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Cold atomic gases have proven capable of emulating a number of fundamental condensed matter
phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov
pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic
superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a
low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to
deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show,
using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-
dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates
suggest the randomness required lies in a regime where atom transport and equilibration are still robust.
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Introduction.—The interplay of disorder and interactions
is a central problem in condensed matter physics, both from
the viewpoint of materials like the heavy fermions [1,2],
high-temperature superconductors [3], and manganites [4],
and also because of intriguing theoretical issues such
as the fate of Anderson localization in the presence of
interactions, especially in two dimensions [5,6]. Ultracold
atomic gases offer the opportunity to emulate these
fundamental issues using optical speckle [7,8], impurities
[9], or a quasiperiodic optical lattice [10,11] to introduce
randomness. In the bosonic case, the competition between
strong interactions and strong disorder has been studied
in the context of the elusive Bose glass phase [7,9,11],
while for fermions, a recent experiment has explored
disorder-induced localization in the three-dimensional (3D)
Hubbard model of strongly interacting fermions [12].
In this paper, we explore the thermodynamics of inter-

acting, disordered systems and suggest that, in addition to
studies of the many-body phenomena noted above, prepar-
ing a gas in a random potential might be exploited to
cool the atoms. Specifically, we show using an unbiased
numerical method that one can lower the temperature and
access the regime with long-range magnetic order by
adiabatically decreasing the randomness in the chemical
potential or hopping energies of the Hubbard Hamiltonian.
The achievement of new quantum phases in cold atom
experiments largely depends on the reduction of the
entropy per particle. The success of our proposal requires
that the gas would have to be cooled (e.g. evaporatively)
after the disorder is in place. We will return in the

conclusions to a discussion of how our approach can be
implemented in practice.
Results for the double occupancy and antiferromagnetic

structure factor lend physical insight into this effect. We
also present arguments, partially based on recent experi-
ments, that our suggestion is achievable in practice.
We consider the disordered Hubbard Hamiltonian,
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whose emulation [13,14] with optical lattices is possible
using two hyperfine species of fermionic atoms. Here
c†iσðciσÞ is the creation (destruction) operator for a fermion
at spatial site i and spin (or hyperfine state) σ. We consider
a cubic lattice of N sites, and hopping tij between near
neighbors hiji. The hopping, and the on-site repulsion U,
can be tuned with the lattice depth and the Feshbach
resonance [13], allowing for the successful exploration of
the Mott transition [15–17].
Disorder is introduced via a spatially random chemical

potential μi or hopping tij. We choose uniform distributions
μ0 − Δμ < μi < μ0 þ Δμ or t0 − Δt < tij < t0 þ Δt, and
set the mean of the hopping energy t0 ¼ 1 as the energy
scale. For most of this paper we choose μ0 ¼ 0, which
makes the lattice half-filled (average density n ¼ 1).
However, we also gain insight into the effects of a confining
potential, in which the chemical potential increases as one
moves spatially away from the trap center, by presenting
data for different densities.
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Our computational method, determinant quantum
Monte Carlo (QMC) calculations [18,19], treats disorders
and interactions on an equal, exact footing, and provides a
solution to the Hubbard Hamiltonian on lattices of finite
spatial size,when the sign problem is not too serious [20–24].
We focus on the disorder dependence of the entropy SðTÞ,
obtained via a thermodynamic integration of the energy [25]
down from T ¼ ∞. We also report results for the
(site-averaged) double occupancyD ¼ 1=N

P
ihni↑ni↓i, and

the structure factor Sq ¼ P
re

iq·rcðrÞ at q ¼ ðπ; π; πÞ; Sπ ,
where cðrÞ ¼ hc†iþr↓ciþr↑c

†
i↑ci↓i are spin-spin correlation

functions.
Results.—The effect of site disorder on SðTÞ is shown in

Fig. 1 at U=t0 ¼ 8, where the Néel transition temperature
(TN) in the homogeneous 3D Hubbard model attains its
maximal value [26]. SðTÞ is largely unaffected by dis-
ordered site energies until Δμ becomes comparable to U.
This is a consequence of the fact that for temperatures less
than the repulsion U, the Hubbard model has the character
of a Mott insulator in which U blocks transport of
Fermions away from singly occupied sites. Such a Mott
state is immune to the effects of small disorder Δμ=U ≲ 1.
Our calculated entropy SðTÞ and double occupancy DðTÞ
(see the inset of Fig. 1) confirm this picture. However,
when Δμ=U ≳ 1 the entropy curves shift systematically to
higher T, reflecting a disorder-driven decrease in S at
constant T. The reduction in S can be viewed as the

transfer of weight in the specific heat CðTÞ to a higher
temperature: Disorder suppressing the peak in CðTÞ
associated with local magnetic ordering at the exchange
energy scale T ∼ J ¼ 4t20=U, and increasing CðTÞ at a
higher T that scales like Δμ due to excitations arising from
the transfer of charge between sites of different local μi
[27]. It is expected that at very low temperatures, the
disorder increases the degeneracy of the low lying states,
and hence the entropy. However, our results indicate that
in the temperature range of interest, T ≳ TN (the Neél
temperature), disorder reduces S.
The family of SðTÞ curves in Fig. 1 indicates that if Δμ is

switched to zero at constant entropy, the temperature T
decreases, in analogy to Pomeranchuk cooling which
occurs in a nondisordered lattice when the ratio of repulsion
to hopping U=t0 is increased adiabatically [40]. For the
case of site disorder, the double occupancy shows a
negative slope dD=dT < 0 as seen in the inset of Fig. 1.
At high enough temperatures T ≳ t0, U, Δμ, up and down
spin fermions are uncorrelated, and D factorizes, D ¼
hni↑ni↓i → hni↑ihni↓i (¼ 1=4 at half-filling). In the clean
limit, as T is lowered, the on-site repulsion eliminates
double occupancy, and D falls. At finite U the presence of
quantum fluctuations leads to a finite double occupancy
even as T → 0. Disordered site energies reduce the penalty
for double occupancy from U to Ueff ¼ U − jμi − μjj so
that as Δμ grows, Ueff becomes negative. The low T phase
consists predominantly of doubly occupied and empty sites
so that in the limit Δμ=t0 ≫ 1, D approaches 1

2
.

From Fig. 1 we can infer the behavior of T as Δμ=t0 is
lowered adiabatically at fixed U=t0. Optical lattice experi-
ments, however, typically involve an increase of U=t0
from zero to its final value. Figure 2 presents the adiabatic
curves of a combined protocol in which the interaction is
increased from U=t0 ¼ 0 to U=t0 ¼ 8 in the presence of
fixed disorder Δμ=t0 ¼ 16, followed by the suppression of
the disorder to Δμ=t0 ¼ 0. Data are shown for different
values of the starting entropy S=kB. Figure 2 contains the
central observation of our paper: a significant decrease
in temperature results from following these adiabats. The
substantial cooling in the second part of the path, at fixed
U=t0, is implicit in Fig. 1. A reduction in T=t0 also occurs
in the initial turning on of the interaction, more so in the
presence of disorder than occurs in the clean system [41,42].
Our QMC results indicate that beginning at temperatures
T=t0 ≲ 2.5 at Δμ ¼ 16t0 would be sufficient to reach TN by
the time the clean limit is reached. However, an important
question arises: Can the trapped system in the presence of
disorder be cooled down to an initial temperatureT=t0 ∼ 1.5,
or possibly even lower, close to what is initially needed for
the clean system to reach theNéel phase (TN=t0 ∼ 0.35) [42].
Current cooling capabilities have achieved a final temper-
ature of T=t0 ¼ 0.5 (1.4TN) for U=t0 ∼ 11 at the trap
center [43]. We provide several suggestions concerning its
feasibility in our concluding remarks.
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FIG. 1 (color online). Entropy per site S=N as a function of
T=t0 for different site disorder strengths Δμ at U=t0 ¼ 8. S is
largely independent of disorder strength for Δμ=t0 ¼ 2,
4≲ U=t0 ¼ 8. For larger randomness, SðTÞ decreases with Δμ

so that if disorder is turned off adiabatically, the temperature T
decreases, as indicated by the horizontal arrow. The inset shows
the double occupancy DðTÞ. Large disorder Δμ changes the sign
of the slope dD=dT from mostly positive, to mostly negative.
Here, and in all subsequent figures, unless otherwise indicated,
the lattice size is 63, n ¼ 1, and the Trotter discretization is
Δτ ¼ 1=ð20t0Þ. Up to 300 disorder realizations are used in the
disorder averages.
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Since random μi and tij occur together with optical
speckles [44,45], we also explore the case of bond disorder.
Figure 3 shows SðTÞ for nonzero Δt (and Δμ ¼ 0).
Significant disorder-induced cooling occurs. It is notable
that Δt=t0 ∼ 1 is sufficient to produce an effect on the
entropy, whereas the scale of random site energies required
to change S is much larger (Fig. 1). This is a consequence of
the fact that random hopping immediately leads to a range
of exchange energies Jij ∼ 4t2ij=U which reduces the

moment ordering. Random μi also smear Jij but, since
they are added to U in the energy denominator, initially
have only a small effect. Random hopping thus offers
cooling at lower temperature (entropy) scales for Δt ∼ t0
than does random chemical potential, without requiring a
“threshold value,” Δμ > U. Unlike for the chemical poten-
tial disorder, the basic structure of DðTÞ remains unaltered
for the clean system [27].
To provide some insight into possible effects of the

inhomogeneous densities resulting from a confining poten-
tial, we show the entropy as a function of density for the clean
system and for chemical potential disorder Δμ=t0 ¼ 16
and hopping disorder Δt=t0 ¼ 4 in the inset of Fig. 3.
Although there is some structure to the curves, entropy is
systematically lowered for all densities as disorder is intro-
duced. Thus disorder cooling is not a special feature of
half-filling, but likely occurs for a broad range of densities.
We note that there are important questions of principle

that would arise in a full treatment of a trap [41,42]. QMC
calculations for clean systems employed a set of homo-
geneous simulations, combined with the local density
approximation (LDA), to understandhow thedensity, double
occupancy, and entropy are inhomogeneously distributed in
a system with smoothly varying chemical potential. This is a
considerably more difficult task in the presence of disorder,
because the implementation, and indeed even the validity, of
the LDA is much less straightforward with a rapidly varying
μi or tij. In fact, the LDA has the curious feature that
thermodynamic properties are insensitive to the specific
geometric organization of the sites with the different chemi-
cal potentials: The local entropy sμi is unaltered for any two
systems with the same collection fμig whether they are
randomly distributed or ordered spatially in some pattern, a
patently unphysical result.
Further analysis.—Observing the onset of long-range

antiferromagnetic (AF) correlations is a central goal of the
field. To see the development of these correlations as the
disorder is turned off, we show in Fig. 4 the structure factor
Sπ as a function of T for different site (top panel) and
bond (bottom panel) disorder strengths. Δμ > U com-
pletely destroys the sharp rise in Sπ, which occurs here
on a 63 lattice at a value close to the bulk TN=t0 ∼ 0.35 for
U=t0 ¼ 8. The suppression of magnetic order is a conse-
quence of the destruction of the local moments m2 ¼
hðni↑ − ni↓Þ2i ¼ 1 − 2D at half-filling (see the inset of
Fig. 1). Sπ is also suppressed by Δt despite the fact that it
has only a small effect on m2 [27]. The likely mechanism
for the destruction of AF order in this case is the
introduction of fluctuations in the near-neighbor exchange
Jij ∼ 4t2ij=U. As a consequence of this anisotropy, singlets
can form on the bonds with large Jij. When many pairs of
sites are effectively removed from the lattice, order is lost.
Although both bond and site disorder reduce Sπ , it is
important to emphasize that low T is reached by turning the
disorder off, so that the terminal state is the sought after
regime of large AF correlations.
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FIG. 2 (color online). Adiabats of the disordered 3D Hubbard
model along a path which combines an increase of the interaction
strength from U=t0 ¼ 0 to U=t0 ¼ 8 at fixed Δμ=t0 ¼ 16
followed by a reduction of the site disorder. T=t0 decreases
along both trajectories, and, in particular, by about a factor of 3
at fixed S=ðNkBÞ≡ s=kB ¼ ln 2 along the second path. For
s=kB ¼ 0.5, the same reduction brings T down to near TN.
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FIG. 3 (color online). Entropy per site versus temperature for
hopping disorder. Here, disorder cooling is strongest at lower
entropies s ∼ 0.5. The inset shows the entropy as a function of
density of the clean system for Δμ=t0 ¼ 16 and Δt=t0 ¼ 4 at
fixed U=t0 ¼ 8 and T=t0 ¼ 1. Here, the entropy is obtained
using sðμ; TÞ ¼ R

μ
−∞ dμð∂n=∂TÞjμ [46], except for the three data

points in black (darker shade) at n ¼ 1, which are obtained via
integrating over β.
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Equilibration is crucial to the viability of disorder
cooling. Recent experiments by the DeMarco group [12]
and theory [47] provide evidence that the requisite Δμ lie
well below the threshold where randomness drives atomic
velocities to zero: Measurements of mass transport show
that the center-of-mass velocity only vanishes above
Δμ=t0 ∼ 21.7� 1.6 for U=t0 ¼ 3.8 and Δμ=t0∼31.7�4.2
for U=t0 ¼ 9.1. The implications of these results for
disorder cooling are considered in Fig. 5, which shows
the final temperature TfðTi;ΔμÞ which would result from

starting at initial temperature Ti and disorder Δμ, and
turning off randomness adiabatically. Figure 5 comple-
ments Fig. 2 and provides another way of analyzing the
lowering of Tf starting from states at Ti with Δμ beyond
U=t0 and adiabatically following a path to Δμ ¼ 0. The
reduction in temperature, Ti − Tf, can be as large as 0.65t0
for Δμ=t0 ¼ 16 and U=t0 ¼ 4, starting at Ti=t0 ¼ 1 and
1.35t0 for Ti=t0 ¼ 2. The many-body localization (MBL)
critical disorder strengths for U=t0 ¼ 4.0, 8.0, and 12.0
(denoted by horizontal arrows in Fig. 5) lie above the range
which provides substantial cooling. These comparisons
provide considerable support to the likelihood that equili-
bration will still occur in the regime where disorder-
induced cooling is effective.
Implementation and concluding remarks.—The scheme

proposed here, on its own, is not sufficient to achieve new
quantum phases, and must be accompanied by an addi-
tional scheme to reduce the entropy in the initial disordered
lattice. Since turning on disorder heats the gas, this energy
must be removed before attempting to cool more deeply
using our method. There have been no direct attempts to
cool in a disordered lattice, but several schemes are
promising. One such method is sympathetic cooling by
another atomic species [48] or spin-state of the same
species [49,50] that by proper choice of lattice wavelength
or polarization is unaffected by the lattice. Another
approach is to implement a compensated lattice, where
the overall confinement created by the infrared lattice
beams is compensated by overlapping blue-detuned beams
[51]. By tuning the intensity of the blue-detuned beams the
threshold for evaporation can be brought near the chemical
potential, resulting in very low temperatures [43]. While
this scheme has only been implemented in a clean lattice,
it seems plausible that it can work in any situation where
there is sufficient mobility.
A second approach is to mask the disorder in such a way

that it is applied only to a small spatial subregion of the entire
gas. Through thermal contact, atoms in this region could be
cooled by the larger reservoir region outside the disordered
volume. If the clean gas is then discarded, one again has the
starting point of a disordered gas at the same initial T as a
clean one. Complex optical potentials to perform these roles
can be created using phase-imprinting spatial light modu-
lators [52,53] or micromirror devices [54].
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