a lot of inputs requires the user to consider
whether (and how) to store the inputs to the disk: even if abun-
dant disk space is available, reading inputs back into the memory
may take more time than just re-running Korat and re-generating
the inputs. The algorithms also consider the cases when the ini-
tial generation is either sequential or parallel, while the subsequent
generations and executions are always parallel. When storing all
inputs to the disk is impractical, the algorithms only store a small
fraction of inputs to speed up subsequent runs of test generation.

We developed our algorithms targeting the Google’s computing
infrastructure (consisting of large clusters of commodity machines)
and its parallel programming model [7]. An important design deci-
sion was to minimize the communication between machines, which
are called workers [7]. As a result, our algorithms communicate
only the simple messages to start or stop generation (and execu-
tion), notify completion, or initialize state. This approach can im-
prove the overall performance by removing any expensive message
passing and also makes the algorithms easily portable. For exam-
ple, by writing a simple wrapper script for the Google’s infrastruc-
ture, we directly ported our single-machine implementation to a
massively distributed computing environment that prohibits com-
plex messages.

This paper makes the following contributions:

e Parallel generation: We present new algorithms for paral-
lel search and test generation in Korat. Intuitively, our al-
gorithms partition the predicate’s input space such that each
worker explores only its assigned partition.

e Parallel execution: We present new algorithms for paral-
lel test execution, in particular when the execution immedi-
ately follows Korat’s test generation, with no storing of the
generated test inputs on the disk. Our algorithms attempt to
achieve load-balancing by evenly distributing the test execu-
tion across all the workers.

e Methodology for fewer equivalent inputs: We present a
novel methodology that enables Korat to generate a smaller
number of equivalent test inputs. Our methodology shows
how to encode equivalence of inputs in the input constraints
to significantly prune the search space and generate mostly
non-equivalent test inputs. This methodology builds on our
previous work with TestEra [22].

e Case study: We evaluate parallel Korat by testing the Google
application in a bounded-exhaustive manner with hundreds
of millions of test inputs based on DAGs. Our experiments
use the Google’s infrastructure to generate and execute test
inputs. The results on up to 1024 workers show that parallel
Korat can achieve significant speedup, of up to 543.55 times.
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class DAG {
DAGNode [] nodes;
int size;

static class DAGNode {
DAGNode [] children;

boolean repOK(Stack<DAGNode> path, Set<DAGNode> visited) {
path.push(this);
for (int i = 0; i < children.length; i++) {
DAGNode child = children[il;
// all children must be different
for (int j = 0; j < i; j++)
if (child == children[j]) return false;
// there should be no directed cycle
if (path.search(child) !'= -1) return false;
// no need to visit already visited child
if (!visited.add(child)) continue;
// visit all unvisited children
if (!child.repOK(path, visited)) return false;
}
path.pop();
return true;
}
}

boolean rep0K() {
Set<DAGNode> visited = new HashSet<DAGNode>();
Stack<DAGNode> path = new Stack<DAGNode>();
for (DAGNode node : nodes)

if (visited.add(node))
if ('node.repOK(path, visited)) return false;

return size == visited.size();

}

}

Figure 1: Code that represents DAGs and checks their struc-
tural constraints

2. BACKGROUND: KORAT

We first describe what Korat does and how to apply it to generate
and execute test inputs. We then describe how Korat works, in par-
ticular how it performs sequential search for test generation. (Sec-
tion 3 presents our new algorithms for parallel search and test exe-
cution.) We also discuss equivalent test inputs. (Section 4 presents
how to reduce the number of equivalent inputs.)

As our running example, we use generation of directed acyclic
graphs (DAGs). Each DAG has a set of nodes and a set of di-
rected edges such that there is no directed cycle along those edges.
A DAG can have undirected cycles obtained by viewing edges as
undirected. (The term DAG is commonly used, but the more precise
term would be acyclic directed graphs, i.e., ADG.) These seemingly
simple structures form the core of test inputs for several real-world
applications, including the Google application from our case study
and a fault-tree analyzer developed for NASA [34,41]. To gen-
erate actual test inputs, the user can write code that appropriately
labels nodes or edges of the DAGs [21,41] or can directly model
test inputs instead of modeling DAGs.

To generate DAGs with Korat, the user first needs to write a rep-
resentation for DAGs and code that checks structural constraints on
this representation. Figure 1 shows one possibility in Java. Each
object of the class DAG represents a DAG, and each object of the
class DAGNode represents a node. The field nodes stores all nodes of
a DAG, and each node has the field children that stores the desti-
nation nodes of outgoing edges. These fields effectively represent
sets, and Section 4 discusses the issues that arise in representing a
set with an array.

The two rep0K methods check the structural constraints of DAGs.
Following Liskov [28], we use the name repOK for the methods that
check the representation invariant of data structures used to imple-
ment abstract data types. We refer to these methods as imperative



public static IFinitization finDAG(int numNodes) {
IFinitization f = new Finitization(DAG.class);
f.set("size", f.createIntSet(numNodes, numNodes));
I0bjSet nodes = f.createObjSet(DAGNode.class, numNodes);
f.addA11("nodes", nodes);
IIntSet arrLen = f.createIntSet(0, numNodes - 1);
IArraySet childrenArray = f.createArraySet(DAGNode[].class,

arrLen, nodes, numNodes);

f.set ("DAGNode.children", childrenArray);
return f;

}

Figure 2: Finitization that bounds the size of generated DAGs

predicates [29]: they are written in an imperative language and re-
turn a boolean value.

In our example, the methods take as input an object graph con-
sisting of DAGNode objects and check the absence of (directed) cy-
cles. These repOK methods use the Tarjan’s algorithm for strongly
connected components [42] to traverse the graph and return true if
a given object graph indeed represents a DAG or return false oth-
erwise. Writing rep0OK methods is usually easy. Two undergraduate
students (the first two authors of this paper) wrote in a matter of
hours rep0K methods for several data structures, including various
versions of DAGs: connected or unconnected, labeled or unlabeled,
with one root or multiple roots, etc. The specific rep0K methods in
Figure 1 allow unconnected DAGs with multiple roots.

The user also provides a finitization that bounds the size of the
test inputs that Korat generates. Figure 2 shows sample code that
specifies bounds for the DAG class. Each finitization bounds the
number of objects of a given class (for example, numNodes objects
of the class DAGNode) and the values of fields for the objects (for
example, size is set to numNodes, and the children array has length
between 0 and numNodes - 1 and has elements that are from the set
of nodes). To specify these bounds, the code uses the classes from
the Korat library [33].

2.1 Korat’s output

Korat is effectively a constraint-solver for imperative predicates:
given an imperative predicate (repOK) and a finitization (£inDAG),
Korat generates all inputs (within the bounds given in the finitiza-
tion) for which the predicate returns true. We refer to such inputs
as valid inputs (even though the code might be expected to generate
an error message for those inputs). Executing all valid inputs on the
code under test is called bounded-exhaustive testing and provides
a strong guarantee that there is no fault within the given bounds.
When time limits prevent bounded-exhaustive testing, one can con-
sider taking a subset of all test inputs that Korat generates.

Korat can save the generated objects on disk or display them
graphically. For example, Korat generates four DAGs with exactly
three nodes, and Figure 3 shows the visualization for two of these
four DAGs. Our current Korat implementation [33] uses the Al-
loy Analyzer [15] for visualization; Korat automatically translates
object graphs into the Alloy representation.

2.2 Non-equivalent inputs

Korat does not actually generate all valid object graphs but only
non-isomorphic object graphs. Two object graphs are isomorphic if
they differ only in the identity of the objects in the graphs [4,14,29]:
isomorphic object graphs have the same branching structure (same
shape) and the same values for primitive fields. Arrays are viewed
as objects with one field labeled length and the other “fields” for
array elements labeled with array indexes. For example, we obtain
isomorphic graphs if we swap the identity of some nodes in the left
DAG in Figure 3, say put DAGNode2 in children[0] and DAGNodel

File Theme Window

Ee =&
XML Tree Dot Theme

DAGNode0

hildren_|

DAGNode1 hildren_1

\h\ildren_

DAGNode2

‘ DAGNode1

| DAGNode2

Figure 3: Two DAGs of four that Korat generates for three
nodes; the left DAG shows an entire visualization window with
several customization options

children[1]. However, the four graphs (two of which are shown)
are themselves all non-isomorphic as they have different shapes.
Isomorphic object graphs form equivalent test inputs, i.e., two
isomorphic object graphs either both reveal a fault or none reveals
a fault [45]. Testing code with more than one representative from
an equivalence class only increases the testing time but cannot re-
veal more faults. Hence, we want to avoid isomorphic object graphs
among the generated graphs. Korat can efficiently generate all non-
isomorphic objects graphs (i.e., exactly one representative from
each isomorphism class) at the concrete level [4,29]. For DAGs,
however, the arrays used at the concrete level represent sets at the
abstract level, and several object graphs that Korat generates can
be non-isomorphic at the concrete level but correspond to the same
DAG at the abstract level. Section 4 presents a methodology for re-
ducing the number of generated equivalent structures in such cases.

2.3 Korat’s search

We briefly describe how Korat generates non-isomorphic valid
inputs. We present only the parts of Korat necessary to introduce
parallel Korat and our methodology for generating fewer equiva-
lent inputs; more details of Korat are available elsewhere [4, 29].
Korat implements a backtracking search algorithm that systemati-
cally explores the space of the predicate’s inputs, bounded by the
finitization. Korat efficiently prunes search through the space to
generate only the non-isomorphic valid inputs.

The main entity in Korat’s search is candidate vector (which we
also call simply candidate or vector). Each candidate vector en-
codes an object graph that may be valid or invalid (i.e., for which
repOK may return true or false). Korat represents a candidate
vector as a sequence of integers. These integers are indexes into
the possible values for each field in the finitization. For example,
consider the (implicit) field length of the children arrays in DAGN-
ode objects. The £inDAG finitization specifies that the possible val-
ues for the length can vary between O and numNodes - 1. It also
specifies that there are numNodes such objects. Thus, each can-
didate vector encodes specific length value for each array. When
numNodes=N, there are N arrays, each of which can have N values
for length, so the space of all combinations of array lengths is N .
(The candidate vectors for DAGs encode not only array lengths but
also array elements and the value of the field size.)

Korat starts its search from the initial candidate vector that has
all zeroes. This vector encodes that all fields take their first possible



value. In our example with array lengths, it would represent that all
arrays have length 0.

Korat generates candidate vectors in a loop until it traverses the
entire space of the predicate’s inputs. The basic idea is to exe-
cute the repOK predicate on a candidate to determine (1) whether
the candidate is valid or not, and (2) what next candidate to try out.
Korat executes the actual repOK code on concrete object graphs. (In
particular, Korat does not use symbolic execution [23].) Therefore,
for each candidate vector, Korat first builds a corresponding object
graph, i.e., links the objects (in our example nodes and arrays) and
sets the values of their fields. (A candidate vector is a sequence of
integers, but the code can execute only on object graphs.) If rep0K
returns true, the object graph is valid and Korat outputs it. Regard-
less of whether repOK returns true or false, Korat continues its
search with the next candidate.

During the execution of rep0K, Korat monitors field accesses and
builds a field-access stack [4]. Korat builds this stack to prune the
search. Indeed, the key idea in Korat is to generate the next candi-
date vector based on the execution of the previous candidate vector.
The intuition is that if repOK returns false by accessing only some
fields of the object graph, then it would return false for any values
of the non-accessed fields. Therefore, Korat backtracks the search
based on the last accessed field on the stack. Korat increments the
integer value of the appropriate index to generate the next candidate
vector. To eliminate exploration of isomorphic structures, Korat in-
crements an index by more than one when possible [4]. We show in
Section 3.2.3 how one of our algorithms for parallelization makes
an even bigger “jump” on the field-access stack.

3. PARALLEL KORAT

We describe four algorithms that enable parallel test generation
and execution using Korat. Our algorithms target clusters of com-
modity machines and attempt to minimize inter-machine commu-
nication. This approach not only can improve the overall perfor-
mance by removing any expensive message passing but also makes
the code easily portable, for example to a massively distributed
computing environment that prohibits complex messages such as
the Google’s computing infrastructure [7].

We first discuss the properties of Korat’s search that make it easy
or hard to parallelize. We then present the basic versions of the al-
gorithms, which store candidate vectors regardless of their validity.
We finally present some potential optimizations, which can for ex-
ample store only those candidate vectors that are valid.

3.1 Properties

The key property of Korat’s search that enables its paralleliza-
tion is that the current candidate vector compactly encodes the en-
tire search state, i.e., both the part of the state space that has been
explored and the part of the state space that has yet to be explored.
We can thus parallelize the search by using candidate vectors as the
bounds for the ranges that split the state space. This is unlike say
explicit-state model checking [8, 27, 39] where the current search
state is encoded in a large graph of all visited states, and it is un-
clear how to parallelize the work among several workers such that
they do not communicate and do not do any overlapping work. The
fact that Korat’s search state is encoded in the candidate vector also
allows for a great deal of fault tolerance. If some worker machine
goes down after exploring the state up to some candidate vector,
another worker machine can finish the search by simply starting
from that candidate vector.

The main challenge in parallelizing Korat’s search is due to the
pruning that search performs. While pruning makes the search
more efficient, it also makes it mostly sequential: to determine the
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next candidate vector for the search, Korat needs to execute repOK
on the current candidate vector. In other words, given an arbitrary
candidate vector, we cannot tell a-priori (before actually perform-
ing the search) whether the search would explore that vector or
not. The vector may not be explored because repOK returns false
for some previous vector or because the search explores another
isomorphic vector. This means that we cannot purely randomly
choose candidate vectors to partition the state space, since a ran-
domly chosen vector may not be explored at all.

3.2 Algorithms

The ability of Korat to efficiently enumerate large numbers of
test inputs requires a consideration of whether (and how) to store
these inputs to disk. Even if abundant disk space is available, se-
rializing all inputs to disk during generation and then deserializing
them back into the memory during execution may take more time
than just re-running Korat and re-generating the inputs.

When storing all inputs to disk is infeasible, an algorithm may
still feasibly store a small fraction of them, especially if doing so
speeds up the future runs of (the same) test generation. Such an
algorithm, which amortizes its cost, may start with a sequential run
before switching over to a parallel mode for future runs, or it may
have all of its runs including the first one in a parallel mode.

Two of our four algorithms assume that storing all inputs is ad-
vantageous, while the other two assume that it is not. We refer to
the algorithms that store the inputs as off-line (in notation OFF)
since storing decouples test generation and execution into separate
phases. We refer to the algorithms that do not store the inputs as
on-line (in notation ON) since they run test generation immediately
followed by execution of the code under test.

Two of our four algorithms have the initial generation sequential,
while the other two have the initial generation parallel. We use the
notation SEQ and PAR for the algorithms with the initial sequential
and parallel run, respectively. All four algorithms have subsequent
generations parallel.

3.2.1 Algorithm SEQ-OFF

This algorithm runs test generation sequentially, storing the gen-
erated inputs to disk, and then parallelizes test execution: (1) run
Korat on one machine to generate all inputs and store them to disk;
(2) distribute the inputs evenly across several worker machines to
execute the code under test.

The algorithm attempts to load-balance the work across all work-
ers during test execution. However, test generation remains sequen-
tial. Although test generation does not have to fully complete be-
fore test execution can begin, this algorithm is mostly suitable for
situations when test generation and execution are separated. For
example, test generation may produce a small number of inputs or
may require a lot of search to produce the inputs (so it is preferred
to save them), and the rep0K methods do not change often (so it is
not necessary to re-run Korat).

3.2.2  Algorithm SEQ-ON

This algorithm assumes that storing all inputs is not preferred,
starts test generation with a sequential run and then switches over to
a parallel mode for future runs. Test execution immediately follows
test generation.

The design goal for this algorithm is that it stores sufficient infor-
mation during the first, sequential run of test generation such that
all future runs of test generation can be done in parallel and load-
balanced. More precisely, for n workers, we want to obtain a se-
quence of candidate vectors (vl, AU vn) that are equi-distant, i.e.,
Korat explores the same number of candidate vectors for any range



// input: m is the maximum number of workers
// output: an array of equi-distant candidates,
// with the array length between m and 2 * m
Candidate[] equiDistantCandidates(int m) {
Candidate[] candidates = new Candidate[2 * m];
int distance = 1;
int index = 0;
while (Korat.hasNext()) {
for (int i = 0; i < distance; i++) {
candidates[index] = Korat.next();
if (!Korat.hasNext()) break;
}
index++;
if (index == candidates.length) {
// half the array and double the distance
for (int j = 0; j < candidates.length / 2;
candidates[j] = candidates[2 * j + 1];
distance = distance * 2;
index = m;
}
}
// resize the output length to valid indexes
Candidate[] result = new Candidate[index];
for (int i = 0; i < index; i++)
result[i] = candidates[i];
return result;

}

j++)

// inputs: w is the actual number of workers;

// candidates is from equiDistantCandidates

// output: an array of (mostly) equi-distant candidates
// selected from the given input,

// with the array length exactly w

Candidate[] selectCandidates(int w, Candidate[] candidates) {
Candidate[] result = new Candidate[w];
for (int i = 0; i < w; i++)
result[i] = candidates[(i + 1) * candidates.length / w - 1];
return result;

}
Figure 4: Equi-distancing for SEQ-ON

[vi, viy1) (for ¢ < n), and the union of all ranges (i.e., [v1,vn])
covers the entire search space. Note that the algorithm does not
need to know in advance the exact number of workers on which the
Korat will be run in parallel; it suffices to know the upper bound
for this number. For example, building 1024 equi-distant candi-
dates (for a maximum of 1024 workers) allows running the search
on say 16 workers by giving each to explore 64 ranges.

A challenge in this algorithm is that we do not know a-priori
(before the search) the total number of candidate vectors that Korat
will explore. Call this number C. A simple two-pass algorithm can
compute C' and then the desired sequence of candidates: first run
Korat once to count C', and then run Korat again to store to disk
every k' candidate, where k = [£]. However, this simple al-
gorithm requires two complete executions of Korat, each of which
can be expensive. We have thus developed the SEQ-ON algorithm
that requires only one sequential pass.

Figure 4 shows the pseudo-code of the algorithm. The function
equiDistantCandidates maintains an array of candidate vectors,
with the array length being twice the number of maximum work-
ers. Since the number of candidates is not known a-priori, the al-
gorithm initially stores in the array every candidate that Korat ex-
plores. Once the array reaches its capacity, the algorithm (1) moves
the candidates at even indexes in the array to its lower half (while
preserving the relative ordering among candidates); and (2) starts
storing every second candidate in the upper half of the array. The
next time the array reaches its capacity, the algorithm performs the
previous steps (halves the array and doubles the distance) and starts
storing every fourth candidate, and so on. At the end, the function
returns the candidates to be stored for future parallel runs.
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// input: w is the actual number of workers
// params: MAX_STEPS is maximum number of Korat steps to perform
// MAX_FIELDS is maximum number of fields to truncate
Candidate[] randomFastForward(int w) {
Candidate[] candidates = new Candidate[w];
int currW = 0;
while (currW < w) { // restart search from the beginning
Candidate candidate = initialCandidate(); // all 0’s
while (currW < w) { // fast-forward within one search
// action 1: perform a number of actual Korat steps
int steps = random.nextInt (MAX_STEPS);
while (Korat.hasNext() && steps > 0) {
candidate = Korat.next();
steps--;
}
if (!Korat.hasNext()) break;
// action 2: jump ahead in the search
Korat.shortenAccessStack(random.nextInt (MAX_FIELDS));
candidate = Korat.next();
candidates[currW++] = candidate;
}
}
// sort them since they could be from various restarts
return sort(candidates);

}
Figure 5: Fast-forwarding for PAR-OFF

3.2.3 Algorithm PAR-OFF

This algorithm parallelizes the initial run of Korat and writes all
generated inputs to disk. It parallelizes test execution the same way
that SEQ-OFF does.

An optimal parallelization of Korat’s search would partition the
space of all candidate vectors into several ranges such that they
together cover the entire search space and the exploration of each
range takes about the same time. Recall that Korat prunes its search
based on the accessed fields, as determined dynamically by the exe-
cutions of rep0K. Therefore, it is hard to estimate before the search
how many candidates Korat will explore between two given can-
didates: this number depends on pruning, which in turns requires
reasoning about the (dynamic) behavior of repOK.

Our algorithm uses randomization. It randomly fast-forwards
the Korat search on one machine to select a given number of ini-
tial candidate vectors and writes these vectors onto the disk. It
then parallelizes the search for these randomly selected candidates.
The design goal for fast-forwarding is that it executes much faster
than the full search and yet produces mostly equi-distant candi-
dates. Figure 5 shows the pseudo-code of our fast-forwarding al-
gorithm. It starts the search from the initial Korat candidate vector
(which is all zeroes). It then repeats two actions—(1) performing
a randomly selected number of actual steps of Korat search (which
build field-access stack as explained in Section 2.3) followed by
(2) “jumping” in the search space by truncating the field-access
stack for a randomly selected number of fields—until it builds the
required number of candidates or fast-forwards through the entire
search space. If it finishes the entire space, it starts the search over.

This algorithm always generates candidates that the Korat search
would explore (i.e., not prune due to accesses or isomorphism): the
action 2 of this algorithm is a step that Korat would perform dur-
ing the backtracking. Moreover, this algorithm guarantees that the
workers explore each candidate exactly once (there is no overlap
of work between workers and together they cover the entire search
space). However, the load-balancing of test generation depends on
the initial set of randomly chosen candidate vectors. While it is un-
likely that they are evenly apart, it is also unlikely that they cause
only one worker to do almost all of the generation. Test execution
can be load-balanced by evenly dividing the generated inputs to all
available workers as for SEQ-OFF.



3.2.4 Algorithm PAR-ON

This algorithm assumes that storing all inputs to disk is not pre-
ferred and makes all its runs in the parallel mode. It parallelizes test
execution in the online mode, the same way that SEQ-ON does.

This algorithm combines the advantage of PAR-OFF(using ran-
domly chosen candidate vectors to run the initial generation in par-
allel) with the advantage of SEQ-ON(using equi-distant candidate
vectors to load-balance the subsequent generation). PAR-ON pro-
ceeds as follows. Like PAR-OFF, PAR-ON first randomly selects n
candidate vectors (71, ..., 7, ) and then runs in parallel search over
the ranges between the consecutive candidates. Additionally, dur-
ing this first generation run, PAR-ON creates n equi-distant can-
didates v, ..., v, for each range [rs,Ti41), effectively splitting
each range into n subranges. In the post-processing of the first run,
PAR-ON appropriately merges the subranges generated for differ-
ent ranges. Therefore, in the subsequent generation runs, PAR-
ON operates like SEQ-ON, achieving better load-balancing among
workers than in the first generation run.

3.3 Potential optimizations

We have so far described the basic parallel algorithms for online
execution (ON). These basic algorithms store the appropriate can-
didate vectors, either equi-distant or randomly selected. However,
it is not necessary to store the candidate vectors for the portions of
the state space with no valid test inputs. For example, consider a
range of candidate vectors [v;, v;11) and suppose that the first and
the last valid candidate vectors are v; and v, respectively. It holds
that v; < v, < v! < viy1. Therefore, the algorithms need only
to store the range [v,v;'] and search through it in the subsequent
searches; it is known that there are no valid candidates in [v;, v}) or
(vi, vig1]-

The algorithms could use the number of valid candidate vectors,
instead of all candidate vectors, to partition the input search, ef-
fectively using “equi-valid-distant” ranges. However, valid vectors
are often clustered around certain points in the search space. There-
fore, searches that generate the same number of valid vectors could
explore vastly different number of candidate vectors, which could
result in reduced load-balancing among the workers.

Moreover, the algorithms do not need to use the number of can-
didate vectors or the number of valid candidate vectors as a mea-
sure to partition the space. Ideally, the partitioning should be done
based on the actual running time. When the workers on which the
algorithms run have nearly uniform speed (which is not often the
case when using large clusters of commodity machines such as at
Google), the algorithms could measure the actual run time in one
run and use it to improve load-balancing of the subsequent runs.

Finally, we can consider a parallel environment with cheaper
inter-worker communication, which would allow the workers to
exchange more complex messages and to dynamically partition the
search space. We plan to investigate this option in the future.

4. FEWER EQUIVALENT INPUTS

We next present a methodology for rewriting rep0K methods
such that Korat generates fewer equivalent test inputs. The defi-
nition of equivalent inputs is up to the user of Korat: the user effec-
tively deems that two inputs either can both reveal a fault or none
of them reveals a fault and thus wants to execute the code under
test for only one of such inputs. In our case study with the Google
application, we consider equivalence of DAGs. Our methodology
is important for this case study but is independent of parallel Ko-
rat. The methodology requires changing repOK methods, but the
same parallel algorithms can handle changed rep0K methods. Also,
the methodology is applicable even for sequential Korat. We first
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class DAG {
DAGNode [] nodes;
int size;

static class DAGNode {
DAGNode [] children;

public int repOKD(Stack<DAGNode> path, Set<DAGNode> visited,
HashMap<DAGNode, Integer> descendants) {
path.push(this);
int maxD = Integer.MAX_VALUE;
int thisD = 1;
for (int i = 0; i < children.length; i++) {
DAGNode child = children[i];
for (int j = 0; j < i; j++)
if (child == children[j]) return -1;
if (path.search(child) != -1) return -1;
int childD;
if (lvisited.add(child)) {
childD = descendants.get(child);
} else {
childD = child.repOKD(path, visited, descendants);
if (childD == -1) return -1;
}
if (childD > maxD) return -1;
maxD = childD;
thisD += childD;
}
path.pop();
descendants.put(this, thisD);
return thisD;
}
}

boolean repOKD() {
Set<DAGNode> visited = new HashSet<DAGNode>();
Stack<DAGNode> path = new Stack<DAGNode>();
HashMap<DAGNode, Integer> descendants =

new HashMap<DAGNode, Integer>();
for (DAGNode node : nodes)
if (visited.add(node))
if (node.repOKD(path, visited, descendants) == -1)
return false;

return size == visited.size();

}

}

Figure 6: Modified repOK method that enables pruning based
on the number of descendants

present an overview of the methodology, then show an example,
and finally discuss limitations of the methodology.

4.1 Overview

The main idea of our methodology is to add more checks to re-
pOK such that Korat prunes some inputs that it would not prune
by default. This idea originates from the symmetry-breaking predi-
cates [1,6,22] developed for search problems over declarative pred-
icates. Recall, however, that Korat uses imperative predicates; our
anecdotal experience suggests that practicing testers find it eas-
ier to write imperative predicates than declarative predicates. Our
methodology suggests how users should write additional checks to
make test generation with Korat faster and to produce fewer inputs,
thus also making subsequent test execution faster.

We adapt symmetry-breaking predicates for Korat as follows.
The user needs to identify a partial order among candidate vec-
tors such that vectors “larger” according to the order do not need
to be considered by Korat since they are not the representatives of
their equivalence classes. The default order that Korat uses is based
on the lexicographic order of vectors and breaks isomorphisms at
the concrete level of object graphs [4]. We proved that this prun-
ing is optimal; Korat generates exactly one representative for each
isomorphic class [29]. However, the user may want to consider
equivalences other than isomorphism of concrete object graphs.



repOKB repOKC rep0KD
size || time [s] | explored | generated || time [s] | explored [ generated || time[s] | explored [ generated || non-isom.
1 0.61 1 1 0.61 1 1 0.59 1 1 1
2 0.60 5 2 0.60 5 2 0.60 5 2 2
3 0.60 68 8 0.61 68 7 0.60 68 7 6
4 0.68 1,518 95 0.67 1,418 57 0.67 1,394 48 31
5 1.39 74,902 4,858 1.15 54,113 1,541 1.07 44,888 691 302
6 213.26 | 16,650,503 | 1,336,729 75.07 | 6,255,988 185,569 30.48 2,628,140 21,430 5,984
7 || >3hrs - - || >3hrs - - || 4,593.13 | 313,006,096 | 1,468,397 243,668

Figure 7: Comparison of Korat’s generation for different predicates; for size 7, it takes more than 3 hours for repOKB and repOKC

4.2 Example

We illustrate the methodology by showing how to reduce the
number of equivalent inputs for DAGs shown in Figure 1 and dis-
cussed in Section 2. We refer to the rep0K method from Figure 1 as
repOKB (B for “Basic”). We want to generate only non-isomorphic
DAGs; we consider that the code under test has equivalent behav-
ior for any two isomorphic DAGs. Recall that DAG and DAGNode
objects represent sets of children with arrays. Korat performs its
search at the concrete level of arrays, not at the abstract level of
sets. Thus, Korat can generate two or more different arrays even
when they represent the same set, and so Korat can generate two or
more DAGs that differ at the concrete level but represent isomor-
phic DAGs at the abstract level. To reduce the number of such ar-
rays that represent the same set (and the number of concrete DAGs
that represent isomorphic abstract DAGs), we can modify repOK
to require that the arrays be ordered such that “larger” arrays are
definitely not representatives of their equivalence classes.

The first order that we describe for arrays is by the number of
(immediate) children of the array elements. This requires a new
method repOKC (C for “Children”) that makes a small change in the
repOKB, replacing the line

if (child == children[j]) return false;

with

if (child == children[j]l ||
child.children.length < children[j].children.length)
return false;

The extra check for the length/size of the children eliminates from
the Korat search (and thus from generation) those arrays where
“later” elements have more children than “earlier” elements. For
example, consider two arrays, each with two elements, where the
lengths of children in the first array are 0 and 1, and the lengths
of children in the second array are 1 and 0. At the concrete level,
these arrays are different. However, they both represent the same
set (more precisely, belong to the same equivalence class) and thus
only one need to be explored to generate all non-equivalent DAGs.

The second order that we describe for arrays is by the number
of (total) descendants of the array elements. Figure 6 shows the
new repOKD method (D for “Descendants”), which differs from the
original repOKB method in three points. First, this method takes
an extra argument descendants that maps each node to its num-
ber of descendants. Second, this method returns an integer that is
the number of descendants, not just a boolean value. (The inte-
ger -1 encodes that the structural constraints were not satisfied and
correspond to false.) Third, this method computes the number of
descendants while checking the structural constraints. Specifically,
thisD keeps the number of descendants for the current node, and
childD is the number of descendants for the current child. If the
values of childD are not sorted, i.e., childD > maxD, the method
prunes the candidate.
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Figure 7 shows the experimental results that compare the three
methods: repOKB (basic), repOKC (with additional checks based on
children), and repOKD (with additional checks based on descen-
dants). More complex methods such as rep0OKD clearly require more
work from the user. However, they significantly reduce the num-
ber of explored and generated structures, the time for search and
generation, and subsequently the time for test execution.

We used the tool called nauty [31] to count the number of non-
isomorphic DAGs among those generated by Korat for the three
repOK methods. All three methods give the same number of non-
isomorphic DAGs, and these numbers appear in the Sloane’s En-
cyclopedia of Integer Sequences [37], increasing our confidence
in the correctness of these rep0K methods. (Since rep0K methods
are manually written, they could have errors themselves, especially
when adding symmetry-breaking predicates.) The DAGs actually
used for our testing at Google have additional properties, includ-
ing that each component must have at least two nodes, and their
numbers do not appear in the Sloane’s Encyclopedia.

4.3 Limitations

In theory, our methodology for generating fewer equivalent in-
puts should be general enough to support any equivalence rela-
tion. In practice, all the examples we have worked on use equiv-
alences based on graph isomorphism. In particular, our example
with DAGs uses the isomorphism of DAGs viewed at the abstract
level as pairs of nodes and edges. While this equivalence is coarser
then the Korat’s default equivalence based on the isomorphism of
concrete object graphs, they are still both based on graph isomor-
phism.

The question is how well would the methodology work if we had
a completely different equivalence relation. For example, for test-
ing some other code, we could define two DAGs to be equivalent if
they had the same number of edges, regardless of the graph struc-
ture. In such case, reducing the number of generated inputs would
require more extensive changes to the rep0K methods. Indeed, the
main question is how hard it is to manually add symmetry-breaking
predicates. We plan to investigate this further in the future. We
point out, however, that it is not necessary to generate only non-
equivalent inputs: even repOKD generates some equivalent inputs,
e.g., for size 7 it generates over 1.2 million equivalent inputs, six
times more than the number of non-equivalent inputs. The equiva-
lent inputs increase test generation and execution times.

5. EVALUATION

We present an evaluation of our two base algorithms for parallel
search in Korat, SEQ-ON and PAR-OFF. (SEQ-OFF runs Korat se-
quentially and then parallelizes only test execution, while PAR-ON
combines SEQ-ON and PAR-OFF.) Our evaluation uses a Google
application that takes as input a graph whose nodes are a set of en-
tities and whose edges are links among entities. The application



num. of total worker time [s] speedup
workers | time [s] | max. | avg. | min. ratio

1 569 | 555 | 555 | 555 1.00

2 322 308 | 293 | 279 1.77

4 166 151 | 144 | 134 3.42

8 95 80 72 66 5.99

16 56 40 37 34 10.16

32 38 21 20 17 14.97

64 32 12 10 9 17.78

128 28 7 6 5 20.32

256 32 5 3 3 17.78

512 47 5 2 2 12.11

1024 74 4 2 1 7.69

Figure 8: Speedup of running time for DAGs of size 7

requires that the input graph be a directed acyclic graph (DAG).
We therefore perform our evaluation using Korat for generation of
DAGs. Figure 1 shows example classes that represent DAGs, and
Section 4 discusses various rep0K methods for that representation.

Our experimental setup uses bounded-exhaustive generation of
test inputs and differential testing [32] as a test oracle. The ap-
plication computes certain reachability properties among the nodes
of the input DAG. The actual code under test is written in C++
and implements a highly optimized computation of the properties.
We additionally use a simple but slow implementation of the same
computation written in Java. We provide each input to both imple-
mentations and compare their outputs. Moreover, we do this for all
inputs that Korat generates within the given bounds.

5.1 Equi-distancing in SEQ-ON

We measured the running time of parallel Korat using SEQ-
ON on the Google’s infrastructure [7]. We first prepared candi-
date vectors using the equi-distancing algorithm (Figure 4) with
m = 8192 and then ran generation and execution of test inputs
onw = 1,2,4,...,512,1024 worker machines on a moderately
loaded cluster. Our experiments assess the speedup that parallel
Korat provides as a function of the number of workers.

We consider the total running time, which includes overhead
time for transferring data and files to the workers, scheduling, re-
source allocation, and fetching the results from the workers. To
account for resource allocation time, we separately operated the
scheduling system in two modes: in the first mode, we scheduled
all workers to start their tasks simultaneously by waiting for the
slowest worker to have its resources allocated; in the second mode,
each worker started its task as soon as its resources had been al-
located. In theory, the second mode should finish the overall ex-
ecution faster, but in practice we did not observe any significant
improvement over the first mode. Hence, resource allocation time
was near constant across the workers.

Our experimental setup for transferring files to and from the
workers was as follows. All inputs files (C++ binary under test,
Java jar files for Korat and differential implementation, and in-
put candidate vectors) were first transferred to Google File System
(GFS) [9] that served as the data store and as the distributor of files
to the workers. This transfer was computationally inexpensive one-
time operation, independent of the number of workers. Then, a
launcher program scheduled the tasks and allocated the resources
for the workers. As mentioned, relatively small resource allocation
on moderately used cluster was performed in time almost indepen-
dent of number of machines. Next, each worker was fetching input
files from GFS, and to minimize the load on GFS master, workers
were reading from GFS replicated files. Also, to take advantage of
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num. of total worker time [s] speedup
workers | time [s] max. avg. min. ratio

1] 129383 | 129365 | 129365 | 129365 1.00

2 67301 67282 66593 65904 1.92

4 34239 34220 34115 31874 3.78

8 18199 18180 16519 15080 7.11

16 9534 9514 8384 7820 13.57

32 5062 5041 4248 3875 25.55

64 2383 2359 2100 1894 54.27

128 1263 1238 1056 916 102.42

256 658 627 529 451 196.60

512 366 320 266 228 353.46

1024 238 164 132 111 543.55

Figure 9: Speedup of running time for DAGs of size 8

locality, input files were stored on the machines in the same cluster.
In our experiments, transfer time from GFS to workers experienced
linear increase in the number of workers. Finally, workers’ output
files and logs (basically stating that the code did not fail any test)
were transferred back to GFS, and the time for this transfer was
negligible. It is worth noting that for certain problem sizes, the total
overhead time is non-trivial, and increasing the number of workers
actually hurts the performance.

Figures 8 and 9 show the experimental results for DAGs of size
7 and 8 nodes, respectively. For a range of the number of worker
machines, we tabulate the total running time, the actual test gener-
ation and execution time for workers, and the speedup obtained by
using a different number of workers. Total running time includes
overhead time in addition to the (maximum) actual worker time
to (1) generate test inputs (DAGs), (2) execute each of them on
both implementations of the computation under test (the highly op-
timized C++ one and the non-optimized Java one), and (3) compare
the results from both implementations. We list maximum, average,
and minimum worker time. This time varies among the workers
(sometimes almost 50%) due to the different complexities of gen-
eration and execution of test inputs among the workers.

Figure 8 shows the results for size 7. While per-worker time ex-
perienced steady, almost linear decrease in the number of workers,
the overhead cost soon became the dominant term in the total run-
ning time and for large numbers of workers can reverse the benefit
of increasing the number of workers. The overhead cost was mainly
due to slower distribution of input files from GFS to workers as
the number of workers was increasing. Using GFS replication al-
leviated slower distribution but only to some extent. As in many
other parallel applications, the benefits of using too many workers
can become overshadowed by the high overhead costs. For our ap-
plication and size 7, for example, running parallel Korat on 1024
workers is slower than running it on 16 workers.

Figure 9 shows the results for size 8. This is a non-trivial prob-
lem for a single machine as 3.4 GHz desktop would take almost
two days to generate and test more than 200 million input DAGs.
(During the generation of this many DAGs, Korat explores more
than 4 billion candidate vectors.) For this size, the benefits of using
up to 1024 workers far outweigh the overhead costs. We repeated
experiments for number of machines varying from 1 to 1024 and
recorded the relative speedup with parallelization over 1 machine
taken as the baseline.

5.2 Fast-forwarding in PAR-OFF

We also performed an experiment to measure quality of random
selection in PAR-OFF. Recall that fast-forwarding randomly selects
a given number of candidate vectors to perform the initial parallel



num. of range ratio
workers | min. | avg. | max.
1] 1.00 | 1.00 [ 1.00
2| 1.00 | 1.00 | 1.00
41 1.00 | 1.01 1.01
81 1.03 | 1.15]| 1.20
16 | 1.25 | 1.41 1.79
32| 240 | 3.65 | 6.89
64 | 790 | 793 | 835
128 | 790 | 7.94 | 8.34
256 | 790 | 798 | 9.14
512 | 790 | 8.04 | 9.20
1024 | 7.91 | 8.08 | 10.89

Figure 10: Potential speedup with fast-forwarding

search in PAR-OFF. Like our other algorithms, PAR-OFF guaran-
tees that the workers explore each candidate vector exactly once,
but the speedup in PAR-OFF depends on the initial set of randomly
chosen candidate vectors.

Figure 10 summarizes the results of our experiment for DAGs of
size 7. We ran fast-forwarding for 50 different seeds. For each
seed, we randomly select a number of candidates (equal to the
number of workers), measure the range of candidate vectors be-
tween these selected candidate vectors, and compute the maximum
of these ranges. We then compute the potential speedup of the ini-
tial PAR-OFF run over a sequential run by dividing the total num-
ber of explored candidate vectors with the maximum range: while
a sequential run needs to explore all candidates to finish, PAR-OFF
finishes when the largest range is explored. Note that this compu-
tation only measures the number of candidate vectors and not the
actual running time.

We tabulate the results for a number of workers. The potential
speedup increases as the number of workers increase up to 64 and
then plateaus after that. (Notice that, for the same size 7, PAR-
OFF plateaus for the number of workers similar as the number of
workers for which SEQ-ON plateaus.) The variance of potential
speedup across random seeds is fairly small for any of workers (ex-
cept 32), showing that fast-forwarding can relatively well choose
random candidate vectors for the initial parallel run of PAR-OFF.

6. RELATED WORK

While there is a plethora of research on parallel search algo-
rithms [11, 16, 18], their use in state-space search for model check-
ing and testing of programs is relatively new. Stern and Dill’s
parallel Mur¢ [38] was among the first tools to parallelize a gen-
eral purpose model checker. The parallel Murg search algorithm
maintains a shared set of visited states to prevent workers from ex-
ploring the same states. Maintaining this set requires expensive
inter-worker communication and influences the scalability of the
algorithm. Lerda and Visser [27] presented a similar technique for
parallelizing the Java PathFinder model checker (JPF) [44].

Lerda and Sisto [26] implemented a parallel version of the SPIN
model checker [12] to check for safety properties. Barnat at al. [2]
extended this work to support model checking for linear temporal
logic (LTL) but require the nested depth-first search to be sequen-
tially scheduled.

Kumar and Mercer [25] proposed an algorithm for dynamic load-
balancing to achieve even workload among workers. However,
the inter-worker communication overhead still remains significant.
Jones and Sorber [17] proposed a randomized algorithm for check-
ing LTL violations, implemented as an extension to Mur¢ [38].
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This extension improved the time to find violations and is suited
to run in an environment with non-dedicated workers, but it does
not exhaustively explore the state space. Palmer and Gopalakrish-
nan [35] apply partial order reduction to parallel model-checking;
by reducing the size of the state space, they also reduce communi-
cation among workers.

Dwyer et al. [8] have recently developed the Parallel Random-
ized State-space Search (PRSS) for the JPF [44]. PRSS requires
minimal communication among workers. It runs the model checker
on different workers using different randomization seeds, which al-
lows the workers to explore the state space in different orders. Ex-
perimental results show that PRSS can give significant speedups in
time to find first error. However, when no errors are found, each
worker in PRSS explores the entire state space. A key difference
between PRSS and parallel Korat is that our algorithms have no
overlap among the explorations done by distinct workers, while
still maintaining low inter-worker communication. All four of our
algorithms also ensure that test execution on distinct workers exe-
cute disjoint sets of inputs.

The idea of using constraints to represent inputs dates back at
least three decades [5, 13,23,36] and was implemented in various
tools, including EFFIGY [23], TEGTGEN [24], and INKA [10].
But the focus of prior work was on solving constraints on prim-
itive data and not on solving constraints on complex structures,
which requires very different constraint solving techniques. Ko-
rat [4,29] and TestEra [19,21] are among the first frameworks to
support constraint-based generation of complex structures.

7. CONCLUSIONS

We have presented two significant improvements of Korat: (1) a
set of algorithms for parallel testing, and (2) a methodology for
generating fewer equivalent inputs. Korat is a constraint-based test-
generation tool that performs a systematic search to generate all
valid test inputs (within the bounds). Our algorithms for parallel
testing split generation and execution across a number of worker
machines, both off-line (when the inputs are saved on disk) and on-
line (when execution immediately follows generation). We also de-
scribe a novel methodology for reducing the number of equivalent
inputs that Korat generates. These improvements were motivated
by testing an application developed at Google. The experimental
results on running parallel Korat across up to 1024 computers on
the Google’s infrastructure show that test generation and execution
can achieve significant speedup.

In the future, we plan to investigate parallelization of Korat for
systems that have cheaper inter-worker communication (e.g., multi-
core processors or dedicated clusters) and to evaluate parallel Ko-
rat on more applications. We also plan to investigate parallel ver-
sions of other testing algorithms. With the increasingly available
multi-core processors and large clusters of machines (such as the
Google’s distributed computing infrastructure), we believe it is im-
portant to study how to exploit that computational power to im-
prove testing tools, not only for testing parallel programs but also
for testing sequential programs.
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