
The Julia Express

Bogumił Kamiński

June 9, 2016

Contents

1 Introduction 2

2 Getting around 2

3 Basic literals and types 3

4 Complex literals and types 4

4.1 Tuples . 4

4.2 Arrays . 5

4.3 Composite types . 6

4.4 Dictionaries . 6

5 Strings 7

6 Programming constructs 7

7 Variable scoping 9

8 Modules 10

9 Operators 10

10 Essential general usage functions 11

11 Reading and writing data 11

12 Random numbers 12

13 Statistics and machine learning 12

14 Plotting 12

15 Macros 12

16 Taking it all together example 13

1

The Julia Express 2

1 Introduction

The Purpose of this document is to introduce programmers to Julia programming by example. This is a simplified
exposition of the language.1

It is best to execute these examples by copying them to a file and next running them using include function.

If some packages are missing on your system use Pkg.add to require installing them. There are many add-on packages
which you can browse at http://pkg.julialang.org/.

Major stuff not covered (please see the documentation):

1) parametric types;
2) parallel and distributed processing;
3) advanced I/O operations;
4) package management; see Pkg;
5) interaction with system shell; see run;
6) exception handling; see try;
7) creation of coroutines; see Task;
8) two-way integration with C and Fortran.

You can find current Julia documentation at http://julia.readthedocs.org/en/latest/manual/.

Julia Express was tested using the following 64-bit Julia version:

versioninfo()

Julia Version 0.4.0

Commit 0ff703b* (2015-10-08 06:20 UTC)

Platform Info:

System: Windows (x86_64-w64-mingw32)

CPU: Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz

WORD_SIZE: 64

BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Sandybridge)

LAPACK: libopenblas64_

LIBM: libopenlibm

LLVM: libLLVM-3.3

Remember that you can expect every major version of Julia to introduce breaking changes.

Check https://github.com/JuliaLang/julia/blob/master/NEWS.md for release notes.

All sugestions how this guide can be improved are welcomed. Please contact me at bkamins@sgh.waw.pl.

2 Getting around

Running julia invokes interactive (REPL) mode. In this mode some useful commands are:

1) ^D (exits Julia);
2) ^C (interrupts computations);
3) ? (enters help mode)
4) ; (enters system shell mode)
5) putting ; after the expression will disable showing of its value.

Examples of some essential functions in REPL (they can be also invoked in scripts):

apropos("apropos") # search documentation for "apropos" string

@less(max(1,2)) # show the definition of max function when invoked with arguments 1 and 2

whos() # list of global variables and their types

cd("D:/") # change working directory to D:/ (on Windows)

pwd() # get current working directory

include("file.jl") # execute source file

exit(1) # exit with code 1 (exit code 0 by default)

clipboard([1,2]) # copy data to system clipboard

clipboard() # load data from system clipboard as string

workspace() # clear worskspace - create new Main module (only to be used interactively)

You can execute Julia script by running julia script.jl.

Try saving the following example script to a file and run it (more examples of all the constructs used are given in
following sections):

1The rocket ship clip is free for download at http://www.clipartlord.com/free-cartoon-rocketship-clip-art-2/.

http://pkg.julialang.org/
http://julia.readthedocs.org/en/latest/manual/
https://github.com/JuliaLang/julia/blob/master/NEWS.md
mailto:bkamins@sgh.waw.pl
http://www.clipartlord.com/free-cartoon-rocketship-clip-art-2/

The Julia Express 3

"Sieve of Eratosthenes function docstring"

function es(n::Int) # accepts one integer argument

isprime = ones(Bool, n) # n-element vector of true-s

isprime[1] = false # 1 is not a prime

for i in 2:round(Int, sqrt(n)) # loop integers from 2 to sqrt(n)

if isprime[i] # conditional evaluation

for j in (i*i):i:n # sequence with step i

isprime[j] = false

end

end

end

return filter(x -> isprime[x], 1:n) # filter using anonymous function

end

println(es(100)) # print all primes less or equal than 100

@time length(es(10^7)) # check function execution time and memory usage

3 Basic literals and types

Basic scalar literals (x::Type is a literal x with type Type assertion):

1::Int64 # 64-bit integer, no overflow warnings, fails on 32 bit Julia

1.0::Float64 # 64-bit float, defines NaN, -Inf, Inf

true::Bool # boolean, allows "true" and "false"

’c’::Char # character, allows Unicode

"s"::AbstractString # strings, allows Unicode, see also Strings

All basic types are immutable. Specifying type assertion is optional (and usually it is not needed, but I give it to show
how you can do it). Type assertions for variables are made in the same way and may improve code performance.

If you do not specify type assertion Julia will choose a default. Note that defaults might be different on 32-bit and
64-bit versions of Julia. A most important difference is for integers which are Int32 and Int64 respectively. This means
that 1::Int32 assertion will fail on 64-bit version. Notably Int is either Int64 or Int32 depending on version (the same
with UInt).

There is no automatic type conversion (especially important in function calls). Has to be explicit:

Int64(’a’) # character to integer

Int64(2.0) # float to integer

Int64(1.3) # inexact error

Int64("a") # error no conversion possible

Float64(1) # integer to float

Bool(1) # converts to boolean true

Bool(0) # converts to boolean false

Bool(2) # conversion error

Char(89) # integer to char

string(true) # cast bool to string (works with other types, note small caps)

string(1,true) # string can take more than one argument and concatenate them

zero(10.0) # zero of type of 10.0

one(Int64) # one of type Int64

General conversion can be done using convert(Type, x):

convert(Int64, 1.0) # convert float to integer

Parsing strings can be done using parse(Type, str):

parse(Int64, "1") # parse "1" string as Int64

Automatic promotion of many arguments to common type (if any) using promote:

promote(true, BigInt(1)//3, 1.0) # tuple (see Tuples) of BigFloats, true promoted to 1.0

promote("a", 1) # promotion to common type not possible

Many operations (arithmetic, assignment) are defined in a way that performs automatic type promotion.

One can verify type of argument:

The Julia Express 4

Number

Complex{T<:Real} Real

Irrational{sym} Rational{T<:Integer} Integer

Bool Signed

Int8

Int16

Int32

Int64

Int128

Unsigned

UInt8

UInt16

UInt32

UInt64

UInt128

BigInt

AbstractFloat

Float16

Float32

Float64

BigFloat

Figure 1: Hierarchy of numeric types

typeof("abc") # ASCIIString returned which is a AbstractString subtype

isa("abc", AbstractString) # true

isa(1, Float64) # false, integer is not a float

isa(1.0, Float64) # true

isa(1.0, Number) # true, Number is abstract type

super(Int64) # supertype of Int64

subtypes(Real) # subtypes of bastract type Real

It is possible to perform calculations using arbitrary precision arithmetic or rational numbers:

BigInt(10)^1000 # big integer

BigFloat(10)^1000 # big float, see documentation how to change default precision

123//456 # rational numbers are created using // operator

Type hierarchy of all standard numeric types is given in Figure 1.

4 Complex literals and types

Type beasts:

Any # all objects are of this type

Union{} # subtype of all types, no object can have this type

Void # type indicating nothing, subtype of Any

nothing # only instance of Void

Additionally #undef indicates an incompletely initialized instance (see documentation for details).

4.1 Tuples

Tuples are immutable sequences indexed from 1:

() # empty tuple

(1,) # one element tuple

("a", 1) # two element tuple

(’a’, false)::Tuple{Char, Bool} # tuple type assertion

x = (1, 2, 3)

x[1] # 1 (element)

x[1:2] # (1, 2) (tuple)

x[4] # bounds error

x[1] = 1 # error - tuple is not mutable

a, b = x # tuple unpacking a=1, b=2

The Julia Express 5

4.2 Arrays

Arrays are mutable and passed by reference. Array creation:

Array(Char, 2, 3, 4) # 2x3x4 array of Chars

Array{Int64}(0, 0) # degenerate 0x0 array of Int64

cell(2, 3) # 2x3 array of Any

zeros(5) # vector of Float64 zeros

ones(5) # vector of Float64 ones

ones(Int64, 2, 1) # 2x1 array of Int64 ones

trues(3), falses(3) # tuple of vector of trues and of falses

eye(3) # 3x3 Float64 identity matrix

x = linspace(1, 2, 5)# iterator having 5 equally spaced elements

collect(x) # converts iterator to vector

1:10 # iterable from 1 to 10

1:2:10 # iterable from 1 to 9 with 2 skip

reshape(1:12, 3, 4) # 3x4 array filled with 1:12 values

fill("a", 2, 2) # 2x2 array filled with "a"

repmat(eye(2), 3, 2) # 2x2 identity matrix repeated 3x2 times

x = [1, 2] # two element vector

resize!(x, 5) # resize x in place to hold 5 values (filled with garbage)

[1] # vector with one element (not a scalar)

[x * y for x in 1:2, y in 1:3] # comprehension generating 2x3 array

Float64[x^2 for x in 1:4] # casting comprehension result to Float64

[1 2] # 1x2 matrix (hcat function)

[1 2]’ # 2x1 matrix (after transposing)

[1, 2] # vector (vcat function)

[1; 2] # vector (hvcat function)

[1 2 3; 1 2 3] # 2x3 matrix (hvcat function)

[1; 2] == [1 2]’ # false, different array dimensions

[(1, 2)] # 1-element vector

collect((1, 2)) # 2-element vector by tuple unpacking

[[1 2] 3] # append to a row vector (hcat)

[[1; 2]; 3] # append to a column vector (vcat)

Vectors (1D arrays) are treated as column vectors.

Julia offers sparse and distributed matrices (see documentation for details).

Commonly needed array utility functions:

a = [x * y for x in 1:2, y in 1, z in 1:3] # 2x1x3 array of Int64

ndims(a) # number of dimensions in a

eltype(a) # type of elements in a

length(a) # number of elements in a

size(a) # tuple containing dimension sizes of a

vec(a) # cast array to vetor (single dimension)

squeeze(a, 2) # remove 2nd dimension as it has size 1

sum(a, 3) # calculate sums for 3rd dimensions, similarly: mean, std,

prod, minimum, maximum, any, all

count(x -> x > 0, a) # count number of times a predicate is true, similar: all, any

Access functions:

a = linspace(0, 1) # LinSpace{Float64} of length 50

a[1] # get scalar 0.0

a[end] # get scalar 1.0 (last position)

a[1:2:end] # every second element from range, LinSpace{Float64}

a[repmat([true, false], 25)] # select every second element, Array{Float64,1}

a[[1, 3, 6]] # 1st, 3rd and 6th element of a, Array{Float64,1}

sub(a, 1:2:50) # view into subarray of a

endof(a) # last index of the collection a

The Julia Express 6

Observe the treatment of trailing singleton dimensions:

a = reshape(1:12, 3, 4)

a[:, 1:2] # 3x2 matrix

a[:, 1] # 3-element vector

a[1, :] # 1x4 matrix

a[:, :, 1, 1] # works 3x4 matrix

a[:, :, :, [true]] # wroks 3x4x1x1 matrix

a[1, 1, [false]] # works 3x4x0 matrix

Array assignment:

x = reshape(1:8, 2, 4)

x[:,2:3] = [1 2] # error; size mismatch

x[:,2:3] = repmat([1 2], 2) # OK

x[:,2:3] = 3 # OK

Arrays are assigned and passed by reference. Therefore copying is provided:

x = cell(2)

x[1] = ones(2)

x[2] = trues(3)

a = x

b = copy(x) # shallow copy

c = deepcopy(x) # deep copy

x[1] = "Bang"

x[2][1] = false

a # identical as x

b # only x[2][1] changed from original x

c # contents to original x

Array types syntax examples:

cell(2)::Array{Any, 1} # vector of Any

[1 2]::Array{Int64, 2} # 2 dimensional array of Int64

[true; false]::Vector{Bool} # vector of Bool

[1 2; 3 4]::Matrix{Int64} # matrix of Int64

4.3 Composite types

Composite types are mutable and passed by reference.

You can define and access composite types:

type Point

x::Int64

y::Float64

meta

end

p = Point(0, 0.0, "Origin")

p.x # access field

p.meta = 2 # change field value

p.x = 1.5 # error, wrong data type

p.z = 1 # error - no such field

fieldnames(p) # get names of instance fields

fieldnames(Point) # get names of type fields

You can define type to be immutable by replacing type by immutable. There are also union types (see documentation
for details).

4.4 Dictionaries

Associative collections (key-value dictionaries):

The Julia Express 7

x = Dict{Float64, Int64}() # empty dictionary mapping floats to integers

y = Dict("a"=>1, "b"=>2) # filled dictionary

y["a"] # element retrieval

y["c"] # error

y["c"] = 3 # added element

haskey(y, "b") # check if y contains key "b"

keys(y), values(y) # tuple of iterators returning keys and values in y

delete!(y, "b") # delete key from a collection, see also: pop!

get(y,"c","default") # return y["c"] or "default" if not haskey(y,"c")

Julia also supports operations on sets and dequeues, priority queues and heaps (please refer to documentation).

5 Strings

String operations:

"Hi " * "there!" # string concatenation

"Ho " ^ 3 # repeat string

string("a= ", 123.3) # create using print function

repr(123.3) # fetch value of show function to a string

contains("ABCD", "CD") # check if first string contains second

"\"\n\t\$" # C-like escaping in strings, new \$ escape

x = 123

"$x + 3 = $(x+3)" # unescaped $ is used for interpolation

"\$199" # to get a $ symbol you must escape it

PCRE regular expressions handling:

r = r"A|B" # create new regexp

ismatch(r, "CD") # false, no match found

m = match(r, "ACBD") # find first regexp match, see documentation for details

There is a vast number of string functions — please refer to documentation.

6 Programming constructs

The simplest way to create new variable is by assignment:

x = 1.0 # x is Float64

x = 1 # now x is Int32 on 32 bit machine and Int64 on 64 bit machine

y::Float64 = 1.0 # y must be Float64, not possible in global scope

if in global scope performs assertion on y type when it exists

Expressions can be compound using ; or begin end block:

x = (a = 1; 2 * a) # after: x = 2; a = 1

y = begin

b = 3

3 * b

end # after: y = 9; b = 3

There are standard programming constructs:

if false # if clause requires Bool test

z = 1

elseif 1==2

z = 2

else

a = 3

end # after this a = 3 and z is undefined

1==2 ? "A" : "B" # standard ternary operator

The Julia Express 8

i = 1

while true

i += 1

if i > 10

break

end

end

for x in 1:10 # x in collection, can also use = here instead of in

if 3 < x < 6

continue # skip one iteration

end

println(x)

end # x is introduced in loop outer scope

You can define your own functions:

f(x, y = 10) = x + y # new function f with y defaulting to 10

last result returned

f(3, 2) # simple call, 5 returned

f(3) # 13 returned

function g(x::Int, y::Int) # type restriction

return y, x # explicit return of a tuple

end

g(x::Int, y::Bool) = x * y # add multiple dispatch

g(2, true) # second definition is invoked

methods(g) # list all methods defined for g

(x -> x^2)(3) # anonymous function with a call

() -> 0 # anonymous function with no arguments

h(x...) = sum(x)/length(x) - mean(x) # vararg function; x is a tuple

h(1, 2, 3) # result is 0

x = (2, 3) # tuple

f(x) # error

f(x...) # OK - tuple unpacking

s(x; a = 1, b = 1) = x * a / b # function with keyword arguments a and b

s(3, b = 2) # call with keyword argument

t(; x::Int64 = 2) = x # single keyword argument

t() # 2 returned

t(; x::Bool = true) = x # no multiple dispatch for keyword arguments; function overwritten

t() # true; old function was overwritten

q(f::Function, x) = 2 * f(x) # simple function wrapper

q(x -> 2x, 10) # 40 returned, no need to use * in 2x (means 2*x)

q(10) do x # creation of anonymous function by do construct, useful eg. in IO

2 * x

end

m = reshape(1:12, 3, 4)

map(x -> x ^ 2, m) # 3x4 array returned with transformed data

filter(x -> bits(x)[end] == ’0’, 1:12) # a fancy way to choose even integers from the range

As a convention functions with name ending with ! change their arguments in-place. See for example resize! in this
document.

Default function argument beasts:

y = 10

f1(x=y) = x; f1() # 10

f2(x=y,y=1) = x; f2() # 10

f3(y=1,x=y) = x; f3() # 1

f4(;x=y) = x; f4() # 10

f5(;x=y,y=1) = x; f5() # error - y not defined yet :(

f6(;y=1,x=y) = x; f6() # 1

The Julia Express 9

7 Variable scoping

The following constructs introduce new variable scope: function, while, for, try/catch, let, type.

You can define variables as:

• global: use variable from global scope;

• local: define new variable in current scope;

• const: ensure variable type is constant (global only).

Special cases:

t # error, variable does not exist

f() = global t = 1

f() # after the call t is defined globally

function f1(n)

x = 0

for i = 1:n

x = i

end

x

end

f1(10) # 10; inside loop we use outer local variable

function f2(n)

x = 0

for i = 1:n

local x

x = i

end

x

end

f2(10) # 0; inside loop we use new local variable

function f3(n)

for i = 1:n

local x # this local can be omitted; for introduces new scope

x = i

end

x

end

f3(10) # error; x not defined in outer scope

const x = 2

x = 3 # warning, value changed

x = 3.0 # error, wrong type

function fun() # no warning

const x = 2

x = true

end

fun() # true, no warning

Global constants speed up execution.

The let rebinds the variable:

Fs = cell(2)

i = 1

while i <= 2

j = i

Fs[i] = () -> j

The Julia Express 10

i += 1

end

Fs[1](), Fs[2]() # (2, 2); the same binding for j

Fs = cell(2)

i = 1

while i <= 2

let j = i

Fs[i] = () -> j

end

i += 1

end

Fs[1](), Fs[2]() # (1, 2); new binding for j

Fs = cell(2)

i = 1

for i in 1:2

j = i

Fs[i] = () -> j

end

Fs[1](), Fs[2]() # (1, 2); for loops and comprehensions rebind variables

8 Modules

Modules encapsulate code. Can be reloaded, which is useful to redefine functions and types, as top level functions
and types are defined as constants.

module M # module name

export x # what module exposes for the world

x = 1

y = 2 # hidden variable

end

whos(M) # list exported variables

x # not found in global scope

M.y # direct variable access possible

import all exported variables

load standard packages this way

using M

#import variable y to global scope (even if not exported)

import M.y

9 Operators

Julia follows standard operators with the following quirks:

true || false # binary or operator (singeltons only), || and && use short-circut evaluation

[1 2] & [2 1] # bitwise and operator

1 < 2 < 3 # chaining conditions is OK (singeltons only)

[1 2] .< [2 1] # for vectorized operators need to add ’.’ in front

x = [1 2 3]

2x + 2(x+1) # multiplication can be omitted between a literal and a variable or a left parenthesis

y = [1, 2, 3]

x + y # error

x .+ y # 3x3 matrix, dimension broadcasting

x + y’ # 1x3 matrix

x * y # array multiplication, 1-element vector (not scalar)

The Julia Express 11

x .* y # element-wise multiplication, 3x3 array

x == [1 2 3] # true, object looks the same

x === [1 2 3] # false, objects not identical

z = reshape(1:9, 3, 3)

z + x # error

z .+ x # x broadcasted vertically

z .+ y # y broadcasted horizontally

explicit broadcast of singelton dimensions

function + is called for each array element

broadcast(+, [1 2], [1; 2])

Many typical matrix transformation functions are available (see documentation).

10 Essential general usage functions

show(collect(1:100)) # show text representation of an object

eps() # distance from 1.0 to next representable Float64

nextfloat(2.0) # next float representable, similarly provided prevfloat

isequal(NaN, NaN) # true

NaN == NaN # false

NaN === NaN # true

isequal(1, 1.0) # true

1 == 1.0 # true

1 === 1.0 # false

isfinite(Inf) # false, similarly provided: isinf, isnan

fld(-5, 3), mod(-5, 3) # (-2, 1), division towards minus infinity

div(-5, 3), rem(-5, 3) # (-1, -2), division towards zero

find(x -> mod(x, 2) == 0, 1:8) # find indices for which function returns true

x = [1 2]; identity(x) === x # true, identity function

info("Info") # print information, similarly warn and error (raises error)

ntuple(x->2x, 3) # create tuple by calling x->2x with values 1, 2 and 3

isdefined(:x) # if variable x is defined (:x is a symbol)

y = cell(2); isassigned(y, 3) # if position 3 in array is assigned (not out of bounds or #undef)

fieldtype(typeof(1:2),:start) # get type of the field in composite type (passed as symbol)

fieldnames(typeof(1:2)) # get field names of a type

1:5 |> exp |> sum # function application chaining

zip(1:5, 1:3) |> collect # convert iterables to iterable tuple and pass it to collect

enumerate("abc") # create iterator of tuples (index, collection element)

collect(enumerate("abc"))

isempty("abc") # check if collection is empty

’b’ in "abc" # check if element is in a collection

indexin(collect("abc"), collect("abrakadabra")) # [11, 9, 0] (’c’ not found), needs arrays

findin("abc", "abrakadabra") # [1, 2] (’c’ was not found)

unique("abrakadabra") # return unique elements

issubset("abc", "abcd") # check if every element in fist collection is in the second

indmax("abrakadabra") # index of maximal element (3 - ’r’ in this case)

findmax("abrakadabra") # tuple: maximal element and its index

filter(x->mod(x,2)==0, 1:10) # retain elements of collection that meet predicate

dump(1:2:5) # show all user-visible structure of an object

sort(rand(10)) # sort 10 uniform random variables

11 Reading and writing data

For I/O details refer documentation. Basic operations:

• readdlm, readcsv: read from file

• writedlm, writecsv: write to a file

The Julia Express 12

Warning! Trailing spaces are not discarded if delim=’ ’ in file reading.

12 Random numbers

Basic random numbers:

srand(1) # set random number generator seed to 1

rand() # generate random number from U[0,1)

rand(3, 4) # generate 3x4 matrix of random numbers from U[0,1]

rand(2:5, 10) # generate vector of 10 random integer numbers in range form 2 to 5

randn(10) # generate vector of 10 random numbers from standard normal distribution

Advanced randomness form Distributions package:

using Distributions # load package

sample(1:10, 10) # single bootstrap sample from set 1-10

b = Beta(0.4, 0.8) # Beta distribution with parameters 0.4 and 0.8

see documentation for supported distributions

mean(b) # expected value of distribution b

see documentation for other supported statistics

rand(b, 100) # 100 independent random samples from distribution b

13 Statistics and machine learning

Visit http://juliastats.github.io/ for the details (in particular R-like data frames).

Starting with Julia version 0.4 there is a core language construct Nullable that allows to represent missing value (similar
to Haskell Maybe).

x1 = Nullable(1) # contains value

x2 = Nullable{Int64}() # missing value

get(x1) # OK

get(x2) # error - missing

isnull(x1) # false

isnull(x2) # true

14 Plotting

There are several plotting packages for Julia: Winston, Gadfly and PyPlot. Here we show how to use on Winston and
Gadfly.

using Winston # load Winston plotting package

x = linspace(0, 1, 100)

y = sin(4x*pi) .* exp(-5x)

p = FramedPlot(title="4x\\pi",xlabel="x", ylabel="f(x)")

add(p, Curve(x, y))

savefig(p, "fun.pdf")

using Gadfly

srand(1) # second plot

x, y = randn(100), randn(100)

plot(x = x, y = y) # need to give module name as Winston is also loaded

15 Macros

You can define macros (see documentation for details). Useful standard macros.

Assertions:

http://juliastats.github.io/

The Julia Express 13

@assert 1 == 2 "ERROR" # 2 macro arguments; error raised

using Base.Test # load Base.Test module

@test 1 == 2 # similar to assert; error

@test_approx_eq 1 1.1 # error

@test_approx_eq_eps 1 1.1 0.2 # no error

Function vectorization:

t(x::Float64, y::Float64 = 1.0) = x * y

t(1.0, 2.0) # OK

t([1.0 2.0]) # error

@vectorize_1arg Float64 t # vectorize first argument

t([1.0 2.0]) # OK

t([1.0 2.0], 2.0) # error

@vectorize_2arg Float64 t # vectorize two arguments

t([1.0 2.0], 2.0) # OK

t(2.0, [1.0 2.0]) # OK

t([1.0 2.0], [1.0 2.0]) # OK

Benchmarking:

@time [x for x in 1:10^6].’ # print time and memory

@timed [x for x in 1:10^6].’ # return value, time and memory

@elapsed [x for x in 1:10^6] # return time

@allocated [x for x in 1:10^6] # return memory

tic() # start timer

toc() # stop timer and print time

tic(); toq() # stop timer and return time

16 Taking it all together example

using Winston

using Distributions

using KernelDensity

generate 100 observations from correlated normal variates

srand(1)

n = 100

dist = MvNormal([0.0; 0.0], [1.0 0.5; 0.5 1.0])

r = rand(dist, n)’

create 100 000 bootstrap replications and fetch time and memory used

@time bootcor = Float64[cor(r[sample(1:n, n),:])[1, 2] for i in 1:10^5]

calculate kernel density estimator

kdeboot = KernelDensity.kde(bootcor)

h = hist(bootcor, 100)

p = plothist((h[1], h[2]/1000), linewidth=5)

add(p, Curve(kdeboot.x, kdeboot.density,

color=(0,1,0), linewidth=3)) # color in RGB

add(p, Slope(Inf, (0.5, 0), color=(1,0,0)))

savefig(p, "hist.pdf")

This is what you should obtain:

The Julia Express 14

0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

	Introduction
	Getting around
	Basic literals and types
	Complex literals and types
	Tuples
	Arrays
	Composite types
	Dictionaries

	Strings
	Programming constructs
	Variable scoping
	Modules
	Operators
	Essential general usage functions
	Reading and writing data
	Random numbers
	Statistics and machine learning
	Plotting
	Macros
	Taking it all together example

