
Software Component Technologies and Space Applications

Don Batory
Department of Computer Sciences

The University of Texas
Austin, Texas 78712

Abstract

In the near future, software systems will be more reconfigurable than hardware. This
will be possible through the advent of software component technologies, which have
been prototyped in universities and research labs. In this paper, we outline the founda-
tions for these technologies and suggest how they might impact software for space
applications.

1 Introduction

Software component technologies will fundamentally change the way complex and customized soft-
ware systems will be designed, developed, and maintained. Well-understood domains of software (e.g.,
avionics software, communication networks, operating systems, etc.) will be standardized as libraries
of plug-compatible and interoperable components. A software system in these domains (e.g., a particu-
lar avionics system, a particular operating system, etc.) will be specified as a composition of compo-
nents. High-performance source code that implements these systems will be generated automatically.
Application developers will purchase component libraries for the domains of interest, and will config-
ure components to build the target systems/platforms that their applications need. The evolution of soft-
ware, once a formidable problem, is radically simplified: an updated version of a system is defined as a
composition of components and its software is generated automatically. It is in this manner that future
software engineers will leverage off of existing componentry to “mass produce” complex and custom-
ized software quickly and cheaply.

For this vision to become a reality requires basic changes in the way we understand and write software.
First and foremost, a software component technology requires us to address the following:

• encapsulation - what should a building block (i.e., component) of software systems encapsulate?

• composition - what does composition mean?

• paradigm - what model of programming supports software component technologies?

• scalability - how can large families of systems be expressed by a small number of components?

• verification - how can one verify that a composition of components is consistent and implements
the specifications of the target system?

Answers to these questions lie at the confluence of a number of independent research areas: transforma-
tion systems, object-oriented programming, parameterizing programming, domain-specific compiler
optimizations, and domain modeling and the design of reusable software. Research on software system
generators lies at the heart of this intersection, where specific and practical answers to these questions
have been found.

dsb
Text Box
International Conference on Integrated Micro-Nano Technology for Space Applications, November 1995

2 A Paradigm Shift

The evolution of customized software is the bane of most projects: it is difficult to achieve and is hor-
rendously costly. There is always the need to develop new variants of existing systems, each variant/
version offers new features that are specific to the class of applications that are to be supported. But
often the effort needed to make even minor changes to a system is far out of proportion to the changes
themselves [Par79].

The problem is that source code is the most detailed and concrete realization of a software design. The
most critical changes (and hence the most important evolutionary changes) to a software system are
modifications to its design. Minimal design changes often require major software rewrites. Rather than
maintaining and evolving source code, an alternative is to maintain and evolve the design and to gener-
ate the corresponding source code automatically. This is the concept of design maintenance [Bax92].

Design maintenance asserts that the designs of software systems are quantized; there are primitive com-
ponents of software design in every domain. A component encapsulates a domain-specific capability
that software systems of that domain can exhibit. The design of a software system is therefore
expressed as a composition of components, where a composition defines the set of capabilities that a
target system is to have. Furthermore, the evolution of a system’s design occurs in quantum steps and
these steps correspond to the addition or removal of domain-specific capabilities (i.e., components)
from the target system.

Design maintenance has two important implications. First, conventional methods of software design
must change because they view software systems as one-of-a-kind products. Reusing previous designs
or source code is largely an ad hoc and fortuitous activity. Design maintenance, in contrast, requires the
identification of primitive components of design for a large family (or domain) of software. A primitive
component, by definition, is reusable because it is used in the design of many family members. Domain
modeling is the name given to software design methodologies that identify primitive components of
software designs for a specific domain [Pri91, Gom94, Bat95a].

A second implication is that a primitive component of software design need not correspond to a primi-
tive code module or package in a generated system. In general, the introduction of a component to a
system’s design might require incremental modifications to many parts (e.g., object-oriented classes) of
a system’s software. Furthermore, the modifications that a component makes to the source code of one
system might be different than that made to another; such differences arise because certain domain-spe-
cific optimizations could be applied to one system, but not in the other. Thus a component must encap-
sulate more than just algorithms: it must also encapsulate reflective computations, i.e., domain-specific
decisions about when to use a particular algorithm and/or when to apply a domain-specific optimiza-
tion. For most domains, reflective computations are critical for generating efficient code [Bat93].

What programming paradigm supports such componentry? The rallying cry of object-orientation is that
“everything is an object”. Object-oriented design methodologies and programming languages are
indeed powerful, but they are insufficient for software components. A programming paradigm that has
been found to encompass object-orientation, in addition to providing the generality needed, is that of
program transformation systems. The rallying cry of transformation systems is “everything is a trans-
formation”, or more specifically a forward refinement program transformation (FRPT). The connection
between components and FRPTs is direct: an FRPT elaborates a high-level program by introducing
details (e.g., source code) that efficiently implement a domain-specific capability. Such elaborations can
occur in many parts (e.g., classes) of a system’s software. Moreover, an inherent part of an FRPT is the
ability to perform reflective computations, so that only the most efficient algorithms are generated.
Composing components is equivalent to composing transformations [Bax92, Bat92].

The key ingredient that enables components to be composed is due to a disciplined design that stan-
dardizes the abstractions (and their programming language interfaces) of a domain. Simply put, domain
modeling ensures that components are designed to be interoperable, interchangeable, and plug-compat-
ible and thus can be used as software building blocks; components with ad hoc interfaces that are not
interoperable, interchangeable, and plug-compatible are not building blocks.

Among the benefits of software componentry is that few components are actually needed to assemble
large families of systems. We expect most domain-specific libraries to have a few hundred components,
where domain experts can easily identify components to be used (without requiring elaborate library
classification and searching methods). Another benefit of software componentry is that there are simple
algorithms to determine automatically if a composition of components is consistent and that it imple-
ments the specifications of a target system. While demonstrating consistency falls short of formal veri-
fication, it is an major step forward in making software system generation practical [Per89, Bat95b].

Software component technologies and generator technologies have been developed for the domains of
avionics, database systems, file systems, network protocols, and data structures. Related composition/
encapsulation technologies in software architectures are [Gor91, Per92, Gar93]. Readers who are inter-
ested in the technical details of these discussions are urged to consult the cited references.

3 Relevance to Software Development for Space Applications

In the following, I address the community of software developers for space applications. However, I
admit that there is very little in my comments that are specific to space applications; the problems that I
address and the benefits that can be reaped are applicable to software in general.

The main obstacles I foresee in the promulgation of software component technologies and software
system generators are not technical in nature. To be sure, there are plenty of difficult technical problems
ahead, but I am confident that these problems are solvable. My intuition for this not-very-bold state-
ment is that domain modeling takes a retrospective view of software systems that have been built. Thus,
solutions to thorny design problems have already been devised in a multiplicity of contexts. The activi-
ties of domain modeling - the basis of software component technologies - are to show how these spe-
cific solutions fit into a more general (i.e., building blocks) context. It is not the case that entirely new
solutions to domain-specific problems (e.g., space applications) must be invented for software compo-
nent technologies to work. Very little “invention” of new algorithms, etc. is needed. Hence my opti-
mism.

The real challenge will be the acceptance of software component technologies by the space application
community. The primary obstacle is that programmers and system designers are reluctant to change the
way they understand and view problems in software. More specifically, this is the “not-invented-here”
syndrome. If software componentry for space applications were invented in-house, it would have a
much greater chance of being used. But even in-house development would be a major step from con-
ventional approaches.

The reluctance to change has its consequences: researchers will be encouraged to seek a “silver bullet”
that will miraculously solve intractable problems that have been brought on by traditional and estab-
lished methods of software production. The difficulties of software evolution; the infeasibility of imple-
menting competing, possibly radically different, designs for evaluation; the inexpensive development
of product families are examples. Experience has shown that enough (minimal) progress and enough
clever ideas will be demonstrated by researchers to keep the “silver bullet” hopes of software managers
alive for years to come. However, I am skeptical that incremental progress will ever lead to a satisfac-

tory and economical solution. To address the major problems of software development today will ulti-
mately require a paradigm shift.

Paradigm shifts occur when there is a general perception that major benefits will ensue. The shift from
structured programming and C-like programming languages to object-oriented design methods and pro-
gramming languages is being paved by a wide spectrum of realized benefits and good salesmanship of
object-orientation. The same will be needed for software component technologies. The benefits of com-
ponentry are real and substantial, but are not yet that well understood or appreciated. Not surprisingly,
number of advocates for software componentry needs to be enlarged.

Despite my enthusiasm for software componentry, I don’t believe software component technologies are
silver bullets. These technologies do not solve problems, but only simplify some problems (e.g., evolu-
tion). For example, there are there are many performance-related parameters in avionics software
whose values must be determined through extensive testing and simulation. Avionics source code with
such performance-related parameters is typically easy to generate. However, how one determines the
values to be assigned to these parameters (e.g., aircraft-specific parameters) does not seem to be fully
automatable, and the tried-and-true processes of testing and simulation still need to be performed. Thus,
many of the existing activities of software development will still remain.

Another point to be made is that most “new” systems always include new and unprecedented function-
ality. It has been estimated that upwards of 80% of a “new” system can be built from available compo-
nents. This means that 20% of the “new” system will need to be added. While a factor of five reduction
in the amount of software to be written is a substantial savings, software development will certainly not
cease.

But there will also be unique opportunities that software component technologies provide that would
otherwise be difficult or impractical. For example, synthesis from specifications makes it feasible to
evaluate radically different software designs. As another example, self-tuning and self-reorganizing
software is possible: components can be added to systems to monitor their performance. Periodically,
the system can reconfigure itself automatically, based on known usage patterns, to enhance its perfor-
mance.

In conclusion, if software evolution, the cost-effective creation of product families, the need to experi-
ment and retrofit system designs, and improving programmer productivity are critical to future software
for space applications, then the design and use software component technologies should be made a top
priority.

4 References

[Bax92] I. Baxter, “Design Maintenance Systems”, CACM April 1992, 73-89.

[Bat92] D. Batory and S. O’Malley, “The Design and Implementation of Hierarchical Software
Systems with Reusable Components”, ACM TOSEM, October 1992.

[Bat93] D. Batory, V. Singhal, M. Sirkin, and J. Thomas, “Scalable Software Libraries”, ACM
SIGSOFT 1993.

[Bat95a] D. Batory, L. Coglianese, M. Goodwin, and S. Shafer, “Creating Reference Architectures:
An Example From Avionics”, ACM SIGSOFT Symposium on Software Reusability, Seattle,
1995, 27-37.

[Bat95b] D. Batory and B.J. Geraci, “Validating Component Compositions in Software System
Generators”, Department of Computer Sciences, University of Texas at Austin, TR-93-03,
February 1995.

[Gar93] D. Garlan and M. Shaw, “An Introduction to Software Architecture”, in Advances in
Software Engineering and Knowledge Engineering, Volume I, World Scientific Publishing
Company, 1993.

[Gom94] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch, and I. Tavakoli, “A Prototype Domain
Modeling Environment for Reusable Software Architectures”, Third International
Conference on Software Reuse, Rio de Janeiro, November 1-4, 1994, 74-83.

[Gor91] M.M. Gorlick and R.R. Razouk, “Using Weaves for Software Construction and Analysis”,
Proc. ICSE 1991, 23-34.

[Par79] D.L. Parnas, “Designing Software for Ease of Extension and Contraction”, IEEE
Transactions on Software Engineering, March 1979.

[Per89] D.E. Perry, “The Logic of Propagation in The Inscape Environment”, ACM SIGSOFT 1989,
114-121.

[Per92] D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”, ACM
SIGSOFT Software Engineering Notes, October 1992, 40-52.

[Pri91] R. Prieto-Diaz and G. Arango (ed.), Domain Analysis and Software Systems Modeling,
IEEE Computer Society Press 1991.

