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Abstract. This paper explores the capabilities of continuous time recur-
rent neural networks (CTRNNS) to display reinforcement learning-like
abilities on a set of T-Maze and double T-Maze navigation tasks, where
the robot has to locate and “remember” the position of a reward-zone.
The “learning” comes about without modifications of synapse strengths,
but simply from internal network dynamics, as proposed by [12]. Neural
controllers are evolved in simulation and in the simple case evaluated
on a real robot. The evolved controllers are analyzed and the results
obtained are discussed.

1 Introduction

Learning in neural networks is normally thought of as modifications of synaptic
strengths by for example back-propagation or Hebbian learning. This view was in
1994 challenged by Yamauchi and Beer in [12], where the authors described the
abilities of fixed synapse continuous time recurrent neural networks (CTRNNS)
to display reinforcement learning-like properties by exploiting internal network
dynamics. The task studied was generation and learning of short bit sequences.
In [11] this work was extended to an artificial agent task where the relationship
between the positions of a goal and a landmark in an environment had to be
learned. However, the movement of the agent was restricted and it was equipped
with artificial high level goal- and landmark-detection sensors. These restrictions
were loosened in the recent work by [10] where an extended version the same
landmark navigation task was studied. In the present work we apply a similar
approach in which a simulated Khepera robot has to navigate in first a simple
and then a double T-Maze. The task for the robot is to locate and “remember”
the location of a reward-zone in the environment it happens to be evaluated
in. In contrast to the above mentioned work the evolved behaviors are verified
by testing them on a real robot in a real environment. Previous work on T-
Maze navigation in evolutionary robotics includes delayed response tasks where
the robots had to perform one or several turns in a maze on the basis of light
source cues given to the robot [5][13]. In contrast to these works our focus is
how to retain information over successive trials in the same environment. This



becomes possible by equipping the robot with a sensor to detect the position of
the reward-zone used for fitness evaluation.!

A different line of research has studied how agents in a self-organized ways
can learn internal models of the environment [9]. The authors successfully trained
a hierarchy of recurrent neural networks to predict increasingly complex infor-
mation about the environment. The high level information which emerged was
in which of two rooms the agent was currently navigating. The authors argued
that the model learned could later on be used to generate action plans for goal
seeking behaviors as in [8]. In the present work no explicit model of the environ-
ment exists, but is tightly coupled with both the learning of behaviors and the
generation of motor actions. This corresponds with our belief that, as pointed
out by [12], a direct distinction between mechanisms responsible for behavior
and mechanisms responsible for learning is hard to defend biologically.

2 Neural Architecture and Genetic Encoding

Continuous-time recurrent neural networks (CTRNNS) are utilized for the exper-
iments in this paper. The state of each neuron can be described by the following
differential equation:
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where N is the number of neurons, i (= 1,2,...,N) is the index, ~; describes
the neuron state (cell potential), 7; is the time constant, w;; the strength of
the synapse from the presynaptic neuron j to the postsynaptic neuron ¢, A; =
o(v; — ;) is the activation of the presynaptic neuron where o(z) =1/(1+e™ ")
is the standard logistic function and 6, is a bias term. Finally, S is the number
of sensory receptors, w; is the strength of the synapse from the presynaptic
sensory receptor k to the postsynaptic neuron ¢ and [ is the activation of the
sensory receptor (I, € [0,1]). As in [12] the Forward Euler numerical integration
method with step size At = 1 is applied to equation (1). The range of the rest
of the parameters are the following:

T €[1,50], 8 €[-1,1] and w € [-5,5]

The network architecture is shown in figure 1(b). The network consists of 6
fully interconnected neurons (4 hidden + 2 motor outputs) and 5 sensory re-
ceptors. Every neuron has synaptic connections from all neurons and all sensory
receptors. The receptors are configured as follows: 4 inputs from the infrared
proximity sensors paired two-by-two and 1 additional input from a floor sensor
pointing downwards measuring the surface brightness. The 4 proximity values

! Note that in contrast to traditional reinforcement learning no direct reward is given
to the robot. The evolved robots has to discover themselves the relationship between
the input of this sensor and the fitness score.



Hidden
ol o
votors { @YY
(T
\ a synaptic connection (*) floor sensor
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Fig. 1. The Khepera robot (a) used in the experiments. A standard Khepera has 8
infrared sensors distributed around the body used for object proximity and light in-
tensity measurement. An extra infrared sensor pointing downwards (*) has been added
in the center of the robot body in order to measure the surface brightness below the
robot. Neural Architecture (b): The network consists of 6 fully interconnected neurons
(4 hidden + 2 motor outputs) and 5 sensory receptors. Every neuron has synaptic con-
nections from all neurons and all sensory receptors. The sensory receptors are wired to
the robot as shown (b, right) (motor connections not shown for clarity).

are scaled between 0 and 1. The floor sensor input is set to 1 if the robot is
inside a black reward-zone and 0 otherwise. The activation of the 2 output neu-
rons, linearly scaled between —10 and 10, are used to set the wheel-speeds of the
robot.

The network parameters are encoded in a bitstring genotype. Each neuron
has 13 encoded parameters: A time constant (7), a bias threshold (#), and 11
synaptic strengths (w;;). Each of the 78 network parameters is encoded linearly
within its range using 5 bits, resulting in a total genotype length of 390 bits.

3 Experiment 1: Simple T-Maze

In the first experiment a robot has to navigate a simple T-maze (fig. 2). The
experiment is carried out in a realistic simulation of the Khepera robot (fig.
1(a)) based on sensor sampling [6] and adding 5% uniform noise to the sampled
values. Initially the robot is positioned as shown in figure 2, and the task is to
find and stay on the black reward-zone which can be positioned in either the left
or the right arm of the maze. The position of the reward-zone stays fixed during
each epoch. The robot is tested for 4 epochs of 5 trials each - two epochs with
the reward-zone in each arm of the maze. The neural network controlling the
robot is initialized (by setting the state of each neuron to zero) at the beginning
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Fig. 2. The simple T-maze environment used in the first experiments. The reward zone
(black square) can be positioned either the left arm (shown above) or in the right arm
of the maze.
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Fig. 3. T-Maze Task. Thick line shows best fitness and thin line shows population
mean (both are averaged over 10 replications of the experiment).

of each epoch but not between trials within the same epoch. This means that
the robot can potentially build up and store information in the dynamic state
of the network between trials within the same epoch. The optimal behavior of
the robot in this environment is to use the first trial of each epoch to locate
and “remember” the position of the reward-zone, and thereafter move directly
towards it for the remaining trials of the epoch. To put additional evolutionary
pressure on this behavior, the number of available sensory-motor steps is 360
in the first trial of each epoch and only 180 in the remaining 4 trials. Given
the size of the maze this means that the robot only has time to explore the
whole maze during the first trial of each epoch. In addition a poison-zone (white
square in figure 4(b)) is positioned opposite of the reward-zone in the last 4
but not the first trial of each epoch. An individual is immediately killed if it
steps over the poison-zone. The fitness function is simply the sum of trials an
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(a) Trial 1: The robot explores the
environment, and after some time
locates and stays on in the reward-
zone.

(b) Trials 2-5: For the remaining
trials the robot exploits the “knowl-
edge” gained in trial 1 and moves
directly towards the reward-zone.

Fig. 4. Robot traces of an epoch with the reward-zone to the left

individual ends its life inside the reward-zone. Since each individual is tested for
a total of 20 trials the maximal possible fitness is 20. Notice that there is no
direct pressure on evolving fast moving robots given this fitness function. This
is however compensated by the fact that the number of steps in each trial is
limited and has been adjusted to fit the size of the environment.

The experiments are carried out using a standard genetic algorithm with
rank-based selection. A population of 200 randomly generated neural controllers
is evolved for 200 generations. At every generation the best 40 individuals make 5
copies each. One copy each of the 5 best individuals remains unchanged (elitism).
For the rest of the population single-point crossover with a probability of 0.04
and bit-switch mutation with a 0.02 probability per bit is applied. The whole
experiment is repeated 10 times using different initializations of the computer’s
pseudo-random number generator.

The fitness results of the evolutionary runs on this experiment are shown in
figure 3. The thick line shows best fitness and the thin line shows population
mean, both are averaged over 10 replications of the experiment. The evolutionary
process found individuals able to collect the maximal fitness of 20 in 6 out of
the 10 replications of the experiment. The maximal fitness in the 4 remaining
runs was around 16. The behavior of an individual from the final generation of
one of the successful runs is shown in figure 4 and 5. The robot starts out in
trial 1 of the first epoch (figure 4(a)) by exploring the maze until it locates the
reward-zone where it stays the remaining time of the trial. In the following trials
(figure 4(b)), the robot is able to retain the “knowledge” gathered during trial
1 and always turns left at the T-junction in order to move towards and stay on
the reward-zone. In the epochs with reward to the right the robot moves directly
towards the reward-zone in trial 1 (figure 5(a)), since the default behavior of this
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(a) Trial 1: The default behavior (b) Trials 2-5: For the remaining
of this individual of turning right trials this behavior is repeated.

takes it directly to the reward-zone.

Fig. 5. Robot traces of an epoch with the reward-zone to the right.
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Fig. 6. T-Maze task with reward switching. Thick line shows best fitness and thin line
shows population mean (both averaged over 10 replications of the experiment).

individual is to turn right at the first junction after an re-initialization of the
neural controller. For the remaining trials this successful behavior is repeated
(figure 5(b)).

3.1 Analysis

In order to better understand the functioning of the evolved neural controllers,
some further analysis on an individual from one of the successful runs was done.
The neural activities of each neuron were recorded over two epochs - one with
reward to the left and one with reward to the right. It was found that the



essential information about the current environment is stored in one of the hidden
neurons. The activity of this neuron approaches zero at the end of the trials with
the reward to the left and approaches one otherwise. By initializing every other
neuron in the network as normal, but setting this neurons activity to either
zero or one, it could be controlled which way the robot turns at the T-junction.
In other words the state of this neuron “stores” the robots current assumption
about the environment and is updated when these assumptions are not met. For
more details about the analysis performed please refer to [1].

3.2 Transfer to the Real Robot

A way of verifying the evolutionary robotics results obtained in simulation is to
test the evolved neural controllers on a real robot. For this purpose the T-Maze
shown in figure 7 was built. The best individual from each of the 10 replica-
tions of experiment 1 task was tested. Initially however, the results of the tests
were rather poor. None of the 10 controllers were able to reliable navigate the
robot. This result indicates that the functioning of the evolved CTRNNs was
specific to the sensory-motor conditions encountered in the simulator. This ob-
servation confirms our earlier results that CTRNNs, despite of their ability to
display learning-likes abilities, lack the sensory-motor adaptability found in e.g.
plastic Hebbian synapse networks [2]. However, several techniques for reducing
this “reality gap”-problem, by adding noise at different levels of the simulation,
have been proposed [5][6]. With this in mind the simulator was changed in the
following way: Sensor noise levels were increased from 5% to 10%. In addition,
10% uniform noise was added to the distance traveled by each wheel at each
timestep. Furthermore, the initial conditions of each tested individual changed
in the following way: The starting position was randomized within a 4 by 4 cm
square, and the orientation was randomized within the range forward +/- 15
degrees. With these modifications an incremental evolution lasting 20 genera-
tions was launched, seeded with a population from one of the original runs. This
time the transfer to the real robot was perfect. The best individual of the last
generation was able score a fitness value of 20, i.e. finding the reward-zone in
every trial. No significant behavioral differences compared to the simulation were
observed.

4 Experiment 2: Simple T-Maze with Reward Switching

In order to further investigate the learning-like capabilities of CTRNNs the task
for the robot was now made slightly more complex. In experiment 1 the robots
could rely on the fact that the position of the reward-zone remained fixed during
a whole epoch. Evolved robots were able to explore the whole environment during
trial 1 of each epoch in order to locate this position, but would they also be able
to adapt if the reward position was changed later on within the same epoch.
This turned out not to be the case. When testing the individual analyzed in
section 3.1 by placing the reward-zone to left for 5 trials and then switching



Fig. 7. The real T-maze environment. (Note: surface colors have been reversed com-
pared to the simulated environment, but the processed input from the floor-sensor
remains 1 inside reward-zone and 0 otherwise) .

the reward position to the right without resetting the neural network, the robot
would continue to turn left a the T-Junction in the trials after the switch took
place.

A new experiment was now set up in order to check if this lack of adaptivity to
environmental changes taking place later on in an epoch was due to a limitation
in the learning capabilities of the network, or simply given by the fact this
condition was never met during evolution. The evolved robots could simply have
found a minimalistic solution. In this new evolution the duration of each epoch
was increased to 10 trials. The reward-zone position remained fixed in the first
5 trials but was then switched to the other side in the 5 last trials of each epoch.
Each individual was still tested for 4 epochs, 2 with the reward initially to the
left and 2 with the reward initially to the right. The fitness function remained
the same, and since each individual was tested for 40 trials in total the maximum
possible fitness was now 40.

The average result of 10 replications of the experiment is shown in figure 6.
The resulting best fitness in the 10 replications varied between 22 in the worst
case and 38 in the best. In the latter case the best individual did realize that the
reward position had changed in trial 6, and was able to locate the new position.
However in some of the following trials it would still turn the wrong way thus
ending up in a the poison-zone. In order to increase the performance the last bit
an incremental evolutionary approach was now applied. The evolutionary con-
ditions remained the same, but instead of seeding the evolution with a random
population, it was initially seeded with a population consisting of the best indi-
vidual of each of the 200 generations from the best replication of the previous
evolution. Again 10 replications were performed. In most of the runs the fitness
level stayed at 38, and even dropped to 32 in one case (graph not shown). It
seemed that level 38 solution was a local optimum which was difficult to escape.
In one replication, however, the fitness level reached the maximal value of 40, and
when tested afterwards the best individual from this replication could reliably
solve the task. When the reward position switched at trial 6 of each epoch, the
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Fig. 8. Double T-Maze. The maze now has three T-junctions. The reward-zone is po-
sitioned either in the upper left (as shown) or upper right corner. The 3 remaining
corners each contains a poison-zone during trials 2-5 (but not trial 1) of each epoch.

robot would at first move towards the previous location, but when not finding
the reward-zone here anymore it would turn around and initiate a search until
the new reward position was located. In the remaining trials of each epoch the
robot then again turned directly towards the reward-zone, resulting in the total
fitness of 40.

5 Experiment 3: Double T-Maze

In the previous section it was shown that evolved robots were able to completely
solve the simple T-Maze even in the case when the reward position was switched
during an epoch. However, the robots only had to retain one piece of informa-
tion based on previous experiences, namely whether to turn left or right at the
T-junction. The investigations were now turned towards a double T-maze with
several T-junctions thus further complicating the task (see figure 8). To com-
pensate for the increased size of the maze the number of sensory-motor cycles
was increased to 400 in trial 1 and 200 in the remaining trials. The reward-zone
could appear in either upper-left and upper-right corner of the maze.

During the first trial only the reward-zone was present, and in the following
trials poison-zones were placed in the 3 remaining corners. The other parame-
ters remained unchanged. As in the simple T-Maze, the case where the reward
position remained unchanged during an entire epoch was tested first. An evo-
lutionary process seeded with populations of random individuals was launched,
but the results were very poor under these conditions. Basically the fitness re-
mained at zero all the time, with very few exceptions of fitness 1 coming and
going for a couple of generations in one of the replications of the experiment.
In fact this result is not that surprising considering the fitness function used.
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Fig. 9. Double T-Maze task. Thick line shows best fitness and thin line shows popula-
tion mean (both are averaged over 10 replications of the experiment).

In order for a random initial individual to collect some fitness and kick-off the
evolutionary progress it had to navigate all the way to one of the upper corners.
If it could not do that it simply got zero fitness. A solution to this problem
could have been to design an incremental fitness function, where individuals
would get some fitness for partially solving the task. Instead it was decided to
again rely upon an incremental evolutionary approach. The genetic algorithm
was seeded with a population consisting of the best individuals from one of the
runs of experiment 1 on the simple T-Maze. The results of 10 replications of the
experiment are shown in figure 9. In the best run the fitness reached a level of
18 out of 20. During trial 1 the best individual always turned right at the first
junction and left at the second. This would take the robot to the upper right
corner of the maze. In epochs with reward to the right the robot would soon
find and stay in the reward-zone. When the reward was on the left, on the other
hand, the robot was not capable of searching for the reward-zone as it did in
the simple T-maze case (fig. 4(a)). Instead the robot simply crashed into the
upper wall. In the following trials of these epochs, however, the robot would now
turn left at the first junction and right at the second, reaching the reward-zone
in the upper-left corner. One trial was wasted, but crucial information about
the reward position was gathered and used in the following trials, thus resulting
in fitness of 18 out of 20. An attempt to further improve this behavior by an
additional incremental evolution was now conducted, seeding evolution with a
population of individuals from this experiment. This time, however, the attempt
was not successful and the fitness level remained at 18 in every replication of the
experiment. This results suggests that the maximal problem complexity solv-
able for the genetic algorithm and neural network used had been reached. This
suggestion was confirmed by an unsuccessful attempt to apply reward-switching
to the double T-Maze task, as was done in experiment 2 in the simple T-Maze



case. No reliable learning behaviors were observed in the evolved controllers in
this case.

6 Conclusion

We have shown that evolution of learning-like properties is possible without
modifications of synapse strengths, but simply by relying on complex internal
dynamics of CTRNNSs. In experiment 1 the robot had to navigate a simple T-
Maze with the reward position fixed during each epoch. Direct evolution of this
task was possible and the analysis showed that the employed strategy of an
evolved network was to store essential environment information in one of the
hidden units. The rest of the neurons would update the activity of this neuron
based on current environmental feedback. With a few simulator modifications
evolved behaviors were successfully transfered to a real robot. In experiments 2
the reward position would vary within the same epoch forcing evolved robots to
keep on adapting their strategy to the current environmental conditions. Suc-
cessful individuals solving this task were evolved in a two-step incremental evo-
lution. Because of the increased complexity of the maze, direct evolution was not
possible in experiment 3. However, by seeding evolution with a population from
experiment 1 individuals capable of “learning” were found. It was not possible to
perform additional reward switching as in experiment 2 on the simple T-Maze,
suggesting that maximal task complexity had been reached.

In this work incremental evolution has proven to be a powerful tool in evolv-
ing complex robot behaviors, however evolving CTRNNs as shown here will face
evolvability problems if the task complexity is to be further increased. In princi-
ple a sufficiently large CTRNN is able to display arbitrarily complex dynamics.
However, the problem of how to evolve such networks will have to be addressed
in the future. Possible solutions could be to explore new neural mechanisms for
information “storage”, or to investigate how to preserve the learning capabili-
ties of CTRNNs in networks generally thought of to be easier to evolve such as
Hebbian synapse networks or spiking neural networks. Our work will focus on
these aspects in the future.

As pointed out by one of the reviewers it can be argued whether the exper-
iments presented in this paper should be classified as learning-like behaviors or
simply as internal dynamics investigations. It true that the view of learning pre-
sented in this paper is quite different from the traditional computational view
of learning, where some update of the control systems always takes place. How-
ever neurophysiological experiments have indicated that the way animals and
humans perceive, classify, and memorize, for example in the olfactory system, is
by transitions between chaotic attractors in dynamical systems formed by large
numbers of neurons in the brain [3][7]. These results correspond nicely with the
view of memory and learning presented in this paper.
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