Mutually algebraic structures and expansions by predicates

Michael C. Laskowski*
Department of Mathematics
University of Maryland

July 24, 2012

Abstract

We introduce the notions of a mutually algebraic structures and theories and prove many equivalents. A theory T is mutually algebraic if and only if it is weakly minimal and trivial if and only if no model M of T has an expansion (M,A) by a unary predicate with the finite cover property. We show that every structure has a maximal mutually algebraic reduct, and give a strong structure theorem for the class of elementary extensions of a fixed mutually algebraic structure.

1 Introduction

This paper is written with two objectives in mind. On one hand, it is a continuation of [5], where a strong quantifier elimination theorem was proved for elementary diagrams of models of a weakly minimal, trivial theory. Here, we show that the crucial notion of mutual algebraicity of a formula (see Definition 2.2) has meaning in arbitrary structures, and in fact describes a specific reduct of any structure. As well, Theorem 3.3 reverses the argument in [5]. The quantifier elimination result described there can only occur as the elementary diagram of a weakly minimal, trivial theory.

^{*}Partially supported by NSF grants DMS-0600217 and DMS-0901336.

On the other hand, there has been a large body of research about whether an expansion (M, A) of a given stable structure M by a unary predicate A remains stable. Sufficient conditions abound, but the general question remains open. Here, also with Theorem 3.3, we characterize those structures M with the property that every unary expansion (M, A) satisfies the non-finite cover property (nfcp), which is a strengthening of stability.

The motivation for this came from the author's reading [1], where Baldwin and Baizhanov showed that a non-trivial, strongly minimal structure M has an unstable expansion (M, A). Thanks are due to John Baldwin for a careful reading of this paper, and for pointing out that an alternate treatment of a portion of Section 4 appears in Section 6 of [2].

2 The mutually algebraic reduct of a structure

We begin by recalling the definition of a mutually algebraic formula. This notion was introduced by Dolich, Raichev, and the author in [4] and further developed in [5]. However, in both of those papers, the ambient theory was assumed to have the non-finite cover property (nfcp). Here, we define the notions without any ambient assumptions. We begin by formulating the notion of a mutually algebraic set.

Definition 2.1 Given an arbitrary set A and an integer $n \geq 1$, a proper partition of n is a partition $X \sqcup Y = \{1, \ldots, n\}$ where X, Y are disjoint and each is non-empty. Given such a partition, π_Y denotes the projection of A^n onto the coordinates in Y.

A subset $B \subseteq A^n$ is mutually algebraic if there is a number K so that for any proper partition of the coordinates $X \sqcup Y = \{1, \ldots, n\}$, the projection π_Y restricted to B is at most K-to-1. That is, $|\pi_Y^{-1}(\bar{b}_Y) \cap B| \leq K$ for any $\bar{b}_Y \in \pi_Y(B)$.

As special cases, note that if either A is finite or B is empty, then B is mutually algebraic. Furthermore, for any set A, every subset $B \subseteq A^1$ is mutually algebraic as there are no proper partitions of a one element set.

Definition 2.2 Let M denote any L-structure. An L(M)-formula $\varphi(\bar{z})$ is mutually algebraic if $\varphi(M) := \{\bar{a} \in M^{\lg(\bar{z})} : M \models \varphi(\bar{a})\}$ is a mutually

algebraic subset of $M^{\lg(\bar{z})}$. We let $\mathcal{MA}(M)$ denote the set of all mutually algebraic L(M)-formulas. When M is understood, we simply write \mathcal{MA} .

To clarify this concept and to set notation, given a formula $\varphi(\bar{z})$, a proper partition of \bar{z} has the form $\bar{z} = \bar{x} \hat{y}$, where \bar{x}, \bar{y} are disjoint and $\lg(\bar{x}), \lg(\bar{y}) \geq 1$. We do not require \bar{x} be an initial segment of \bar{z} but to simplify notation, we write it as if it were. Then, for any L-structure M, an L(M)-formula $\varphi(\bar{z})$ is mutually algebraic if and only if there is an integer K so that $M \models \forall \bar{y} \exists^{\leq K} \bar{x} \varphi(\bar{x}, \bar{y})$ for every proper partition $\bar{x} \hat{y}$ of \bar{z} .

The reader is cautioned that whether a formula $\varphi(\bar{z})$ is mutually algebraic or not depends on the choice of free variables. In particular, mutual algebraicity is **not** preserved under adjunction of dummy variables. The special cases mentioned above imply that if M is finite, then every L(M)-formula is in $\mathcal{MA}(M)$, and for an arbitrary M, every inconsistent formula and every L(M)-formula $\varphi(z)$ with exactly one free variable symbol is mutually algebraic. Our first easy Lemma gives a semantic interpretation to this notion when $\lg(\bar{z}) \geq 2$:

Lemma 2.3 Let M be any L-structure. The following are equivalent for any L(M)-formula $\varphi(\bar{z})$ with $\lg(\bar{z}) \geq 2$:

- 1. $\varphi(\bar{z}) \in \mathcal{MA}(M)$;
- 2. There is an integer K so that $M \models \forall x \exists^{\leq K} \bar{y} \varphi(x, \bar{y})$ for all partitions $\bar{z} = x \hat{y}$ with $\lg(x) = 1$;
- 3. For all $N \succeq M$, for all $\bar{e} \in N^{\lg(\bar{z})}$ realizing φ , and for all $e \in \bar{e}$, $\bar{e} \subseteq \operatorname{acl}(M \cup \{e\})$ (i.e, every $e' \in \bar{e}$ is in $\operatorname{acl}(M \cup \{e\})$.

Proof. $(1) \Rightarrow (2)$ is immediate.

- (2) \Rightarrow (3) Fix any $N \succeq M$ and assume $N \models \varphi(\bar{e})$. Fix any variable symbol $x \in \bar{z}$ and let e be the corresponding element of \bar{e} . By elementarity, $N \models \exists^{\leq K} \bar{y} \varphi(e, \bar{y})$, so $\bar{e} \subseteq \operatorname{acl}(M \cup \{e\})$.
- (3) \Rightarrow (1) If (1) fails, then for some proper partition $\bar{z} = \bar{x} \hat{y}$ we have $M \models \exists \bar{y} \exists^{\geq r} \bar{x} \varphi(\bar{x}, \bar{y})$. Thus, by compactness, there is $N \succeq M$ and \bar{b} from N such that $N \models \exists^{\geq r} \bar{x} \varphi(\bar{x}, \bar{b})$ for each $r \in \omega$. By compactness again, there is $N^* \succeq N$ and $\bar{a} \in (N^*)^{\lg(\bar{x})}$ such that $\bar{a} \not\subseteq \operatorname{acl}(M \cup \bar{b})$, contradicting (3).

The following Lemma indicates some of the closure properties of the set \mathcal{MA} . In what follows, when we write $\varphi(\bar{x}, \bar{y}) \in \mathcal{MA}$, we mean that \bar{x} and \bar{y} are disjoint sets of variable symbols and $\varphi(\bar{z}) \in \mathcal{MA}$ where $\bar{z} = \bar{y}$, but that we are concentrating on a specific proper partition of $\varphi(\bar{z})$.

Lemma 2.4 Let M be any structure in any language L.

- 1. If $\varphi(\bar{z}) \in \mathcal{MA}$, then $\varphi(\sigma(\bar{z})) \in \mathcal{MA}$ for any permutation σ of the variable symbols;
- 2. If $\varphi(\bar{x}, \bar{y}) \in \mathcal{MA}$ and $\bar{a} \in M^{\lg(\bar{y})}$, then both $\exists \bar{y} \varphi(\bar{x}, \bar{y})$ and $\varphi(\bar{x}, \bar{a}) \in \mathcal{MA}$;
- 3. If $\varphi(\bar{z}) \vdash \psi(\bar{z})$ and $\psi(\bar{z}) \in \mathcal{MA}$, then $\varphi(\bar{z}) \in \mathcal{MA}$;
- 4. If $\{\varphi_i(\bar{z}_i): i < k\} \subseteq \mathcal{MA}$, and there is some variable x common to every \bar{z}_i , then $\psi(\overline{w}) := \bigwedge_{i < k} \varphi_i(\bar{z}_i) \in \mathcal{MA}$, where $\overline{w} = \bigcup_{i < k} \bar{z}_i$;
- 5. If $\varphi(\bar{x}, \bar{y}) \in \mathcal{MA}$ and $r \in \omega$, then $\theta_r(\bar{y}) := \exists^{\geq r} \bar{x} \varphi(\bar{x}, \bar{y}) \in \mathcal{MA}$.

Proof. The verification of (1), (2), and (3) are immediate. Concerning (4), we apply Lemma 2.3. Fix $N \succeq M$ and \bar{e} such that $N \models \psi(\bar{e})$. Let x denote a variable symbol that appears in every \bar{z}_i and let e_x denote the element of \bar{e} corresponding to x. Similarly, for each i < k let \bar{e}_i be the subsequence corresponding to \bar{z}_i . As each $\varphi_i(\bar{z}_i) \in \mathcal{MA}$, $e_x \in \operatorname{acl}(M \cup \{e\})$ for every $e \in \bar{e}_i$, so $e_x \in \operatorname{acl}(M \cup \{e\})$ for every $e \in \bar{e}$. But also, $e \in \operatorname{acl}(M \cup \{e_x\})$ for every $e \in \bar{e}$. Thus, by the transitivity of algebraic closure, $e \in \operatorname{acl}(M \cup \{e'\})$ for all pairs $e, e' \in \bar{e}$. So $\psi(\bar{w}) \in \mathcal{MA}$ by Lemma 2.3.

To establish (5), let $\{\bar{x}_i : i < r\}$ be disjoint sequences of variable symbols, each disjoint from \bar{y} . Then $\theta_r(\bar{y})$ is equivalent to

$$\exists \bar{x}_0 \exists \bar{x}_1 \dots \exists \bar{x}_{r-1} \left(\bigwedge_{i < r} \varphi(\bar{x}_i, \bar{y}) \land \bigwedge_{i < j < r} \bar{x}_i \neq \bar{x}_j \right)$$

That this formula is in \mathcal{MA} follows by successively applying Clauses (4), (3), and (2).

Definition 2.5 For any L-structure M, let M_M denote the canonical expansion of M to an L(M)-structure formed by adding a constant symbol c_a for each $a \in M$. We let $\mathcal{MA}^*(M)$ denote the set of all L(M)-formulas that are $Th(M_M)$ -equivalent to a boolean combination of formulas from $\mathcal{MA}(M)$. When M is understood, we simply write \mathcal{MA}^* .

Whereas the definition of \mathcal{MA} was rather fussy, membership in \mathcal{MA}^* is more relaxed, mostly owing to the fact that \mathcal{MA}^* is closed under adjunction of dummy variables. Indeed, we will see with Proposition 2.7 below, for any structure M, $\mathcal{MA}^*(M)$ specifies a reduct of the canonical expansion M_M .

Lemma 2.6 Let M denote any L-structure.

- 1. \mathcal{MA}^* is closed under boolean combinations;
- 2. \mathcal{MA}^* is closed under adjunction of dummy variables, i.e., if $\varphi(\bar{z}) \in \mathcal{MA}^*$ then $\varphi(x,\bar{z}) \in \mathcal{MA}^*$;
- 3. For each $k \geq 1$, if $\{\varphi_i(x,\bar{y}_i) : i < k\} \subseteq \mathcal{MA}$ and $r \in \omega$, then each of $\exists^{=r}x \bigvee_{i < k} \varphi_i(x,\bar{y}_i)$, $\exists^{\leq r}x \bigvee_{i < k} \varphi_i(x,\bar{y}_i)$, and $\exists^{\geq r}x \bigvee_{i < k} \varphi_i(x,\bar{y}_i)$ are in \mathcal{MA}^* .

Proof. The proof of (1) is immediate. For (2), note that $\psi(x) := {}^{\iota}x = x'$ is in \mathcal{MA} , hence in \mathcal{MA}^* , but $\varphi(x,\bar{z})$ is equivalent to $\varphi(\bar{z}) \wedge \psi(x)$. The verification of (3) is more substantial. We argue by induction on k that for every $r \in \omega$, $\exists^{=r}x \bigvee_{i < k} \varphi_i(x,\bar{y}_i) \in \mathcal{MA}^*$ for every k-element subset $\{\varphi_i(x,\bar{y}_i) : i < k\}$ from \mathcal{MA} . This suffices, as \mathcal{MA}^* is closed under boolean combinations and the trivial facts that $\exists^{\leq r}x\theta$ is equivalent to $\bigvee_{s \leq r} \exists^{=s}x\theta$ and $\exists^{\geq r}x\theta$ is equivalent to $\neg\exists^{\leq r-1}x\theta$.

To handle the case when k = 1, fix any $\varphi(x, \bar{y}) \in \mathcal{MA}$ and any $r \in \omega$. By Lemma 2.4(5), both $\exists^{\geq r} x \varphi(x, \bar{y}) \in \mathcal{MA}$ and $\exists^{\geq r+1} x \varphi(x, \bar{y}) \in \mathcal{MA}$ and $\exists^{=r} x \varphi(x, \bar{y})$ is a boolean combination of these.

Next, inductively assume that for every $r \in \omega$, $\exists^{=r} x \bigvee_{i < k} \varphi_i(x, \bar{y}_i) \in \mathcal{MA}^*$ for every k-element subset $\{\varphi_i(x, \bar{y}_i) : i < k\}$ from \mathcal{MA} . Choose any (k+1)-element subset $\{\varphi_i(x, \bar{y}_i) : i \leq k\}$ from \mathcal{MA} and choose any $r \in \omega$. As notation, let $\psi(x, \overline{w}) := \bigvee_{i < k} \varphi_i(x, \bar{y}_i)$. By the inclusion/exclusion

principle of integers, the formula $\exists^{=r} x \bigvee_{i \leq k} \varphi(x, \bar{y}_i)$, which is equivalent to $\exists^{=r} x (\psi(x, \overline{w}) \vee \varphi_k(x, \bar{y}_k))$, is equivalent to

$$\bigvee_{\substack{a,b \leq r\\ a+b-c=r}} \left(\exists^{=a} x \psi(x, \overline{w}) \wedge \exists^{=b} x \varphi_k(x, \overline{y}_k) \wedge \exists^{=c} x [\psi(x, \overline{w}) \wedge \varphi_k(x, \overline{y}_k)] \right)$$

By the inductive hypothesis $\exists^{=a} x \psi(x, \overline{w}) \in \mathcal{MA}^*$ and $\exists^{=b} x \varphi_k(x, \overline{y}_k) \in \mathcal{MA}^*$ by the case k = 1. Also, note that $\psi(x, \overline{w}) \land \varphi_k(x, \overline{y}_k)$ is equivalent to $\bigvee_{i < k} \delta_i(x, \overline{y}_i, \overline{y}_k)$, where each $\delta_i(x, \overline{y}_i, \overline{y}_k) := \varphi_i(x, \overline{y}_i) \land \varphi_k(x, \overline{y}_k)$ is in \mathcal{MA} by Lemma 2.4(4). Thus, by applying the inductive hypothesis to this k-element subset from \mathcal{MA} , we conclude that $\exists^{=c} x(\psi(x, \overline{w}) \land \varphi_k(x, \overline{y}_k)) \in \mathcal{MA}^*$, completing the proof.

Proposition 2.7 For any structure M, the set $\mathcal{MA}^*(M)$ is closed under existential quantification. Thus, the structure with universe M, together with the definable sets $MA^*(M)$, is a reduct of the canonical expansion M_M .

Proof. The second sentence follows from the first, since \mathcal{MA}^* is a set of L(M)-formulas closed under boolean combinations. To establish the first sentence, there are two cases. First, if the structure M is finite, then every L(M)-formula $\varphi(\bar{z}) \in \mathcal{MA}$, so \mathcal{MA}^* is precisely the elementary diagram of M and there is nothing to prove. So assume that M is infinite.

Choose $\varphi(x,\bar{y}) \in \mathcal{MA}^*$ and we argue that $\exists x \varphi(x,\bar{y})$ is equivalent to a formula in \mathcal{MA}^* . By writing φ in Disjunctive Normal Form and noting that disjunction commutes with existential quantification, we may assume that $\varphi(x,\bar{y})$ has the form

$$\bigwedge_{i < k} \beta_i(x, \bar{y}_i) \wedge \bigwedge_{j < m} \neg \gamma_j(x, \bar{y}_j)$$

where each β_i and γ_j are in \mathcal{MA} and the variable x occurs in each of these subformulas. By Lemma 2.4(4), if $k \geq 1$, then $\bigwedge_{i < k} \beta_i(x, \bar{y}_i) \in \mathcal{MA}$, so we may assume there is at most one β . If there is no β , then since the model M is infinite, then for any choice of \bar{y} , $\exists x \varphi(x, \bar{y})$ always holds. Thus, we assume that there is exactly one β , i.e., that $\varphi(x, \bar{y})$ has the form $\beta(x, \bar{y}^*) \wedge \bigwedge_{j < m} \neg \gamma_j(x, \bar{y}_j)$, where \bar{y}^* and each \bar{y}_j are subsequences of \bar{y} , and both β and each γ_j are from \mathcal{MA} .

We first consider the case where \bar{y}^* is empty. In this case, we may additionally assume that no \bar{y}_j is empty, since we could replace $\beta(x)$ by $\beta(x) \wedge \neg \gamma_j(x)$. Thus, for any choice of \bar{y} , the solution set of $\bigwedge_{j < m} \neg \gamma_j(x, \bar{y}_j)$ is a cofinite subset of M. We have two subcases: On one hand, if $\beta(x)$ were algebraic, then every solution to β lies in M, hence $\varphi(x, \bar{y})$ would be equivalent to $\bigvee_{m \in \beta(M)} \varphi(m, \bar{y})$, which would be in \mathcal{MA}^* by Lemma 2.4(2). On the other hand, if $\beta(x)$ were non-algebraic, then $\beta(x)$ would have infinitely many solutions in M, so $\varphi(x, \bar{y})$ would have a solution in M for any choice of \bar{y} . Thus, $\exists x \varphi(x, \bar{y})$ would always hold.

Finally, assume that $\bar{y}^* \neq \emptyset$. By the definition of mutual algebraicity, there is an integer K so that $M \models \forall \bar{y}^* \exists^{\leq K} x \beta(x, \bar{y}^*)$. For each j < m, let $\theta_j(x, \bar{y}^*, \bar{y}_j) := \beta(x, \bar{y}^*) \land \gamma_j(x, \bar{y}_j)$. By Lemma 2.4(4), each $\theta_j(x, \bar{y}^*, \bar{y}_j) \in \mathcal{MA}$. Thus, the formula $\exists x \varphi(x, \bar{y})$ is equivalent to

$$\bigvee_{r \le K} \left(\exists^{=r} x \beta(x, \bar{y}^*) \wedge \exists^{< r} x \bigvee_{j < m} \theta_j(x, \bar{y}^*, \bar{y}_j) \right)$$

which is in \mathcal{MA}^* by Lemma 2.6.

The previous Proposition inspires the following two definitions:

Definition 2.8 A structure M is mutually algebraic if every L(M)-formula is in $\mathcal{MA}^*(M)$.

Definition 2.9 Let M be any structure. The mutually algebraic reduct of M_M is the structure with the same universe as M, and whose definable sets are precisely $\mathcal{MA}^*(M)$.

Proposition 2.7 immediately implies that the mutually algebraic reduct of a structure M is a mutually algebraic structure.

Lemma 2.10 Mutual algebraicity of structures is preserved under elementary equivalence.

Proof. Suppose that M is a mutually algebraic structure and that N is elementarily equivalent to M. It suffices to show that $\varphi(\bar{x}, \bar{h}) \in \mathcal{MA}^*(N)$ for any L-formula $\varphi(\bar{x}, \bar{y})$ (with \bar{x} and \bar{y} disjoint and there are no hidden

parameters) and any $\bar{h} \in N^{\lg(\bar{y})}$. Given this data, let $\bar{z} = \bar{x} \hat{y}$ and consider the *L*-formula $\varphi(\bar{z})$. As M is mutually algebraic, $\varphi(\bar{z}) \in \mathcal{MA}^*(M)$, so there are (finitely many) L-formulas $\delta_i(\bar{z}, \bar{w}_i)$ and \bar{e}_i from M so that (1) $\varphi(\bar{z})$ is $Th(M_M)$ -equivalent to a boolean combination $\theta(\bar{z}, \bar{e}^*)$ of the $\delta_i(\bar{z}, \bar{e}_i)$ (\bar{e}^* denotes the concatenation of the \bar{e}_i 's); and (2) There is a number K so that each of the formulas $\delta_i(\bar{z}, \bar{e}_i)$ satisfy $M \models \forall \bar{y}' \exists^{\leq K} \bar{x}' \delta_i(\bar{x}', \bar{y}', \bar{e}_i)$ for every proper partition $\bar{z} = \bar{x}' \hat{y}'$. Thus, by quantifying out the \bar{e}^* , there is an L-sentence σ asserting that

$$\exists \overline{w}^* \Big(\forall \overline{z} [\varphi(\overline{z}) \leftrightarrow \theta(\overline{z}, \overline{w}^*)] \land \text{`each } \delta_i(\overline{z}, \overline{w}_i) \text{ is } K\text{-mutually algebraic'} \Big)$$

As $M \models \sigma$, so does N. Choose \bar{c}^* from N so that $\varphi(\bar{z})$ is $Th(N_N)$ -equivalent to $\theta(\bar{z}, \bar{c}^*)$ and $\theta(\bar{z}, \bar{c}^*)$ is equivalent to a boolean combination of $\delta_i(\bar{z}, \bar{c}_i) \in \mathcal{MA}(N)$, where each \bar{c}_i is the corresponding subsequence of \bar{c}^* . Finally, rewrite \bar{z} as (\bar{x}, \bar{y}) and substitute \bar{h} for \bar{y} . By Lemma 2.4(2), each of the formulas $\delta_i(\bar{x}, \bar{h}, \bar{c}_i) \in \mathcal{MA}(N)$ and $\varphi(\bar{x}, \bar{h})$ is $Th(N_N)$ -equivalent to the boolean combination $\theta(\bar{x}, \bar{h}, \bar{c}^*)$. Thus, $\varphi(\bar{x}, \bar{h}) \in \mathcal{MA}^*(N)$, as required.

The following Lemma is folklore, but a proof is included for the convenience of the reader. Recall that a partitioned formula $\varphi(\bar{x}, \bar{y})$ does not have the finite cover property (i.e., has nfcp) with respect to a theory T if there is a number k so that for all sets $\{\bar{c}_i : i \in I\}$, the type $\Gamma := \{\varphi(\bar{x}, \bar{c}_i) : i \in I\}$ is consistent with T whenever every k-element subset of Γ is consistent with T.

Lemma 2.11 Let M be any structure, and let $\varphi(\bar{x}, \bar{y})$ be any partitioned L(M)-formula. If, for some integer K, either $M \models \forall \bar{y} \exists^{< K} \bar{x} \varphi(\bar{x}, \bar{y})$, or $M \models \forall \bar{y} \exists^{< K} \bar{x} \neg \varphi(\bar{x}, \bar{y})$, then $\varphi(\bar{x}, \bar{y})$ does not have the finite cover property with respect to $Th(M_M)$.

Proof. If M is finite, then every partitioned formula $\varphi(\bar{x}, \bar{y})$ has nfcp for trivial reasons, so assume that M is infinite. First, assume that $M \models \forall \bar{y} \exists^{< K} \bar{x} \varphi(\bar{x}, \bar{y})$. Choose tuples $\{\bar{c}_i : i \in I\}$ from some elementary extension of M and assume that the type $\Gamma := \{\varphi(\bar{x}, \bar{c}_i) : i \in I\}$ is inconsistent. It suffices to find a subtype of at most K elements that is inconsistent as well. Choose a maximal sequence $\langle i_j : j \leq n \rangle$ from I such that $i_0 \in I$ is arbitrary

and for each $1 \leq m \leq n$,

$$\models \exists \bar{x} \left(\bigwedge_{j < m} \varphi(\bar{x}, \bar{c}_{i_j}) \land \neg \varphi(\bar{x}, \bar{c}_{i_m}) \right)$$

By our hypotheses on $\varphi(\bar{x}, \bar{c}_{i_0})$, $n \leq K$. But now, if $\bigwedge_{j \leq n} \varphi(\bar{x}, \bar{c}_{i_j})$ were consistent but Γ were not, we would contradict the maximality of the sequence.

In the other case, as M is infinite, every partial type of the form $\{\varphi(\bar{x}, \bar{c}_i) : i \in I\}$ is consistent, so the nfcp of $\varphi(\bar{x}, \bar{y})$ is vacuously true.

Proposition 2.12 For any structure M, the theory of the mutually algebraic reduct of M has nfcp.

Proof. By the equivalence of (1) and $\forall m(2)_m$ in Theorem II 4.4 of [6] (whose proof does not use stability) it suffices to show that no partitioned formula of the form $\varphi(x,\bar{y}) \in \mathcal{MA}^*$ with $\lg(x) = 1$ has the finite cover property.

Consider any formula $\theta(x, \bar{y})$ of the form

$$\bigwedge_{i < k} \beta_i(\bar{z}_i) \wedge \bigwedge_{j < m} \neg \gamma_j(\bar{z}_j)$$

with each β_i and γ_j from \mathcal{MA} . First, if the variable x occurs in any β_i , then it follows that there is a number K so that $M \models \forall \bar{y} \exists^{<K} x \theta(x, \bar{y})$. Second, if x does not occur in any β_i , then there is a number K so that there is a number K so that $M \models \forall \bar{y} \exists^{<K} x \neg \theta(x, \bar{y})$. But, any formula $\varphi(x, \bar{y}) \in \mathcal{MA}^*$ is a finite disjunction of formulas $\theta(x, \bar{y})$ described above. It follows that for some K, either $M \models \forall \bar{y} \exists^{<K} x \varphi(x, \bar{y})$ or there is a number K so that $M \models \forall \bar{y} \exists^{<K} x \varphi(x, \bar{y})$ holds. Thus, $\varphi(x, \bar{y})$ has the nfcp by Lemma 2.11.

3 Characterizing theories of mutually algebraic structures

We begin with two definitions indicating that the forking behavior of 1-types (types with a single free variable) is particularly simple.

Definition 3.1 A complete, stable theory with an infinite model is weakly minimal if every forking extension of a 1-type is algebraic (equivalently if $R^{\infty}(x = x) = 1$) and is trivial if there do not exist a set D and three elements $\{a, b, c\}$ that are dependent, but pairwise independent over D. A type $p \in S(D)$ is trivial if there do not exist a set $\{a, b, c\}$ of realizations of p that are dependent, but pairwise independent over D.

It is well known that a weakly minimal theory is trivial if and only if every minimal type is trivial. The following Lemma generalizes the analogous result for non-trivial, strongly minimal theories that was proved by Baldwin and Baizhanov in [1].

Lemma 3.2 If T is weakly minimal and non-trivial, then there is a model M of T and a subset $A \subseteq M$ such that (M, A) is unstable.

Proof. Among all minimal types $p \in S(D)$ and formulas $\varphi(z, xy)$ over D that contain a dependent, but pairwise independent triple $\{a, b, c\}$ of realizations of p, with the dependency witnessed by the algebraic formula $\varphi(z, ab) \in \operatorname{tp}(c/Dab)$, choose one with the multiplicity of $\varphi(z, ab)$ as small as possible. It follows from this multiplicity condition that $\operatorname{acl}(D \cup \{a\}) \cup \operatorname{acl}(D \cup \{b\})$ does not contain any realizations of $\varphi(z, ab)$.

Fix $p \in S(D)$ and $\varphi(z, xy)$ as above, and let M be a sufficiently saturated model containing D. To ease notation, we may assume $D = \emptyset$. Let $\langle (a_i, b_i) : i \in \omega \rangle$ be a Morley sequence in $p^{(2)}$. That is, $\{a_i : i \in \omega\} \cup \{b_j : j \in \omega\}$ is an independent set of realizations of p. For each pair $(i, j) \in \omega^2$, choose $c_{i,j} \in p(M)$ realizing $\varphi(z, a_i b_j)$. Let $A = \{c_{i,j} : i \leq j < \omega\}$. We argue that the L_P -formula $\Phi(x, y) := \exists z (P(z) \land \varphi(z, xy))$ has the order property in (M, A).

To see this, it is clear that the element $c_{i,j}$ witnesses $\Phi(a_i, b_j)$ whenever $i \leq j$. On the other hand, suppose some $c_{k,\ell}$ witnessed $\varphi(x, a_i, b_j)$. We argue that we must have k = i and $\ell = j$: If neither equality held, then we would have $c_{k,\ell}$ forking with both sets $\{a_i, b_j\}$ and $\{a_k, b_\ell\}$. This is impossible, as the doubletons are independent from each other and the type p is minimal, hence regular, hence of weight one. Similarly, suppose that k = i but $\ell \neq j$. Then, working over a_i , $c_{i,\ell}$ is not algebraic over a_i , so $\operatorname{tp}(c_{i,\ell}/a_i)$ is parallel to p, hence is also regular, so of weight one. But, working over a_i , $c_{i,\ell}$ forks with each of b_j and b_ℓ , which are independent over a_i . The case where $j = \ell$ is symmetric, completing the proof.

In what follows, a mutually algebraic expansion of a structure M is an expansion formed by adding arbitrarily many new relation symbols R_i , whose interpretation is a mutually algebraic subset of $M^{\operatorname{arity}(R_i)}$ (see Definition 2.1). In the Theorem that follows, we do not require that the theory T be complete.

Theorem 3.3 The following are equivalent for any theory T:

- 1. Every model of T is a mutually algebraic structure;
- 2. Every mutually algebraic expansion of every model of T is a mutually algebraic structure;
- 3. Th((M, A)) has the nfcp for every $M \models T$ and every expansion (M, A) by a unary predicate;
- 4. Every complete extension of T having an infinite model is weakly minimal and trivial.
- **Proof.** (1) \Rightarrow (2) Fix $M \models T$ and let $\overline{M} = (M, R_i)_{i \in I}$ be any expansion of M, where each R_i is a k(i)-ary relation symbol whose interpretation in \overline{M} is a mutually algebraic subset $B_i \subseteq M^{k(i)}$. By definition, the \overline{M} -definable subsets are the smallest class of subsets of M^{ℓ} for various ℓ that contain every M-definable set and every B_i and are closed under boolean combinations and projections. As M is mutually algebraic, every M-definable set is a boolean combination of mutually algebraic sets. So $\mathcal{MA}^*(\overline{M})$ contains every M-definable set and each of the sets B_i . Additionally, $\mathcal{MA}^*(\overline{M})$ is closed under boolean combinations and projections. Thus, every \overline{M} -definable set is in $\mathcal{MA}^*(\overline{M})$, so \overline{M} is a mutually algebraic structure.
- $(2) \Rightarrow (3)$ Fix any $M \models T$ and any expansion $\overline{M} = (M, A)$ by a unary predicate. As every subset of M^1 is mutually algebraic, it follows from (2) that \overline{M} is a mutually algebraic structure, i.e., every \overline{M} -definable set is in $\mathcal{MA}^*(\overline{M})$. Thus, every partitioned \overline{M} -definable formula $\varphi(\bar{x}, \bar{y})$ has nfcp by Proposition 2.12. That is, the elementary diagram of \overline{M} and hence the theory of \overline{M} has nfcp.
- $(3) \Rightarrow (4)$ Suppose T satisfies (3). Fix any complete extension T' of T with an infinite model. As the nfcp implies stability, T' must be stable. Fix a sufficiently saturated model M of T'. As T' is stable, if it were not weakly minimal then we could choose an element a and a tuple \bar{b} from M such that

tp (a/\bar{b}) forks over the empty set, but a is not algebraic over \bar{b} . Let $\varphi(x,\bar{y})$ be chosen so that $\varphi(x,\bar{b}) \in \operatorname{tp}(a/\bar{b})$ witnesses the forking. As M is sufficiently saturated, we can find a Morley sequence $\langle \bar{b}_i : i \in \omega \rangle$ in $\operatorname{stp}(\bar{b})$ inside M. As T' is stable, $\{\bar{b}_i : i \in \omega\}$ is an indiscernible set and there is a number k so that every element $a^* \in M$ is contained in at most k of the sets $D_i := \varphi(M,\bar{b}_i)$. As each D_i is infinite, we can construct a subset A of M such that each $c \in A$ is contained in exactly one of the sets D_i , and for each $i, |A \cap D_i| = i$. Then the theory of the expansion (M,A), where the new unary predicate symbol P is interpreted as A, has the finite cover property as witnessed by the L_P -formula $\Psi(x,\bar{y}z) := P(x) \wedge \varphi(x,\bar{y}) \wedge x \neq z$. Thus, T must be weakly minimal. That T' must be trivial as well follows from Lemma 3.2 and the fact that instability implies an instance of the finite cover property.

 $(4) \Rightarrow (1)$ This is the content of Theorem 4.2 of [5]. In fact, there it is shown that every M-definable formula is a boolean combination of mutually algebraic formulas of a very special form.

Corollary 3.4 Let M be any infinite structure. The mutually algebraic reduct of M described in Definition 2.9 is the maximal weakly minimal, trivial reduct of M.

Proof. The mutually algebraic reduct of M is a mutually algebraic structure, so it has a weakly minimal, trivial theory. Conversely, if any reduct of M has a weakly minimal, trivial theory, then it is a mutually algebraic structure, hence all of its definable sets are contained in $\mathcal{MA}^*(M)$.

4 Mutually algebraic structures

Suppose that M is a mutually algebraic structure in a language L. We study models of the elementary diagram of M, or equivalently the class of elementary extensions of M. Note that if M is finite, then there are no proper elementary extensions of M, which will render all of the results that follow vacuous. Because of this, **throughout this section we additionally assume that** M is **infinite.** Thus, we may assume that M is elementarily embedded in a much larger, saturated 'monster model' \mathfrak{C} .

By Theorem 3.3, Th(M) is weakly minimal and trivial, so the quantifier elimination offered in [5] applies. Specifically, let

 $\mathcal{A}(M) := \{ \text{all quantifier-free mutually algebraic } L(M) \text{-formulas } \alpha(\bar{z}) \} \text{ and }$

 $\mathcal{E}(M) = \{\text{all } L(M)\text{-formulas of the form } \exists \bar{x}\alpha(\bar{x},\bar{y}), \text{ where } \alpha(\bar{x},\bar{y}) \in \mathcal{A}(M)\}$ and let $\mathcal{A}^*(M)$ (respectively $\mathcal{E}^*(M)$) denote the closure of $\mathcal{A}(M)$ (respectively $\mathcal{E}(M)$) under boolean combinations. Proposition 4.1 of [5] states that every quantifier-free L(M)-formula is equivalent to a formula in $\mathcal{A}^*(M)$, while Theorem 4.2 states that every L(M)-formula is equivalent to a formula in $\mathcal{E}^*(M)$.

As Th(M) is weakly minimal, the relation ' $a \in \operatorname{acl}_M(B)$ ' satisfies the axioms of a pre-geometry, where $\operatorname{acl}_M(B)$ abbreviates $\operatorname{acl}(M \cup B)$. (Algebraic closures are always computed with respect to satisfaction in \mathfrak{C} .) Thus, the binary relation $a \approx b$ on $\mathfrak{C} \setminus M$ defined by $a \in \operatorname{acl}_M(\{b\})$ is an equivalence relation. The following easy Lemma is folklore.

Lemma 4.1 Suppose Th(M) is weakly minimal, $M \leq \mathfrak{C}$, and A is any algebraically closed set satisfying $M \subseteq A \subseteq \mathfrak{C}$. Then A is the universe of an elementary submodel of \mathfrak{C} .

Proof. The interpretation of any constant symbol is contained in M, and the fact that A is algebraically closed implies that it is closed under every function symbol in the language. Thus, A is the universe of a substructure of \mathfrak{C} . To see that this substructure is elementary, by the Tarski-Vaught criterion it suffices to show that for any L-formula $\varphi(x,\bar{y})$ and for any \bar{a} from A, if $\mathfrak{C} \models \exists x \varphi(x,\bar{a})$, then there is $b \in A$ such that $\mathfrak{C} \models \varphi(b,\bar{a})$. So fix any $\varphi(x,\bar{a})$ and $b \in \mathfrak{C}$ such that $\mathfrak{C} \models \varphi(b,\bar{a})$. If $b \in A$, then we are done, so assume $b \notin A$. As A is algebraically closed, this means that $\operatorname{tp}(b/M\bar{a})$ is not algebraic. As Th(M) is weakly minimal and b is a singleton, this implies that $\operatorname{tp}(b/M\bar{a})$ does not fork over M. But then, by symmetry and finite satisfiability of non-forking over models, there is $b^* \in M \subseteq A$ such that $\mathfrak{C} \models \varphi(b^*,\bar{a})$.

Recall that when combined with weak minimality, triviality implies that for any set $B \subseteq \mathfrak{C}$, $\operatorname{acl}_M(B) = \bigcup_{b \in B} \operatorname{acl}_M(\{b\})$.

Proposition 4.2 Let M be any mutually algebraic L-structure.

- 1. If $M \subseteq A \subseteq \mathfrak{C}$ and A is an arbitrary union of \approx -classes, then A is an L-structure and $M \preceq A \preceq \mathfrak{C}$; and
- 2. Conversely, if $M \leq N \leq \mathfrak{C}$ and $B \subseteq N \setminus M$ is a set of \approx -representatives, then N is the disjoint union of the sets M and $\{\operatorname{acl}_M(\{b\}) \setminus M : b \in B\}$.
- **Proof.** (1) Th(M) is weakly minimal and trivial by Theorem 3.3. By triviality, A must be algebraically closed, so $A \leq \mathfrak{C}$ by Lemma 4.1. That $M \prec A$ follows immediately from this.
- (2) That the sets are disjoint follows by triviality. If there were an element $d \in N$ that was not in any of these sets, then d would be \approx -inequivalent to every element of B, contradicting the maximality of B.

In light of the previous Proposition, it is natural to refer to the sets $\operatorname{acl}_M(\{b\}) \setminus M$ as the *components* of a given $N \succeq M$. Each component has size bounded by the number of L(M)-formulas, and one can speak of the type of a fixed enumeration of a component over M. The notion of a component map records this amount of data.

Definition 4.3 Suppose that M is a mutually algebraic structure and N_1, N_2 are both elementary extensions of M. A component map $f: N_1 \to N_2$ is a bijection such that $f|_M = id$ and for each $b \in N_1 \setminus M$,

- f restricted to $\operatorname{acl}_M(\{b\})$ is elementary and
- $f(\operatorname{acl}_M(\{b\})) = \operatorname{acl}_M(\{f(b)\})$ setwise.

Proposition 4.4 Suppose that M is mutually algebraic and $N_1, N_2 \succeq M$. Then every component map $f: N_1 \to N_2$ is an isomorphism. Conversely, every isomorphism $f: N_1 \to N_2$ that is the identity on M is a component map.

Proof. As every quantifier-free L(M)-formula is equivalent to a formula in $\mathcal{A}^*(M)$, it suffices to show that f preserves every formula $\alpha(\bar{z}) \in \mathcal{A}(M)$. Choose any \bar{a} from N_1 . Without loss, by Lemma 2.4(2) and the fact that f fixes M pointwise, we may assume \bar{a} is disjoint from M. There are now two cases. First, if $\bar{a} \subseteq \operatorname{acl}_M(\{b\})$ for some element b, then $f(\bar{a}) \subseteq \operatorname{acl}_M(\{b\})$ and $N_1 \models \alpha(\bar{a})$ if and only if $N_2 \models \alpha(f(\bar{a}))$ by the elementarity of f restricted to $\operatorname{acl}_M(\{b\})$. Second, if \bar{a} intersects at least two components, then $N_1 \models \neg \alpha(\bar{a})$

automatically. Furthermore, since f maps components onto components, $f(\bar{a})$ would intersect at least two components of N_2 , so $N_2 \models \neg \alpha(\bar{a})$. Thus, α is preserved in both cases, so f is an isomorphism. The converse is clear since elementary maps preserve algebraic closure.

We close with two examples of how the analog of Proposition 4.4 can fail if we work over $acl(\emptyset)$ instead of a model.

Example 4.5 Let $L = \{R, S, E\}$, and let T be the theory asserting that E is an equivalence relation with exactly two classes, both infinite, and R is a binary 'mating relation' i.e., R is symmetric, irreflexive, and $\forall x \exists^{-1} y R(x, y)$. We further require that $R(x,y) \to \neg E(x,y)$. Take S to be a 4-ary relation such that S(x,y,z,w) holds if and only if the four elements are distinct, and each of the relations R(x,y), R(z,w), and E(x,z) hold. Then T is complete, mutually algebraic, and $\operatorname{acl}(\emptyset) = \emptyset$. For any model N of T, the decomposition of N into R-mated pairs is a decomposition of N into two-element \emptyset -components' i.e., sets A satisfying $\operatorname{acl}_{\emptyset}(A) = A$. However, in contrast to Proposition 4.4, there are \emptyset -component maps' $f: N \to N$, i.e., bijections $f: N \to N$ whose restriction to each two-element \emptyset -component is elementary, that are not automorphisms.

The second example is from [3]. There, Baldwin, Shelah, and the author exhibit two models M, N of the theory of infinitely many, binary splitting equivalence relations that are not isomorphic in the set-theoretic universe V, but there is a c.c.c. extension V[G] of V and $M \cong N$ in V[G]. This theory is also weakly minimal and trivial with $\operatorname{acl}(\emptyset) = \emptyset$. In fact, this theory has a prime model and every 'component' is a singleton. The complexity exploited by this example involves which strong types over the empty set are realized in the models M and N.

References

- [1] B. Baizhanov and J. T. Baldwin, Local homogeneity, *Journal of Symbolic Logic* **69** (2004) 1243–1260.
- [2] J. T. Baldwin and S. Shelah, Second-order quantifiers and the complexity of theories, *Notre Dame J. Formal Logic* **26** (1985) 229–303.

- [3] J. T. Baldwin, M. C. Laskowski, and S. Shelah, Forcing isomorphism, *Journal of Symbolic Logic* **58** (1993) 1291–1301.
- [4] A. Dolich, M. C. Laskowski, and A. Raichev, Model completeness for trivial, uncountably categorical theories of Morley rank 1, *Arch. Math. Logic* **45** (2006) 931–945.
- [5] M. C. Laskowski, The elementary diagram of a trivial, weakly minimal structure is near model complete, *Arch. Math. Logic* **48** (2009) 15–24.
- [6] S. Shelah, *Classification Theory*, (revised edition) North Holland, Amsterdam, 1990.