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Summary 

An increasing amount of evidence suggests that canonical pathways and standard 
molecular signature databases are incomplete and inadequate to model the complex 
behavior of cell physiology and pathology. Yet, many Gene Set Analysis (GSA) studies 
still rely on these databases to identify disease biomarkers and molecular mechanisms 
within a specific cell context. While tremendous effort has been invested in developing 
GSA tools, there is limited number of studies focusing on de novo assembly of context-
specific gene sets as opposed to simply applying GSA using the standard gene set 
database.  

In this paper, we propose a pipeline to derive the entire collection of Cell context-Specific 
Gene Sets (CSGS) from a molecular interaction network, based on the hypothesis that 
molecular events linked to a specific phenotypic response should cluster within a subnet 
of interacting genes. Gene sets are assigned using both physical properties of the network 
and functional annotations of the neighboring nodes. The identified gene sets could 
provide a precise starting point such that the downstream GSA will cover all functional 
pathways in this particular cell context and, at the same time, avoid the noise and 
excessive multiple-hypothesis testing due to inclusion of irrelevant gene sets from the 
standard database. We applied the pipeline in the context of cardiomyopathy and 
demonstrated its superiority over MSigDB gene set collection in terms of: (i) 
reproducibility and robustness in GSA, (ii) effectiveness in uncovering molecular 
mechanisms associated with cardiomyopathy, and (iii) the performance in distinguishing 
diseased vs. normal states.  

1 Introduction 

The conflicting results repeatedly produced by many single gene-based approaches have been 
boosting the popularity of Gene Set Analysis (GSA) in omics study. Since the proposal of 
gene set enrichment analysis [1], various GSA methods have been developed using different 
statistical models. These methods generally fall into two categories, i.e. ‘self-constrained’ and 
‘competitive’, based on the underlying null hypothesis and statistical methods [2]. The ‘self-
constrained’ methods associate phenotype to a gene set through the members within the gene 
set only [3, 4], while the ‘competitive’ methods focus on contrasting a gene set with its 
counterpart in relation to the phenotype [1, 5]. The assumption in GSA is that unstable or 
weak changes in individual genes can be detected more robustly when studied as a group with 
sequential, expressional, or functional links. In the past decade, tremendous effort has been 
invested in developing GSA tools with the focus on obtaining biological interpretation from 
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differentially expressed genes [5-7]. Instead of running functional enrichment on the genes 
passing a certain cutoff, the GSA approaches establish a set-based association score and their 
significance level based on collective contributions from all members in the predefined gene 
sets. Similar strategies have been applied to genome wide association studies by integrating 
significant genotype-phenotype associations with gene set databases. The approaches, also 
known as Pathway-Wide Association Study (PWAS), examine whether members in the same 
functional pathway are jointly associated with a specific trait or disease [8-12]. While they 
offer various statistical methods to maximize analytical power without the necessity to 
increase sample size, starting GSA with a collection of high quality and appropriate gene sets 
should be equally important [13, 14].  

Significant effort has been put into creating a catalog of gene sets through literature mining by 
aggregating genes with certain associations. One of the most popular collections is the 
Molecular Signatures Database (MSigDB) that has accumulated >6,000 gene sets in 5 major 
categories: (i) positional, (ii) curated, (iii) motif, (iv) computational, and (v) Gene Ontology 
(GO). However, most of these categories do not provide information of the cell context, 
except one subcategory named “gene expression signatures of genetic and chemical 
perturbations”, where the annotation is partially available. Among the gene sets annotated 
with their cell context, approximately half of them were extracted from experiments 
performed in either breast or liver tissues (see Figure 1), showing a strong bias in the data 
sources and the literature publications in general. Other gene set databases, including 
ConceptGen [15], WhichGenes [16], GeneSigDB [17], and GATHER [18], also assemble 
gene sets from various generic resources and offer additional tools for searching and 
customizing gene sets. While these databases may have facilitated various GSA studies, they 
are still subjected to certain limitations, such as the lack of cellular context information and 
the bias in literature studies toward certain diseases of high prevalence. 

 

 
 

Figure 1: MSigDB cell context information. 

Toward this end, we developed a procedure to create unbiased gene sets that are specific to a 
cellular context (see Figure 2). The approach makes use of gene expression profile (GEP), 
functional annotations, well-established reverse engineering algorithms, and molecular 
interactions databases. We integrated Protein-Protein Interaction (PPI) and Protein-DNA 
Interaction (PDI) network to systematically identify the gene sets, i.e. subnets that are 
strongly connected together both physically and functionally. The global network was first 
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partitioned into the smallest units of physically connected subnets. Biological functions and 
pathway annotation were taken into consideration to re-evaluate if the neighboring subnets 
should be merged to form a combined gene set with certain functional ties. The most 
important distinction, compared to the standard gene set database, is that it takes into account 
the interactions among the member genes and it is orders of magnitude more complex than the 
canonical pathways that are mostly linear. Moreover, these gene sets are cell context specific 
and much higher in coverage than those that rely entirely on evidence collected from 
literature.    

We demonstrate the gene sets assembly pipeline in the context of cardiomyopathy. While 
most cardiomyopathies are ischemic, i.e. related to coronary artery disease, the causes for 
many others remain unknown (idiopathic). Recent familial cardiomyopathy genetic studies 
have identified mutations in over 30 genes suitable for molecular genetics diagnostics, but the 
cause and effect relationships of the biomarkers are yet to be established [12]. We show that 
our newly generated cardiomyopathy gene sets are functionally relevant and the downstream 
analysis results using these gene sets are robust and stable, signifying the advantages of this 
integrated framework over GSA using the conventional gene set database for cardiomyopathy 
study.  

2 Methods 

2.1 Gene Expression Profile 

A large cohort of cardiomyopathy GEPs was downloaded from Gene Expression Omnibus 
(http://www.ncbi.nlm.nih.gov/geo/). The dataset (GSE5406) consists of 210 samples of 
human ischemic cardiomyopathy ( ), idiopathic cardiomyopathy ( ), and non-
failing controls ( ) [19]. Samples were extracted from the snap-frozen left ventricular 
myocardium at the time of cardiac transplantation from patients with advanced idiopathic or 
ischemic cardiomyopathy, or at the time of harvest from unused donor hearts that serve as 
non-failing controls. Samples were profiled using the Affymetrix HG-U133A array and data 
were normalized using the Robust Multi-array Average (RMA) method [20], probes matching 
to the same genes were filtered by selecting the most expressed one. 

2.2 PPI/PDI Network Construction 

To reconstruct a general human protein-protein interaction (PPI) network, we integrated data 
from four major PPI databases, i.e. BioGRID [21], IntAct [22], MINT [23] and REACTOME 
[24]. We only included interactions supported by at least one piece of direct experimental 
evidence demonstrating physical association between two human proteins. Interactions were 
further selected for context specificity by removing genes that do not express, and do not co-
express for interacting pairs, using the cardiomyopathy gene expression profiles. 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) was used to 
assemble the cardiomyopathy-specific PDI network [25]. The algorithm employs information 
theory for the inference of TF-target interactions from large set of gene expression profiles, 
and further refined to determine directed interactions. The list of human TFs was first selected 
using “transcription factor activity” annotation in Gene Ontology, and then removed for 
nonspecific TFs (e.g. polymerases and TATA-box-binding proteins). To implement 
ARACNe, candidate interactions between a TF (x) and its potential target (y) were identified 
by computing pairwise mutual information, , and by applying a threshold based on the 
null-hypothesis of statistical independence ( , Bonferroni-corrected for the number of 
tested pairs). Indirect interactions were pruned using the data processing inequality (DPI), 
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which states that if two genes interact only through a third gene, the mutual information 
between the two genes should be the least among the three pairwise measures. Thus, for each 
TF-target pair (x,y) we considered a path through all other TF (Z) and remove any interaction 
such that . These steps were repeated 100 times, each with a 
bootstrap dataset generated by randomly selecting samples with replacement from the original 
dataset. A consensus network was then constructed by retaining edges supported across a 
significant number of the bootstrap networks. 

2.3 Network Partitioning 

Isoperimetric partitioning algorithm [26, 27] was applied to identify physically strongly 
connected subnets in a network where nodes (V) are proteins and edges (E) are interactions. 
The algorithm formalizes the network partitioning problem into a linear system problem by 
introducing the isoperimetric constant h, 

, 

where  is the region in the manifold, VolS  refers to the volume of region , | ∂S| is the area 
of the boundary of region , and  is the infimum of the ratio over all possible . In a 
graph, | ∂S|  and VolS  can be defined with respect to the Laplacian matrix used in the 
isoperimetric algorithm. The Laplacian matrix, , of a graph is defined as follows: 

, 

where  is the weighted degree (sum of all edges) of node , and  is the weight of edge 
. The weights can be set according to the strength or evidence of the interactions, but we 

use unweighted graph by setting all  in this study. Let xi be an indicator vector that 

 if  ( ), otherwise . As a result, |∂S| = xTLx and , thus, 
the isoperimetric constant h of a graph G can be rewritten in terms of the indicator vector as, 

. 

This optimization problem can be solved by a linear system  where  is a reduced 
Laplacian matrix by removing the corresponding row and column of the node with a 
maximum weighted degree. Through this step, the original singular matrix  is converted 
into a nonsingular matrix, which makes the computation more efficient and easier to be 
implemented in a parallelized environment [28]. By solving this linear system, each node will 
be assigned a real value. We chose a threshold β that minimize the isoperimetric ratio, and 
further generated an indicator vector , where  if , and  otherwise. The 
network can then be partitioned into two segments based on . The algorithm was 
recursively implemented on each partition separately to generate smaller sub-partitions, and 
terminated when the isoperimetric ratio reaches a predefined threshold. 
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Figure 2: The flowchart of our context-specific gene set assembly pipeline. The PPI network is 
integrated from 4 major databases and the PDI network is reconstructed using ARACNe, an 
information theory-based reverse engineering algorithm. The cardiac interactome consists of 
both PPI and PDI networks. Network partitioning is first implemented to identify initial subnets 
with strong connectivity (PPI) or sharing a common regulator (PDI). Then, pathway and 
functional annotations are taken into consideration to merge neighboring subnets with a 
functional tie. The final sets of subnets will form a collection of Cell context-Specific Gene Sets 
(CSGS) that could facilitate GSA in various applications, ranging from understanding disease 
pathogenesis to the discovery of patient stratification biomarkers. 

Journal of Integrative Bioinformatics, 10(1):234, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-234 5

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



2.4 Network Merging 

The subnets obtained from the network partitioning stage were produced solely based on 
physical connectivity. However, protein functions should also be considered in gene sets 
identification. Thus, we considered merging the neighboring subnets if they share a functional 
annotation significantly.  The initial subnets are considered to merge in terms of pathways and 
molecular functional information available from the Molecular Signature Database (MSigDB) 
[1]. All curated gene sets (c2), motif gene sets (c3), and GO terms sets (c5) were used (5329 
sets in total). A hypergeometric test was used to determine the significance of overlap 
between a subnet and a MSigDB gene set [29]. Let  ( ) be a gene set identified from 
network partition and ( ) an MSigDB gene set (i.e. the reference gene set, “ref” as 
showed in Figure 2), where  is the number of subnets identified and  is the number of 
reference gene sets used. The null hypothesis of the hypergeometric test assumes that there is 
no overlap between  and . The 3-step procedure is described as follows: (i) compute the 

 value of the hypergeometric test between each  and  pair; (ii) create an l × l merging 
matrix , if gene sets  and  were both significantly overlapping (p < 1×10-6) 
with one of the MSigDB sets. The threshold was generated by permuting the MSigDB sets 
1000 times while maintaining the original size for each MSigDB set, and the value satisfying 
0.05 significant level was selected as the threshold; (iii) build a new graph from the merging 
matrix representing functional links between subnets, where nodes are subnets and edges are 
the connectivity obtained from step (ii). Maximum cliques, i.e. functionally related subnets, 
can be identified from the new graph, and merged to create a new subnet (see Figure 2). 

2.5 GSEA for PDI-based Gene Sets 

Gene sets were tested for their difference using Gene Set Enrichment Analysis (GSEA) [1]. 
An extended version of GSEA (termed GSEA2) [7] was utilized for the PDI-based gene sets. 
Since the regulon genes include both TF-induced and TF-repressed genes, treating these two 
subsets in the same way would dilute the significance of the enrichment analysis. For 
instance, if a TF gained additional activities from nonfailing/normal heart to cardiomyopathy, 
we would expect the TF-activated subset to be enriched in the upregulated genes, while the 
TF-repressed subset to be enriched in the downregulated genes. Thus, GSEA2 was formulated 
exactly to address this circumstance.  The GSEA2 proceeds as follows: (a) Compute T-test 
between two sample groups, e.g. normal and diseased samples, for each of the genes in 
microarray. Order the  genes by T-statistics from the most positive to the most negative 
values, denoted by ; (b) identify overlaps independently for the positive target genes  in 

, and the negative target genes  in , in which  is the inversed ranking of  with 
the inverted T-statistics; (c) Combine  and  and reorder the T-statistics by keeping the 
positions of overlap for both  and , denoted as ; (d) Compute a running score by 

walking down the combined ranking . The score will increase by  if the 

th gene is a hit, or otherwise decrease by , where  is the combined set of  
and . Finally, (e) an Enrichment Score (ES) is determined as the sum of the maximum 
and the minimum deviation from zero along the running score. We randomly permuted the 
phenotype labels and repeated steps (a) to (d) for 1000 times to compute the ES null 
distribution. Statistical significance of the ES can be computed by comparing the observed ES 
to the null distribution. 
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To compute PDI-based GSEP, GEP is first converted into -score, for each of the  genes 
in microarray. In each sample, all genes were sorted by the -score and then used as the 
reference list, , in steps (b) to (e) as above. The GSEP is approximated by the Normalized 
Enrichment Score (NES) computed for each regulon in all samples. 

A MATLAB function implementing GSEA2 described above is available from Matlab 
Central (http://www.mathworks.com/matlabcentral/fileexchange/33599). 

3 Results 

3.1 Cardiomyopathy-specific gene sets assembly 

Cardiomyopathy interaction network was reconstructed by combining PPI and PDI networks. 
The PPI network was integrated from 4 major PPI databases to define a network of 172,779 
physical interactions that occur between 12,967 human proteins (see Method section). To 
bring in context specificity for the initial network, filters were applied by removing 
interactions in which individual genes are not expressed and gene pairs are not co-expressed 
across the large cohort of cardiomyopathy GEP. The filtered PPI network consists of 9,522 
nodes and 117,199 edges. For PDI network, we chose to reconstruct the network ab initio due 
to the low coverage of the available PDI databases. The PDI network was built by applying 
ARACNe, an information theory-based reverse engineering algorithm that can infer genome-
wide transcriptional interaction network from GEP (see Method section). The method has 
been widely utilized and proven effective in identifying transcriptional targets based on 
biochemical validations in various cell types [30-32]. The inferred cardiomyopathy PDI 
network contains 242,714 transcriptional interactions. 

The PPI network was partitioned into smaller subnets by maximizing intra-subnet 
connectivity and minimizing inter-subnet connectivity using isoperimetric algorithm (see 
Method Section). A reference node (or ground node) was first selected, and all other nodes 
were then assigned a value, by solving a linear system with the isoperimetric algorithm, that 
reflects how tightly the nodes are connecting to the reference node. A threshold was 
determined at a value that provides partitions with the lowest isoperimetric ratio. The 
solutions can be interpreted as the expected number of steps taken by a random walker 
leaving node vi before reaching the reference node. A higher value indicates the existence of 
more paths for node vi to take in order to the reach the reference node and thus more likely to 
belong to the same cluster as the reference node, while a lower value indicates otherwise. In 
this paper, we partitioned the network recursively at each segment, and chose a stopping 
criterion that maximizes the number of subnets with node size greater than 5. A total of 694 
subnets were produced. 

The initial PPI subnets were produced solely based on physical connectivity and none of the 
proteins coexisted in any two subnets. However, many proteins serve multiple purposes in the 
cell and they should also appear in more than one functional gene set. Thus, we considered 
merging the neighboring subnets if they share a functional annotation significantly. The 
merging step results in 648 PPI subnets that will contribute to the CSGS. A mapping table 
between CSGS and MSigDB has been created as a cross-reference (Table S1). Figure 3 shows 
an example of merging two neighboring subnets to form a single gene set due to sharing a 
common functional pathway. The nodes were initially considered as two separate subnets by 
their connectivity. However, approximately half of the nodes in each subnet involve in MAPK 
signaling pathway, which makes it more functionally relevant to be considered as a single 
joined gene set. The merged PPI subnets constitute the first type of CSGS. 
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The second type of the CSGS comprises activities of transcription factor (TF) regulators. TF 
activities have been known to crucially involve in cell lineage determination, and recently 
shown to play a master integrator role in brain tumor pathogenesis [30]. Since the activity of a 
protein is not necessarily proportional to its mRNA concentration, due to post-transcriptional 
modifications, we used the regulon of a TF as an indicator of the TF’s activity. Thus, the 
corresponding TF regulator divides the initial PDI network such that all genes sharing a 
common TF formed a gene set. Each gene set was divided into inducible targets and 
repressible targets by the TF. We identified 1,055 gene sets of size greater than 10. 

 

Figure 3: Example of a gene set formed by two subnets through functional merging. Dotted 
circles represent the initial subnets from network partitioning. Red nodes are proteins involved 
in MAPK signaling pathway. 

3.2 Reproducibility and robustness in gene set analysis 

The most appealing feature in GSA is the integration of additional knowledge into omics 
analysis to achieve more robust results. Here, we compare the robustness of differentially 
expressed gene sets using MSigDB and the CSGS collections. Gene sets in both collections 
were tested for their difference between the normal and idiopathic cardiomyopathy groups 
using GSEA or GSEA2. All gene sets in MSigDB and all PPI-based gene sets in CSGS were 
quantified using the standard GSEA statistics, while GSEA2 was utilized for the PDI-based 
gene sets. Finally all gene sets were sorted by statistical significance ( -value) computed 
using 1000 sample permutations.  

We repeated the GSEA procedure 100 times, each time with a random subset of the 
nonfailing and cardiomyopathy samples. Figure 4 shows the occurring frequency (OF) of the 
top 50 most significant gene sets in CSGS and MSigDB. The OF is defined as the number of 
times a specific gene set appears in the top 50 most significant sets ranked by p-value. The 
most noteworthy result between the two OF distributions is the fatter tail of CSGS curve as 
compared to the distribution of MSigDB OF (11 CSGS vs. 3 MSigDB in the rightmost bin), 
indicating the higher robustness in gene sets selection using CSGS. To further explore the 
function of the highly conserved CSGS, GO term enrichment analysis was applied in the 
following section. 

3.3 Molecular mechanisms underlying cardiomyopathy 

A total of 1089 genes in the highly conserved CSGS were interrogated for their biological 
processes by GO term enrichment analysis, and visualized using Gorilla [33]. Table S2 shows 
the enriched GO terms along with descriptions and -values. For comparison, Table S3 

Journal of Integrative Bioinformatics, 10(1):234, 2013 http://journal.imbio.de

doi:10.2390/biecoll-jib-2013-234 8

C
op

yr
ig

ht
 2

01
3 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).



shows the MSigDB gene sets whose occurring frequency is greater than 70. Figure 5 
illustrates two clusters of enriched GO terms as directed acyclic graphs, illustrating 
relationship of the terms and their degree of enrichment. The biological pathways and 
processes revealed by the functional enrichment analysis in CSGS recapitulate those 
previously known to associate with cardiomyopathies, whereas the MSigDB analysis shows 
enrichment in hypoxia-related gene sets and other irrelevant activities such as cancers. 

 

Figure 4: Occurring frequency distributions for the top 50 most significant gene sets. Dashed 
lines indicate the fitted distributions. 

Figure 5(A) shows the hierarchical structure of cytokine-related GO terms for biological 
processes. Various studies have shown that cytokines are related to heart failure by 
modulating cardiovascular function through a variety of mechanisms [34]. For instance, 
increases in interleukin-1 (IL-1) and interleukin-6 (IL-6) cytokines are highly correlated to 
pulmonary hypertension, which is a sign of diastolic dysfunction leading to heart failure [35]. 
As shown in Figure 5(A), IL-1 and IL-6 mediated pathways are both significantly enriched in 
the highly conserved CSGS (  and  for IL-1 and IL-6 mediated 
pathway, respectively). Furthermore, cytokines are also playing an important role in the 
pathogenesis and pathophysiology of myocarditis and dilated cardiomyopathy [36]. 

Figure 5(B) shows another cluster of biological processes that are enriched in the highly 
conserved CSGS. This cluster is mainly associated with metabolic processes, which includes 
GO terms such as glucose metabolic process ( ) and energy reserve metabolic 
process ( ). Despite the poor understanding of dysregulated metabolic processes in 
cardiomyopathy, evidences are showing that decrease in protective glucose metabolism and 
increase in adverse free fatty acid metabolism will cause alteration in many aspects of 
cardiomyocyte energetics, which is one of the major reasons of heart failure [37]. As the 
myocardium fails, there are significant changes in the heart’s ability to supply adequate 
energy for its needs and the increase in mortality has been observed among cardiomyopathy 
patients with lower cardiac energy reserve [38]. A better understanding and detailed 
characterization of mechanisms and pathways regulating cardiac metabolism will eventually 
lead to new therapies for heart failure [39]. 
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Figure 5: Hierarchical representation of the enriched GO terms: cytokine related process (left), 
and metabolic process (right). Boxes are color-coded by the enrichment p-value, where red is the 
most significant (p<1×10-9) and yellow is the least significant (p>1×10-3). 
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3.4 Gene set-based cardiomyopathy prediction 

We assessed the MSigDB-based and CSGS-based classifier for their performance in 
distinguishing idiopathic cardiomyopathy from normal GEP samples. The GEP was first 
transformed into -scores, gene by gene. In each sample, all genes were sorted by their 
expression -score to produce a reference gene list in GSEA, and each gene set was 
interrogated against this list to compute a Normalized Enrichment Score (NES) as the 
surrogate for gene set expression. For PDI-based gene sets, we calculated NES using GSEA2, 
and converted the GEP matrix into gene set expression profile (GSEP) matrix. 

Top  gene sets were selected by -value of GSEP differential expression between 
nonfailing and idiopathic cardiomyopathy groups. The selected features were used to optimize 
parameters and build an RBF-kernel SVM classifier [40] in the training set: (a) linearly 
rescale each feature to the range [0, 1]; (b) Use 5-fold cross-validation and grid-search to find 
the best  parameter in a subset of training data. In grid-search, parameter  increased 
from 2-5 to 215 and parameter  increased from 2-15 to 23, in exponentially growing steps. 
Since the number of samples in these two groups is highly imbalanced, the weighted option 
was used to correct for the bias. 

 

Figure 6: Comparison of the classification performance using (a) individual gene expression 
profile, (b) CSGS expression, and (c) MSigDB gene sets expression. 

The classifications were performed 100 times with randomly selected training (2/3) and 
testing subsets (1/3). To evaluate the classification performance, we compared the results of 
the CSGS-based classifier with the MSigDB-based classifier, as well as with those using a 
convention gene-based classifier. All classifiers were trained/tested using the same scheme, 
with the only difference in the way a feature value is computed. A gene-based classifier uses 
the expression value of a gene as a feature, while a gene set-based (CSGS or MSigDB) 
classifier uses NES value of a gene set (GSEP). The area under receiver operating 
characteristic (AUC) was used as the comparison metric (Figure 6). The CSGS-based 
classifier produced a slightly higher AUC than that of the individual gene based classifier and 
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this tendency becomes more apparent as the number of features increase. The MSigDB-based 
classifier had the worst performance among the 3 classifiers. 

Besides accuracy, a robust classifier should hold a stable feature set across different studies. 
Figure 7 illustrates the variation of the top features in 100 runs using randomly selected data 
sets. Higher density at the bottom of the plots indicates higher agreement between two sets of 
features generated from two different training sets. The CSGS showed a more robust feature 
selection compared with MSigDB gene sets and individual genes. On average, the 
overlapping percentages of the top features (ranked by t-test) in 100 runs were 58%, 38%, and 
41% respectively for CSGS, MSigDB and individual gene. 

 

Figure 7: Comparison of the robustness in features selection for the classifier based on CSGS, 
MSigDB and individual gene. The x-axis represents different tests, and y-axis represents the 
rank of features in each test, as compared to the rank from the first test. 

4 Discussion 

GSA has established itself as an undisputed standard for omics data analysis, yet their 
implementation has always relied on the generic gene set collection until now. The standard 
database, e.g. MSigDB, is well suited in GSA aiming to identify common properties across 
different studies, such as identifying canonical pathways or molecular gene signature that are 
also dysregulated in other disease conditions. However, in order to uncover novel activities 
unique to a specific cell condition, GSA requires a new strategy to incorporate de novo 
assembly of a functional gene set collection that define physiological and pathological 
behavior within the cellular context of interest. These gene sets are substantially different 
from cell type to cell type due to the cell lineage determining gene expression and interaction 
that are driven by their unique regulatory elements. We demonstrated such a strategy here by 
generating a collection of cardiomyopathy-specific gene sets, but the pipeline is broadly 
applicable to produce gene sets for any other cellular context. 

Our gene sets assembly utilizes the framework of network biology, envisioning cells as a 
complex web of macromolecular interactions [41]. Context specificity of the network was 
introduced through the gene expression and coexpression across a wide variety of cellular 
phenotypes. For instance, a PPI will be removed if (a) one of the interacting genes does not 
express, and (b) the gene pair does not coexpress in the cell context of interest. Although this 
is a rather naïve method that directly correlates protein activity with gene expression, the 
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filtering criteria ensure fulfillment of the ‘minimum’ condition – no gene expression implies 
no protein activity. Such a basic criteria could remove >30% of the interactions from the 
generic PPI databases. The interaction network, including the transcriptional interactions 
inferred from GEP, constitutes an initial draft of cardiomyopathy interactome and the model 
should improve over time, as more valuable datasets are being produced to elucidate 
interaction dynamics [42]. Also, the current framework considers only interactions between 
proteins and mRNA, but when more advanced quantitative technology is available, impacts of 
the newly discovered molecular entities such as non-coding RNA (ncRNA) should be added 
into the equations of cell regulation, and form gene sets that could better represent the overall 
functional landscape of the biological system. 

One of the challenges in the gene sets assembly is to define the boundary of subnets, due to 
the limited knowledge of true pathways. The issue is further complicated by the low coverage 
of the available context specific interaction information. Thus, our assembly pipeline includes 
a merging step after network partitioning in order to identify subnets that are connected both 
physically and functionally. The network partition step takes into account physical 
connectivity of the genes, while the merging step further considers pathway and functional 
annotations of the neighboring nodes. First, such strategy ensures that a bona fide subnet will 
not be disconnected due to missing links among the nodes. More importantly, the subnets 
boundary can overlap with neighbors from all directions, and proteins involved in multiple 
pathways will now coexist in all the corresponding gene sets. 

A key application of omics profile analysis is the identification of small gene signatures to be 
used as the disease biomarkers. However, reproducing the signature genes in different studies 
has been extremely challenging, and methods relying on pathway/network-based gene sets 
have emerged as the broadly acceptable solutions [7, 43, 44]. In our comparison for 
cardiomyopathy classification, the results showed that AUC calculated based on CSGS-based 
features is slightly better than the ones based on individual gene. Advantages in terms of the 
final classification results are not so obvious here mainly due to the already high AUC. 
However, the robustness in feature selections clearly reveals the power of CSGS-based 
features in identifying valuable biomarker candidates and further elucidating molecular 
mechanisms underlying the disease. 
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Supplementary information is available at bioinformatics.cs.vt.edu/~mingming/csgs/.  
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