
Gradient-Based Learning Applied to Document RecognitionYann LeCun, L�eon Bottou, Yoshua Bengio, and Patrick Ha�ner �July 13, 1998AbstractMultilayer Neural Networks trained with the backpropagation algorithm constitute the best ex-ample of a successful Gradient-Based Learning technique. Given an appropriate network architecture,Gradient-Based Learning algorithms can be used to synthesize a complex decision surface that canclassify high-dimensional patterns such as handwritten characters, with minimal preprocessing. Thispaper reviews various methods applied to handwritten character recognition and compares them ona standard handwritten digit recognition task. Convolutional Neural Networks, that are speci�callydesigned to deal with the variability of 2D shapes, are shown to outperform all other techniques.Real-life document recognition systems are composed of multiple modules including �eld extrac-tion, segmentation, recognition, and language modeling. A new learning paradigm, called GraphTransformer Networks (GTN), allows such multi-module systems to be trained globally using Gradient-Based methods so as to minimize an overall performance measure.Two systems for on-line handwriting recognition are described. Experiments demonstrate theadvantage of global training, and the 
exibility of Graph Transformer Networks.A Graph Transformer Network for reading bank check is also described. It uses ConvolutionalNeural Network character recognizers combined with global training techniques to provides recordaccuracy on business and personal checks. It is deployed commercially and reads million of checksper month.1 IntroductionOver the last several years, machine learning techniques, particularly when applied to neural networks,have played an increasingly important role in the design of pattern recognition systems. In fact, it couldbe argued that the availability of learning techniques has been a crucial factor in the recent success ofpattern recognition applications such as continuous speech recognition and handwriting recognition.The main message of this paper is that better pattern recognition systems can be built by relying moreon automatic learning, and less on hand-designed heuristics. This is made possible by recent progress inmachine learning and computer technology. Using character recognition as a case study, we show thathand-crafted feature extraction can be advantageously replaced by carefully designed learning machinesthat operate directly on pixel images. Using document understanding as a case study, we show that thetraditional way of building recognition systems by manually integrating individually designed modulescan be replaced by a uni�ed and well-principled design paradigm, called Graph Transformer Networks,that allows training all the modules to optimize a global performance criterion.Since the early days of pattern recognition it has been known that the variability and richness ofnatural data, be it speech, glyphs, or other types of patterns, make it almost impossible to build anaccurate recognition system entirely by hand. Consequently, most pattern recognition systems are builtusing a combination of automatic learning techniques and hand-crafted algorithms. The usual methodof recognizing individual patterns consists in dividing the system into two main modules shown in �g-ure 1. The �rst module, called the feature extractor, transforms the input patterns so that they canbe represented by low-dimensional vectors or short strings of symbols that (a) can be easily matched or�The authors are with the Speech and Image Processing Services Research Laboratory, AT&T Labs-Research, 100Schulz Drive Red Bank, NJ 07701. E-mail: fyann,leonb,yoshua,ha�nerg@research.att.com. Yoshua Bengio is also with theD�epartement d'Informatique et de Recherche Op�erationelle, Universit�e de Montr�eal, C.P. 6128 Succ. Centre-Ville, 2920Chemin de la Tour, Montr�eal, Qu�ebec, Canada H3C 3J7. 1
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Raw inputFigure 1: Traditional pattern recognition is performed with two modules: a �xed feature extractor, anda trainable classi�er.compared, and (b) are relatively invariant with respect to transformations and distortions of the inputpatterns that do not change their nature. The feature extractor contains most of the prior knowledge andis rather speci�c to the task. It is also the focus of most of the design e�ort, because it is often entirelyhand-crafted. The classi�er, on the other hand, is often general-purpose and trainable. One of the mainproblems with this approach is that the recognition accuracy is largely determined by the ability of thedesigner to come up with an appropriate set of features. This turns out to be a daunting task which,unfortunately, must be redone for each new problem. A large amount of the pattern recognition literatureis devoted to describing and comparing the relative merits of di�erent feature sets for particular tasks.Historically, the requirement for appropriate feature extractors was due to the fact that the learningtechniques used by the classi�ers were limited to low-dimensional spaces with easily separable classes [Duda and Hart, 1973].A combination of three factors have changed this vision over the last decade. First, the availability oflow-cost machines with fast arithmetic units allows to rely more on brute-force \numerical" methods thanon algorithmic re�nements. Second, the availability of large databases for problems with a large marketand wide interest, such as handwriting recognition, has enabled designers to rely more on real data andless on hand-crafted feature extraction to build recognition systems. The third and very important factoris the availability of powerful machine learning techniques that can handle high-dimensional inputs andcan generate intricate decision functions when fed with these large data sets. It can be argued that therecent progress in the accuracy of speech and handwriting recognition systems can be attributed in largepart to an increased reliance on learning techniques and large training data sets. As evidence to this fact,a large proportion of modern commercial OCR systems use some form of multi-layer Neural Networktrained with back-propagation.In this study, we consider the tasks of handwritten character recognition (Sections 1 and 2) andcompare the performance of several learning techniques on a benchmark data set for handwritten digitrecognition (Section 3). While more automatic learning is bene�cial, no learning technique can succeedwithout a minimal amount of prior knowledge about the task. In the case of multi-layer neural networks,a good way to incorporate knowledge is to tailor its architecture to the task. Convolutional NeuralNetworks [LeCun et al., 1989a] introduced in Section 2 are an example of specialized neural network ar-chitectures which incorporate knowledge about the invariances of 2D shapes by using local connectionpatterns, and by imposing constraints on the weights. A comparison of several methods for isolatedhandwritten digit recognition is presented in section 3. To go from the recognition of individual char-acters to the recognition of words and sentences in documents, the idea of combining multiple modulestrained to reduce the overall error is introduced in Section 4. Recognizing variable-length objects such ashandwritten words using multi-module systems is best done if the modules manipulate directed graphs.2



This leads the concept of trainable Graph Transformer Network (GTN) also introduced in Section 4. Sec-tion 5 describes the now classical method of heuristic over-segmentation for recognizing words or othercharacter strings. Discriminative and non-discriminative gradient-based techniques for training a recog-nizer at the word level without requiring manual segmentation and labeling are presented in Section 7.Section 8 presents the promising Space-Displacement Neural Network approach that eliminates the needfor segmentation heuristics by scanning a recognizer at all possible location on the input. In section 9,it is shown that trainable Graph Transformer Networks can be formulated as multiple generalized trans-ductions, based on a general graph composition algorithm. The connections between GTNs and HiddenMarkov Models, commonly used in speech recognition is also treated. Section 10 describes a globallytrained GTN system for recognizing handwriting entered in a pen computer. This problem is knownas \on-line" handwriting recognition, since the machine must produce immediate feedback as the userwrites. The core of the system is a Convolutional Neural Network. The results clearly demonstrate theadvantages of training a recognizer at the word level, rather than training it on pre-segmented, hand-labeled, isolated characters. Section 11 describes a complete GTN-based system for reading handwrittenand machine-printed bank checks. The core of the system is the Convolutional Neural Network calledLeNet-5 described in Section 2. This system is in commercial use in NCR Corp. line of check recognitionsystems for the banking industry. It is reading millions of checks per month in several banks across theUS.1.1 Learning from DataThere are several approaches to automatic machine learning, but one of the most successful approaches,popularized in recent years by the neural network community, can be called \numerical" or gradient-based learning. The learning machine computes a function Y p = F (Zp;W ) where Zp is the p-th inputpattern, andW represents the collection of adjustable parameters in the system. In a pattern recognitionsetting, the output Y p may be interpreted as the recognized class label of pattern Zp, or as scores orprobabilities associated with each class. A loss function Ep = D(Dp; F (W;Zp)), measures the discrepancybetween Dp, the \correct" or desired output for pattern Zp, and the output produced by the system.The average loss function Etrain(W ) is the average of the errors Ep over a set of labeled examplescalled the training set f(Z1; D1); ::::(ZP ; DP )g. In the simplest setting, the learning problem consistsin �nding the value of W that minimizes Etrain(W ). In practice, the performance of the system ona training set is of little interest. The more relevant measure is the error rate of the system in the�eld, where it would be used in practice. This performance is estimated by measuring the accuracy ona set of samples disjoint from the training set, called the test set. Much theoretical and experimentalwork [Seung et al., 1992, Vapnik et al., 1994, Cortes et al., 1994] has shown that the gap between theexpected error rate on the test set Etest and the error rate on the training set Etrain decreases with thenumber of training samples approximately asEtest �Etrain = k(h=P )� (1)where P is the number of training samples, h is a measure of \e�ective capacity" or complexity of themachine [Vapnik, 1995, Vapnik, 1998], � is a number between 0:5 and 1:0, and k is a constant. This gapalways decreases when the number of training samples increases. Furthermore, as the capacity h increases,Etrain decreases. Therefore, when increasing the capacity h, there is a trade-o� between the decreaseof Etrain and the increase of the gap, with an optimal value of the capacity h that achieves the lowestgeneralization error Etest. Most learning algorithms attempt to minimize Etrain as well as some estimateof the gap. A formal version of this is called structural risk minimization [Vapnik, 1995, Vapnik, 1998],and is based on de�ning a sequence of learning machines of increasing capacity, corresponding to asequence of subsets of the parameter space such that each subset is a superset of the previous subset. Inpractical terms, Structural Risk Minimization is implemented by minimizing Etrain+�H(W ), where thefunction H(W ) is called a regularization function, and � is a constant. H(W ) is chosen such that it takeslarge values on parameters W that belong to high-capacity subsets of the parameter space. MinimizingH(W ) in e�ect limits the capacity of the accessible subset of the parameter space, thereby controllingthe tradeo� between minimizing the training error and minimizing the expected gap between the trainingerror and test error. 3



1.2 Gradient-Based LearningThe general problem of minimizing a function with respect to a set of parameters is at the root of manyissues in computer science. Gradient-Based Learning draws on the fact that it is generally much easierto minimize a reasonably smooth, continuous function than a discrete (combinatorial) function. The lossfunction can be minimized by estimating the impact of small variations of the parameter values on the lossfunction. This is measured by the gradient of the loss function with respect to the parameters. E�cientlearning algorithms can be devised when the gradient vector can be computed analytically (as opposedto numerically through perturbations). This is the basis of numerous gradient-based learning algorithmswith continuous-valued parameters. In the procedures described in this article, the set of parametersW is a real-valued vector, with respect to which E(W ) is continuous, as well as di�erentiable almosteverywhere. The simplest minimization procedure in such a setting is the gradient descent algorithmwhere W is iteratively adjusted as follows:Wk =Wk�1 � �@E(W )@W : (2)In the simplest case, � is a scalar constant. More sophisticated procedures use variable �, or substituteit for a diagonal matrix, or substitute it for an estimate of the inverse Hessian matrix as in Newton orQuasi-Newton methods. The Conjugate Gradient method [Press et al., 1986] can also be used. However,Appendix B shows that despite many claims to the contrary in the literature, the usefulness of thesesecond-order methods to large learning machines is very limited.A popular minimization procedure is the stochastic gradient algorithm, also called the on-line update.It consists in updating the parameter vector using a noisy, or approximated, version of the averagegradient. In the most common instance of it, W is updated on the basis of a single sample:Wk =Wk�1 � �@Epk (W )@W (3)With this procedure the parameter vector 
uctuates around an average trajectory, but usually convergesconsiderably faster than regular gradient descent and second order methods on large training sets withredundant samples (such as those encountered in speech or character recognition). The reasons for thisare explained in Appendix B. The properties of such algorithms applied to learning have been studiedtheoretically since the 1960's [Amari, 1967, Tsypkin, 1971, Tsypkin, 1973], but practical successes fornon-trivial tasks did not occur until the mid eighties.1.3 Gradient Back-PropagationGradient-Based Learning procedures have been used since the late 1950's, but were mostly limited to lin-ear systems [Duda and Hart, 1973]. The surprising usefulness of such simple gradient descent techniquesfor complex machine learning tasks was not widely realized until the following three events occurred. The�rst event was the realization that, despite early warnings to the contrary [Minsky and Selfridge, 1961],the presence of local minima in the loss function does not seem to be a major problem in practice.This became apparent when it was noticed that local minima did not seem to be a major impedi-ment to the success of early non-linear Gradient-Based Learning techniques such as Boltzmann ma-chines [Ackley et al., 1985, Hinton and Sejnowski, 1986]. The second event was the popularization byRumelhart, Hinton and Williams [Rumelhart et al., 1986] and others of a simple and e�cient proce-dure, the back-propagation algorithm, to compute the gradient in a non-linear system composed ofseveral layers of processing. The third event was the demonstration that the back-propagation proce-dure applied to multi-layer neural networks with sigmoidal units can solve complicated learning tasks.The basic idea of back-propagation is that gradients can be computed e�ciently by propagation fromthe output to the input. This idea was described in the control theory literature of the early six-ties [Bryson and Ho, 1969], but its application to machine learning was not generally realized then. In-terestingly, the early derivations of back-propagation in the context of neural network learning did notuse gradients, but \virtual targets" for units in intermediate layers [LeCun, 1985, LeCun, 1986], or mini-mal disturbance arguments [Parker, 1985]. The Lagrange formalism used in the control theory literatureprovides perhaps the best rigorous method for deriving back-propagation [LeCun, 1987], and for derivinggeneralizations of back-propagation to recurrent networks [LeCun, 1988], and networks of heterogeneous4



modules [Bottou and Gallinari, 1991]. A simple derivation for generic multi-layer systems is given inSection 1.5.The fact that local minima do not seem to be a problem for multi-layer neural networks is somewhatof a theoretical mystery. It is conjectured that if the network is oversized for the task (as is usually thecase in practice), the presence of \extra dimensions" in parameter space reduces the risk of unattainableregions. Back-propagation is by far the most widely used neural-network learning algorithm, and probablythe most widely used learning algorithm of any form.1.4 Learning in Real Handwriting Recognition SystemsIsolated handwritten character recognition has been extensively studied in the literature (see [Suen et al., 1992,Srihari, 1992] for reviews), and was one of the early successful applications of neural networks [LeCun et al., 1989b].Comparative experiments on recognition of individual handwritten digits are reported in Section 3. Theyshow that neural networks trained with Gradient-Based Learning perform better than all other methodstested here on the same data. The best neural networks, called Convolutional Networks, are designed tolearn to extract relevant features directly from pixel images (see Section 2).One of the most di�cult problems in handwriting recognition, however, is not only to recognizeindividual characters, but also to separate out characters from their neighbors within the word or sentence,a process known as segmentation. The technique for doing this that has become the \standard" iscalled Heuristic Over-Segmentation. It consists in generating a large number of potential cuts betweencharacters using heuristic image processing techniques, and subsequently selecting the best combinationof cuts based on scores given for each candidate character by the recognizer. In such a model, the accuracyof the system depends upon the quality of the cuts generated by the heuristics, and on the ability of therecognizer to distinguish correctly segmented characters from pieces of characters, multiple characters,or otherwise incorrectly segmented characters. Training a recognizer to perform this task poses a majorchallenge because of the di�culty in creating a labeled databases of incorrectly segmented characters.The simplest solution consists in running the images of character strings through the segmenter, and thenmanually labeling all the character hypotheses. Unfortunately, not only is this an extremely tedious andcostly task, it is also di�cult to do the labeling consistently. For example, should the right half of a cutup 4 be labeled as a 1 or as a non-character? should the right half of a cut up 8 be labeled as a 3?The �rst solution, described in Section 5 consists in training the system at the level of whole stringsof characters, rather than at the character level. The notion of Gradient-Based Learning can be used forthis purpose. The system is trained to minimize an overall loss function which measures the probabilityof an erroneous answer. Section 5 explores various ways to ensure that the loss function is di�erentiable,and therefore lends itself to the use of Gradient-Based Learning methods. Section 5 introduces the useof directed acyclic graphs whose arcs carry numerical information as a way to represent the alternativehypotheses, and introduces the idea of GTN.The second solution described in Section 8 is to eliminate segmentation altogether. The idea is tosweep the recognizer over every possible location on the input image, and to rely on the \characterspotting" property of the recognizer, i.e. its ability to correctly recognize a well-centered character inits input �eld, even in the presence of other characters besides it, while rejecting images containingno centered characters [Keeler et al., 1991, Matan et al., 1992b]. The sequence of recognizer outputsobtained by sweeping the recognizer over the input is then fed to a Graph Transformer Network thattakes linguistic constraints into account and �nally extracts the most likely interpretation. This GTNis somewhat similar to Hidden Markov Models (HMM), which makes the approach reminiscent of theclassical speech recognition [Rabiner, 1989, Bourlard and Morgan, 1994]. While this technique wouldbe quite expensive in the general case, the use of Convolutional Neural Networks makes it particularlyattractive because it allows signi�cant savings in computational cost.1.5 Globally Trainable SystemsAs stated earlier, most practical pattern recognition systems are composed of multiple modules. Forexample, a document recognition system is composed of a �eld locator, which extracts regions of interest,a �eld segmenter, which cuts the input image into images of candidate characters, a recognizer, whichclassi�es and scores each candidate character, and a contextual post-processor, generally based on a5



stochastic grammar, which selects the best grammatically correct answer from the hypotheses generatedby the recognizer. In most cases, the information carried from module to module is best represented asgraphs with numerical information attached to the arcs. For example, the output of the recognizer modulecan be represented as an acyclic graph where each arc contains the label and the score of a candidatecharacter, and where each path represent a alternative interpretation of the input string. Typically, eachmodule is manually optimized, or sometimes trained, outside of its context. For example, the characterrecognizer would be trained on labeled images of pre-segmented characters. Then the complete system isassembled, and a subset of the parameters of the modules is manually adjusted to maximize the overallperformance. This last step is extremely tedious, time-consuming, and almost certainly suboptimal.A better alternative would be to somehow train the entire system so as to minimize a global errormeasure such as the probability of character misclassi�cations at the document level. Ideally, we wouldwant to �nd a good minimum of this global loss function with respect to all the parameters in the system.If the loss function E measuring the performance can be made di�erentiable with respect to the system'stunable parameters W , we can �nd a local minimum of E using Gradient-Based Learning. However, at�rst glance, it appears that the sheer size and complexity of the system would make this intractable.To ensure that the global loss function Ep(Zp;W ) is di�erentiable, the overall system is built asa feed-forward network of di�erentiable modules. The function implemented by each module must becontinuous and di�erentiable almost everywhere with respect to the internal parameters of the module(e.g. the weights of a Neural Net character recognizer in the case of a character recognition module),and with respect to the module's inputs. If this is the case, a simple generalization of the well-knownback-propagation procedure can be used to e�ciently compute the gradients of the loss function withrespect to all the parameters in the system [Bottou and Gallinari, 1991]. For example, let us consider asystem built as a cascade of modules, each of which implements a function Xn = Fn(Wn; Xn�1), whereXn is a vector representing the output of the module, Wn is the vector of tunable parameters in themodule (a subset of W ), and Xn�1 is the module's input vector (as well as the previous module's outputvector). The input X0 to the �rst module is the input pattern Zp. If the partial derivative of Ep withrespect to Xn is known, then the partial derivatives of Ep with respect toWn and Xn�1 can be computedusing the backward recurrence @Ep@Wn = @F@W (Wn; Xn�1) @Ep@Xn@Ep@Xn�1 = @F@X (Wn; Xn�1) @Ep@Xn (4)where @F@W (Wn; Xn�1) is the Jacobian of F with respect to W evaluated at the point (Wn; Xn�1), and@F@X (Wn; Xn�1) is the Jacobian of F with respect to X . The Jacobian of a vector function is a matrixcontaining the partial derivatives of all the outputs with respect to all the inputs. The �rst equation com-putes some terms of the gradient of Ep(W ), while the second equation generates a backward recurrence,as in the well-known back-propagation procedure for neural networks. We can average the gradients overthe training patterns to obtain the full gradient. It is interesting to note that in many instances thereis no need to explicitly compute the Jacobian matrix. The above formula uses the product of the Jaco-bian with a vector of partial derivatives, and it is often easier to compute this product directly withoutcomputing the Jacobian beforehand. In By analogy with ordinary multi-layer neural networks, all butthe last module are called hidden layers because their outputs are not observable from the outside. morecomplex situations than the simple cascade of modules described above, the partial derivative notationbecomes somewhat ambiguous and awkward. A completely rigorous derivation in more general cases canbe done using Lagrange functions [LeCun, 1987, LeCun, 1988, Bottou and Gallinari, 1991].Traditional multi-layer neural networks are a special case of the above where the state information Xnis represented with �xed-sized vectors, and where the modules are alternated layers of matrix multiplica-tions (the weights) and component-wise sigmoid functions (the neurons). However, as stated earlier, thestate information in complex recognition system is best represented by graphs with numerical informationattached to the arcs. In this case, each module, called a Graph Transformer, takes one or more graphsas input, and produces a graph as output. Networks of such modules are called Graph Transformer Net-works (GTN). Sections 4, 7 and 9 develop the concept of GTNs, and show that Gradient-Based Learningcan be used to train all the parameters in all the modules so as to minimize a global loss function. It may6



seem paradoxical that gradients can be computed when the state information is represented by essentiallydiscrete objects such as graphs, but that di�culty can be circumvented, as shown later.2 Convolutional Neural Networks for Isolated Character Recog-nitionThe ability of multi-layer networks trained with gradient descent to learn complex, high-dimensional, non-linear mappings from large collections of examples makes them obvious candidates for image recognitiontasks. In the traditional model of pattern recognition, a hand-designed feature extractor gathers relevantinformation from the input and eliminates irrelevant variabilities. A trainable classi�er then categorizesthe resulting feature vectors into classes. In this scheme, standard, fully-connected multi-layer networkscan be used as classi�ers. A potentially more interesting scheme is to rely on as much as possible onlearning in the feature extractor itself. In the case of character recognition, a network could be fed withalmost raw inputs (e.g. size-normalized images). While this can be done with an ordinary fully connectedfeed-forward network with some success for tasks such as character recognition, there are problems.Firstly, typical images are large, often with several hundred variables (pixels). A fully-connected �rstlayer with, say one hundred hidden units in the �rst layer, would already contain several tens of thousandsof weights. Such a large number of parameters increases the capacity of the system and therefore requiresa larger training set. In addition, the memory requirement to store so many weights may rule outcertain hardware implementations. But, the main de�ciency of unstructured nets for image or speechapplications is that they have no built-in invariance with respect to translations, or local distortions ofthe inputs. Before being sent to the �xed-size input layer of a neural net, character images, or other2D or 1D signals, must be approximately size-normalized and centered in the input �eld. Unfortunately,no such preprocessing can be perfect: handwriting is often normalized at the word level, which cancause size, slant, and position variations for individual characters. This, combined with variability inwriting style, will cause variations in the position of distinctive features in input objects. In principle, afully-connected network of su�cient size could learn to produce outputs that are invariant with respectto such variations. However, learning such a task would probably result in multiple units with similarweight patterns positioned at various locations in the input so as to detect distinctive features whereverthey appear on the input. Learning these weight con�gurations requires a very large number of traininginstances to cover the space of possible variations. In convolutional networks, described below, shiftinvariance is automatically obtained by forcing the replication of weight con�gurations across space.Secondly, a de�ciency of fully-connected architectures is that the topology of the input is entirelyignored. The input variables can be presented in any (�xed) order without a�ecting the outcome ofthe training. On the contrary, images (or time-frequency representations of speech) have a strong 2Dlocal structure: variables (or pixels) that are spatially or temporally nearby are highly correlated. Localcorrelations are the reasons for the well-known advantages of extracting and combining local featuresbefore recognizing spatial or temporal objects, because con�gurations of neighboring variables can beclassi�ed into a small number of categories (e.g. edges, corners...). Convolutional Networks force theextraction of local features by restricting the receptive �elds of hidden units to be local.2.1 Convolutional NetworksConvolutional Networks combine three architectural ideas to ensure some degree of shift, scale, anddistortion invariance: local receptive �elds, shared weights (or weight replication), and spatial or tem-poral sub-sampling. A typical convolutional network for recognizing characters, dubbed LeNet-5, isshown in �gure 2. The input plane receives images of characters that are approximately size-normalizedand centered. Each unit in a layer receives inputs from a set of units located in a small neighbor-hood in the previous layer. The idea of connecting units to local receptive �elds on the input goesback to the Perceptron in the early 60s, and was almost simultaneous with Hubel and Wiesel's discov-ery of locally-sensitive, orientation-selective neurons in the cat's visual system [Hubel and Wiesel, 1962].Local connections have been used many times in neural models of visual learning [Fukushima, 1975,Fukushima and Miyake, 1982, LeCun, 1986, Mozer, 1991, LeCun, 1989, LeCun et al., 1989a]. With localreceptive �elds, neurons can extract elementary visual features such as oriented edges, end-points, corners7
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Figure 2: Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Eachplane is a feature map, i.e. a set of units whose weights are constrained to be identical.(or similar features in other signals such as speech spectrograms). These features are then combined bythe subsequent layers in order to detect higher-order features. As stated earlier, distortions or shifts ofthe input can cause the position of salient features to vary. In addition, elementary feature detectors thatare useful on one part of the image are likely to be useful across the entire image. This knowledge canbe applied by forcing a set of units, whose receptive �elds are located at di�erent places on the image, tohave identical weight vectors [Fukushima and Miyake, 1982, Rumelhart et al., 1986, LeCun, 1989]. Unitsin a layer are organized in planes within which all the units share the same set of weights. The set ofoutputs of the units in such a plane is called a feature map. Units in a feature map are all constrained toperform the same operation on di�erent parts of the image. A complete convolutional layer is composedof several feature maps (with di�erent weight vectors), so that multiple features can be extracted at eachlocation. A concrete example of this is the �rst layer of LeNet-5 shown in Figure 2. Units in the �rsthidden layer of LeNet-5 are organized in 6 planes, each of which is a feature map. A unit in a featuremap has 25 inputs connected to a 5 by 5 area in the input, called the receptive �eld of the unit. Eachunit has 25 inputs, and therefore 25 trainable coe�cients plus a trainable bias. The receptive �elds ofcontiguous units in a feature map are centered on correspondingly contiguous units in the previous layer.Therefore receptive �elds of neighboring units overlap. For example, in the �rst hidden layer of LeNet-5,the receptive �elds of horizontally contiguous units overlap by 4 columns and 5 rows. As stated earlier,all the units in a feature map share the same set of 25 weights and the same bias so they detect the samefeature at all possible locations on the input. The other feature maps in the layer use di�erent sets ofweights and biases, thereby extracting di�erent types of local features. In the case of LeNet-5, at eachinput location six di�erent types of features are extracted by six units in identical locations in the sixfeature maps. A sequential implementation of a feature map would scan the input image with a singleunit that has a local receptive �eld, and store the states of this unit at corresponding locations in thefeature map. This operation is equivalent to a convolution, followed by an additive bias and squashingfunction, hence the name convolutional network. The kernel of the convolution is the set of connectionweights used by the units in the feature map. An interesting property of convolutional layers is that ifthe input image is shifted, the feature map output will be shifted by the same amount, but will be leftunchanged otherwise. This property is at the basis of the robustness of convolutional networks to shiftsand distortions of the input.Once a feature has been detected, its exact location becomes less important. Only its approximateposition relative to other features is relevant. For example, once we know that the input image containsthe endpoint of a roughly horizontal segment in the upper left area, a corner in the upper right area, andthe endpoint of a roughly vertical segment in the lower portion of the image, we can tell the input imageis a 7. Not only is the precise position of each of those features irrelevant for identifying the pattern,it is potentially harmful because the positions are likely to vary for di�erent instances of the character.A simple way to reduce the precision with which the position of distinctive features are encoded in afeature map is to reduce the spatial resolution of the feature map. This can be achieved with a so-calledsub-sampling layers which performs a local averaging and a sub-sampling, reducing the resolution of thefeature map, and reducing the sensitivity of the output to shifts and distortions. The second hidden layerof LeNet-5 is a sub-sampling layer. This layer comprises six feature maps, one for each feature map in the8



previous layer. The receptive �eld of each unit is a 2 by 2 area in the previous layer's corresponding featuremap. Each unit computes the average of its four inputs, multiplies it by a trainable coe�cient, adds atrainable bias, and passes the result though a sigmoid function. Contiguous units have non-overlappingcontiguous receptive �elds. Consequently, a sub-sampling layer feature map has half the number of rowsand columns as the feature maps in the previous layer. The trainable coe�cient and bias control the e�ectof the sigmoid non-linearity. If the coe�cient is small, then the unit operates in a quasi-linear mode, andthe sub-sampling layer merely blurs the input. If the coe�cient is large, sub-sampling units can be seenas performing a \noisy OR" or a \noisy AND" function depending on the value of the bias. Successivelayers of convolutions and sub-sampling are typically alternated, resulting in a \bi-pyramid": at eachlayer, the number of feature maps is increased as the spatial resolution is decreased. Each unit in thethird hidden layer in �gure 2 may have input connections from several feature maps in the previous layer.The convolution/sub-sampling combination, inspired by Hubel and Wiesel's notions of \simple" and\complex" cells, was implemented in Fukushima's Neocognitron [Fukushima and Miyake, 1982], thoughno globally supervised learning procedure such as back-propagation was available then. A large degree ofinvariance to geometric transformations of the input can be achieved with this progressive reduction ofspatial resolution compensated by a progressive increase of the richness of the representation (the numberof feature maps).Since all the weights are learned with back-propagation, convolutional networks can be seen as syn-thesizing their own feature extractor. The weight sharing technique has the interesting side e�ect ofreducing the number of free parameters, thereby reducing the \capacity" of the machine and reducingthe gap between test error and training error [LeCun, 1989]. The network in �gure 2 contains 345,308connections, but only 60,000 trainable free parameters because of the weight sharing.Fixed-size Convolutional Networks have been applied to many applications, among other handwritingrecognition [LeCun et al., 1990, Martin, 1993], machine-printed character recognition [Wang and Jean, 1993],on-line handwriting recognition [Bengio et al., 1995], and face recognition [Lawrence et al., 1997]. Fixed-size convolutional networks that share weights along a single temporal dimension are known as Time-DelayNeural Networks (TDNNs). TDNNs have been used in phoneme recognition (without sub-sampling) [Lang and Hinton, 1988,Waibel et al., 1989], spoken word recognition (with sub-sampling) [Bottou et al., 1990, Ha�ner and Waibel, 1991],on-line recognition of isolated handwritten characters [Guyon et al., 1991], and signature veri�cation [Bromley et al., 1993].2.2 LeNet-5This section describes in more detail the architecture of LeNet-5, the Convolutional Neural Network usedin the experiments. LeNet-5 comprises 7 layers, not counting the output, all of which contain trainableparameters (weights). The input is a 32x32 pixel image. This is signi�cantly larger than the largestcharacter in the database (at most 20x20 pixels centered in a 28x28 �eld). The reason is that it isdesirable that potential distinctive features such as stroke end-points or corner can appear in the centerof the receptive �eld of the highest-level feature detectors. In LeNet-5 the set of centers of the receptive�elds of the last convolutional layer (C3, see below) form a 20x20 area in the center of the 32x32 input.The values of the input pixels are normalized so that the background level (white) corresponds to a valueof -0.1 and the foreground (black) corresponds to 1.175. This makes the mean input roughly 0, and thevariance roughly 1 which accelerates learning [LeCun et al., 1991].In the following, convolutional layers are labeled Cx, sub-sampling layers are labeled Sx, and fully-connected layers are labeled Fx, where x is the layer index.Layer C1 is a convolutional layer with 6 feature maps. Each unit in each feature map is connected toa 5x5 neighborhood in the input. The size of the feature maps is 28x28 which prevents connection fromthe input from falling o� the boundary. C1 contains 156 trainable parameters, and 122,304 connections.Layer S2 is a sub-sampling layer with 6 feature maps of size 14x14. Each unit in each feature map isconnected to a 2x2 neighborhood in the corresponding feature map in C1. The four inputs to a unit in S2are added, then multiplied by a trainable coe�cient, and added to a trainable bias. The result is passedthrough a sigmoidal function. The 2x2 receptive �elds are non-overlapping, therefore feature maps in S2have half the number of rows and column as feature maps in C1. Layer S2 has 12 trainable parametersand 5,880 connections.Layer C3 is a convolutional layer with 16 feature maps. Each unit in each feature map is connected toseveral 5x5 neighborhoods at identical locations in a subset of S2's feature maps. Table 1 shows the set9



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 X X X X X X X X X X1 X X X X X X X X X X2 X X X X X X X X X X3 X X X X X X X X X X4 X X X X X X X X X X5 X X X X X X X X X XTable 1: Each column indicates which feature map in S2 are combined by the units in a particular featuremap of C3.of S2 feature maps combined by each C3 feature map. Why not connect every S2 feature map to everyC3 feature map? The reason is twofold. First, a non-complete connection scheme keeps the number ofconnections within reasonable bounds. More importantly, it forces a break of symmetry in the network.Di�erent feature maps are forced to extract di�erent (hopefully complementary) features because theyget di�erent sets of inputs. The rationale behind the connection scheme in table 1 is the following. The�rst six C3 feature maps take inputs from every contiguous subsets of three feature maps in S2. The nextsix take input from every contiguous subset of four. The next three take input from some discontinuoussubsets of four. Finally the last one takes input from all S2 feature maps. Layer C3 has 1,516 trainableparameters and 156,000 connections.Layer S4 is a sub-sampling layer with 16 feature maps of size 5x5. Each unit in each feature map isconnected to a 2x2 neighborhood in the corresponding feature map in C3, in a similar way as C1 and S4.Layer S4 has 32 trainable parameters and 2,000 connections.Layer C5 is a convolutional layer with 120 feature maps. Each unit is connected to a 5x5 neighborhoodon all 16 of S4's feature maps. Here, because the size of S4 is also 5x5, the size of C5's feature maps is1x1: this amounts to a full connection between S4 and C5. C5 is labeled as a convolutional layer, insteadof a fully-connected layer, because if LeNet-5 input were made bigger with everything else kept constant,the feature map dimension would be larger than 1x1. This process of dynamically increasing the size ofa convolutional network is described in the section Section 8. Layer C5 has 48,120 trainable connections.Layer F6, contains 84 units (the reason for this number comes from the design of the output layer,explained below) and is fully connected to C5. It has 10,164 trainable parameters.As in classical neural networks, units in layers up to F6 compute a dot product between their inputvector and their weight vector, to which a bias is added. This weighted sum, denoted ai for unit i, isthen passed through a sigmoid squashing function to produce the state of unit i, denoted by xi:xi = f(ai) (5)The squashing function is a scaled hyperbolic tangent:f(a) = A tanh(Sa) (6)where A is the amplitude of the function and S determines its slope at the origin. The function f is odd,with horizontal asymptotes at +A and �A. The constant A is chosen to be 1:7159. The rationale forthis choice of a squashing function is given in Appendix A.Finally, the output layer is composed of Euclidean Radial Basis Function units (RBF), one for eachclass, with 84 inputs each. The outputs of each RBF unit yi is computed as follows:yi =Xj (xj � wij)2: (7)In other words, each output RBF unit computes the Euclidean distance between its input vector andits parameter vector. The further away is the input from the parameter vector, the larger is the RBFoutput. The output of a particular RBF can be interpreted as a penalty term measuring the �t betweenthe input pattern and a model of the class associated with the RBF. In probabilistic terms, the RBFoutput can be interpreted as the unnormalized negative log-likelihood of a Gaussian distribution in thespace of con�gurations of layer F6. Given an input pattern, the loss function should be designed so as10
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p q r s t u v w x y z { | } ~ �Figure 3: Initial parameters of the output RBFs for recognizing the full ASCII set.to get the con�guration of F6 as close as possible to the parameter vector of the RBF that correspondsto the pattern's desired class. The parameter vectors of these units were chosen by hand and kept �xed(at least initially). The components of those parameters vectors were set to -1 or +1. While they couldhave been chosen at random with equal probabilities for -1 and +1, or even chosen to form an errorcorrecting code as suggested by [Dietterich and Bakiri, 1995], they were instead designed to representa stylized image of the corresponding character class drawn on a 7x12 bitmap (hence the number 84).Such a representation is not particularly useful for recognizing isolated digits, but it is quite useful forrecognizing strings of characters taken from the full printable ASCII set. The rationale is that charactersthat are similar, and therefore confusable, such as uppercase O, lowercase O, and zero, or lowercase l,digit 1, square brackets, and uppercase I, will have similar output codes. This is particularly useful if thesystem is combined with a linguistic post-processor that can correct such confusions. Because the codesfor confusable classes are similar, the output of the corresponding RBFs for an ambiguous character willbe similar, and the post-processor will be able to pick the appropriate interpretation. Figure 3 gives theoutput codes for the full ASCII set.Another reason for using such distributed codes, rather than the more common \1 of N" code (alsocalled place code, or grand-mother cell code) for the outputs is that non distributed codes tend to behavebadly when the number of classes is larger than a few dozens. The reason is that output units in anon-distributed code must be o� most of the time. This is quite di�cult to achieve with sigmoid units.Yet another reason is that the classi�ers are often used to not only recognize characters, but also toreject non-characters. RBFs with distributed codes are more appropriate for that purpose because unlikesigmoids, they are activated within a well circumscribed region of their input space that non-typicalpatterns are more likely to fall outside of.The parameter vectors of the RBFs play the role of target vectors for layer F6. It is worth pointingout that the components of those vector are +1 or -1, which is well within the range of the sigmoid ofF6, and therefore prevents those sigmoids from getting saturated. In fact, +1 and -1 are the points ofmaximum curvature of the sigmoids. This forces the F6 units to operate in their maximally non-linearrange. Saturation of the sigmoids must be avoided because it is known to lead to slow convergence andill-conditioning of the loss function.2.3 Loss FunctionThe simplest output loss function that can be used with the above network is the Maximum LikelihoodEstimation criterion (MLE), which in our case is equivalent to the Minimum Mean Squared Error (MSE).11



The criterion for a set of training samples is simply:E(W ) = 1P PXp=1 yDp(Zp;W ) (8)where yDp is the output of the Dp-th RBF unit, i.e. the one that corresponds to the correct class of inputpattern Zp. While this cost function is appropriate for most cases, it lacks three important properties.First, if we allow the parameters of the RBF to adapt, E(W ) has a trivial, but totally unacceptable,solution. In this solution, all the RBF parameter vectors are equal, and the state of F6 is constantand equal to that parameter vector. In this case the network happily ignores the input, and all theRBF outputs are equal to zero. This collapsing phenomenon does not occur if the RBF weights arenot allowed to adapt. The second problem is that there is no competition between the classes. Such acompetition can be obtained by using a more discriminative training criterion, dubbed the MAP (maxi-mum a posteriori) criterion, similar to Maximum Mutual Information criterion sometimes used to trainHMMs [Bahl et al., 1986, Bahl et al., 1987, Juang and Katagiri, 1992]. It corresponds to maximizing theposterior probability of the correct class Dp (or minimizing the logarithm of the probability of the correctclass), given that the input image can come from one of the classes or from a background \rubbish" classlabel. In terms of penalties, it means that in addition to pushing down the penalty of the correct classlike the MSE criterion, this criterion also pulls up the penalties of the incorrect classes:E(W ) = 1P PXp=1(yDp(Zp;W ) + log(e�j +Xi e�yi(Zp;W ))) (9)The second term plays a \competitive" role. It is necessarily smaller than (or equal to) the �rst term,therefore this loss function is positive. The constant j is positive, and prevents the penalties of classesthat are already very large from being pushed further up. The posterior probability of this rubbishclass label would be the ratio of e�j and e�j +Pi e�yi(Zp;W ). This discriminative criterion prevents thepreviously mentioned \collapsing e�ect" when the RBF parameters are learned because it keeps the RBFcenters apart from each other. In Section 7, we present a generalization of this criterion for systems thatlearn to classify multiple objects in the input (e.g., characters in words or in documents).Computing the gradient of the loss function with respect to all the weights in all the layers of theconvolutional network is done with back-propagation. The standard algorithm must be slightly modi�edto take account of the weight sharing. An easy way to implement it is to �rst compute the partialderivatives of the loss function with respect to each connection, as if the network were a conventionalmulti-layer network without weight sharing. Then the partial derivatives of all the connections that sharea same parameter are added to form the derivative with respect to that parameter.Such a large architecture can be trained very e�ciently, but doing so requires the use of a fewtechniques that are described in the appendix. Section A of the appendix describes details such asthe particular sigmoid used, and the weight initialization. Section B and C describe the minimizationprocedure used, which is a stochastic version of a diagonal approximation to the Levenberg-Marquardtprocedure.3 Results and Comparison with Other MethodsWhile recognizing individual digits is only one of many problems involved in designing a practical recog-nition system, it is an excellent benchmark for comparing shape recognition methods. Though manyexisting method combine a hand-crafted feature extractor and a trainable classi�er, this study concen-trates on adaptive methods that operate directly on size-normalized images.3.1 Database: the Modi�ed NIST setThe database used to train and test the systems described in this paper was constructed from theNIST's Special Database 3 and Special Database 1 containing binary images of handwritten digits. NISToriginally designated SD-3 as their training set and SD-1 as their test set. However, SD-3 is much cleaner12



and easier to recognize than SD-1. The reason for this can be found on the fact that SD-3 was collectedamong Census Bureau employees, while SD-1 was collected among high-school students. Drawing sensibleconclusions from learning experiments requires that the result be independent of the choice of trainingset and test among the complete set of samples. Therefore it was necessary to build a new database bymixing NIST's datasets.SD-1 contains 58,527 digit images written by 500 di�erent writers. In contrast to SD-3, where blocksof data from each writer appeared in sequence, the data in SD-1 is scrambled. Writer identities forSD-1 are available and we used this information to unscramble the writers. We then split SD-1 in two:characters written by the �rst 250 writers went into our new training set. The remaining 250 writerswere placed in our test set. Thus we had two sets with nearly 30,000 examples each. The new trainingset was completed with enough examples from SD-3, starting at pattern # 0, to make a full set of 60,000training patterns. Similarly, the new test set was completed with SD-3 examples starting at pattern #35,000 to make a full set with 60,000 test patterns. In the experiments described here, we only used asubset of 10,000 test images (5,000 from SD-1 and 5,000 from SD-3), but we used the full 60,000 trainingsamples. The resulting database was called the Modi�ed NIST, or MNIST, dataset.The original black and white (bilevel) images were size normalized to �t in a 20x20 pixel box whilepreserving their aspect ratio. The resulting images contain grey levels as result of the anti-aliasing (imageinterpolation) technique used by the normalization algorithm. Three versions of the database were used.In the �rst version, the images were centered in a 28x28 image by computing the center of mass of thepixels, and translating the image so as to position this point at the center of the 28x28 �eld. In someinstances, this 28x28 �eld was extended to 32x32 with background pixels. This version of the databasewill be referred to as the regular database. In the second version of the database, the character imageswere deslanted and cropped down to 20x20 pixels images. The deslanting computes the second momentsof inertia of the pixels (counting a foreground pixel as 1 and a background pixel as 0), and shears theimage by horizontally shifting the lines so that the principal axis is vertical. This version of the databasewill be referred to as the deslanted database. In the third version of the database, used in some earlyexperiments, the images were reduced to 16x16 pixels. The regular database (60,000 training examples,10,000 test examples size-normalized to 20x20, and centered by center of mass in 28x28 �elds) is availableat http://www.research.att.com/~yann/ocr/mnist. Figure 4 shows examples randomly picked fromthe test set.3.2 ResultsSeveral versions of LeNet-5 were trained on the regular MNIST database. 20 iterations through the entiretraining data were performed for each session. The values of the global learning rate � (see Equation 21 inAppendix C for a de�nition) was decreased using the following schedule: 0.0005 for the �rst two passes,0.0002 for the next three, 0.0001 for the next three, 0.00005 for the next 4, and 0.00001 thereafter.Before each iteration, the diagonal Hessian approximation was reevaluated on 500 samples, as describedin Appendix C and kept �xed during the entire iteration. The parameter � was set to 0.02. The resultinge�ective learning rates during the �rst pass varied between approximately 7 � 10�5 and 0:016 over theset of parameters. The test error rate stabilizes after around 10 passes through the training set at 0.95%.The error rate on the training set reaches 0.35% after 19 passes. Many authors have reported observingthe common phenomenon of over-training when training neural networks or other adaptive algorithmson various tasks. When over-training occurs, the training error keeps decreasing over time, but the testerror goes through a minimum and starts increasing after a certain number of iterations. While thisphenomenon is very common, it was not observed in our case as the learning curves in �gure 5 show. Apossible reason is that the learning rate was kept relatively large. The e�ect of this is that the weightsnever settle down in the local minimum but keep oscillating randomly. Because of those 
uctuations, theaverage cost will be lower in a broader minimum. Therefore, stochastic gradient will have a similar e�ectas a regularization term that favors broader minima. Broader minima correspond to solutions with largeentropy of the parameter distribution, which is bene�cial to the generalization error.The in
uence of the training set size was measured by training the network with 15,000, 30,000, and60,000 examples. The resulting training error and test error are shown in �gure 6. It is clear that, evenwith specialized architectures such as LeNet-5, more training data would improve the accuracy.To verify this hypothesis, we arti�cially generated more training examples by randomly distorting the13



Figure 4: Size-normalized examples from the MNIST database.original training images. The increased training set was composed of the 60,000 original patterns plus540,000 instances of distorted patterns with randomly picked distortion parameters. The distortions werecombinations of the following planar a�ne transformations: horizontal and vertical translations, scaling,squeezing (simultaneous horizontal compression and vertical elongation, or the reverse), and horizontalshearing. Figure 7 shows examples of distorted patterns used for training. When distorted data wasused for training, the test error rate dropped to 0.8% (from 0.95% without deformation). The sametraining parameters were used as without deformations. The total length of the training session was leftunchanged (20 passes of 60,000 patterns each). It is interesting to note that the network e�ectively seeseach individual sample only twice over the course of these 20 passes.Figure 8 shows all 82 misclassi�ed test examples. some of those examples are genuinely ambiguous,but several are perfectly identi�able by humans, although they are written in an under-represented style.This shows that further improvements are to be expected with more training data.3.3 Comparison with Other Classi�ersFor the sake of comparison, a variety of other trainable classi�ers was trained and tested on the samedatabase. An early subset of these results was presented in [LeCun et al., 1995]. The error rates on thetest set for the various methods are shown in �gure 9.
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y as trainingproceeds. This explains why the training error appears to be larger than the test error. Convergence isattained after 10 to 12 passes through the training set.3.3.1 Linear Classi�er, and Pairwise Linear Classi�erPossibly the simplest classi�er that one might consider is a linear classi�er. Each input pixel valuecontributes to a weighted sum for each output unit. The output unit with the highest sum (includingthe contribution of a bias constant) indicates the class of the input character. On the regular data,the error rate is 12%. The network has 7850 free parameters. On the deslanted images, the test errorrate is 8.4% The network has 4010 free parameters. The de�ciencies of the linear classi�er are welldocumented [Duda and Hart, 1973] and it is included here simply to form a basis of comparison for moresophisticated classi�ers. Various combinations of sigmoid units, linear units, gradient descent learning,and learning by directly solving linear systems gave similar results.A simple improvement of the basic linear classi�er was tested [Guyon et al., 1989]. The idea is totrain each unit of a single-layer network to separate each class from each other class. In our case thislayer comprises 45 units labeled 0/1, 0/2,...0/9, 1/2....8/9. Unit i=j is trained to produce +1 on patternsof class i, -1 on patterns of class j, and is not trained on other patterns. The �nal score for class i is thesum of the outputs all the units labeled i=x minus the sum of the output of all the units labeled y=i, forall x and y. The error rate on the regular test set was 7.6%.3.3.2 Baseline Nearest Neighbor Classi�erAnother simple classi�er is a K-nearest neighbor classi�er with a Euclidean distance measure betweeninput images. This classi�er has the advantage that no training time, and no brain on the part of thedesigner, are required. However, the memory requirement and recognition time are large: the complete60,000 twenty by twenty pixel training images (about 24 Megabytes at one byte per pixel) must beavailable at run time. Much more compact representations could be devised with modest increase inerror rate. On the regular test set the error rate was 5.0%. On the deslanted data, the error rate was2.4%, with k = 3. Naturally, a realistic Euclidean distance nearest-neighbor system would operate onfeature vectors rather than directly on the pixels, but since all of the other systems presented in thisstudy operate directly on the pixels, this result is useful for a baseline comparison.15
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Figure 6: Training and test errors of LeNet-5 achieved using training sets of various sizes. This graphsuggests that a larger training set could improve the performance of LeNet-5. The hollow square showthe test error when more training patterns are arti�cially generated using random distortions. The testpatterns are not distorted.3.3.3 Principal Component Analysis and Polynomial Classi�erFollowing [Ott, 1976, Sch�urmann, 1978], a preprocessing stage was constructed which computes the pro-jection of the input pattern on the 40 principal components of the set of training vectors. To computethe principal components, the mean of each input component was �rst computed and subtracted fromthe training vectors. The covariance matrix of the resulting vectors was then computed and diagonalizedusing Singular Value Decomposition. The 40-dimensional feature vector was used as the input of a seconddegree polynomial classi�er. This classi�er can be seen as a linear classi�er with 821 inputs, preceded bya module that computes all products of pairs of input variables. The error on the regular test set was3.3%.3.3.4 Radial Basis Function NetworkFollowing [Lee, 1991], an RBF network was constructed. The �rst layer was composed of 1,000 GaussianRBF units with 28x28 inputs, and the second layer was a simple 1000 inputs / 10 outputs linear classi�er.The RBF units were divided into 10 groups of 100. Each group of units was trained on all the trainingexamples of one of the 10 classes using the adaptive K-means algorithm. The second layer weights werecomputed using a regularized pseudo-inverse method. The error rate on the regular test set was 3.6%
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Figure 7: Examples of distortions of ten training patterns.3.3.5 One-Hidden Layer Fully Connected Multilayer Neural NetworkAnother classi�er that we tested was a fully connected multi-layer neural network with two layers ofweights (one hidden layer) trained with the version of back-propagation described in Appendix C. Erroron the regular test set was 4.7% for a network with 300 hidden units, and 4.5% for a network with1000 hidden units. Using arti�cial distortions to generate more training data brought only marginalimprovement: 3.6% for 300 hidden units, and 3.8% for 1000 hidden units. When deslanted images wereused, the test error jumped down to 1.6% for a network with 300 hidden units.It remains somewhat of a mystery that networks with such a large number of free parameters manageto achieve reasonably low testing errors. We conjecture that the dynamics of gradient descent learning inmultilayer nets has a \self-regularization" e�ect. Because the origin of weight space is a saddle point thatis attractive in almost every direction, the weights invariably shrink during the �rst few epochs (recenttheoretical analysis seem to con�rm this [Saad and Solla, 1996]). Small weights cause the sigmoids tooperate in the quasi-linear region, making the network essentially equivalent to a low-capacity, single-layernetwork. As the learning proceeds, the weights grow, which progressively increases the e�ective capacityof the network. This seems to be an almost perfect, if fortuitous, implementation of Vapnik's \StructuralRisk Minimization" principle [Vapnik, 1995]. A better theoretical understanding of these phenomena,and more empirical evidence, are de�nitely needed.
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Figure 9: Error rate on the test set (%) for various classi�cation methods. [deslant] indicates that theclassi�er was trained and tested on the deslanted version of the database. [dist] indicates that the trainingset was augmented with arti�cially distorted examples. [16x16] indicates that the system used the 16x16pixel images. The uncertainty in the quoted error rates is about 0.1%.attain such a good error rate is an indication that the architecture is appropriate for the task.3.3.8 LeNet-4Experiments with LeNet-1 made it clear that a larger convolutional network was needed to make optimaluse of the large size of the training set. LeNet-4 and later LeNet-5 were designed to address this problem.LeNet-4 is very similar to LeNet-5, except for the details of the architecture. It contains 4 �rst-levelfeature maps, followed by 8 subsampling maps connected in pairs to each �rst-layer feature maps, then16 feature maps, followed by 16 subsampling map, followed by a fully connected layer with 120 units,followed by the output layer (10 units). LeNet-4 contains about 260,000 connections and has about17,000 free parameters. Test error was 1.1%. In a series of experiments, we replaced the last layer ofLeNet-4 with a Euclidean Nearest Neighbor classi�er, and with the \local learning" method of Bottouand Vapnik [Bottou and Vapnik, 1992], in which a local linear classi�er is retrained each time a new testpattern is shown. Neither of those methods improved the raw error rate, although they did improve therejection performance.3.3.9 Boosted LeNet-4Following theoretical work by R. Schapire [Schapire, 1990], Drucker et al. [Drucker et al., 1993] developedthe \boosting" method for combining multiple classi�ers. Three LeNet-4s are combined: the �rst oneis trained the usual way. the second one is trained on patterns that are �ltered by the �rst net so thatthe second machine sees a mix of patterns, 50% of which the �rst net got right, and 50% of which it gotwrong. Finally, the third net is trained on new patterns on which the �rst and the second nets disagree.During testing, the outputs of the three nets are simply added. Because the error rate of LeNet-4 is verylow, it was necessary to use the arti�cially distorted images (as with LeNet-5) in order to get enough19



samples to train the second and third nets. The test error rate was 0.7%, the best of any of our classi�ers.At �rst glance, boosting appears to be three times more expensive as a single net. In fact, when the �rstnet produces a high con�dence answer, the other nets are not called. The average computational cost isabout 1.75 times that of a single net.3.3.10 Tangent Distance Classi�er (TDC)The Tangent Distance classi�er (TDC) is a nearest-neighbor method where the distance function ismade insensitive to small distortions and translations of the input image [Simard et al., 1993]. If weconsider an image as a point in a high dimensional pixel space (where the dimensionality equals thenumber of pixels), then an evolving distortion of a character traces out a curve in pixel space. Takentogether, all these distortions de�ne a low-dimensional manifold in pixel space. For small distortions, inthe vicinity of the original image, this manifold can be approximated by a plane, known as the tangentplane. An excellent measure of "closeness" for character images is the distance between their tangentplanes, where the set of distortions used to generate the planes includes translations, scaling, skewing,squeezing, rotation, and line thickness variations. A test error rate of 1.1% was achieved using 16x16pixel images. Pre�ltering techniques using simple Euclidean distance at multiple resolutions allowed toreduce the number of necessary Tangent Distance calculations.3.3.11 Support Vector Machine (SVM)Polynomial classi�ers are well-studied methods for generating complex decision surfaces. Unfortunately,they are impractical for high-dimensional problems, because the number of product terms is prohibitive.The Support Vector technique is an extremely economical way of representing complex surfaces in high-dimensional spaces, including polynomials and many other types of surfaces [Vapnik, 1995].A particularly interesting subset of decision surfaces is the ones that correspond to hyperplanes thatare at a maximum distance from the convex hulls of the two classes in the high-dimensional space ofthe product terms. Boser, Guyon, and Vapnik [Boser et al., 1992] realized that any polynomial of degreek in this \maximum margin" set can be computed by �rst computing the dot product of the inputimage with a subset of the training samples (called the \support vectors"), elevating the result to thek-th power, and linearly combining the numbers thereby obtained. Finding the support vectors and thecoe�cients amounts to solving a high-dimensional quadratic minimization problem with linear inequalityconstraints. For the sake of comparison, we include here the results obtained by Burges and Sch�olkopfreported in [Burges and Schoelkopf, 1997]. With a regular SVM, their error rate on the regular test setwas 1.4%. Cortes and Vapnik had reported an error rate of 1.1% with SVM on the same data usinga slightly di�erent technique. The computational cost of this technique is very high: about 14 millionmultiply-adds per recognition. Using Sch�olkopf's Virtual Support Vectors technique (V-SVM), 1.0% errorwas attained. More recently, Sch�olkopf (personal communication) has reached 0.8% using a modi�edversion of the V-SVM. Unfortunately, V-SVM is extremely expensive: about twice as much as regularSVM. To alleviate this problem, Burges has proposed the Reduced Set Support Vector technique (RS-SVM), which attained 1.1% on the regular test set [Burges and Schoelkopf, 1997], with a computationalcost of only 650,000 multiply-adds per recognition, i.e. only about 60% more expensive than LeNet-5.3.4 DiscussionA summary of the performance of the classi�ers is shown in Figures 9 to 12. Figure 9 shows the raw errorrate of the classi�ers on the 10,000 example test set. Boosted LeNet-4 performed best, achieving a scoreof 0.7%, closely followed by LeNet-5 at 0.8%.Figure 10 shows the number of patterns in the test set that must be rejected to attain a 0.5% errorfor some of the methods. Patterns are rejected when the value of corresponding output is smaller thana prede�ned threshold. In many applications, rejection performance is more signi�cant than raw errorrate. The score used to decide upon the rejection of a pattern was the di�erence between the scores of thetop two classes. Again, Boosted LeNet-4 has the best performance. The enhanced versions of LeNet-4did better than the original LeNet-4, even though the raw accuracies were identical.Figure 11 shows the number of multiply-accumulate operations necessary for the recognition of asingle size-normalized image for each method. Expectedly, neural networks are much less demanding20
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Figure 10: Rejection Performance: percentage of test patterns that must be rejected to achieve 0.5%error for some of the systems.than memory-based methods. Convolutional Neural Networks are particularly well suited to hardwareimplementations because of their regular structure and their low memory requirements for the weights.Single chip mixed analog-digital implementations of LeNet-5's predecessors have been shown to operateat speeds in excess of 1000 characters per second [S�ackinger et al., 1992]. However, the rapid progress ofmainstream computer technology renders those exotic technologies quickly obsolete. Cost-e�ective imple-mentations of memory-based techniques are more elusive, due to their enormous memory requirements,and computational requirements.Training time was also measured. K-nearest neighbors and TDC have essentially zero training time.While the single-layer net, the pairwise net, and PCA+quadratic net could be trained in less than anhour, the multilayer net training times were expectedly much longer, but only required 10 to 20 passesthrough the training set. This amounts to 2 to 3 days of CPU to train LeNet-5 on a Silicon GraphicsOrigin 2000 server, using a single 200MHz R10000 processor. It is important to note that while thetraining time is somewhat relevant to the designer, it is of little interest to the �nal user of the system.Given the choice between an existing technique, and a new technique that brings marginal accuracyimprovements at the price of considerable training time, any �nal user would chose the latter.Figure 12 shows the memory requirements, and therefore the number of free parameters, of the variousclassi�ers measured in terms of the number of variables that need to be stored. Most methods requireonly about one byte per variable for adequate performance. However, Nearest-Neighbor methods mayget by with 4 bit per pixel for storing the template images. Not surprisingly, neural networks requiremuch less memory than memory-based methods.The Overall performance depends on many factors including accuracy, running time, and memoryrequirements. As computer technology improves, larger-capacity recognizers become feasible. Largerrecognizers in turn require larger training sets. LeNet-1 was appropriate to the available technology in1989, just as LeNet-5 is appropriate now. In 1989 a recognizer as complex as LeNet-5 would have requiredseveral weeks' training, and more data than was available, and was therefore not even considered. Forquite a long time, LeNet-1 was considered the state of the art. The local learning classi�er, the optimalmargin classi�er, and the tangent distance classi�er were developed to improve upon LeNet-1 { and theysucceeded at that. However, they in turn motivated a search for improved neural network architectures.This search was guided in part by estimates of the capacity of various learning machines, derived frommeasurements of the training and test error as a function of the number of training examples. Wediscovered that more capacity was needed. Through a series of experiments in architecture, combinedwith an analysis of the characteristics of recognition errors, LeNet-4 and LeNet-5 were crafted.We �nd that boosting gives a substantial improvement in accuracy, with a relatively modest penaltyin memory and computing expense. Also, distortion models can be used to increase the e�ective size of21



4

36

 

−−−− 24,000 −−−−>

39

794

−−−− 20,000 −−−−>

−−−− 14,000 −−−−>

650

−−−− 28,000 −−−−>

 

123

795

267

469

 

100

260

−−−− 20,000 −−−−>

−−−− 10,000 −−−−>

401

460

 

[deslant] K−NN Euclidean

1000 RBF

[16x16] Tangent Distance

SVM poly 4

RS−SVM poly 5

[dist] V−SVM poly 9

 

[deslant] 20x20−300−10

28x28−1000−10

28x28−300−100−10

28x28−500−150−10

 

[16x16] LeNet−1

LeNet−4

LeNet−4 / Local

LeNet−4 / K−NN

LeNet−5

Boosted LeNet−4

0 300 600 900

Linear

Pairwise

40 PCA+quadratic
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23



3

4 4 4

4

34

8

3

C1 S2 C3 S4 C5

F6

Output

Figure 13: Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5. Thegrey-level of the output label represents the penalty (lighter for higher penalties).4 Multi-Module Systems and Graph Transformer NetworksThe classical back-propagation algorithm, as described and used in the previous sections, is a simpleform of Gradient-Based Learning. However, it is clear that the gradient back-propagation algorithmgiven by Equation 4 describes a more general situation than simple multi-layer feed-forward networkscomposed of alternated linear transformations and sigmoidal functions. In principle, derivatives can beback-propagated through any arrangement of functional modules, as long as we can compute the productof the Jacobians of those modules by any vector. Why would we want to train systems composed ofmultiple heterogeneous modules? The answer is that large and complex trainable systems need to be builtout of simple, specialized modules. The simplest example is LeNet-5, which mixes convolutional layers,sub-sampling layers, fully-connected layers, and RBF layers. Another less trivial example, described inthe next two sections, is a system for recognizing words, that can be trained to simultaneously segmentand recognize words, without ever being given the correct segmentation.Figure 14 shows an example of a trainable multi-modular system. A multi-module system is de�nedby the function implemented by each of the modules, and by the graph of interconnection of the modulesto each other. The graph implicitly de�nes a partial order according to which the modules must beupdated in the forward pass. For example in Figure 14, module 0 is �rst updated, then modules 1 and2 are updated (possibly in parallel), and �nally module 3. Modules may or may not have trainableparameters. Loss functions, which measure the performance of the system, are implemented as module 4.In the simplest case, the loss function module receives an external input that carries the desired output.In this framework, there is no qualitative di�erence between trainable parameters (W1,W2 in the �gure),external inputs and outputs (Z,D,E), and intermediate state variables(X1,X2,X3,X4,X5).24
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Figure 14: A trainable system composed of heterogeneous modules.4.1 An Object-Oriented ApproachObject-Oriented programming o�ers a particularly convenient way of implementing multi-module sys-tems. Each module is an instance of a class. Module classes have a \forward propagation" method (ormember function) called fprop whose arguments are the inputs and outputs of the module. For example,computing the output of module 3 in Figure 14 can be done by calling the method fprop on module 3with the arguments X3,X4,X5. Complex modules can be constructed from simpler modules by simplyde�ning a new class whose slots will contain the member modules and the intermediate state variablesbetween those modules. The fprop method for the class simply calls the fprop methods of the membermodules, with the appropriate intermediate state variables or external input and outputs as arguments.Although the algorithms are easily generalizable to any network of such modules, including those whosein
uence graph has cycles, we will limit the discussion to the case of directed acyclic graphs (feed-forwardnetworks).Computing derivatives in a multi-module system is just as simple. A \backward propagation" method,called bprop, for each module class can be de�ned for that purpose. The bprop method of a moduletakes the same arguments as the fprop method. All the derivatives in the system can be computed bycalling the bprop method on all the modules in reverse order compared to the forward propagation phase.The state variables are assumed to contain slots for storing the gradients computed during the backwardpass, in addition to storage for the states computed in the forward pass. The backward pass e�ectivelycomputes the partial derivatives of the loss E with respect to all the state variables and all the parametersin the system. There is an interesting duality property between the forward and backward functions ofcertain modules. For example, a sum of several variables in the forward direction is transformed intoa simple fan-out (replication) in the backward direction. Conversely, a fan-out in the forward directionis transformed into a sum in the backward direction. The software environment used to obtain theresults described in this paper, called SN3.1, uses the above concepts. It is based on a home-grownobject-oriented dialect of Lisp with a compiler to C.The fact that derivatives can be computed by propagation in the reverse graph is easy to understandintuitively. The best way to justify it theoretically is through the use of Lagrange functions [LeCun, 1988,Bottou and Gallinari, 1991]. The same formalism can be used to extend the procedures to networks withrecurrent connections.
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4.2 Special ModulesNeural networks and many other standard pattern recognition techniques can be formulated in terms ofmulti-modular systems trained with Gradient-Based Learning. Commonly used modules include matrixmultiplications and sigmoidal modules, the combination of which can be used to build conventional neuralnetworks. Other modules include convolutional layers, sub-sampling layers, RBF layers, and \softmax"layers [Bridle, 1989]. Loss functions are also represented as modules whose single output produces thevalue of the loss. Commonly used modules have simple bpropmethods. In general, the bpropmethod of afunction F is a multiplication by the Jacobian of F . Here are a few commonly used examples. The bpropmethod of a fanout (a \Y" connection) is a sum, and vice versa. The bprop method of a multiplicationby a coe�cient is a multiplication by the same coe�cient. The bprop method of a multiplication by amatrix is a multiplication by the transpose of that matrix. The bprop method of an addition with aconstant is the identity.Interestingly, certain non-di�erentiable modules can be inserted in a multi-module system withoutadverse e�ect. An interesting example of that is the multiplexer module. It has two (or more) regularinputs, one switching input, and one output. The module selects one of its inputs, depending upon the(discrete) value of the switching input, and copies it on its output. While this module is not di�erentiablewith respect to the switching input, it is di�erentiable with respect to the regular inputs. Therefore theoverall function of a system that includes such modules will be di�erentiable with respect to its parametersas long as the switching input does not depend upon the parameters. For example, the switching inputcan be an external input.Another interesting case is the min module. This module has two (or more) inputs and one output.The output of the module is the minimum of the inputs. The function of this module is di�erentiableeverywhere, except on the switching surface which is a set of measure zero. Interestingly, this function iscontinuous and reasonably regular, and that is su�cient to ensure the convergence of a Gradient-BasedLearning algorithm.The object-oriented implementation of the multi-module idea can easily be extended to include abbprop method that propagates Gauss-Newton approximations of the second derivatives. This leads toa direct generalization for modular systems of the second-derivative back-propagation Equation 22 givenin the Appendix.The multiplexer module is a special case of a much more general situation, described at length inSection 9, where the architecture of the system changes dynamically with the input data. Multiplexermodules can be used to dynamically rewire (or recon�gure) the architecture of the system for each newinput pattern.4.3 Graph Transformer NetworksMulti-module systems are a very 
exible tool for building large trainable system. However, the descrip-tions in the previous sections implicitly assumed that the set of parameters, and the state informationcommunicated between the modules, are all �xed-size vectors. The limited 
exibility of �xed-size vectorsfor data representation is a serious de�ciency for many applications, notably for tasks that deal withvariable length inputs (e.g continuous speech recognition and handwritten word recognition), or for tasksthat require encoding relationships between objects or features whose number and nature can vary (in-variant perception, scene analysis, recognition of composite objects). An important special case is therecognition of strings of characters or words.More generally, �xed-size vectors lack 
exibility for tasks in which the state must encode probabilitydistributions over sequences of vectors or symbols as is the case in linguistic processing. Such distributionsover sequences are best represented by stochastic grammars, or, in the more general case, directed graphsin which each arc contains a vector (stochastic grammars are special cases in which the vector containsprobabilities and symbolic information). Each path in the graph represents a di�erent sequence of vectors.Distributions over sequences can be represented by interpreting elements of the data associated with eacharc as parameters of a probability distribution or simply as a penalty. Distributions over sequences areparticularly handy for modeling linguistic knowledge in speech or handwriting recognition systems: eachsequence, i.e., each path in the graph, represents an alternative interpretation of the input. Successiveprocessing modules progressively re�ne the interpretation. For example, a speech recognition systemmight start with a single sequence of acoustic vectors, transform it into a lattice of phonemes (distribution26
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Figure 16: Building a segmentation graph with Heuristic Over-Segmentation.In most of the following, we will purposely avoid making references to probability theory. All thequantities manipulated are viewed as penalties, or costs, which if necessary can be transformed intoprobabilities by taking exponentials and normalizing.5 Multiple Object Recognition: Heuristic Over-SegmentationOne of the most di�cult problems of handwriting recognition is to recognize not just isolated characters,but strings of characters, such as zip codes, check amounts, or words. Since most recognizers can onlydeal with one character at a time, we must �rst segment the string into individual character images.However, it is almost impossible to devise image analysis techniques that will infallibly segment naturallywritten sequences of characters into well formed characters.The recent history of automatic speech recognition [Rabiner, 1989, Bengio, 1996] is here to remindus that training a recognizer by optimizing a global criterion (at the word or sentence level) is muchpreferable to merely training it on hand-segmented phonemes or other units. Several recent works haveshown that the same is true for handwriting recognition [Bengio et al., 1995]: optimizing a word-levelcriterion is preferable to solely training a recognizer on pre-segmented characters because the recognizercan learn not only to recognize individual characters, but also to reject mis-segmented characters therebyminimizing the overall word error.This section and the next describe in detail a simple example of GTN to address the problem ofreading strings of characters, such as words or check amounts. The method avoids the expensive andunreliable task of hand-truthing the result of the segmentation often required in more traditional systemstrained on individually labeled character images.5.1 Segmentation GraphA now-classical method for word segmentation and recognition is called Heuristic Over-Segmentation [Burges et al., 1992,Breuel, 1994]. Its main advantages over other approaches to segmentation are that it avoids making harddecisions about the segmentation by taking a large number of di�erent segmentations into consideration.The idea is to use heuristic image processing techniques to �nd candidate cuts of the word or string,and then to use the recognizer to score the alternative segmentations thereby generated. The process isdepicted in Figure 16. First, a number of candidate cuts are generated. Good candidate locations forcuts can be found by locating minima in the vertical projection pro�le, or minima of the distance betweenthe upper and lower contours of the word. Better segmentation heuristics are described in section 11.The cut generation heuristic is designed so as to generate more cuts than necessary, in the hope that the\correct" set of cuts will be included. Once the cuts have been generated, alternative segmentations arebest represented by a graph, called the segmentation graph. The segmentation graph is a Directed AcyclicGraph (DAG) with a start node and an end node. Each internal node is associated with a candidatecut produced by the segmentation algorithm. Each arc between a source node and a destination nodeis associated with an image that contains all the ink between the cut associated with the source nodeand the cut associated with the destination node. An arc is created between two nodes if the segmentordecided that the ink between the corresponding cuts could form a candidate character. Typically, eachindividual piece of ink would be associated with an arc. Pairs of successive pieces of ink would also be28



included, unless they are separated by a wide gap, which is a clear indication that they belong to di�erentcharacters. Each complete path through the graph contains each piece of ink once and only once. Eachpath corresponds to a di�erent way of associating pieces of ink together so as to form characters.5.2 Recognition Transformer and Viterbi TransformerA simple GTN to recognize character strings is shown in Figure 17. It is composed of two graph transform-ers called the recognition transformer Trec, and the Viterbi transformer Tvit. The goal of the recognitiontransformer is to generate a graph, called the interpretation graph or recognition graph Gint, that con-tains all the possible interpretations for all the possible segmentations of the input. Each path in Gintrepresents one possible interpretation of one particular segmentation of the input. The role of the Viterbitransformer is to extract the best interpretation from the interpretation graph.The recognition transformer Trec takes the segmentation graph Gseg as input, and applies the recog-nizer for single characters to the images associated with each of the arcs in the segmentation graph. Theinterpretation graph Gint has almost the same structure as the segmentation graph, except that eacharc is replaced by a set of arcs from and to the same node. In this set of arcs, there is one arc for eachpossible class for the image associated with the corresponding arc in Gseg . As shown in Figure 18, toeach arc is attached a class label, and the penalty that the image belongs to this class as produced bythe recognizer. If the segmentor has computed penalties for the candidate segments, these penalties arecombined with the penalties computed by the character recognizer, to obtain the penalties on the arcsof the interpretation graph. Although combining penalties of di�erent nature seems highly heuristic, theGTN training procedure will tune the penalties and take advantage of this combination anyway. Eachpath in the interpretation graph corresponds to a possible interpretation of the input word. The penaltyof a particular interpretation for a particular segmentation is given by the sum of the arc penalties alongthe corresponding path in the interpretation graph. Computing the penalty of an interpretation inde-pendently of the segmentation requires to combine the penalties of all the paths with that interpretation.An appropriate rule for combining the penalties of parallel paths is given in section 7.3.The Viterbi transformer produces a graph Gvit with a single path. This path is the path of leastcumulated penalty in the Interpretation graph. The result of the recognition can be produced by readingo� the labels of the arcs along the graph Gvit extracted by the Viterbi transformer. The Viterbi trans-former owes its name to the famous Viterbi algorithm [Viterbi, 1967], an application of the principle ofdynamic programming to �nd the shortest path in a graph e�ciently. Let ci be the penalty associatedto arc i, with source node si, and destination node di (note that there can be multiple arcs between twonodes). In the interpretation graph, arcs also have a label li. The Viterbi algorithm proceeds as follows.Each node n is associated with a cumulated Viterbi penalty vn. Those cumulated penalties are computedin any order that satis�es the partial order de�ned by the interpretation graph (which is directed andacyclic). The start node is initialized with the cumulated penalty vstart = 0. The other nodes cumulatedpenalties vn are computed recursively from the v values of their parent nodes, through the upstream arcsUn = farc i with destination di = ng: vn = mini2Un(ci + vsi): (10)Furthermore, the value of i for each node n which minimizes the right hand side is noted mn, theminimizing entering arc. When the end node is reached we obtain in vend the total penalty of the pathwith the smallest total penalty. We call this penalty the Viterbi penalty, and this sequence of arcs andnodes the Viterbi path. To obtain the Viterbi path with nodes n1 : : : nT and arcs i1 : : : iT�1, we trace backthese nodes and arcs as follows, starting with nT = the end node, and recursively using the minimizingentering arc: it = mnt+1 , and nt = sit until the start node is reached. The label sequence can then beread o� the arcs of the Viterbi path.6 Global Training for Graph Transformer NetworksThe previous section describes the process of recognizing a string using Heuristic Over-Segmentation,assuming that the recognizer is trained so as to give low penalties for the correct class label of correctlysegmented characters, high penalties for erroneous categories of correctly segmented characters, and high29
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Figure 19: Viterbi Training GTN Architecture for a character string recognizer based on Heuristic Over-Segmentation.tionale di�ers from the classical one. We make no recourse to a probabilistic interpretation, but showthat, within the Gradient-Based Learning approach, discriminative training is a simple instance of thepervasive principle of error correcting learning.Training methods for graph-based sequence recognition systems such as Hidden Markov Models havebeen extensively studied in the context of speech recognition [Rabiner, 1989]. Those methods require thatthe system be based on probabilistic generative models of the data, which provide normalized likelihoodsover the space of possible input sequences. Popular HMM learning methods, such as the the Baum-Welshalgorithm, rely on this normalization. The normalization cannot be preserved when non-generative mod-els such as neural networks are integrated into the system. Other techniques, such as discriminativetraining methods, must be used in this case. Several authors have proposed such methods to train neu-ral network/HMM speech recognizers at the word or sentence level [P. and B., 1987, Sakoe et al., 1989,Bridle, 1990, Franzini et al., 1990, Niles and Silverman, 1990, Driancourt and Bottou, 1991, Bengio et al., 1992a,Ha�ner and Waibel, 1992, Bourlard and Morgan, 1994, Bengio, 1996].Other globally trainable sequence recognition systems avoid the di�culties of statistical modelingby not resorting to graph-based techniques. The best example is Recurrent Neural Networks (RNN).Unfortunately, despite early enthusiasm, the training of RNNs with gradient-based techniques has provedvery di�cult in practice [Bengio et al., 1993].The GTN techniques presented below simplify and generalize the global training methods developedfor speech recognition.6.1 Viterbi TrainingDuring recognition, we select the path in the Interpretation Graph that has the lowest penalty with theViterbi algorithm. Ideally, we would like this path of lowest penalty to be associated with the correctlabel sequence as often as possible. An obvious loss function to minimize is therefore the average over thetraining set of the penalty of the path associated with the correct label sequence that has the lowest penalty.32



The goal of training will be to �nd the set of recognizer parameters (the weights, if the recognizer is aneural network) that minimize the average penalty of this \correct" lowest penalty path. The gradientof this loss function can be computed by back-propagation through the GTN architecture shown in�gure 19. This training architecture is almost identical to the recognition architecture described in theprevious section, except that an extra graph transformer called a path selector is inserted between theInterpretation Graph and the Viterbi Transformer. This transformer takes the interpretation graph andthe desired label sequence as input. It extracts from the interpretation graph those paths that containthe correct (desired) label sequence. Its output graph Gc is called the constrained interpretation graph(also known as forced alignment in the HMM litterature), and contains all the paths that correspond tothe correct label sequence. The constrained interpretation graph is then sent to the Viterbi transformerwhich produces a graph Gcvit with a single path. This path is the \correct" path with the lowest penalty.Finally, a path scorer transformer takes Gcvit, and simply computes its cumulated penalty Ccvit by addingup the penalties along the path. The output of this GTN is the loss function for the current pattern:Evit = Ccvit (11)The only label information that is required by the above system is the sequence of desired characterlabels. No knowledge of the correct segmentation is required on the part of the supervisor, since itchooses among the segmentations in the interpretation graph the one that yields the lowest penalty.The process of back-propagating gradients through the Viterbi training GTN is now described. Asexplained in section 4, the gradients must be propagated backwards through all modules of the GTN, inorder to compute gradients in preceding modules and thereafter tune their parameters. Back-propagatinggradients through the path scorer is quite straightforward. The partial derivatives of the loss functionwith respect to the individual penalties on the constrained Viterbi path Gcvit are equal to 1, since theloss function is simply the sum of those penalties. Back-propagating through the Viterbi Transformeris equally simple. The partial derivatives of Evit with respect to the penalties on the arcs of the con-strained graph Gc are 1 for those arcs that appear in the constrained Viterbi path Gcvit, and 0 for thosethat do not. Why is it legitimate to back-propagate through an essentially discrete function such as theViterbi Transformer? The answer is that the Viterbi Transformer is nothing more than a collection ofmin functions and adders put together. It was shown in Section 4 that gradients can be back-propagatedthrough min functions without adverse e�ects. Back-propagation through the path selector transformeris similar to back-propagation through the Viterbi transformer. Arcs in Gint that appear in Gc havethe same gradient as the corresponding arc in Gc, i.e. 1 or 0, depending on whether the arc appear inGcvit. The other arcs, i.e. those that do not have an alter ego in Gc because they do not contain theright label have a gradient of 0. During the forward propagation through the recognition transformer,one instance of the recognizer for single character was created for each arc in the segmentation graph.The state of recognizer instances was stored. Since each arc penalty in Gint is produced by an individ-ual output of a recognizer instance, we now have a gradient (1 or 0) for each output of each instanceof the recognizer. Recognizer outputs that have a non zero gradient are part of the correct answer,and will therefore have their value pushed down. The gradients present on the recognizer outputs canbe back-propagated through each recognizer instance. For each recognizer instance, we obtain a vec-tor of partial derivatives of the loss function with respect to the recognizer instance parameters. Allthe recognizer instances share the same parameter vector, since they are merely clones of each other,therefore the full gradient of the loss function with respect to the recognizer's parameter vector is sim-ply the sum of the gradient vectors produced by each recognizer instance. Viterbi training, thoughformulated di�erently, is often use in HMM-based speech recognition systems [Rabiner, 1989]. Similaralgorithms have been applied to speech recognition systems that integrate neural networks with time align-ment [P. and B., 1987, Sakoe et al., 1989, Driancourt and Bottou, 1991] or hybrid neural-network/HMMsystems [Bourlard and Morgan, 1994, Franzini et al., 1990, Niles and Silverman, 1990].While it seems simple and satisfying, this training architecture has a 
aw that can potentially befatal. The problem was already mentioned in Section 2.3. If the recognizer is a simple neural networkwith sigmoid output units, the minimum of the loss function is attained, not when the recognizer alwaysgives the right answer, but when it ignores the input, and sets its output to a constant vector with smallvalues for all the components. This is known as the collapse problem. The collapse only occurs if therecognizer outputs can simultaneously take their minimum value. If on the other hand the recognizer'soutput layer contains RBF units with �xed parameters, then there is no such trivial solution. This33



is due to the fact that a set of RBF with �xed distinct parameter vectors cannot simultaneously taketheir minimum value. In this case, the complete collapse described above does not occur. However, thisdoes not totally prevent the occurrence of a milder collapse because the loss function still has a \
atspot" for a trivial solution with constant recognizer output. This 
at spot is a saddle point, but it isattractive in almost all directions and is very di�cult to get out of using gradient-based minimizationprocedures. If the parameters of the RBFs are allowed to adapt, then the collapse problems reappearsbecause the RBF centers can all converge to a single vector, and the underlying neural network can learnto produce that vector, and ignore the input. A di�erent kind of collapse occurs if the width of theRBFs are also allowed to adapt. The collapse only occurs if a trainable module such as a neural networkfeeds the RBFs. The collapse does not occur in HMM-based speech recognition systems because they aregenerative systems that produce normalized likelihoods for the input data (more on this later). Anotherway to avoid the collapse is to train the whole system with respect to a discriminative training criterion,such as maximizing the conditional probability of the correct interpretations (correct sequence of classlabels) given the input image.Another problem with Viterbi training is that the penalty of the answer cannot be used reliably asa measure of con�dence because it does not take low-penalty (or high-scoring) competing answers intoaccount.6.2 Discriminative Viterbi TrainingA modi�cation of the training criterion can circumvent the collapse problem described above and at thesame time produce more reliable con�dence values. The idea is to not only minimize the cumulatedpenalty of the lowest penalty path with the correct interpretation, but also to somehow increase thepenalty of competing and possibly incorrect paths that have a dangerously low penalty. This type ofcriterion is called discriminative, because it plays the good answers against the bad ones. Discriminativetraining procedures can be seen as attempting to build appropriate separating surfaces between classesrather than to model individual classes independently of each other. For example, modelling the con-ditional distribution of the classes given the input image is more discriminative (focussing more on theclassi�cation surface) than having a separate generative model of the input data associated to each class(which, with class priors, yields the whole joint distribution of classes and inputs). This is because theconditional approach does not need to assume a particular form for the distribution of the input data.One example of discriminative criterion is the di�erence between the penalty of the Viterbi path inthe constrained graph, and the penalty of the Viterbi path in the (unconstrained) interpretation graph,i.e. the di�erence between the penalty of the best correct path, and the penalty of the best path (corrector incorrect). The corresponding GTN training architecture is shown in �gure 20. The left side of thediagram is identical to the GTN used for non-discriminative Viterbi training. This loss function reducesthe risk of collapse because it forces the recognizer to increases the penalty of wrongly recognized objects.Discriminative training can also be seen as another example of error correction procedure, which tendsto minimize the di�erence between the desired output computed in the left half of the GTN in �gure 20and the actual output computed in the right half of �gure 20.Let the discriminative Viterbi loss function be denoted Edvit, and let us call Ccvit the penalty of theViterbi path in the constrained graph, and Cvit the penalty of the Viterbi path in the unconstrainedinterpretation graph: Edvit = Ccvit � Cvit (12)Edvit is always positive since the constrained graph is a subset of the paths in the interpretation graph,and the Viterbi algorithm selects the path with the lowest total penalty. In the ideal case, the two pathsCcvit and Cvit coincide, and Edvit is zero.Back-propagating gradients through the discriminative Viterbi GTN adds some \negative" trainingto the previously described non-discriminative training. Figure 20 shows how the gradients are back-propagated. The left half is identical to the non-discriminative Viterbi training GTN, therefore theback-propagation is identical. The gradients back-propagated through the right half of the GTN aremultiplied by -1, since Cvit contributes to the loss with a negative sign. Otherwise the process is similarto the left half. The gradients on arcs of Gint get positive contributions from the left half and negativecontributions from the right half. The two contributions must be added, since the penalties on Gint arcsare sent to the two halves through a \Y" connection in the forward pass. Arcs in Gint that appear neither34
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in Gvit nor in Gcvit have a gradient of zero. They do not contribute to the cost. Arcs that appear inboth Gvit and Gcvit also have zero gradient. The -1 contribution from the right half cancels the the +1contribution from the left half. In other words, when an arc is rightfully part of the answer, there is nogradient. If an arc appears in Gcvit but not in Gvit, the gradient is +1. The arc should have had a lowerpenalty to make it to Gvit. If an arc is in Gvit but not in Gcvit, the gradient is -1. The arc had a lowpenalty, but should have had a higher penalty since it is not part of the desired answer.Variations of this technique have been used for the speech recognition. Driancourt and Bottou [Driancourt and Bottou, 1991]used a version of it where the loss function is saturated to a �xed value. This can be seen as a general-ization of the LVQ-2 loss function [Kohonen et al., 1988]. Other variations of this method use not onlythe Viterbi path, but the K-best paths. The Discriminative Viterbi algorithm does not have the 
awsof the non-discriminative version, but there are problems nonetheless. The main problem is that thecriterion does not build a margin between the classes. The gradient is zero as soon as the penalty ofthe constrained Viterbi path is equal to that of the Viterbi path. It would be desirable to push up thepenalties of the wrong paths when they are dangerously close to the good one. The following sectionpresents a solution to this problem.6.3 Forward Scoring, and Forward TrainingWhile the penalty of the Viterbi path is perfectly appropriate for the purpose of recognition, it gives onlya partial picture of the situation. Imagine the lowest penalty paths corresponding to several di�erentsegmentations produced the same answer (the same label sequence). Then it could be argued that theoverall penalty for the interpretation should be smaller than the penalty obtained when only one pathproduced that interpretation, because multiple paths with identical label sequences are more evidence thatthe label sequence is correct. Several rules can be used compute the penalty associated to a graph thatcontains several parallel paths. We use a combination rule borrowed from a probabilistic interpretationof the penalties as negative log posteriors. In a probabilistic framework, the posterior probability forthe interpretation should be the sum of the posteriors for all the paths that produce that interpretation.Translated in terms of penalties, the penalty of an interpretation should be the negative logarithm of thesum of the negative exponentials of the penalties of the individual paths. The overall penalty will besmaller than all the penalties of the individual paths.Given an interpretation, there is a well known method, called the forward algorithm for computingthe above quantity e�ciently [Rabiner, 1989]. The penalty computed with this procedure for a partic-ular interpretation is called the forward penalty. Consider again the concept of constrained graph, thesubgraph of the interpretation graph which contains only the paths that are consistent with a particularlabel sequence. There is one constrained graph for each possible label sequence (some may be emptygraphs, which have in�nite penalties). Given an interpretation, running the forward algorithm on thecorresponding constrained graph gives the forward penalty for that interpretation. The forward algorithmproceeds in a way very similar to the Viterbi algorithm, except that the operation used at each nodeto combine the incoming cumulated penalties, instead of being the min function is the so-called logaddoperation, which can be seen as a \soft" version of the min function:fn = logaddi2Un(ci + fsi): (13)where fstart = 0, Un is the set of upstream arcs of node n, ciis the penalty on arc i, andlogadd(x1; x2; : : : ; xn) = � log( nXi=1 e�xi) (14)Note that because of numerical inaccuracies, it is better to take the largest e�xi (corresponding to thesmallest penalty) out of the log.An interesting analogy can be drawn if we consider that a graph on which we apply the forwardalgorithm is equivalent to a neural network on which we run a forward propagation, except that multi-plications are replaced by additions, the additions are replaced by logadds, and there are no sigmoids.One way to understand the forward algorithm is to think about multiplicative scores (e.g., probabili-ties) instead of additive penalties on the arcs: score = exp(� penalty ). In that case the Viterbi algorithmselects the path with the largest cumulative score (with scores multiplied along the path), whereas the36



forward score is the sum of the cumulative scores associated to each of the possible paths from the start tothe end node. The forward penalty is always lower than the cumulated penalty on any of the paths, butif one path \dominates" (with a much lower penalty), its penalty is almost equal to the forward penalty.The forward algorithm gets its name from the forward pass of the well-known Baum-Welsh algorithm fortraining Hidden Markov Models [Rabiner, 1989]. Section 9.5 gives more details on the relation betweenthis work and HMMs.The advantage of the forward penalty with respect to the Viterbi penalty is that it takes into accountall the di�erent ways to produce an answer, and not just the one with the lowest penalty. This isimportant if there is some ambiguity in the segmentation, since the combined forward penalty of twopaths C1 and C2 associated with the same label sequence may be less than the penalty of a path C3associated with another label sequence, even though the penalty of C3 might be less than any one of C1or C2.The Forward training GTN is only a slight modi�cation of the previously introduced Viterbi trainingGTN. It su�ces to turn the Viterbi transformers in Figure 19 into Forward Scorers that take an inter-pretation graph as input an produce the forward penalty of that graph on output. Then the penalties ofall the paths that contain the correct answer are lowered, instead of just that of the best one.Back-propagating through the forward penalty computation (the forward transformer) is quite di�er-ent from back-propagating through a Viterbi transformer. All the penalties of the input graph have anin
uence on the forward penalty, but penalties that belong to low-penalty paths have a stronger in
uence.Computing derivatives with respect to the forward penalties fn computed at each n node of a graph isdone by back-propagation through the graph Gc@E@fn = e�fn Xi2Dn @E@fdi efdi�ci (15)where Dn = farc i with source si = ng is the set of downstream arcs from node n. From the abovederivatives, the derivatives with respect to the arc penalties are obtained:@E@ci = @E@fdi e�ci�fsi+fdi (16)This can be seen as a \soft" version of the back-propagation through a Viterbi scorer and transformer.All the arcs in Gc have an in
uence on the loss function. The arcs that belong to low penalty paths havea larger in
uence. Back-propagation through the path selector is the same as before. The derivative withrespect to Gint arcs that have an alter ego in Gc are simply copied from the corresponding arc in Gc. Thederivatives with respect to the other arcs are 0.Several authors have applied the idea of back-propagating gradients through a forward scorer to trainspeech recognition systems, including Bridle and his �-net model [Bridle, 1990] and Ha�ner and his ��-TDNN model [Ha�ner, 1993], but these authors recommended discriminative training as described in thenext section.6.4 Discriminative Forward TrainingThe information contained in the forward penalty can be used in another discriminative training criterionwhich we will call the discriminative forward criterion. This criterion corresponds to maximization ofthe posterior probability of choosing the paths associated with the correct interpretation. This posteriorprobability is de�ned as the exponential of the minus the constrained forward penalty, normalized by theexponential of minus the unconstrained forward penalty. Note that the forward penalty of the constrainedgraph is always larger or equal to the forward penalty of the unconstrained interpretation graph. Ideally,we would like the forward penalty of the constrained graph to be equal to the forward penalty of thecomplete interpretation graph. Equality between those two quantities is achieved when the combinedpenalties of the paths with the correct label sequence is negligibly small compared to the penalties of allthe other paths, or that the posterior probability associated to the paths with the correct interpretationis almost 1, which is precisely what we want. The corresponding GTN training architecture is shown in�gure 21. 37
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Let the di�erence be denoted Edforw, and let us call Ccforw the forward penalty of the constrainedgraph, and Cforw the forward penalty of the complete interpretation graph:Edforw = Ccforw � Cforw (17)Edforw is always positive since the constrained graph is a subset of the paths in the interpretation graph,and the forward penalty of a graph is always larger than the forward penalty of a subgraph of thisgraph. In the ideal case, the penalties of incorrect paths are in�nitely large, therefore the two penaltiescoincide and Edforw is zero. Readers familiar with the Boltzmann machine connectionist model mightrecognize the constrained and unconstrained graphs as analogous to the \clamped" (constrained by theobserved values of the output variable) and \free" (unconstrained) phases of the Boltzmann machinealgorithm [Ackley et al., 1985].Back-propagating derivatives through the discriminative Forward GTN distributes gradients moreevenly that in the Viterbi case. Derivatives are back-propagated through the left half of the the GTN inFigure 21 down to the interpretation graph. Derivatives are negated and back-propagated through theright-half, and the result for each arc is added to the contribution from the left half. Each arc in Gintnow has a derivative. Arcs that are part of a correct path have a positive derivative. This derivative isvery large if an incorrect path has a lower penalty than all the correct paths. Similarly, the derivativeswith respect to arcs that are part of a low-penalty incorrect path have a large negative derivative. Onthe other hand, if the penalty of a path associated with the correct interpretation is much smaller thanall other paths, the loss function is very close to 0 and almost no gradient is back-propagated. Thetraining therefore concentrates on examples of images which yield a classi�cation error, and furthermore,it concentrates on the pieces of the image which cause that error. Discriminative forward training is anelegant and e�cient way of solving the infamous credit assignment problem for learning machines thatmanipulate \dynamic" data structures such as graphs. More generally, the same idea can be used in allsituations where a learning machine must choose between discrete alternative interpretations.As previously, the derivatives on the interpretation graph penalties can then be back-propagated intothe character recognizer instances. Back-propagation through the character recognizer gives derivativeson its parameters. All the gradient contributions for the di�erent candidate segments are added up toobtain the total gradient associated to one pair (input image, correct label sequence), that is, one examplein the training set. A step of stochastic gradient descent can then be applied to update the parameters.6.5 Remarks on Discriminative TrainingIn the above discussion, the global training criterion was given a probabilistic interpretation, but theindividual penalties on the arcs of the graphs were not. There are good reasons for that. For example,if some penalties are associated to the di�erent class labels, they would (1) have to sum to 1 (classposteriors), or (2) integrate to 1 over the input domain (likelihoods). Let us �rst discuss the �rst case(class posteriors normalization). This local normalization of penalties may eliminate information thatis important for locally rejecting all the classes [Denker and Burges, 1995], e.g., when a piece of imagedoes not correspond to a valid character class, because some of the segmentation candidates may bewrong. Although an explicit \garbage class" can be introduced in a probabilistic framework to addressthat question, some problems remain because it is di�cult to characterize such a class probabilisticallyand to train a system in this way (it would require a density model of unseen or unlabeled samples).The probabilistic interpretation of individual variables plays an important role in the Baum-Welshalgorithm in combination with the Expectation-Maximization procedure. Unfortunately, those methodscannot be applied to discriminative training criteria, and one is reduced to using gradient-based methods.Enforcing the normalization of the probabilistic quantities while performing gradient-based learning iscomplex, ine�cient, time consuming, and creates ill-conditioning of the loss-function.Following [Denker and Burges, 1995], we therefore prefer to postpone normalization as far as possible(in fact, until the �nal decision stage of the system). Without normalization, the quantities manipulatedin the system do not have a direct probabilistic interpretation. Let us now discuss the second case (usinga generative model of the input). Generative models build the boundary indirectly, by �rst building anindependent density model for each class, and then performing classi�cation decisions on the basis of thesemodels. This is not a discriminative approach in that it does not focus on the ultimate goal of learning,which in this case is to learn the classi�cation decision surface. Theoretical arguments [Vapnik, 1995,39
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Figure 22: Explicit segmentation can be avoided by sweeping a recognizer at every possible location inthe input �eld.Vapnik, 1998] suggest that estimating input densities when the real goal is to obtain a discriminantfunction for classi�cation is a suboptimal strategy. In theory, the problem of estimating densities inhigh-dimensional spaces is much more ill-posed than �nding decision boundaries.Even though the internal variables of the system do not have a direct probabilistic interpretation, theoverall system can still be viewed as producing posterior probabilities for the classes. In fact, assumingthat a particular label sequence is given as the \desired sequence" to the GTN in �gure 21, the exponentialof minus Edforw can be interpreted as an estimate of the posterior probability of that label sequencegiven the input. The sum of those posteriors for all the possible label sequences is 1. Another approachwould consists of directly minimizing an approximation of the number of misclassi�cations [Bottou, 1991][Driancourt and Bottou, 1991]. We prefer to use the discriminative forward loss function because it causesless numerical problems during the optimization. We will see in Section 11.3 that this is a good way toobtain scores on which to base a rejection strategy. The important point being made here is that oneis free to choose any parameterization deemed appropriate for a classi�cation model. The fact that aparticular parameterization uses internal variables with no clear probabilistic interpretation does notmake the model any less legitimate than models that manipulate normalized quantities.An important advantage of global and discriminative training is that learning focuses on the most im-portant errors, and the system learns to integrate the ambiguities from the segmentation algorithm withthe ambiguities of the character recognizer. In Section 10 we present experimental results with an on-line handwriting recognition system that con�rm the advantages of using global training versus separatetraining. Experiments in speech recognition with hybrids of neural networks and HMMs also showedmarked improvements brought by global training [Bengio et al., 1992a, Bourlard and Morgan, 1994,Bengio, 1996, Rahim et al., 1997a].7 Multiple Object Recognition: Space Displacement Neural Net-work. There is a simple alternative to explicitly segmenting images of character strings using heuristics.The idea is to sweep a recognizer at all possible locations across a normalized image of the entire wordor string as shown in Figure 22. With this technique, no segmentation heuristics are required since thesystem essentially examines all the possible segmentations of the input. However, there are problems withthis approach. First, the method is in general quite expensive. The recognizer must be applied at everypossible location on the input, or at least at a large enough subset of locations so that misalignments40



$Figure 23: A Space Displacement Neural Network is a convolutional network that has been replicatedover a wide input �eld.of characters in the �eld of view of the recognizers are small enough to have no e�ect on the error rate.Second, when the recognizer is centered on a character to be recognized, the neighbors of the centercharacter will be present in the �eld of view of the recognizer, possibly touching the center character.Therefore the recognizer must be able to correctly recognize the character in the center of its input �eld,even if neighboring characters are very close to, or touching the central character. Third, a word orcharacter string cannot be perfectly size normalized. Individual characters within a string may havewidely varying sizes and baseline positions. Therefore the recognizer must be very robust to shifts andsize variations.These three problems are elegantly circumvented if a convolutional network is replicated over the input�eld. First of all, as shown in section 3, convolutional neural networks are very robust to shifts and scalevariations of the input image, as well as to noise and extraneous marks in the input. These properties takecare of the latter two problems mentioned in the previous paragraph. Second, convolutional networksprovide a drastic saving in computational requirement when replicated over large input �elds. A replicatedconvolutional network, also called a Space Displacement Neural Network or SDNN [Matan et al., 1992b],is shown in Figure 23. While scanning a recognizer can be prohibitively expensive in general, convolutionalnetworks can be scanned or replicated very e�ciently over large, variable-size input �elds. Consider oneinstance of a convolutional net and its alter ego at a nearby location. Because of the convolutional natureof the network, units in the two instances that look at identical locations on the input have identicaloutputs, therefore their states do not need to be computed twice. Only a thin \slice" of new statesthat are not shared by the two network instances needs to be recomputed. When all the slices are puttogether, the result is simply a larger convolutional network whose structure is identical to the originalnetwork, except that the feature maps are larger in the horizontal dimension. In other words, replicatinga convolutional network can be done simply by increasing the size of the �elds over which the convolutionsare performed, and by replicating the output layer accordingly. The output layer e�ectively becomes a41



convolutional layer. An output whose receptive �eld is centered on an elementary object will producethe class of this object, while an in-between output may indicate no character or contain rubbish. Theoutputs can be interpreted as evidences for the presence of objects at all possible positions in the input�eld.The SDNN architecture seems particularly attractive for recognizing cursive handwriting where noreliable segmentation heuristic exists. Although the idea of SDNN is quite old, and very attractive by itssimplicity, it has not generated wide interest until recently because as stated above it puts enormous de-mands on the recognizer [Keeler et al., 1991, Matan et al., 1992b]. In speech recognition, where the recog-nizer is at least one order of magnitude smaller, replicated convolutional networks are easier to implement,for instance in Ha�ner's Multi-State TDNN model [Ha�ner and Waibel, 1992, Bodenhausen et al., 1993].7.1 Interpreting the Output of an SDNN with a GTNThe output of an SDNN is a sequence of vectors which encode the likelihoods, penalties, or scores of�nding character of a particular class label at the corresponding location in the input. A post-processoris required to pull out the best possible label sequence from this vector sequence. An example of SDNNoutput is shown in Figure 25. Very often, individual characters are spotted by several neighboringinstances of the recognizer, a consequence of the robustness of the recognizer to horizontal translations.Also quite often, characters are erroneously detected by recognizer instances that see only a piece of acharacter. For example a recognizer instance that only sees the right third of a \4" might output thelabel 1. How can we eliminate those extraneous characters from the output sequence and pull-out thebest interpretation? This can be done using a new type of Graph Transformer with two input graphs asshown in Figure 24. The sequence of vectors produced by the SDNN is �rst coded into a linear graphwith multiple arcs between pairs of successive nodes. Each arc between a particular pair of nodes containsthe label of one of the possible categories, together with the penalty produced by the SDNN for thatclass label at that location. This graph is called the SDNN Output Graph. The second input graph tothe transformer is a grammar transducer, more speci�cally a �nite-state transducer [Pereira et al., 1994],that encodes the relationship between input strings of class labels and corresponding output strings ofrecognized characters.The transducer is a weighted �nite state machine (a graph) where each arc containsa pair of labels and possibly a penalty. Like a �nite-state machine, a transducer is in a state and followsan arc to a new state when an observed input symbol matches the �rst symbol in the symbol pair attachedto the arc. At this point the transducer emits the second symbol in the pair together with a penalty thatcombines the penalty of the input symbol and the penalty of the arc. A transducer therefore transformsa weighted symbol sequence into another weighted symbol sequence. The graph transformer shownin �gure 24 performs a composition between the recognition graph and the grammar transducer. Thisoperation takes every possible sequence corresponding to every possible path in the recognition graph andmatches them with the paths in the grammar transducer. The composition produces the interpretationgraph, which contains a path for each corresponding output label sequence. This composition operationmay seem combinatorially intractable, but it turns out there exists an e�cient algorithm for it describedin more details in Section 9.7.2 Experiments with SDNNIn a series of experiments, LeNet-5 was trained with the goal of being replicated so as to recognize multiplecharacters without segmentations. The data was generated from the previously described Modi�ed NISTset as follows. Training images were composed of a central character, 
anked by two side characterspicked at random in the training set. The separation between the bounding boxes of the characters werechosen at random between -1 and 4 pixels. In other instances, no central character was present, in whichcase the desired output of the network was the blank space class. In addition, training images weredegraded with 10% salt and pepper noise (random pixel inversions).Figures 25 and 26 show a few examples of successful recognitions of multiple characters by the LeNet-5 SDNN. Standard techniques based on Heuristic Over-Segmentation would fail miserably on many ofthose examples. As can be seen on these examples, the network exhibits striking invariance and noiseresistance properties. While some authors have argued that invariance requires more sophisticated modelsthan feed-forward neural networks [Lades et al., 1993], LeNet-5 exhibits these properties to a large extent.42
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Similarly, it has been suggested that accurate recognition of multiple overlapping objects requireexplicit mechanisms that would solve the so-called feature binding problem [Lades et al., 1993]. As canbe seen on Figures 25 and 26, the network is able to tell the characters apart, even when they areclosely intertwined, a task that would be impossible to achieve with the more classical Heuristic Over-Segmentation technique. The SDNN is also able to correctly group disconnected pieces of ink that formcharacters. Good examples of that are shown in the upper half of �gure 26. In the top left example, the4 and the 0 are more connected to each other than they are connected with themselves, yet the systemcorrectly identi�es the 4 and the 0 as separate objects. The top right example is interesting for severalreasons. First the system correctly identi�es the three individual ones. Second, the left half and righthalf of disconnected 4 are correctly grouped, even though no geometrical information could decide toassociate the left half to the vertical bar on its left or on its right. The right half of the 4 does causethe appearance of an erroneous 1 on the SDNN output, but this one is removed by the character modeltransducer which prevents characters from appearing on contiguous outputs.Another important advantage of SDNN is the ease with which they can be implemented on parallelhardware. Specialized analog/digital chips have been designed and used in character recognition, andin image preprocessing applications [Boser et al., 1991]. However the rapid progress of conventionalprocessor technology with reduced-precision vector arithmetic instructions (such as Intel's MMX) makethe success of specialized hardware hypothetical at best.Short video clips of the LeNet-5 SDNN can be viewed at http://www.research.att.com/~yann/ocr.7.3 Global Training of SDNNIn the above experiments, the string image were arti�cially generated from individual character. Theadvantage is that we know in advance the location and the label of the important character. With realtraining data, the correct sequence of labels for a string is generally available, but the precise locationsof each corresponding character in the input image are unknown.In the experiments described in the previous section, the best interpretation was extracted from theSDNN output using a very simple graph transformer. Global training of an SDNN can be performedby back-propagating gradients through such graph transformers arranged in architectures similar to theones described in section 7.This is somewhat equivalent to modeling the output of an SDNN with a Hidden Markov Model.Globally trained, variable-size TDNN/HMM hybrids have been used for speech recognition and on-linehandwriting recognition [Bengio et al., 1992a, Schenkel et al., 1993, Dugast et al., 1994, Bengio, 1996].Space Displacement Neural Networks have been used in combination with HMMs or other elastic matchingmethods for handwritten word recognition [Matan et al., 1992a, Bengio and Le Cun, 1994].Figure 27 shows the graph transformer architecture for training an SDNN/HMM hybrid with theDiscriminative Forward Criterion. The top part is comparable to the top part of �gure 21. On theright side the composition of the recognition graph with the grammar gives the interpretation graph withall the possible legal interpretations. On the left side the composition is performed with a grammarthat only contains paths with the desired sequence of labels. This has a somewhat similar function tothe path selector used in the previous section. Like in Section 7.4 the loss function is the di�erencebetween the forward score obtained from the left half and the forward score obtained from the righthalf. To back-propagate through the composition transformer, we need to keep a track of which arcin the recognition graph originated which arcs in the interpretation graph. The derivative with respectto an arc in the recognition graph is equal to the sum of the derivatives with respect to all the arcsin the interpretation graph that originated from it. Derivative can also be computed for the penaltieson the grammar graph, allowing to learn them as well. As in the previous example, a discriminativecriterion must be used, because using a non-discriminative criterion could result in a collapse e�ect if thenetwork's output RBF are adaptive. The above training procedure can be equivalently formulated in termof HMM. Early experiments in zip code recognition [Matan et al., 1992a], and more recent experimentsin on-line handwriting recognition [Bengio et al., 1995] have demonstrated the idea of globally-trainedSDNN/HMM hybrids. SDNN is an extremely promising and attractive technique for OCR, but so far ithas not yielded better results than Heuristic Over-Segmentation. We hope that these results will improveas more experience is gained with these models. 45
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7.4 Object Detection and Spotting with SDNNAn interesting application of SDNNs is object detection and spotting. The invariance properties ofConvolutional Networks, combined with the e�ciency with which they can be replicated over large �eldssuggest that they can be used for \brute force" object spotting and detection in large images. The mainidea is to train a single Convolutional Network to distinguish images of the object of interest from imagespresent in the background. In utilization mode, the network is replicated so as to cover the entire image tobe analyzed, thereby forming a two-dimensional Space Displacement Neural Network. The output of theSDNN is a two-dimensional plane in which activated units indicate the presence of the object of interestin the corresponding receptive �eld. Since the size of the objects to be detected within the image areunknown, the image can be presented to the network at multiple resolutions, and the results at multipleresolutions combined. The idea has been applied to face location, [Vaillant et al., 1994], address blocklocation on envelopes [Wolf and Platt, 1994], and hand tracking in video [Nowlan and Platt, 1995].To illustrate the method, we will consider the case of face detection in images as described in [Vaillant et al., 1994].First, images containing faces at various scales are collected. Those images are �ltered through a zero-mean Laplacian �lter so as to remove variations in global illumination and low spatial frequency illu-mination gradients. Then, training samples of faces and non-faces are manually extracted from thoseimages. The face sub-images are then size normalized so that the height of the entire face is approxi-mately 20 pixels while keeping fairly large variations (within a factor of two). The scale of backgroundsub-images are picked at random. A single convolutional network is trained on those samples to classifyface sub-images from non-face sub-images.When a scene image is to be analyzed, it is �rst �ltered through the Laplacian �lter, and sub-sampledat powers-of-two resolutions. The network is replicated over each of multiple resolution images. A simplevoting technique is used to combine the results from multiple resolutions.A two-dimensional version of the global training method described in the previous section can beused to alleviate the need to manually locate faces when building the training sample [?]. Each possiblelocation is seen as an alternative interpretation, i.e. one of several parallel arcs in a simple graph thatonly contains a start node and an end node.Other authors have used Neural Networks, or other classi�ers such as Support Vector Machines forface detection with great success [Rowley et al., 1996, Osuna et al., 1997]. Their systems are very similarto the one described above, including the idea of presenting the image to the network at multiple scales.But since those systems do not use Convolutional Networks, they cannot take advantage of the speedupdescribed here, and have to rely on other techniques, such as pre-�ltering and real-time tracking, to keepthe computational requirement within reasonable limits. In addition, because those classi�ers are muchless invariant to scale variations than Convolutional Networks, it is necessary to multiply the number ofscales at which the images are presented to the classi�er.8 Graph Transformer Networks and TransducersIn Section 4, Graph Transformer Networks (GTN) were introduced as a generalization of multi-layer,multi-module networks where the state information is represented as graphs instead of �xed-size vec-tors. This section re-interprets the GTNs in the framework of Generalized Transduction, and proposes apowerful Graph Composition algorithm.8.1 Previous WorkNumerous authors in speech recognition have used Gradient-Based Learning methods that integrategraph-based statistical models (notably HMM) with acoustic recognition modules, mainly Gaussian mix-ture models, but also neural networks [Bourlard and Wellekens, 1989, Ha�ner and Waibel, 1992, Bengio et al., 1992b,Bengio, 1996]. Similar ideas have been applied to handwriting recognition (see [Bengio et al., 1995] fora review). However, there has been no proposal for a systematic approach to multi-layer graph-basedtrainable systems. The idea of transforming graphs into other graphs has received considerable inter-est in computer science, through the concept of weighted �nite-state transducers [Pereira et al., 1994].Transducers have been applied to speech recognition [Pereira and Riley, 1997] and language translation[Mohri, 1997], and proposals have been made for handwriting recognition [Guyon et al., 1996]. This line47



of work has been mainly focused on e�cient search algorithms [Mohri and Riley, 1997] and on the al-gebraic aspects of combining transducers and graphs (called acceptors in this context), but very littlee�ort has been devoted to building globally trainable systems out of transducers. What is proposedin the following sections is a systematic approach to automatic training in graph-manipulating sys-tems. A di�erent approach to graph-based trainable systems, called Input-Output HMM, was proposedin [Bengio and Frasconi, 1996a, Bengio and Frasconi, 1996b].8.2 Standard TransductionIn the established framework of �nite-state transducers [Pereira et al., 1994], discrete symbols are at-tached to arcs in the graphs. Acceptor graphs have a single symbol attached to each arc whereas trans-ducer graphs have two symbols (an input symbol and an output symbol). A special null symbol isabsorbed by any other symbol (when concatenating symbols to build a symbol sequence). Weightedtransducers and acceptors also have a scalar quantity attached to each arc. In this framework, the com-position operation takes as input an acceptor graph and a transducer graph and builds an output acceptorgraph. Each path in this output graph (with symbol sequence Sout) corresponds to one path (with sym-bol sequence Sin) in the input acceptor graph and one path and a corresponding pair of input/outputsequences (Sout,Sin) in the transducer graph. The weights on the arcs of the output graph are obtainedby adding the weights from the matching arcs in the input acceptor and transducer graphs. In the restof the paper, we will call this graph composition operation using transducers the (standard) transductionoperation.A simple example of transduction is shown in Figure 28. In this simple example, the input and outputsymbols on the transducer arcs are always identical. This type of transducer graph is called a grammargraph. To better understand the transduction operation, imagine two tokens sitting each on the startnodes of the input acceptor graph and the transducer graph. The tokens can freely follow any arc labeledwith a null input symbol. A token can follow an arc labeled with a non-null input symbol if the othertoken also follows an arc labeled with the same input symbol. We have an acceptable trajectory whenboth tokens reach the end nodes of their graphs (i.e. the tokens have reached the terminal con�guration).This trajectory represents a sequence of input symbols that complies with both the acceptor and thetransducer. We can then collect the corresponding sequence of output symbols along the trajectoryof the transducer token. The above procedure produces a tree, but a simple technique described inSection 9.3 can be used to avoid generating multiple copies of certain subgraphs by detecting when aparticular output state has already been seen.The transduction operation can be performed very e�ciently [Mohri et al., 1997], but presents com-plex book-keeping problems concerning the handling of all combinations of null and non null symbols. Ifthe weights are interpreted as probabilities (normalized appropriately) then an acceptor graph representsa probability distribution over the language de�ned by the set of label sequences associated to all possiblepaths (from the start to the end node) in the graph.An example of application of the transduction operation is the incorporation of linguistic constraints(a lexicon or a grammar) when recognizing words or other character strings. The recognition transformerproduces the recognition graph (an acceptor graph) by applying the neural network recognizer to eachcandidate segment. This acceptor graph is composed with a transducer graph for the grammar. Thegrammar transducer contains a path for each legal sequence of symbol, possibly augmented with penaltiesto indicate the relative likelihoods of the possible sequences. The arcs contain identical input and outputsymbols. Another example of transduction was mentioned in Section 5: the path selector used in theheuristic over-segmentation training GTN is implementable by a composition. The transducer graph islinear graph which contains the correct label sequence. The composition of the interpretation graph withthis linear graph yields the constrained graph.8.3 Generalized TransductionIf the data structures associated to each arc took only a �nite number of values, composing the inputgraph and an appropriate transducer would be a sound solution. For our applications however, the datastructures attached to the arcs of the graphs may be vectors, images or other high-dimensional objectsthat are not readily enumerated. We present a new composition operation that solves this problem.48



Instead of only handling graphs with discrete symbols and penalties on the arcs, we are interestedin considering graphs whose arcs may carry complex data structures, including continuous-valued datastructures such as vectors and images. Composing such graphs requires additional information:� When examining a pair of arcs (one from each input graph), we need a criterion to decide whetherto create corresponding arc(s) and node(s) in the output graph, based on the information attachedto the input arcs. We can decide to build an arc, several arcs, or an entire sub-graph with severalnodes and arcs.� When that criterion is met, we must build the corresponding arc(s) and node(s) in the output graphand compute the information attached to the newly created arc(s) as a function the the informationattached to the input arcs.These functions are encapsulated in an object called a Composition Transformer. An instance ofComposition Transformer implements three methods:� check(arc1, arc2)compares the data structures pointed to by arcs arc1 (from the �rst graph) and arc2 (from thesecond graph) and returns a boolean indicating whether corresponding arc(s) should be created inthe output graph.� fprop(ngraph, upnode, downnode, arc1, arc2)is called when check(arc1, arc2) returns true. This method creates new arcs and nodes betweennodes upnode and downnode in the output graph ngraph, and computes the information attachedto these newly created arcs as a function of the attached information of the input arcs arc1 andarc2.� bprop(ngraph, upnode, downnode, arc1, arc2)is called during training in order to propagate gradient information from the output sub-graphbetween upnode and downnode into the data structures on the arc1 and arc2, as well as withrespect to the parameters that were used in the fprop call with the same arguments. This assumesthat the function used by fprop to compute the values attached to its output arcs is di�erentiable.The check method can be seen as constructing a dynamic architecture of functional dependencies,while the fpropmethod performs a forward propagation through that architecture to compute the numer-ical information attached to the arcs. The bprop method performs a backward propagation through thesame architecture to compute the partial derivatives of the loss function with respect to the informationattached to the arcs. This is illustrated in Figure 28.Figure 29 shows a simpli�ed generalized graph composition algorithm. This simpli�ed algorithmdoes not handle null transitions, and does not check whether the tokens trajectory is acceptable (i.e.both tokens simultaneously reach the end nodes of their graphs). The management of null transitionsis a straightforward modi�cation of the token simulation function. Before enumerating the possible nonnull joint token transitions, we loop on the possible null transitions of each token, recursively call thetoken simulation function, and �nally call the method fprop. The safest way for identifying acceptabletrajectories consists in running a preliminary pass for identifying the token con�gurations from whichwe can reach the terminal con�guration (i.e. both tokens on the end nodes). This is easily achieved byenumerating the trajectories in the opposite direction. We start on the end nodes and follow the arcsupstream. During the main pass, we only build the nodes that allow the tokens to reach the terminalcon�guration.Graph composition using transducers (i.e. standard transduction) is easily and e�ciently implementedas a generalized transduction. The method check simply tests the equality of the input symbols on thetwo arcs, and the method fprop creates a single arc whose symbol is the output symbol on the transducer'sarc.The composition between pairs of graphs is particularly useful for incorporating linguistic constraintsin a handwriting recognizer. Examples of its use are given in the on-line handwriting recognition systemdescribed in Section 10) and in the check reading system described in Section 11).In the rest of the paper, the term Composition Transformer will denote a Graph Transformer basedon the generalized transductions of multiple graphs. The concept of generalized transduction is a very49
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Function generalized_composition(PGRAPH graph1,PGRAPH graph2,PTRANS trans)Returns PGRAPH{ // Create new graphPGRAPH ngraph = new_graph()// Create map between token positions// and nodes of the new graphPNODE map[PNODE,PNODE] = new_empty_map()map[endnode(graph1), endnode(graph2)] =endnode(newgraph)// Recursive subroutine for simulating tokensFunction simtokens(PNODE node1, PNODE node2)Returns PNODE{ PNODE currentnode = map[node1, node2]// Check if already visitedIf (currentnode == nil)// Record new configurationcurrentnode = ngraph->create_node()map[node1, node2] = currentnode// Enumerate the possible non-null// joint token transitionsFor ARC arc1 in down_arcs(node1)For ARC arc2 in down_arcs(node2)If (trans->check(arc1, arc2))PNODE newnode =simtokens(down_node(arc1),down_node(arc2))trans->fprop(ngraph, currentnode,newnode, arc1, arc2)// Return node in composed graphReturn currentnode}// Perform token simulationsimtokens(startnode(graph1), startnode(graph2))Delete mapReturn ngraph}Figure 29: Pseudo-code for a simpli�ed generalized composition algorithm. For simplifying the presen-tation, we do not handle null transitions nor implement dead end avoidance. The two main componentof the composition appear clearly here: (a) the recursive function simtoken() enumerating the tokentrajectories, and, (b) the associative array map used for remembering which nodes of the composed graphhave been visited.
51



general one. In fact, many of the graph transformers described earlier in this paper, such as the seg-menter and the recognizer, can be formulated in terms of generalized transduction. In this case the, thegeneralized transduction does not take two input graphs but a single input graph. The method fprop ofthe transformer may create several arcs or even a complete subgraph for each arc of the initial graph. Infact the pair check, fprop itself can be seen as procedurally de�ning a transducer.In addition, It can be shown that the generalized transduction of a single graph is theoreticallyequivalent to the standard composition of this graph with a particular transducer graph. However,implementing the operation this way may be very ine�cient since the transducer can be very complicated.In practice, the graph produced by a generalized transduction is represented procedurally, in order toavoid building the whole output graph (which may be huge when for example the interpretation graphis composed with the grammar graph). We only instantiate the nodes which are visited by the searchalgorithm during recognition (e.g. Viterbi). This strategy propagates the bene�ts of pruning algorithms(e.g. Beam Search) in all the Graph Transformer Network.8.4 Notes on the Graph StructuresSection 7 has discussed the idea of global training by back-propagating gradient through simple graphtransformers. The bprop method is the basis of the back-propagation algorithm for generic graph trans-formers. A generalized composition transformer can be seen as dynamically establishing functional re-lationships between the numerical quantities on the input and output arcs. Once the check functionhas decided that a relationship should be established, the fprop function implements the numerical rela-tionship. The check function establishes the structure of the ephemeral network inside the compositiontransformer.Since fprop is assumed to be di�erentiable, gradients can be back-propagated through that structure.Most parameters a�ect the scores stored on the arcs of the successive graphs of the system. A fewthreshold parameters may determine whether an arc appears or not in the graph. Since non existing arcsare equivalent to arcs with very large penalties, we only consider the case of parameters a�ecting thepenalties.In the kind of systems we have discussed until now (and the application described in Section 11), muchof the knowledge about the structure of the graph that is produced by a Graph Transformer is determinedby the nature of the Graph Transformer, but it may also depend on the value of the parameters and onthe input. It may also be interesting to consider Graph Transformer modules which attempt to learn thestructure of the output graph. This might be considered a combinatorial problem and not amenable toGradient-Based Learning, but a solution to this problem is to generate a large graph that contains thegraph candidates as sub-graphs, and then select the appropriate sub-graph.8.5 GTN and Hidden Markov ModelsGTNs can be seen as a generalization and an extension of HMMs. On the one hand, the probabilisticinterpretation can be either kept (with penalties being log-probabilities), pushed to the �nal decisionstage (with the di�erence of the constrained forward penalty and the unconstrained forward penalty be-ing interpreted as negative log-probabilities of label sequences), or dropped altogether (the network justrepresents a decision surface for label sequences in input space). On the other hand, Graph TransformerNetworks extend HMMs by allowing to combine in a well-principled framework multiple levels of pro-cessing, or multiple models (e.g., Pereira et al. have been using the transducer framework for stackingHMMs representing di�erent levels of processing in automatic speech recognition [Pereira et al., 1994]).Unfolding a HMM in time yields a graph that is very similar to our interpretation graph (at the �nalstage of processing of the Graph Transformer Network, before Viterbi recognition). It has nodes n(t; i)associated to each time step t and state i in the model. The penalty ci for an arc from n(t�1; j) to n(t; i)then corresponds to the negative log-probability of emitting observed data ot at position t and going fromstate j to state i in the time interval (t�1; t). With this probabilistic interpretation, the forward penaltyis the negative logarithm of the likelihood of whole observed data sequence (given the model).In Section 7 we mentioned that the collapsing phenomenon can occur when non-discriminative lossfunctions are used to train neural networks/HMM hybrid systems. With classical HMMs with �xed pre-processing, this problem does not occur because the parameters of the emission and transition probability52



models are forced to satisfy certain probabilistic constraints: the sum or the integral of the probabilitiesof a random variable over its possible values must be 1. Therefore, when the probability of certain eventsis increased, the probability of other events must automatically be decreased. On the other hand, ifthe probabilistic assumptions in an HMM (or other probabilistic model) are not realistic, discrimina-tive training, discussed in Section 7, can improve performance as this has been clearly shown for speechrecognition systems [Bahl et al., 1986, Bahl et al., 1987, Juang and Katagiri, 1992, Rahim et al., 1997c,Rahim et al., 1997b].The Input-Output HMM model (IOHMM) [Bengio and Frasconi, 1996b, Bengio and Bengio, 1996],is strongly related to graph transformers. Viewed as a probabilistic model, an IOHMM represents theconditional distribution of output sequences given input sequences (of the same or a di�erent length). Itis parameterized from an emission probability module and a transition probability module. The emissionprobability module computes the conditional emission probability of an output variable (given an inputvalue and the value of discrete \state" variable). The transition probability module computes conditionaltransition probabilities of a change in the value of the \state" variable, given the an input value. Viewedas a graph transformer, it assigns an output graph (representing a probability distribution over thesequences of the output variable) to each path in the input graph. All these output graphs have the samestructure, and the penalties on their arcs are simply added in order to obtain the complete output graph.The input values of the emission and transition modules are read o� the data structure on the input arcsof the IOHMM Graph Transformer. In practice, the output graph may be very large, and needs not becompletely instantiated (i.e., it is pruned: only the low penalty paths are created).9 An On-Line Handwriting Recognition SystemNatural handwriting is often a mixture of di�erent \styles", lower case printed, upper case, and cursive. Areliable recognizer for such handwriting would greatly improve interaction with pen-based devices, but itsimplementation presents new technical challenges. Characters taken in isolation can be very ambiguous,but considerable information is available from the context of the whole word. We have built a wordrecognition system for pen-based devices based on four main modules: a preprocessor that normalizes aword, or word group, by �tting a geometrical model to the word structure; a module that produces an\annotated image" from the normalized pen trajectory; a replicated convolutional neural network thatspots and recognizes characters; and a GTN that interprets the networks output by taking word-levelconstraints into account. The network and the GTN are jointly trained to minimize an error measurede�ned at the word level.In this work, we have compared a system based on SDNNs (such as described in Section 8), and asystem based on Heuristic Over-Segmentation (such as described in Section 5). Because of the sequentialnature of the information in the pen trajectory (which reveals more information than the purely opticalinput from in image), Heuristic Over-Segmentation can be very e�cient in proposing candidate charactercuts, especially for non-cursive script.9.1 PreprocessingInput normalization reduces intra-character variability, simplifying character recognition. We have useda word normalization scheme [Bengio and Le Cun, 1994] based on �tting a geometrical model of the wordstructure. Our model has four \
exible" lines representing respectively the ascenders line, the core line,the base line and the descenders line. The lines are �tted to local minima or maxima of the pen trajectory.The parameters of the lines are estimated with a modi�ed version of the EM algorithm to maximize thejoint probability of observed points and parameter values, using a prior on parameters that prevents thelines from collapsing on each other.The recognition of handwritten characters from a pen trajectory on a digitizing surface is often donein the time domain [Tappert et al., 1990, Guyon et al., 1991, Manke and Bodenhausen, 1994]. Typically,trajectories are normalized, and local geometrical or dynamical features are extracted. The recognitionmay then be performed using curve matching [Tappert et al., 1990], or other classi�cation techniquessuch as TDNNs [Guyon et al., 1991, Manke and Bodenhausen, 1994]. While these representations haveseveral advantages, their dependence on stroke ordering and individual writing styles makes them di�cultto use in high accuracy, writer independent systems that integrate the segmentation with the recognition.53
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Since the intent of the writer is to produce a legible image, it seems natural to preserve as much of thepictorial nature of the signal as possible, while at the same time exploit the sequential information in thetrajectory. For this purpose we have designed a representation scheme, called AMAP [Bengio et al., 1995],where pen trajectories are represented by low-resolution images in which each picture element containsinformation about the local properties of the trajectory. An AMAP can be viewed as an \annotatedimage" in which each pixel is a 5-element feature vector: 4 features are associated to four orientationsof the pen trajectory in the area around the pixel, and the �fth one is associated to local curvature inthe area around the pixel. A particularly useful feature of the AMAP representation is that it makesvery few assumptions about the nature of the input trajectory. It does not depend on stroke ordering orwriting speed, and it can be used with all types of handwriting (capital, lower case, cursive, punctuation,symbols). Unlike many other representations (such as global features), AMAPs can be computed forcomplete words without requiring segmentation.9.2 Network ArchitectureOne of the best networks we found for both online and o�ine character recognition is a 5-layer convo-lutional network somewhat similar to LeNet-5 (Figure 2), but with multiple input planes and di�erentnumbers of units on the last two layers; layer 1: convolution with 8 kernels of size 3x3, layer 2: 2x2sub-sampling, layer 3: convolution with 25 kernels of size 5x5, layer 4 convolution with 84 kernels of size4x4, layer 5: 2x1 sub-sampling, classi�cation layer: 95 RBF units (one per class in the full printableASCII set). The distributed codes on the output are the same as for LeNet-5, except they are adaptiveunlike with LeNet-5. When used in the heuristic over-segmentation system, the input to above networkconsisted of an AMAP with �ve planes, 20 rows and 18 columns. It was determined that this resolutionwas su�cient for representing handwritten characters. In the SDNN version, the number of columns wasvaried according to the width of the input word. Once the number of sub-sampling layers and the sizesof the kernels are chosen, the sizes of all the layers, including the input, are determined unambiguously.The only architectural parameters that remain to be selected are the number of feature maps in eachlayer, and the information as to what feature map is connected to what other feature map. In our case,the sub-sampling rates were chosen as small as possible (2x2), and the kernels as small as possible in the�rst layer (3x3) to limit the total number of connections. Kernel sizes in the upper layers are chosen tobe as small as possible while satisfying the size constraints mentioned above. Larger architectures did notnecessarily perform better and required considerably more time to be trained. A very small architecturewith half the input �eld also performed worse, because of insu�cient input resolution. Note that theinput resolution is nonetheless much less than for optical character recognition, because the angle andcurvature provide more information than would a single grey level at each pixel.9.3 Network TrainingTraining proceeded in two phases. First, we kept the centers of the RBFs �xed, and trained the networkweights so as to minimize the output distance of the RBF unit corresponding to the correct class. Thisis equivalent to minimizing the mean-squared error between the previous layer and the center of thecorrect-class RBF. This bootstrap phase was performed on isolated characters. In the second phase, allthe parameters, network weights and RBF centers were trained globally to minimize a discriminativecriterion at the word level.With the Heuristic Over-Segmentation approach, the GTN was composed of four main Graph Trans-formers:1. The Segmentation Transformer performs the Heuristic Over-Segmentation, and outputs thesegmentation graph. An AMAP is then computed for each image attached to the arcs of thisgraph.2. The Character Recognition Transformer applies the the convolutional network character rec-ognizer to each candidate segment, and outputs the recognition graph, with penalties and classeson each arc.3. The Composition Transformer composes the recognition graph with a grammar graph repre-senting a language model incorporating lexical constraints.56



4. The Beam Search Transformer extracts a good interpretation from the interpretation graph.This task could have been achieved with the usual Viterbi Transformer. The Beam Search algorithmhowever implements pruning strategies which are appropriate for large interpretation graphs.With the SDNN approach, the main Graph Transformers are the following:1. The SDNN Transformer replicates the convolutional network over the a whole word image, andoutputs a recognition graph that is a linear graph with class penalties for every window centeredat regular intervals on the input image.2. The Character-Level Composition Transformer composes the recognition graph with a left-to-right HMM for each character class (as in Figure 27).3. The Word-Level Composition Transformer composes the output of the previous transformerwith a language model incorporating lexical constraints, and outputs the interpretation graph.4. The Beam Search Transformer extracts a good interpretation from the interpretation graph.In this application, the language model simply constrains the �nal output graph to represent sequencesof character labels from a given dictionary. Furthermore, the interpretation graph is not actually com-pletely instantiated: the only nodes created are those that are needed by the Beam Search module. Theinterpretation graph is therefore represented procedurally rather than explicitly.A crucial contribution of this research was the joint training of all graph transformer modules withinthe network with respect to a single criterion, as explained in Sections 7 and 9. We used the Discrimi-native Forward loss function on the �nal output graph: minimize the forward penalty of the constrainedinterpretation (i.e., along all the \correct" paths) while maximizing the forward penalty of the wholeinterpretation graph (i.e., along all the paths).During global training, the loss function was optimized with the stochastic diagonal Levenberg-Marquardt procedure described in Appendix C, that uses second derivatives to compute optimal learningrates. This optimization operates on all the parameters in the system, most notably the network weightsand the RBF centers.9.4 Experimental ResultsIn the �rst set of experiments, we evaluated the generalization ability of the neural network classi�ercoupled with the word normalization preprocessing and AMAP input representation. All results are inwriter independent mode (di�erent writers in training and testing). Initial training on isolated characterswas performed on a database of approximately 100,000 hand printed characters (95 classes of upper case,lower case, digits, and punctuation). Tests on a database of isolated characters were performed separatelyon the four types of characters: upper case (2.99% error on 9122 patterns), lower case (4.15% error on8201 patterns), digits (1.4% error on 2938 patterns), and punctuation (4.3% error on 881 patterns).Experiments were performed with the network architecture described above. To enhance the robustnessof the recognizer to variations in position, size, orientation, and other distortions, additional trainingdata was generated by applying local a�ne transformations to the original characters.The second and third set of experiments concerned the recognition of lower case words (writer inde-pendent). The tests were performed on a database of 881 words. First we evaluated the improvementsbrought by the word normalization to the system. For the SDNN/HMM system we have to use word-levelnormalization since the network sees one whole word at a time. With the Heuristic Over-Segmentationsystem, and before doing any word-level training, we obtained with character-level normalization 7.3%and 3.5% word and character errors (adding insertions, deletions and substitutions) when the search wasconstrained within a 25461-word dictionary. When using the word normalization preprocessing insteadof a character level normalization, error rates dropped to 4.6% and 2.0% for word and character errorsrespectively, i.e., a relative drop of 37% and 43% in word and character error respectively. This suggeststhat normalizing the word in its entirety is better than �rst segmenting it and then normalizing andprocessing each of the segments.In the third set of experiments, we measured the improvements obtained with the joint training of theneural network and the post-processor with the word-level criterion, in comparison to training based onlyon the errors performed at the character level. After initial training on individual characters as above,57
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Figure 32: Comparative results (character error rates) showing the improvement brought by global train-ing on the SDNN/HMM hybrid, and on the Heuristic Over-Segmentation system (HOS), without andwith a 25K words dictionary.global word-level discriminative training was performed with a database of 3500 lower case words. For theSDNN/HMM system, without any dictionary constraints, the error rates dropped from 38% and 12.4%word and character error to 26% and 8.2% respectively after word-level training, i.e., a relative drop of32% and 34%. For the Heuristic Over-Segmentation system and a slightly improved architecture, withoutany dictionary constraints, the error rates dropped from 22.5% and 8.5% word and character error to17% and 6.3% respectively, i.e., a relative drop of 24.4% and 25.6%. With a 25461-word dictionary, errorsdropped from 4.6% and 2.0% word and character errors to 3.2% and 1.4% respectively after word-leveltraining, i.e., a relative drop of 30.4% and 30.0%. Even lower error rates can be obtained by drasticallyreducing the size of the dictionary to 350 words, yielding 1.6% and 0.94% word and character errors.These results clearly demonstrate the usefulness of globally trained Neural-Net/HMM hybrids forhandwriting recognition. This con�rms similar results obtained earlier in speech recognition [Bengio et al., 1992a].10 A Check Reading SystemThis section describes a GTN based Check Reading System, intended for immediate industrial deploy-ment. It also shows how the use of Gradient Based-Learning and GTNs make this deployment fast andcost-e�ective while yielding an accurate and reliable solution.The veri�cation of the amount on a check is a task that is extremely time and money consuming forbanks. As a consequence, there is a very high interest in automating the process as much as possible(see for example [Gilloux and Leroux, 1993, Guillevic and Suen, 1995, Lam et al., 1995]). Even a partialautomation would result in considerable cost reductions. The threshold of economic viability for auto-matic check readers, as set by the bank, is when 50% of the checks are read with less than 1% error.The other 50% of the check being rejected and sent to human operators. In such a case, we describe theperformance of the system as 50% correct / 49% reject / 1% error. The system presented here was oneof the �rst to cross that threshold on representative mixtures of business and personal checks.Checks contain at least two versions of the amount. The Courtesy amount is written with numerals,while the Legal amount is written with letters. On business checks, which are generally machine-printed,these amounts are relatively easy to read, but quite di�cult to �nd due to the lack of standard for businesscheck layout. On the other hand, these amounts on personal checks are easy to �nd but much harder toread.For simplicity (and speed requirements), our initial task is to read the Courtesy amount only. Thistask consists of two main steps:� The system has to �nd, among all the �elds (lines of text), the candidates that are the most likelyto contain the courtesy amount. This is obvious for many personal checks, where the position of theamount is standardized. However, as already noted, �nding the amount can be rather di�cult in58



business checks, even for the human eye. There are many strings of digits, such as the check number,the date, or even \not to exceed" amounts, that can be confused with the actual amount. In manycases, it is very di�cult to decide which candidate is the courtesy amount before performing a fullrecognition.� In order to read (and choose) some Courtesy amount candidates, the system has to segment the �eldsinto characters, read and score the candidate characters, and �nally �nd the best interpretation ofthe amount using contextual knowledge represented by a stochastic grammar for check amounts.The GTN methodology was used to build a check amount reading system that handles both personalchecks and business checks.10.1 A GTN for Check Amount RecognitionWe now describe the successive graph transformations that allow this network to read the check amount(cf. Figure 33). Each Graph Transformer produces a graph whose paths encode and score the currenthypotheses considered at this stage of the system.The input to the system is a trivial graph with a single arc that carries the image of the whole check(cf. Figure 33).The �eld location transformer Tfield �rst performs classical image analysis (including connectedcomponent analysis, ink density histograms, layout analysis, etc...) and heuristically extracts rectangularzones that may contain the check amount. Tfield produces an output graph, called the �eld graph (cf.Figure 33) such that each candidate zone is associated with one arc that links the start node to theend node. Each arc contains the image of the zone, and a penalty term computed from simple featuresextracted from the zone (absolute position, size, aspect ratio, etc...). The penalty term is close to zero ifthe features suggest that the �eld is a likely candidate, and is large if the �eld is deemed less likely to bean amount. The penalty function is di�erentiable, therefore its parameter are globally tunable.An arc may represent separate dollar and cent amounts as a sequence of �elds. In fact, in handwrittenchecks, the cent amount may be written over a fractional bar, and not aligned at all with the dollar amount.In the worst case, one may �nd several cent amount candidates (above and below the fraction bar) forthe same dollar amount.The segmentation transformer Tseg , similar to the one described in Section 9 examines eachzone contained in the �eld graph, and cuts each image into pieces of ink using heuristic image processingtechniques. Each piece of ink may be a whole character or a piece of character. Each arc in the �eld graphis replaced by its corresponding segmentation graph that represents all possible groupings of pieces ofink. Each �eld segmentation graph is appended to an arc that contains the penalty of the �eld in the �eldgraph. Each arc carries the segment image, together with a penalty that provides a �rst evaluation of thelikelihood that the segment actually contains a character. This penalty is obtained with a di�erentiablefunction that combines a few simple features such as the space between the pieces of ink or the complianceof the segment image with a global baseline, and a few tunable parameters. The segmentation graphrepresents all the possible segmentations of all the �eld images. We can compute the penalty for onesegmented �eld by adding the arc penalties along the corresponding path. As before using a di�erentiablefunction for computing the penalties will ensure that the parameters can be optimized globally.The segmenter uses a variety of heuristics to �nd candidate cut. One of the most important ones iscalled \hit and de
ect" [Burges et al., 1993]. The idea is to cast lines downward from the top of the �eldimage. When a line hits a black pixel, it is de
ected so as to follow the contour of the object. When aline hits a local minimum of the upper pro�le, i.e. when it cannot continue downward without crossinga black pixel, it is just propagated vertically downward through the ink. When two such lines meet eachother, they are merged into a single cut. The procedure can be repeated from the bottom up. Thisstrategy allows the separation of touching characters such as double zeros.The recognition transformer Trec iterates over all segment arcs in the segmentation graph andruns a character recognizer on the corresponding segment image. In our case, the recognizer is LeNet-5,the Convolutional Neural Network described in Section 2, whose weights constitute the largest and mostimportant subset of tunable parameters. The recognizer classi�es segment images into one of 95 classes(full printable ASCII set) plus a rubbish class for unknown symbols or badly-formed characters. Each arcin the input graph Trec is replaced by 96 arcs in the output graph. Each of those 96 arcs contains the label59
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of one of the classes, and a penalty that is the sum of the penalty of the corresponding arc in the input(segmentation) graph and the penalty associated with classifying the image in the corresponding class, ascomputed by the recognizer. In other words, the recognition graph represents a weighted trellis of scoredcharacter classes. Each path in this graph represents a possible character string for the corresponding�eld. We can compute a penalty for this interpretation by adding the penalties along the path. Thissequence of characters may or may not be a valid check amount.The composition transformer Tgram selects the paths of the recognition graph that representvalid character sequences for check amounts. This transformer takes two graphs as input: the recognitiongraph, and the grammar graph. The grammar graph contains all possible sequences of symbols thatconstitute a well-formed amount. The output of the composition transformer, called the interpretationgraph, contains all the paths in the recognition graph that are compatible with the grammar. Theoperation that combines the two input graphs to produce the output is a generalized transduction (seeSection 9).A di�erentiable function is used to compute the data attached to the output arc from the dataattached to the input arcs. In our case, the output arc receives the class label of the two arcs, and apenalty computed by simply summing the penalties of the two input arcs (the recognizer penalty, and thearc penalty in the grammar graph). Each path in the interpretation graph represents one interpretationof one segmentation of one �eld on the check. The sum of the penalties along the path represents the\badness" of the corresponding interpretation and combines evidence from each of the modules along theprocess, as well as from the grammar.The Viterbi transformer �nally selects the path with the lowest accumulated penalty, correspond-ing to the best grammatically correct interpretations.10.2 Gradient-Based LearningEach stage of this check reading system contains tunable parameters. While some of these parameterscould be manually adjusted, for example the parameters of the �eld locator and segmenter, the vastmajority of them must be learned, particularly the weights of the neural net recognizer.Prior to globally optimizing the system, each module parameters are initialized with reasonable values.The parameters of the �eld locator and the segmenter are initialized by hand, while the parameters ofthe neural net character recognizer are initialized by training on a database of pre-segmented and labeledcharacters. Then, the entire system is trained globally from whole check images labeled with the correctamount. No explicit segmentation of the amounts is needed to train the system: it is trained at the checklevel.The loss function E minimized by our global training procedure is the Discriminative Forward criteriondescribed in Section 7: the di�erence between (a) the forward penalty of the constrained interpretationgraph (constrained by the correct label sequence), and (b) the forward penalty of the unconstrainedinterpretation graph. Derivatives can be back-propagated through the entire structure, although it onlypractical to do it down to the segmenter.10.3 Rejecting Low Con�dence ChecksIn order to be able to reject checks which are the most likely to carry erroneous Viterbi answers, wemust rate them with a con�dence, and reject the check if this con�dence is below a given threshold. Tocompare the un-normalized Viterbi Penalties of two di�erent checks would be meaningless when it comesto decide which answer we trust the most.The optimal measure of con�dence is the probability of the Viterbi answer given the input image.As seen in Section 7.5, given a target sequence (which, in this case, would be the Viterbi answer), thediscriminative forward loss function is an estimate of the logarithm of this probability. Therefore, a simplesolution to obtain a good estimate of the con�dence is to reuse the interpretation graph (see Figure 33)to compute the discriminative forward loss as described in Figure 21, using as our desired sequence theViterbi answer. This is summarized in Figure 34, with:con�dence = exp(Edforw)
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Figure 34: Additional processing required to compute the con�dence.10.4 ResultsA version of the above system was fully implemented and tested on machine-print business checks. Thissystem is basically a generic GTN engine with task speci�c heuristics encapsulated in the check andfprop method. As a consequence, the amount of code to write was minimal: mostly the adaptationof an earlier segmenter into the segmentation transformer. The system that deals with hand-written orpersonal checks was based on earlier implementations that used the GTN concept in a restricted way.The neural network classi�er was initially trained on 500,000 images of character images from variousorigins spanning the entire printable ASCII set. This contained both handwritten and machine-printedcharacters that had been previously size normalized at the string level. Additional images were generatedby randomly distorting the original images using simple a�ne transformations of the images. The networkwas then further trained on character images that had been automatically segmented from check imagesand manually truthed. The network was also initially trained to reject non-characters that resulted fromsegmentation errors. The recognizer was then inserted in the check reading system and a small subset ofthe parameters were trained globally (at the �eld level) on whole check images.On 646 business checks that were automatically categorized as machine printed the performance was82% correctly recognized checks, 1% errors, and 17% rejects. This can be compared to the performanceof the previous system on the same test set: 68% correct, 1% errors, and 31% rejects. A check iscategorized as machine-printed when characters that are near a standard position Dollar sign are detectedas machine printed, or when, if nothing is found in the standard position, at least one courtesy amountcandidate is found somewhere else. The improvement is attributed to three main causes. First the neuralnetwork recognizer was bigger, and trained on more data. Second, because of the GTN architecture,the new system could take advantage of grammatical constraints in a much more e�cient way thanthe previous system. Third, the GTN architecture provided extreme 
exibility for testing heuristics,adjusting parameters, and tuning the system. This last point is more important than it seems. TheGTN framework separates the \algorithmic" part of the system from the \knowledge-based" part of thesystem, allowing easy adjustments of the latter. The importance of global training was only minor inthis task because the global training only concerned a small subset of the parameters.An independent test performed by systems integrators in 1995 showed the superiority of this systemover other commercial Courtesy amount reading systems. The system was integrated in NCR's line ofcheck reading systems. It has been �elded in several banks across the US since June 1996, and has beenreading millions of checks per month since then. 62



11 ConclusionsDuring the short history of automatic pattern recognition, increasing the role of learning seems to haveinvariably improved the overall performance of recognition systems. The systems described in this paperare more evidence to this fact. Convolutional Neural Networks have been shown to eliminate the need forhand-crafted feature extractors. Graph Transformer Networks have been shown to reduce the need forhand-crafted heuristics, manual labeling, and manual parameter tuning in document recognition systems.As training data becomes plentiful, as computers get faster, as our understanding of learning algorithmsimproves, recognition systems will rely more and more of learning, and their performance will improve.Just as the back-propagation algorithm elegantly solved the credit assignment problem in multi-layerneural networks, the gradient-based learning procedure for Graph Transformer Networks introduced inthis paper solves the credit assignment problem in systems whose functional architecture dynamicallychanges with each new input. The learning algorithms presented here are in a sense nothing more thanunusual forms of gradient descent in complex, dynamic architectures, with e�cient back-propagationalgorithms to compute the gradient. The results in this paper help establish the usefulness and relevanceof gradient-based minimization methods as a general organizing principle for learning in large systems.It was shown that all the steps of a document analysis system can be formulated as graph transformersthrough which gradients can be back-propagated. Even in the non-trainable parts of the system, thedesign philosophy in terms of graph transformation provides a clear separation between domain-speci�cheuristics (e.g. segmentation heuristics) and generic, procedural knowledge (the generalized transductionalgorithm)It is worth pointing out that data generating models (such as HMMs) and the Maximum LikelihoodPrinciple were not called upon to justify most of the architectures and the training criteria described inthis paper. Gradient based learning applied to global discriminative loss functions guarantees optimalclassi�cation and rejection without the use of \hard to justify" principles that put strong constraints onthe system architecture, often at the expense of performances.More speci�cally, the methods and architectures presented in this paper o�er generic solutions to alarge number of problems encountered in pattern recognition systems:1. Feature extraction is traditionally a �xed transform, generally derived from some expert priorknowledge about the task. This relies on the probably incorrect assumption that the human designeris able to capture all the relevant information in the input. We have shown that the applicationof Gradient-Based Learning to Convolutional Neural Networks allows to learn appropriate featuresfrom examples. The success of this approach was demonstrated in extensive comparative digitrecognition experiments on the NIST database.2. Segmentation and recognition of objects in images cannot be completely decoupled. Instead oftaking hard segmentation decisions too early, we have used Heuristic Over-Segmentation to generateand evaluate a large number of hypotheses in parallel, postponing any decision until the overallcriterion is minimized.3. Hand truthing images to obtain segmented characters for training a character recognizer is expensiveand does not take into account the way in which a whole document or sequence of characters will berecognized (in particular the fact that some segmentation candidates may be wrong, even thoughthey may look like true characters). Instead we train multi-module systems to optimize a globalmeasure of performance, which does not require time consuming detailed hand-truthing, and yieldssigni�cantly better recognition performance, because it allows to train these modules to cooperatetowards a common goal.4. Ambiguities inherent in the segmentation, character recognition, and linguistic model should beintegrated optimally. Instead of using a sequence of task-dependent heuristics to combine thesesources of information, we have proposed a uni�ed framework in which generalized transductionmethods are applied to graphs representing a weighted set of hypotheses about the input. Thesuccess of this approach was demonstrated with a commercially deployed check reading systemthat reads millions of business and personal checks per month: the generalized transduction engineresides in only a few hundred lines of code. 63



5. Traditional recognition systems rely on many hand-crafted heuristics to isolate individually rec-ognizable objects. The promising Space Displacement Neural Network approach draws on therobustness and e�ciency of Convolutional Neural Networks to avoid explicit segmentation alto-gether. Simultaneous automatic learning of segmentation and recognition can be achieved withGradient-Based Learning methods.This paper presents a small number of examples of graph transformer modules, but it is clear that theconcept can be applied to many situations where the domain knowledge or the state information can berepresented by graphs. This is the case in many audio signal recognition tasks, and visual scene analysisapplications. Future work will attempt to apply Graph Transformer Networks to such problems, withthe hope of allowing more reliance on automatic learning, and less on detailed engineering.AppendicesA Pre-conditions for faster convergenceAs seen before, the squashing function used in our Convolutional Networks is f(a) = A tanh(Sa).Symmetric functions are believed to yield faster convergence, although the learning can become ex-tremely slow if the weights are too small. The cause of this problem is that in weight space theorigin is a �xed point of the learning dynamics, and, although it is a saddle point, it is attractivein almost all directions [LeCun et al., 1993]. For our simulations, we use A = 1:7159 and S = 23(see [LeCun, 1987, LeCun, 1989]). With this choice of parameters, the equalities f(1) = 1 and f(�1) =�1 are satis�ed. The rationale behind this is that the overall gain of the squashing transformation isaround 1 in normal operating conditions, and the interpretation of the state of the network is simpli�ed.Moreover, the absolute value of the second derivative of f is a maximum at +1 and �1, which improvesthe convergence towards the end of the learning session. This particular choice of parameters is merelya convenience, and does not a�ect the result.Before training, the weights are initialized with random values using a uniform distribution between�2:4=Fi and 2:4=Fi where Fi is the number of inputs (fan-in) of the unit which the connection belongsto. Since several connections share a weight this rule could be di�cult to apply, but in our case, allconnections sharing a same weight belong to units with identical fan-ins. The reason for dividing by thefan-in is that we would like the initial standard deviation of the weighted sums to be in the same rangefor each unit, and to fall within the normal operating region of the sigmoid. If the initial weights aretoo small, the gradients are very small and the learning is slow. If they are too large, the sigmoids aresaturated and the gradient is also very small. The standard deviation of the weighted sum scales likethe square root of the number of inputs when the inputs are independent, and it scales linearly with thenumber of inputs if the inputs are highly correlated. We chose to assume the second hypothesis sincesome units receive highly correlated signals.B Stochastic Gradient vs Batch GradientGradient-Based Learning algorithms can use one of two classes of methods to update the parameters.The �rst method, dubbed \Batch Gradient", is the classical one: the gradients are accumulated over theentire training set, and the parameters are updated after the exact gradient has been so computed. Inthe second method, called \Stochastic Gradient", a partial, or noisy, gradient is evaluated on the basisof one single training sample (or a small number of samples), and the parameters are updated usingthis approximate gradient. The training samples can be selected randomly or according to a properlyrandomized sequence. In the stochastic version, the gradient estimates are noisy, but the parametersare updated much more often than with the batch version. An empirical result of considerable practicalimportance is that on tasks with large, redundant data sets, the stochastic version is considerably fasterthan the batch version, sometimes by orders of magnitude [M�uller et al., 1995]. Although the reasonsfor this are not totally understood theoretically, an intuitive explanation can be found in the followingextreme example. Let us take an example where the training database is composed of two copies of thesame subset. Then accumulating the gradient over the whole set would cause redundant computations tobe performed. On the other hand, running Stochastic Gradient once on this training set would amount64



to performing two complete learning iterations over the small subset. This idea can be generalized totraining sets where there exist no precise repetition of the same pattern but where some redundancy ispresent. In fact stochastic update must be better when there is redundancy, i.e., when a certain level ofgeneralization is expected.Many authors have claimed that second-order methods should be used in lieu of gradient descent forneural net training. The literature abounds with recommendations [Battiti, 1992] for classical second-order methods such as the Gauss-Newton or Levenberg-Marquardt algorithms, for Quasi-Newton methodssuch as BFGS, Limited-storage BFGS, or for various versions of the Conjugate Gradients (CG) method.Unfortunately, all of the above methods are unsuitable for training large neural networks on large datasets. The Gauss-Newton and Levenberg-Marquardt methods require O(N3) operations per update, whereN is the number of parameters, which makes them impractical for even moderate size networks. Quasi-Newton methods require \only" O(N2) operations per update, but that still makes them impractical forlarge networks. Limited-Storage BFGS and Conjugate Gradient require only O(N) operations per updateso they would appear appropriate. Unfortunately, their convergence speed relies on an accurate evaluationof successive \conjugate descent directions" which only makes sense in \batch" mode. For large data sets,the speed-up brought by these methods over regular batch gradient descent cannot match the enormousspeed up brought by the use of stochastic gradient. Several authors have attempted to use ConjugateGradient with small batches, or batches of increasing sizes [Kramer and Sangiovanni-Vincentelli, 1989,Moller, 1993], but those attempts have not yet been demonstrated to surpass a carefully tuned stochasticgradient. Our experiments were performed with a stochastic method that scales the parameter axes soas to minimize the eccentricity of the error surface.C Stochastic Diagonal Levenberg-MarquardtOwing to the reasons given in Appendix B, we prefer to update the weights after each presentation of asingle pattern in accordance with stochastic update methods. The patterns are presented in a constantrandom order, and the training set is typically repeated 20 times.Our update algorithm is dubbed the Stochastic Diagonal Levenberg-Marquardt method where anindividual learning rate (step size) is computed for each parameter (weight) before each pass through thetraining set [LeCun, 1987, Becker and LeCun, 1988, LeCun, 1989]. These learning rates are computedusing the diagonal terms of an estimate of the Gauss-Newton approximation to the Hessian (secondderivative) matrix. This algorithm is not believed to bring a tremendous increase in learning speed but itconverges reliably without requiring extensive adjustments of the learning parameters. It corrects majorill-conditioning of the loss function that are due to the peculiarities of the network architecture and thetraining data. The additional cost of using this procedure over standard stochastic gradient descent isnegligible.At each learning iteration a particular parameter wk is updated according to the following stochasticupdate rule wk  wk + �k @Ep@wk : (18)where Ep is the instantaneous loss function for pattern p. In Convolutional Neural Networks, because ofthe weight sharing, the partial derivative @Ep@wk is the sum of the partial derivatives with respect to theconnections that share the parameter wk: @Ep@wk = X(i;j)2Vk @Ep@uij (19)where uij is the connection weight from unit j to unit i, Vk is the set of unit index pairs (i; j) such thatthe connection between i and j share the parameter wk, i.e.:uij = wk 8(i; j) 2 Vk (20)As stated previously, the step sizes �k are not constant but are function of the second derivative of theloss function along the axis wk: �k = ��+ hkk (21)65



where � is a hand-picked constant and hkk is an estimate of the second derivative of the loss function Ewith respect to wk. The larger hkk, the smaller the weight update. The parameter � prevents the step sizefrom becoming too large when the second derivative is small, very much like the \model-trust" methods,and the Levenberg-Marquardt methods in non-linear optimization [Press et al., 1986]. The exact formulato compute hkk from the second derivatives with respect to the connection weights is:hkk = X(i;j)2Vk X(k;l)2Vk @2E@uij@ukl (22)However, we make three approximations. The �rst approximation is to drop the o�-diagonal terms ofthe Hessian with respect to the connection weights in the above equation:hkk = X(i;j)2Vk @2E@u2ij (23)Naturally, the terms @2E@u2ij are the average over the training set of the local second derivatives:@2E@u2ij = 1P PXp=1 @2Ep@u2ij (24)Those local second derivatives with respect to connection weights can be computed from local secondderivatives with respect to the total input of the downstream unit:@2Ep@u2ij = @2Ep@a2i x2j (25)where xj is the state of unit j and @2Ep@a2i is the second derivative of the instantaneous loss function withrespect to the total input to unit i (denoted ai). Interestingly, there is an e�cient algorithm to computethose second derivatives which is very similar to the back-propagation procedure used to compute the�rst derivatives [LeCun, 1987, Becker and LeCun, 1988]:@2Ep@a2i = f 0(ai)2Xk u2ki @2Ep@a2k + f 00(ai)@Ep@xi (26)Unfortunately, using those derivatives leads to well-known problems associated with every Newton-likealgorithm: these terms can be negative, and can cause the gradient algorithm to move uphill instead ofdownhill. Therefore, our second approximation is a well-known trick, called the Gauss-Newton approx-imation, which guarantees that the second derivative estimates are non-negative. The Gauss-Newtonapproximation essentially ignores the non-linearity of the estimated function (the Neural Network in ourcase), but not that of the loss function. The back-propagation equation for Gauss-Newton approximationsof the second derivatives is: @2Ep@a2i = f 0(ai)2Xk u2ki @2Ep@a2k (27)This is very similar to the formula for back-propagating the �rst derivatives, except that the sigmoid'sderivative and the weight values are squared. The right-hand side is a sum of products of non-negativeterms, therefore the left-hand side term is non-negative.The third approximation we make is that we do not run the average in Equation 24 over the entiretraining set, but run it on a small subset of the training set instead. In addition the re-estimation doesnot need to be done often since the second order properties of the error surface change rather slowly. Inthe experiments described in this paper, we re-estimate the hkk on 500 patterns before each training passthrough the training set. Since the size of the training set is 60,000, the additional cost of re-estimatingthe hkk is negligible. The estimates are not particularly sensitive to the particular subset of the trainingset used in the averaging. This seems to suggest that the second-order properties of the error surface aremainly determined by the structure of the network, rather than by the detailed statistics of the samples.66



This algorithm is particularly useful for shared-weight networks because the weight sharing creates ill-conditionning of the error surface. Because of the sharing, one single parameter in the �rst few layers canhave an enormous in
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