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Abstract

DNA probe arrays have emerged as a core genomic technology that
enables cost-effective gene expression monitoring, mutation detec-
tion, single nucleotide polymorphism analysis and other genomic
analyses. DNA chips are manufactured through a highly scal-
able process, Very Large-Scale Immobilized Polymer Synthesis (VL-
SIPS), that combines photolithographic technologies adapted from
the semiconductor industry with combinatorial chemistry. Com-
mercially available DNA chips contain more than a half million
probes and are expected to exceed one hundred million probes in
the next generation. This paper is one of the first attempts to apply
VLSI CAD methods to the problem of probe placement in DNA
chips, where the main objective is to minimize total border cost
(i.e., the number of nucleotide mismatches between adjacent sites).

We make the following contributions. First, we propose sev-
eral partitioning-based algorithms for DNA probe placement that
improve solution quality by over 4% compared to best previously
known methods. Second, we give a simple in-place probe re-
embedding algorithm with solution quality better than previous
“chessboard” and batched greedy algorithms. Third, we experimen-
tally evaluate scalability and suboptimality of existing and newly
proposed probe placement algorithms. Interestingly, we find that
DNA placement algorithms appear to have better suboptimality
properties than those recently reported for VLSI placement algo-
rithms [7, 8].

1 Introduction

DNA probe arrays – DNA arrays or DNA chips for short – have
recently emerged as one of the core genomic technologies. They
provide cost-effective means for obtaining fast and accurate re-
sults in a wide range of genomic analyses, including gene expres-
sion monitoring, mutation detection, and single nucleotide poly-
morphism analysis (see [23] for a survey). Existing applications
already cover many diverse fields ranging from healthcare to envi-
ronmental sciences and law enforcement, and the number of appli-
cations is growing at an exponential rate [14, 27]. The rapid adop-
tion of DNA arrays is due to a unique combination of robust manu-
facturing technology that leverages semiconductor wafer processes,
massive parallel measurement capabilities, and highly accurate and
reproducible results.
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DNA arrays are manufactured through a highly scalable pro-
cess, referred to as Very Large-Scale Immobilized Polymer Syn-
thesis (VLSIPS), that combines photolithographic technologies
adapted from the semiconductor industry with combinatorial chem-
istry [1, 2, 13]. Similar to Very Large Scale Integration (VLSI)
circuit manufacturing, multiple copies of a DNA array are simul-
taneously synthesized on a wafer, which is typically made out of
quartz. When synthesis is complete, the wafers are diced and ar-
rays are packaged individually. Depending on the number of dis-
tinct probes per array, a single 5′′×5′′ wafer can yield between 49
and 400 arrays.

The VLSIPS manufacturing process can be briefly described as
follows. To initiate synthesis, linker molecules including a photo-
labile protective group are attached to the wafer, forming a regular
2-dimensional pattern of synthesis sites. Probe synthesis then pro-
ceeds in successive steps, with one nucleotide (A, C, T, or G) being
synthesized at a selected set of sites in each step. To select which
sites will receive nucleotides, photolithographic masks are placed
over the wafer. Exposure to light de-protects linker molecules at the
non-masked sites. Once the desired sites have been activated in this
way, a solution containing a single type of nucleotide (which bears
its own photolabile protection group to prevent any probe from
growing by more than one nucleotide) is flushed over the wafer’s
surface. Protected nucleotides attach to the unprotected linkers, ini-
tiating the probe synthesis process. In each subsequent step, a new
mask is used to enable selective de-protection and single-nucleotide
synthesis. This cycle is repeated until all probes have been fully
synthesized.

Current commercial DNA arrays integrate hundreds of thou-
sands of different probes on a surface only slightly larger than
1cm2. Next-generation designs, enabled by the rapid scaling of the
DNA array manufacturing processes into the sub-micron domain,
are expected to integrate up to hundreds of millions of different
probes [2, 23]. As the number and size of DNA array designs is
expected to ramp up in coming years, there is an urgent need for
high-quality software tools to assist in the design and manufactur-
ing process. Existing design tools, dominated by ad-hoc heuristics
with unknown suboptimality properties, are not well suited to han-
dle the next generation of high-density arrays.

1.1 The Border Minimization Problem

Let M1,M2, . . . ,MK denote the sequence of masks used in the syn-
thesis of an array, and let si ∈ {A,C,T,G} be the nucleotide synthe-
sized after exposing mask Mi. Every probe in the array must be a
subsequence of the nucleotide deposition sequence S = s1s2 . . .sK .
In case a probe corresponds to multiple subsequences of S, one such
subsequence, or “embedding” of the probe into S, must be chosen



as the synthesis schedule for the probe. Clearly, the geometry of the
masks is uniquely determined by the placement of the probes on the
array and the particular synthesis schedule used for each probe.

Under ideal manufacturing conditions, the functionality of a
DNA array is not affected by the placement of the probes on the
chip or by the probe synthesis schedules. In practice, since the
manufacturing process is prone to errors, probe locations and syn-
thesis schedules affect to a great degree the hybridization sensitiv-
ity and ultimately the functionality of the DNA array.1 There are
several types of synthesis errors that take place during array man-
ufacturing. First, a probe may not lose its protective group when
exposed to light, or the protective group may be lost but the nu-
cleotide to be synthesized may not attach to the probe. Second, due
to diffraction, internal reflection, and scattering, unintended illumi-
nation may occur at sites that are geometrically close to intention-
ally exposed regions. The first type of manufacturing errors can be
effectively controlled by careful choice of manufacturing process
parameters, e.g., by proper control of exposure times and by inser-
tion of correction steps that irrevocably end synthesis of all probes
that are unprotected at the end of a synthesis step [1]. Errors of the
second type result in synthesis of unforeseen sequences on the chip
and can compromise interpretation of hybridization intensities. To
reduce such uncertainty, one can exploit the freedom available in
assigning probes to array sites during placement and in choosing
among multiple probe embeddings, when available. The objective
of probe placement and embedding algorithms is therefore to min-
imize the sum of border lengths in all masks, which directly cor-
responds to the magnitude of the unintended illumination effects.
Reducing these effects improves the signal to noise ratio in image
analysis after hybridization, and thus permits the use of smaller ar-
ray sites and therefore the integration of a larger number of probes
per array.

Formally, the border minimization problem is equivalent to
finding a three-dimensional placement of the probes [18]: two di-
mensions represent the site array, and the third dimension repre-
sents the nucleotide deposition sequence S (see Figure 1). Each
layer in the third dimension corresponds to a mask that induces
deposition of a particular nucleotide (A, C, G, or T ); a probe is
embedded within a “column” of this three-dimensional placement
representation. Border length of a given mask is computed as the
number of conflicts, i.e., pairs of adjacent exposed and masked sites
in the mask. Given two adjacent embedded probes p and p′, the
conflict distance d(p, p′) is the number of conflicts between the cor-
responding columns. The total border length of a three-dimensional
placement is the sum of conflict distances between adjacent probes,
and the border minimization problem (BMP) seeks to minimize this
quantity.

A special case is that of a synchronous synthesis regime, in
which the nucleotide deposition sequence S is periodic, and the kth

period (ACGT ) of S is used to synthesize a single (the kth) addi-
tional nucleotide in each probe. Since in this case the embedding
of a probe is predefined, the problem reduces to finding a two-
dimensional placement of the probes. The border-length contri-
bution from two probes p and p′ placed next to each other (in the
synchronous synthesis regime) is simply twice the Hamming dis-
tance between them, i.e., twice the number of positions in which
they differ.

1DNA chips are used for performing hybridization experiments. In a hybridiza-
tion experiment, a DNA chip is exposed to a solution containing fluorescently labeled
fragments of DNA. These fragments are strings over the alphabet {A,C,G,T} that hy-
bridize, i.e., bind, to complementary probe strings according to the rule that A binds to
T (and vice-versa), and C binds to G (and vice-versa). Copies of a given string in the
solution will hybridize to copies of the complementary probe (if present) on the DNA
chip; this can be discerned by measuring fluorescence intensity over the DNA probe
array after the experiment has been completed.
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Figure 1: 3-dimensional probe placement with 4 masks and S =
ACTG. Total border length is 24 (7 on the A mask, 4 on the C mask,
6 on the T mask, and 7 on the G mask).

1.2 Previous Work

The border minimization problem was first considered for uniform
arrays (i.e., arrays containing all possible probes of a given length)
by Feldman and Pevzner [11], who proposed an optimal solution
based on 2-dimensional Gray codes. Hannenhalli et al. [16] gave
heuristics for the special case of synchronous synthesis. Their
method is to order the probes in a traveling salesman problem (TSP)
tour that heuristically minimizes the total Hamming distance be-
tween neighboring probes. The tour is then threaded into the two-
dimensional array of sites, using a technique similar to one previ-
ously used in VLSI design [20]. For the same synchronous context,
[18] suggested an epitaxial, or “seeded crystal growth”, placement
heuristic similar to heuristics explored in the VLSI circuit place-
ment literature by [24, 25].

The general border minimization problem, which allows arbi-
trary asynchronous probe embeddings, was introduced by Kahng
et al. in [18]. They proposed a dynamic programming algorithm
that embeds a given probe optimally with respect to fixed embed-
dings of the probe’s neighbors. This algorithm is used as a building
block for designing several algorithms that improve a placement by
re-embedding probes, but without re-placing them. Very recently,
[19] proposed methods with near-linear runtime combining sim-
ple ordering-based heuristics for initial placement, including lexi-
cographic sorting followed by threading, with heuristics for place-
ment improvement, optimal reassignment of an “independent” set
of probes [26] chosen from a sliding window [10], and a row-based
implementation of the epitaxial algorithm in [18] that speeds-up the
computation by considering only a limited number of candidates
when filling each array site.2

1.3 Contributions of this Work

In this paper, we make several contributions. First, we propose
the first partitioning-based algorithms for DNA probe placement
(Section 2). Our experimental results show that the partitioning-
based approach has better solution quality and/or runtime compared

2The work of [19] also extends probe placement algorithms to handle practical con-
cerns such as pre-placed control probes, presence of polymorphic probes, unintended
illumination between non-adjacent array sites, and position-dependent border conflict
weights.



Input: Partition (set of probes) R
Output: Probes C0,C1,C2, C3 to be used as centroids for the 4
subpartitions

Randomly select probe C0 in R

Choose C1 ∈ R maximizing d(C1,C0)

Choose C2 ∈ R maximizing d(C2,C0)+d(C2,C1)

Choose C3 ∈ R maximizing d(C3,C0)+d(C3,C1)+d(C3,C2)

Return {C0,C1,C2,C3}

Figure 2: The SelectCentroid() procedure for selecting the centroid
probes of subpartitions.

Input: Partition R and the neighboring partition Rn; rectangular region
consisting of columns cle f t to cright and rows rtop to rbottom
Output: Probes in R are placed in row-epitaxial fashion

Let Q = R∪Rn

For i = rtop to rbottom

For j = cle f t to cright

Find probe q ∈ Q such that d(q, pi−1, j)+d(q, pi, j−1) is minimum
Let pi, j = q
Q = Q\q

Figure 3: The Reptx() procedure for placing a partition’s probe set
within the rectangular array of sites corresponding to the partition.
As explained in the accompanying text, our implementation main-
tains the size of Q constant at |Q| = 20000 through a borrowing
heuristic.

to previous methods (Section 3.1). Second, we give a simple in-
place probe re-embedding algorithm that gives better solution qual-
ity than the “chessboard” and batched greedy algorithms proposed
in [18] (Section 3.2). Third, we experimentally study the scalabil-
ity and suboptimality of existing and newly-proposed DNA probe
placement algorithms (Section 3.3). We observe that border cost
normalized by the number of pairs of adjacent array sites is decreas-
ing with array size for all studied algorithms (whereas it remains
constant for a random placement). This is an encouraging observa-
tion for future scaling of the DNA array technology. Furthermore,
we augment lower bound-based suboptimality studies of [18] by
introducing two new techniques for quantifying the suboptimality
of a placement heuristic: (a) comparison to known optimum solu-
tions for specially structured instances, and (b) computation of the
“scaling suboptimality” coefficient [15] that measures the growth of
solution cost on scaled instances. The results of our study indicate
that, in general, DNA placement algorithms have better subopti-
mality properties than those recently reported for VLSI placement
algorithms in [7, 8].

2 Partitioning-Based Probe Placement

Recursive partitioning has been the basis of numerous successful
VLSI placement algorithms [5, 6, 22] since it produces placements
with acceptable wirelength within practical runtimes. The main
goal of partitioning in VLSI is to divide a set of cells into two
or four sets with minimum edge or hyperedge cut between these
sets. The min-cut goal is typically achieved through the use of the
Fiduccia-Mattheyses procedure [12], often in a multilevel frame-
work [6]. Unfortunately, direct transfer of the recursive min-cut
placement paradigm from VLSI to VLSIPS is blocked by the fact

Input: Chip size S×S; set P of DNA probes
Output: Probe placement which heuristically minimizes total conflicts

Let l = 0 and let L = maximum recursion depth

Let Rl
1,1 = P

For l = 0 to L−1

For i = 1 to 2l

For j = 1 to 2l

Let the set of (next-level) subpartitions be Rnext =

{Rl+1
2i−1,2 j−1 = /0,Rl+1

2i−1,2 j = /0,Rl+1
2i,2 j−1 = /0,Rl+1

2i,2 j = /0}
SelectCentroid(Rnext )
For all probes p ∈ Rl

i, j

Insert p into the yet-unfilled partition of Rnext whose centroid
has minimum distance to p

For i = 1 to 2L

For j = 1 to 2L

Reptx(RL
i, j , RL

i, j+1)

Figure 4: Partitioning-based DNA probe placement heuristic.

that the possible interactions between probes must be modeled by
a complete graph and, furthermore, the border cost between two
neighboring placed partitions can only be determined after the de-
tailed placement step which finalizes probe placements at the bor-
der between the two partitions. In this section we describe a new
centroid-based quadrisection method that applies the recursive par-
titioning paradigm to DNA probe placement.

Assume that at a certain depth of the recursive partitioning pro-
cedure, a probe set R is to be quadrisectioned into four partitions
R1,R2,R3 and R4. We would like to iteratively assign each probe
p ∈ R to some partition Ri such that a minimum number of con-
flicts will result.3 To approximately achieve this goal within prac-
tical runtimes, we propose to base the assignment on the number
of conflicts between p and some representative, or centroid, probe
Ci ∈ Ri. In our approach, for every partition R we select four cen-
troids, one for each of the four new (sub-)partitions. To achieve
balanced partitions, we heuristically find four probes in R that have
maximum total distance among themselves, then use these as the
centroids. This procedure, described in Figure 2, is reminiscent of
the k-center approach to clustering studied by Alpert et al. [4], and
of methods used in large-scale document classification [9].

After a given maximum partitioning depth L is reached, a final
detailed placement step is needed to place each partition’s probes
within the partition’s corresponding region on the chip. For this
step, we use the row-epitaxial algorithm of [19], which for com-
pleteness of exposition is replicated in Figure 3.

The complete partitioning-based placement algorithm for DNA
arrays is given in Figure 4. At a high level, our method resembles
global-detailed approaches in the VLSI CAD literature [17, 21].
The algorithm recursively quadrisects every partition at a given
level, assigning the probes so as to minimize distance to the cen-
troids of subpartitions.4 In the innermost of the three nested for
loops of Figure 4, we apply a multi-start heuristic, trying r different
random probes as seed C0 and using the result that minimizes total
distance to the centroids. Once the maximum level L of the recur-

3Observe that VLSI partitioning seeks to maximize the number of nets contained
within partitions (equivalently, minimize cut nets) as it assigns cells to partitions. In
contrast, DNA partitioning seeks to minimize the expected number of conflicts within
partitions as it assigns cells to partitions, since this leads to overall conflict reduction.

4The variables i and j index the row and column of a given partition within the
current level’s array of partitions.



sive partitioning is attained, detailed placement is executed via the
row-epitaxial algorithm. Additional details and commentary are as
follows.

• Our construction of partitions has an obvious dependence on
the order in which probes p are considered. Our work has
not yet examined the impact of the probe ordering degree of
freedom on centroid-based partitioning.

• Within the innermost of the three nested for loops, our im-
plementation actually performs, and benefits from, a dynamic
update of the partition centroid whenever a probe is added
into a given partition. Intuitively, this can lead to “elongated”
rather than “round” clusters, but can also correct for unfortu-
nate choices of the initial four centroids.5

• The straightforward implementation of Reptx()-based detailed
placement within a given partition will treat the last locations
“unfairly”, e.g., for the last location considered, be only one
candidate probe will remain. To balance the options for ev-
ery position, our implementation permits “borrowing” probes
from the next region in the Reptx() procedure. For every po-
sition, we select the best probe from at most m probes, where
m is a pre-determined constant, in the current region and the
next region. (Except as noted, we set m to 20000 for all of our
experiments.) Our Reptx() implementation is also “border-
aware”, that is, it takes into account Hamming distances to
the placed probes in adjacent regions.

2.1 Time Complexity

Let the number of probes in a chip be n. The procedure Select-
Centroid() for a partitioned region at recursion depth l takes O( n

4l )
steps, and grouping all the probes into four partitions also takes
O( n

4l ) steps. Therefore, the runtime for every recursion depth l is

O( n
4l 4l) = O(n). Since there are L recursion depths, the overall run-

time for partitioning is O(Ln). For the Reptx() procedure, at most
m = 20000 comparisons are executed for every position. Therefore,
the total runtime is O(n(L + m)). Since L ≤ log4 n, the runtime is
O(n(log4 n+m)).

3 Comparison of Probe Placement Heuristics

3.1 Partitioning-Based vs. Other Methods

We compare four two-dimensional placement algorithms.

1. TSP+Threading [16]: This algorithm computes a TSP tour
in the complete graph with the probes as vertices and edge
costs given by Hamming distances. The tour is then threaded
into the two-dimensional array of sites using the 1-threading
method described in [16].

2. Row-Epitaxial [19]: An implementation of the epitaxial al-
gorithm in [18], where the computation is sped up by (a) fill-
ing array sites in a predefined order (row by row), and (b)
considering only a limited number of candidate probes when
filling each array site. Unless otherwise specified, the number
of candidates is bounded by 20000 in our experiments.

5Details of the dynamic centroid update, reflecting an efficient implementation, are
as follows. The “pseudo-nucleotide” at each position t (e.g., t = 1, . . . ,25 for probes

of length 25) of the centroid Ci can be represented as Ci[t] =
�

s

Ns,t
Ni

· s, where Ni is

the current number of probes in the partition Ri and Ns,t is the number of probes in the
partition having the nucleotide s ∈ {A,T,C,G} in t-th position. The Hamming distance
between a probe p and Ci is d(p,Ci) = 1

Ni
∑
t

∑
s6=p[t]

Ns,t .

3. Sliding-Window Matching (SWM) [19]: After an initial
placement is obtained by 1-threading of the probes in lexico-
graphic order, this algorithm iteratively improves the place-
ment by selecting an “independent” set of probes from a
sliding window and then optimally re-placing them using
a minimum-weight perfect matching algorithm (cf. “row-
ironing” [6]).

4. Recursive partitioning based placement: As described in
Section 2 above.

Table 1 compares the results produced by the first three (pre-
viously known) algorithms on random instances with chip sizes
between 100 and 500 and probe length equal to 25. We find that
Row-Epitaxial is the algorithm with highest solution quality, while
SWM is the fastest, offering competitive solution quality with much
less runtime. Besides total border cost, we also report the border
cost normalized by the number of pairs of adjacent array sites, i.e.,
we also give the average number of conflicts per pair of adjacent
sites. This number decreases with increasing chip size, which can
be attributed to greater freedom of choice available when placing a
higher number of probes.

Table 2 presents results for our new recursive partitioning
method with different maximum recursion depths L = 1,2,3. Com-
paring to the results produced by Row-Epitaxial, the best previously
known technique (Table 1), we find that recursive partitioning based
placement achieves on the average similar or better results with im-
proved runtime.

3.2 A Note on In-Place Re-Embedding

While VLSI physical design automation may be viewed as pri-
marily a “Place & Route” process, VLSIPS (DNA array) physi-
cal design automation is rather a “Place & Embed” process. Re-
call that embedding exploits the possibility of asynchronous em-
bedding of probes within the mask sequence to further reduce the
total number of conflicts. Here, we note our development of a new
in-place re-embedding algorithm – i.e., a method which, given a
two-dimensional probe placement, improves the embedding of the
probes without re-placing them – and compare the new method
against two previous in-place re-embedding algorithms.

Each of the following 3 algorithms uses the dynamic program-
ming algorithm in [18] for optimal re-embedding of a probe with
respect to the embeddings of its neighbors:

1. Batched greedy [18]: This algorithm optimally re-embeds
a probe that gives the largest decrease in conflict cost, until
no further decreases are possible. To improve the runtime,
the greedy choices are made in phases, in a batched man-
ner: in each phase the gains for all probes are computed, and
then a maximal set of non-adjacent probes is selected for re-
embeddeding by traversing the probes in non-increasing order
of gain.

2. Chessboard [18]: In this method, the 2-dimensional place-
ment grid is divided into “black” and “white” locations as in
the chessboard (or checkerboard) grid of Akers [3]. The sites
within each set represent an maximum independent set of lo-
cations. The Chessboard algorithm alternates between opti-
mal re-embedding of probes placed in “black” (respectively
“white”) sites with respect to their neighbors (all of which are
at opposite-color locations).

3. Sequential: Our new algorithm performs optimal re-
embedding of probes in a sequential row-by-row fashion.
We believe that a main shortcoming of Batched Greedy and



Chip Lower Bound TSP+1Thr Row-Epitaxial SWM
Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 410019 20.7 554849 28.0 35.3 113 502314 25.4 22.5 108 605497 30.6 47.7 2
200 1512014 19.0 2140903 26.9 41.6 1901 1913796 24.0 26.6 1151 2360540 29.7 56.1 8
300 3233861 18.0 4667882 26.0 44.3 12028 4184018 24.0 29.4 3671 5192839 28.9 60.6 19
500 8459958 17.0 12702474 25.5 50.1 109648 11182346 22.4 32.2 10630 13748334 27.6 62.5 50

Table 1: Total border cost, normalized border cost, gap from (synchronous placement) lower-bound [18], and CPU seconds (averages over
10 random instances) for the TSP heuristic of [16] (TSP+1Thr), and the row-epitaxial (Row-Epitaxial) and sliding-window matching (SWM)
heuristics of [19]. We use an upper bound of 20000 on the number of candidate probes in Row-Epitaxial, and 6×6 windows with overlap 3
for SWM.

Chip Lower Bound RPART L = 1 RPART L = 2 RPART L = 3
Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 410019 20.7 475990 24.0 16.1 69 491840 24.8 20.0 24 504579 25.5 23.1 10
200 1512014 19.0 1813105 22.8 19.9 992 1865337 23.4 23.4 283 1922951 24.2 27.2 81
300 3233861 18.0 4135728 23.8 27.9 3529 4074962 23.4 26.0 1527 4175146 24.0 29.1 240
500 8459958 17.0 11283631 22.6 33.4 10591 11052738 22.1 30.6 9678 11134960 22.3 31.6 3321

Table 2: Total border cost, normalized border cost, gap from (synchronous placement) lower-bound [18], and CPU seconds (averages over 10
random instances) for the recursive partitioning algorithm with recursion depth varying between 1 and 3.

Chip Lower Bound Batched Greedy Chessboard Sequential
Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 364953 18.4 458746 23.2 25.7 40 439768 22.2 20.5 54 437536 22.1 19.9 64
200 1425784 17.9 1800765 22.6 26.3 154 1723773 21.7 20.9 221 1715275 21.5 20.3 266
300 3130158 17.4 3965910 22.1 26.7 357 3803142 21.2 21.5 522 3773730 21.0 20.6 577
500 8590793 17.2 10918898 21.9 27.1 943 10429223 20.9 21.4 1423 10382620 20.8 20.9 1535

Table 3: Total border cost, normalized border cost, gap from asynchronous post-placement lower-bound [18], and CPU seconds (averages
over 10 random instances) for the batched greedy, chessboard, and sequential in-place re-embedding algorithms.

Chip Lower Bound TSP+1Thr Row-Epitaxial SWM
Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 220497 11.1 439829 22.2 99.5 113 415227 21.0 88.3 161 440648 22.3 99.8 93
200 798708 10.0 1723352 21.7 115.8 1901 1608382 20.2 101.4 1368 1721633 21.6 115.6 380
300 — — 3801765 21.2 — 12028 3529745 20.3 — 3861 3801479 21.2 — 861
500 — — 10426237 20.9 — 109648 9463941 19.0 — 12044 10161979 20.4 — 2239

Table 4: Total border cost, normalized border cost, gap from asynchronous pre-placement lower-bound [18], and CPU seconds (averages
over 10 random instances) for the TSP heuristic of [16] (TSP+1Thr), and the row-epitaxial and sliding-window matching heuristics of [19]
(Row-Epitaxial and SWM), each followed by sequential in-place re-embedding. We use an upper bound of 20k on the number of candidate
probes in Row-Epitaxial and 6×6 windows with overlap 3 for SWM.

Chip Lower Bound RPART L = 1 RPART L = 2 RPART L = 3
Size Cost Norm. Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU Cost Norm. Gap(%) CPU

100 220497 11.1 393218 19.9 78.3 123 399312 20.2 81.1 44 410608 20.7 86.2 10
200 798708 10.0 1524803 19.2 90.9 1204 1545825 19.4 93.5 365 1573096 19.8 97.0 101
300 — — 3493552 20.1 — 3742 3413316 19.6 — 1951 3434964 19.7 — 527
500 — — 9546351 19.1 — 11236 9355231 18.8 — 10417 9307510 18.7 — 3689

Table 5: Total border cost, normalized border cost, gap from asynchronous lower-bound [18], and CPU seconds (averages over 10 random
instances) for the recursive partitioning algorithm followed by sequential in-place re-embedding.
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Figure 5: 2-dimensional Gray code placement.

Chessboard is that these methods always re-embed an inde-
pendent set of sites on the DNA chip. Our intuition is that
dropping this requirement permits faster propagation of the
effects of any new embedding, and hence convergence to a
better local optimum.

Table 3 compares the three algorithms on random instances
with chip sizes between 100 and 500 and probe length 25. The
initial two-dimensional placements were obtained using TSP+1-
threading. All algorithms are stopped when the improvement cost
achieved in one iteration over the whole chip drops below 0.1% of
the total cost. The results show that re-embedding of the probes in a
sequential row-by-row order leads to a reduction in the border cost
by 0.8% compared to the chessboard algorithm.

3.3 Comparison of Placement and Embedding Flows

Another series of experiments executes the complete placement and
embedding flow. We compare the four two-dimensional place-
ment algorithms discussed in Section 3.1, when each is followed
by sequential in-place re-embedding. Results are given in Tables
4-5. Table 4 compares existing methods: TSP+1Thr, row-epitaxial
(REPTX) with 20000 lookahead probes and sliding window match-
ing (SWM) with 6 x 6 windows and an overlap of 3. TSP+1Thr is
dominated by both REPTX and SWM in both conflict cost and run-
ning time. REPTX produces less conflicts than SWM but SWM is
considerably faster. This tradeoff between speed and quality is, of
course, reminiscent of the VLSI CAD experience with heuristics
for difficult optimizations. Table 5 gives the number of conflicts for
the proposed recursive quadrisection partitioning technique. L in-
dicates the recursion depth for which the given results are obtained.
Comparing these results to those in Table 4, we see that DNA chip
placement using recursive-partitioning outperforms the best previ-
ous flow (row-epitaxial + sequential re-embedding) by an average
of 4.0%.

3.4 Quantified sub-optimality of placement and embedding
algorithms

As noted in the introduction, next-generation DNA probe arrays
will contain up to one hundred million probes, and therefore present
instance complexities for placement that will far outstrip those of
VLSI designs. Thus, it is of interest to study not only runtime
scaling, but also scaling of suboptimality, for available heuristics.
To this end, we apply the experimental framework for quantifying
suboptimality of placement heuristics that was originated by Boese
and by Hagen et al. [15], and recently extended by Chang et al. [7]
and Cong et al. [8]. In this framework, there are two basic types of
instance scaling that we can apply.
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Figure 6: Scaling construction used in the suboptimality experi-
ment.

• Instances with known optimum solution. For hyper-
graph placement, instances with known minimum-wirelength
solutions may be constructed by “overlaying” signal nets
within an already placed cell layout, such that each signal
net has provably minimum length. This technique, proposed
by Boese and explored by Chang et al. [7], induces a netlist
topology with prescribed degree sequence over the (placed)
cells; this corresponds to a “placement example with known
optimal wirelength” (PEKO). In our DNA probe placement
context, there is no need to generate a netlist hypergraph.
Rather, we realize the concept of minimum (border) cost
edges (adjacencies) by constructing a set of probes, and their
placement, using 2-dimensional Gray codes [11]. Our con-
struction generates 4k probes which are placeable such that
every probe has border cost of 1 to each of its neighboring
probes. This construction is illustrated in Figure 5.

• Instances with known suboptimal solutions. Because con-
structed instances with known optimum solutions may not be
representative of “real” instances, we also apply a technique
[15] that allows real instances to be scaled, such that they offer
insights into scaling of heuristic suboptimality. A technique of
Hagen et al. is applied as follows. Beginning with an instance
I consisting of a (“real”) DNA chip probe set, we induce three
isomorphic versions of I by three distinct mappings of the nu-
cleotide set {A,C,G,T} onto itself. Each mapping yields a
new probe set that can be placed with optimum border cost
exactly equal to the optimum border cost of I. Our scaled in-
stance I′ consists of the union of the original probe set and its
three isomorphic copies. Observe that one placement solution
for I′ is to optimally place I and its isomorphic copies as indi-
vidual chips, and then to adjoin these placements as the four
quadrants of a larger chip. Thus, an upper bound on the opti-
mum border cost for I′ is 4 times the optimum border cost for
I, plus the border cost between the copies of I; see Figure 6.
If a heuristic H places I′ with cost cH(I′) ≥ 4 · cH(I), then we
may infer that the heuristic’s suboptimality is growing by at

least a factor cH (I′)
4·cH (I) . On the other hand, if cH(I′) < 4 · cH(I),

then at least on this class of instances, the heuristic’s solution
quality would be said to scale well.



Table 6 shows results from executing the various placement
heuristics on PEKO-style test cases, with instance sizes ranging
from 16 x 16 through 512 x 512 (recall that our Gray code construc-
tion yields instances with 4k probes). We see from these results that
sliding-window matching approaches closest to the optimal values,
with a suboptimality gap of around 30%. Overall, DNA array place-
ment algorithms appear to be performing better than their VLSI
counterparts [7] when it comes to results on special-case instances
with known optimal cost. Of course, results from placement al-
gorithms (whether for VLSI or DNA chips) on special benchmark
instances should not be generalized to arbitrary benchmarks. Our
results, though, do illustrate this point: algorithms that perform best
for arbitrary benchmarks are not necessarily the best performers for
specially constructed benchmarks.

Table 7 shows results from executing the various placement
heuristics on scaled versions of random DNA probe sets, with the
original instances ranging in size from 100 x 100 to 500 x 500, and
the scaled instances thus ranging in size from 200 x 200 to 1000
x 1000. This table shows that in general, placement algorithms
for DNA arrays offer excellent suboptimality scaling. We believe
that this is primarily due to the already noted fact that algorithm
quality (as reflected by normalized border costs) improves with in-
stance size. The larger number of probes in the scaled instances
gives more freedom to the placement algorithms, leading to heuris-
tic placements that have total conflict well under the constructive
upper bound.

4 Conclusions

DNA probe arrays (or DNA chips) are an important technology that
provides a cost-effective vehicle for genomic analyses and high-
value demand for silicon processing technology. In this work, we
have studied the transfer of VLSI CAD physical design automation
techniques to DNA chips, focusing on minimizing the total border
length between adjacent sites during probe placement and embed-
ding. Our main contributions are:

• Drawing a fertile analogy between DNA array and VLSI de-
sign automation, with DNA Place & Embed corresponding to
VLSI Place & Route.

• Proposing a new DNA probe array placement algorithm that
recursively places the probes on the chip in a manner simi-
lar to top-down VLSI placers, via a centroid-based strategy,
and a new probe embedding processing technique for asyn-
chronous re-embedding of placed probes within the mask se-
quence. Experimental results show that combining the new
algorithms results in average improvement of 4.0% over best
previous flows.

• Studying and quantifying the performance of existing and
newly proposed DNA Place & Embed algorithms in exper-
iments on benchmarks with known optimal cost as well as
scaling suboptimality experiments, in a manner similar to re-
cent studies in the VLSI CAD field.

We conclude with some remarks that address observed similari-
ties and contrasts between VLSI placement and VLSIPS placement.
First, while VLSI placement performance in general degrades as the
problem size increases, it appears that this is not the case for DNA
array placement. Current algorithms are able to find DNA array
placements with smaller normalized border cost when the number
of probes in the design grows. In fact, our experiments show that
the gap between the lower bound of [18] and the actual number of

conflicts shrinks as chip size increases. Second, the lower bounds
for DNA Place & Embed appear to be tighter than those available
in the VLSI placement literature. Developing even tighter lower
bounds is, of course, an important open problem.

Finally, taking a broader perspective, we can envision emerging
DNA CAD flows that are similar to VLSI CAD counterparts. The
main steps of a “back-end” VLSIPS flow might be as follows:

1. Probe Selection: Analogous to logic synthesis in VLSI de-
sign, this step is responsible for implementing the desired
functionality of the DNA array.

2. Deposition Sequence Design: This optimization step is re-
sponsible for minimizing the number of synthesis steps, or
equivalently, minimizing the number of photolithographic
masks used in the manufacturing process.

3. Design of Control and Test Structures: DNA array test
structures are the equivalent of built-in-self-test (BIST) struc-
tures in VLSI design, and aim at detecting manufacturing de-
fects.

4. Probe Placement and Embedding: As we discussed in this
work, this step is equivalent to the physical design step in
VLSI CAD.

Enhancing this basic flow by adding flow-awareness to each opti-
mization step and introducing feedback loops is an important direc-
tion for future research.
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