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Abstract Computer science is undergoing a fundamental change and is reshaping our un-

derstanding of the world. An important aspect of this change is the theory and applications

dealing with the gathering and analyzing of large real-world data sets. In this paper, we

introduce four research projects in which processing and interpreting large data sets is a cen-

tral focus. Innovative ways of analyzing such data sets allow us to extract useful information

that we would never have obtained from small or synthetic data sets, thus providing us with

new insights into the real world.
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1 Introduction

Modern computer science is undergoing a fundamental change. In the early years
of the field, computer scientists were primarily concerned with the size, efficiency
and reliability of computers. They attempted to increase the computational speed
as well as reduce the physical size of computers, to make them more practical and
useful. The research mainly dealt with hardware, programming languages, compilers,
operating systems and data bases. Meanwhile, theoretical computer science developed
an underlying mathematical foundation to support this research which in turn, led
to the creation of automata theory, formal languages, computability and algorithm
analysis. Through the efforts of these researchers, computers have shrunk from the
size of a room to that of a dime, nearly every modern household has access to the
internet and communications across the globe are virtually instantaneous.

Computers can be found everywhere, from satellites hundreds of miles above us
to pacemakers inside beating human hearts. The prevalence of computers, together
with communication devices and data storage devices, has made vast quantities of
data accessible. This data incorporates important information that reveals a closer
approximation of the real world and is fundamentally different from what can be
extracted from individual entities. Rather than analyzing and interpreting individual
messages, we are more interested in understanding the complete set of information
from a collective perspective. However, these large-scale data sets are usually far
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greater than can be processed by traditional means. Thus, future computer science
research and applications will be less concerned with how to make computers work
and more focused on the processing and analysis of such large amounts of data.

Consider the following example of internet search. At the beginning of the inter-
net era, users were required to know the IP address of the site to which they wished
to connect. No form of search was available. As websites proliferated, online search
services became necessary in order to make the internet navigable. The first internet
search tool was developed in 1993, and dozens more were created over the next several
years. Ask Jeeves, founded in 1996, relied partially on human editors who manually
selected the best websites to return for various search queries. Given the huge num-
ber of websites available today, such a strategy is clearly no longer feasible. Google,
founded in 1998, is a leader among today’s search engines. It relies on a search algo-
rithm that uses the structure of the internet to determine the most popular and thus,
perhaps, the most reputable websites.

However, while Google’s search engine was a major advance in search technology,
there will be more significant advances in the future. Consider a user who asks the
question, “When was Einstein born?” Instead of returning hundreds of webpages to
such a search, one might expect the answer “Einstein was born at Ulm, in Wurttem-
berg Germany, on March 14, 1879”, along with pointers to the source from which the
answer was extracted. Other similar searches might be:

– Construct an annotated bibliography on graph theory

– Which are the key papers in theoretical computer science?

– Which car should I buy?

– Where should I go to college?

– How did the field of computer science develop?

Search engine companies have saved billions of search records along with a whole
archive of information. When we search for the answer to the question “Which car
should I buy?”, they can examine pages that other individuals who did similar searches
have looked at, extract a list of factors that might be important (e.g. fuel economy,
price, crash safety), and prompt the user to rank them. Given these priorities, the
search engine will provide a list of automobiles ranked according to the preferences,
as well as key specifications and hyperlinks to related articles about the recommended
models.

Another interesting question is, “Which are the key papers in theoretical com-
puter science?” One would expect a list such as:

– Juris Hartmanis and Richard Stearns, “On the computational complexity of
algorithms”

– Manuel Blum, “A machine-independent theory of the complexity of recursive
functions”

– Stephen Cook, “The complexity of theorem proving procedures”

– Richard Karp, “Reducibility among combinatorial problems”
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– Andrew Yao, “Theory and applications of trapdoor functions”

– Shafi Goldwasser, Silvio Micali and Charles Rackoff, “The knowledge complexity
of interactive proof systems”

– Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan and Mario Szegedy,
“Proof verification and the hardness of approximation problems”

With thousands of scientific papers published every year, information on which
research areas are growing or declining would be of great help to rank the popu-
larity and predict the evolutionary trend of various research topics. For example,
Shaparenko et al. used sophisticated artificial intelligence techniques to cluster pa-
pers from the Neural Information Processing Systems (NIPS) conference held between
1987 and 2000 into several groups, as shown in Fig.1. Since all papers presented at the
NIPS conference are in digital format, one can use this information to plot the sizes of
the clusters over time. Clusters 10 and 11 clearly show the two growing research areas
in NIPS, namely “Bayesian methods” and “Kernel methods”. The graph correctly
indicates that the “Bayesian methods” cluster emerged before the “Kernel methods”
cluster, with both topics starting to dominate the NIPS conference by 2000. In addi-
tion, Cluster 1 on neural networks, Cluster 4 on supervised neural network training,
and Cluster 8 on biologically-inspired neural memories were popular in the early years
of NIPS, but almost disappeared from the conference by 2000. With the help of ad-
vanced techniques, we should be able to accurately predict how important a paper
will be when it is first published, as well as how a research area will evolve and who
will be the key players.

Figure 1. The distribution of k = 13 clusters of NIPS papers[1]. The histograms of each cluster are

stacked on top of each other to show the influence of cluster popularity over time.

In the beginning years of computer science, researchers established a mathemat-
ical foundation consisting of areas such as automata theory and algorithm analysis
to support the applications of that time. As applications develop over time, so must
the underlying theory. Surprisingly, the intuition and mathematics behind the theory
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of large or high-dimensional data are completely different from that of small or low-
dimensional data. Heuristics and methods that were effective merely a decade ago
may already be outdated.

In this paper, we begin in Section 2 by giving an overview of several ongoing
projects dealing with the analysis of large data sets which represent the work currently
being done in a wide variety of research areas. In Section 3, we discuss some examples
of the theoretical foundation required to rigorously conduct research in these areas,
such as large graphs, high-dimensional data, sparse vectors, and so on. We conclude
in Section 4 with comments on the problems considered.

2 Innovative Research Projects

Traditional research in theoretical computer science has focused primarily on
problems with small input sets. For instance, in the past, stores tracked the items
purchased by each individual customer and gave that customer discounts for future
purchases of those items. However, with the help of modern algorithms, service
providers such as Netflix are now able to, not only make predictions based on a
customer’s past preferences, but amalgamate preferences from millions of customers
to make accurate and intelligent suggestions and effectively increase sales revenue.
The following subsections describe four ongoing research projects involving the anal-
ysis and interpretation of large data sets. Each represents a promising direction for
rediscovering fundamental properties of large-scale networks that will reshape our
understanding of the world.

2.1 Tracking communities in social networks

A social network is usually modeled as a graph in which vertices represent entities
and edges represent interactions between pairs of entities. In previous studies, a
community was often defined to be a subset of vertices that are densely connected
internally but sparsely connected to the rest of the network[2−4]. Accordingly, the best
community of the graph was typically a peripheral set of vertices barely connected to
the rest of the network by a small number of edges. However, it is our view that for
large-scale real-world societies, communities, though better connected internally than
expected solely by chance, may also be well connected to the rest of the network[5].
It is hard to imagine a small close-knit community with only a few edges connecting
it to the outside world. Rather, members of a community, such as a computer science
department, are likely to have many connections outside the community, such as
family, religious groups, other academic departments and so on, as shown in Fig.2.
Empirically, a community displays a higher than average edge to vertex squared ratio
which reflects the probability of an edge between two randomly-picked vertices, but
can also be connected to the rest of the network by a significant number of edges,
which may even be larger than the number of its internal edges.

With this intuitive notion of community, two types of structures are defined:
the “whiskers” and the “core”. Whiskers are peripheral subsets of vertices that are
barely connected to the rest of the network, while the core is the central piece that
exclusively contains the type of community we are interested in. Then, the algorithm
for finding a community can be reduced to two steps: 1) identifying the core in which
no whiskers exist, and 2) identifying communities in the core. Further, extracting
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Figure 2. A sample friendship network. Vertices typically have a significant number of cut edges

the exact core from both weighted and unweighted graphs has been proved to be
NP-complete. Alternative heuristic algorithms have been developed, all of which are
capable of finding an approximate core, and their performance can be justified by the
experimental results based on various large-scale social graphs[5]. In this way, one
can obtain communities that are not only more densely connected than expected by
chance alone, but also well connected to the rest of the network.

Much of the early work on finding communities in social networks focused on par-
titioning the corresponding graph into disjoint subcomponents[3,4,6−11]. Algorithms
often required dense graphs and conductance was widely taken as the measure of the
quality of a community[2,3,12,13]. Given a graph G = (V, E), the conductance of a
subset of vertices S ⊆ V is defined as:

ϕ(S) =

∑
i∈S,j 6∈S Aij

min
{∑

i∈S,j∈V Aij ,
∑

i 6∈S,j∈V Aij

} ,

where {Aij |i, j ∈ V } are the entries of the adjacency matrix for the graph. A subset
was considered to be community-like when it had low conductance value. However, as
discussed earlier, an individual may belong to multiple communities at the same time
and will likely have more connections to individuals outside of his/her community
than inside. One approach to finding such well-defined overlapping communities is
that of Mishra et al.[14] where the concept of an (α, β)-community was introduced and
several algorithms were given for finding an (α, β)-community in a dense graph under
certain conditions. Given a graph G = (V, E) with self-loops added to all vertices, a
subset C ⊆ V is called an (α, β)-community when each vertex in C is connected to
at least β vertices of C (self-loop counted) and each vertex outside of C is connected
to at most α vertices of C (α < β).
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Among the interesting questions being explored are why (α, β)-communities cor-
respond to well-defined clusters and why there is no sequence of intermediate (α, β)-
communities connecting one cluster to another. Other intriguing questions include
whether different types of social networks incorporate fundamentally different social
structures; what it is about the structure of real-world social networks that leads to
the structure of cores, as in the Twitter graph, and why some synthetic networks do
not display this structure.

By taking the intersection of a group of massively overlapping (α, β)-communities
obtained from repeated experiments, one can eliminate random factors and extract
the underlying structure. In social graphs, for large community size k, the (α, β)-
communities are well clustered into a small number of disjoint cores, and there are
no isolated (α, β)-communities scattered between these densely-clustered cores. The
number of cores decreases as k increases and becomes relatively small for large k. The
cores obtained for a smaller k either disappear or merge into the cores obtained for
a larger k. Moreover, the cores correspond to dense regions of the graph and there
are no bridges of intermediate (α, β)-communities connecting one core to another.
In contrast, the cores found in several random graph models usually have significant
overlap among them, and the number of cores does not necessarily decrease as k

increases. Extensive experiments demonstrate that the core structure displayed in
various large-scale social graphs is, indeed, due to the underlying social structure
of the networks, rather than due to high-degree vertices or to a particular degree
distribution[5,15].

This work opens up several new questions about the structure of large-scale social
networks, and it demonstrates the successful use of the (α, β)-community algorithm
on real-world networks for identifying their underlying social structure. Further, this
work inspires an effective way of finding overlapping communities and discovering the
underlying core structure from random perturbations. In social graphs, one would
not expect a community to have an exact boundary; thus, the vertices inside an
(α, β)-community but outside the corresponding core are actually located in the rough
boundary regions. Other open questions include how the core structure will evolve,
whether the cores correspond to the stable backbones of the network, and whether the
vertices that belong to multiple communities at the same time constitute the unstable
boundary regions of the network.

2.2 Tracking flow of ideas in scientific literature

Remarkable development in data storage has facilitated the creation of gigantic
digital document collections available for searching and downloading. When navigat-
ing and seeking information in a digital document collection, the ability to identify
topics with their time of appearance and predict their evolution over time, would
be of significant help. Before starting research in a specific area, a researcher might
quickly survey the area, determine how topics in the area have evolved, locate im-
portant ideas, and the papers that introduced those ideas. Knowing a specific topic,
a researcher might find out whether it has been discussed in previous papers, or is a
fairly new concept. As another example, a funding agency that administers a digital
document collection might be interested in visualizing the landscape of topics in the
collection to show the emergence and evolution of topics, the bursts of topics, and the
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interactions between different topics that change over time.
Such information-seeking activities often require the ability to identify topics with

their time of appearance and to follow their evolution. Recently, in their unpublished
work, Jo et al. have developed a unique approach to achieving this goal in a time-
stamped document collection with an underlying document network which represents
a wide range of digital texts available over the internet. Examples are scientific paper
collections, text collections associated with social networks such as blogs and Twitter,
and more generally, web documents with hyperlinks. A document collection without
an explicit network can be converted into this format by connecting textually similar
documents to generate a document network.

The approach emphasizes discovering the topology of topic evolution inherent in
a corpus. As demonstrated in the above work, the topology inherent in the corpus
carries surprisingly rich information about the evolution of topics. Topics, along
with the time that they start to appear in the corpus, can be identified by visiting
each document in the corpus chronologically and determining if it initiates a topic.
A document is considered to initiate a topic if it has a textual content that is not
explained by previously discovered topics and persists in a significant number of later
documents. After topics are obtained by the chronological scan, an associated graph
can be built whose vertices are topics and whose edges reflect cross-citation relations
between topics. Globally, this generates a rich topological map showing the landscape
of topics over time. Figure 3 shows the results of the work by Jo et al. applying this
approach to the ACM corpus. Topics in the network research area emerged in the
1980s without significant ancestors, while the areas of compiler and graphics research
exhibit steady evolution with an appreciable number of topics in the early years of the
ACM corpus. We can also construct an individual topic evolution graph for a given
seed topic, and such a graph may contain multiple threads indicating that the seed
topic has been influenced by multiple fields. The relationship between these threads
may change over time as well.

Figure 3. Topic evolution map of the ACM corpus

Related to this research, content-based inferring and learning has been exten-
sively studied recently. Various methods to improve question-answer services in so-
cial networks have been proposed[16−19]. In addition, tracking popular events in social
communities can be achieved using a statistical model[20].
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2.3 Reconstructing networks

The study of large networks has brought about many interesting questions, such
as how to determine which members of a population to vaccinate in order to slow the
spread of an infection, or where to place a limited number of sensors to detect the flow
of a toxin through a water network. Most algorithms for solving such questions make
the assumption that the structure of the underlying network is known. For example,
detectives may want to use such algorithms to identify the leaders of a criminal
network, and to decide which members to turn into informants. Unfortunately, the
exact structure of the criminal network cannot be easily determined. However, it
is possible that the police department has some information about the spread of a
certain property through the network; for instance, some new drug may have first
appeared in one neighborhood, and then in two other neighborhoods, and so on. The
work by Soundarajan et al.[21] attempts to create algorithms to recover the structure
of a network given information about how some property, such as disease or crime,
has spread through the network.

This work begins by defining a model of contagion describing how some property
has spread through a network. The model of contagion for information spread may be:
“a vertex learns a piece of information in the time interval after one of its neighbors
learns that information.” A more complex model of contagion corresponding to the
spread of belief may be: “a vertex adopts a new belief in the time interval after a
proportion p of its neighbors adopts that belief.” For example, a person will probably
not join a political party as soon as one of his friends joins that party, but he may
join it after two-thirds of his friends have joined it.

Next, the network recovery algorithm assumes that vertices are partitioned into
discrete time intervals, corresponding to the time when they adopt the property.
For a given model of contagion, the algorithm attempts to find a network over the
set of vertices such that when the property in question (e.g. information, belief)
is introduced to some vertices in the first time interval, and then spreads to other
vertices in accordance with the model of contagion, every vertex adopts the property
at an appropriate time. Initial work has created such algorithms for two models of
contagion: the model corresponding to the spread of information, where a vertex
adopts a property in the time interval after one of its neighbors has adopted that
property, and the model corresponding to the spread of belief, where a vertex adopts
a property in the time interval after at least half of its neighbors have adopted that
property.

Future work will focus on finding algorithms for other models of contagion, es-
pecially the models in which a vertex adopts the property after a proportion p of
its neighbors has adopted that property, for arbitrary values of p. Other directions
include finding algorithms for networks in which there are two or more properties
spreading through the network. This work also opens up questions about the types
of graphs produced by these algorithms. For instance, do all possible graphs have
some edges in common? Are there any edges that do not appear in any of the so-
lution graphs? Which edges are the most or least likely? Related research in this
area includes work by Gomez-Rodriguez et al.[22], which studied information flow and
cascades in online blogs and news stories. Work by Leskovec et al.[23] studied the
question of how to detect outbreaks or infection in a network. In addition, a more
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general problem of link prediction was studied by Clauset et al. in Ref. [24].

2.4 Tracking bird migration in north America

Hidden Markov models (HMMs) assume a generative process for sequential data
whereby a sequence of states (i.e. a sample path) is drawn from a Markov chain in a
hidden experiment. Each state generates an output symbol from a given alphabet, and
these output symbols constitute the sequential data (i.e. observations). The classic
single path problem, solved by the Viterbi algorithm, is to find the most probable
sample path given certain observations for a given Markov model[25].

Two generalizations of the single path problem for performing collective inference
on Markov models are introduced in Ref. [25], motivated by an effort to model bird
migration patterns using a large database of static observations. The eBird database
maintained by the Cornell Lab of Ornithology contains millions of bird observations
from throughout North America reported by the general public using the eBird web
application. Recorded observations include location, date, species and number of
birds observed. The eBird data set is very rich, and the human eye can easily discern
migration patterns from animations showing the observations as they unfold over
time on a map of North America. However, the eBird data entries are static and
movement is not explicitly recorded, only the distributions at different points in time.
Conclusions about migration patterns are made by the human observer, and the goal
is to build a mathematical framework to infer dynamic migration models from the
static eBird data. Quantitative migration models are of great scientific and practical
importance. For example, this problem comes from an interdisciplinary project at
Cornell University to model the possible spread of avian influenza in North America
through wild bird migration.

The migratory behavior of a species of birds can be modeled by a single gener-
ative process that independently governs how individual birds fly between locations.
This gives rise to the following inference problem: a hidden experiment draws many
independent sample paths simultaneously from a Markov chain, and the observations
reveal collective information about the set of sample paths at each time step, from
which the observer attempts to reconstruct the paths.

Figure 4 displays the pattern of ruby-throated hummingbird migration inferred
by this model for the four weeks starting on the dates indicated. The top row shows the
distributions and migrating paths inferred by the model: grid cells colored in lighter
shades represent more birds; arrows indicate flight paths between the week shown
and the following week, with line width proportional to bird flow. The bottom row
shows the raw data for comparison: white dots indicate negative observations; black
squares indicate positive observations, with size proportional to bird count; locations
with both positive and negative observations appear a charcoal color. This leads to
a somewhat surprising prediction that when migrating north, some hummingbirds
will fly across the Gulf of Mexico while others follow the coastline, but when flying
south, they generally stay above land. This prediction has been confirmed by work
performed by ornithologists. For example, in the summary paragraph on migration
from the Archilochus colubris species account[26], Robinson et al. write “Many fly
across Gulf of Mexico, but many also follow coastal route. Routes may differ for
north- and southbound birds.” The inferred distributions and paths are consistent
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with both seasonal ranges and written accounts of migration routes.

Figure 4. Ruby-Throated hummingbird (Archilochus colubris) migration

3 Theoretical Foundation

As demonstrated in the previous section, the focus of modern computer science
research is shifting to problems concerning large data sets. Thus, a theoretical foun-
dation and science base is required for rigorously conducting studies in many related
areas. The theory of large data sets is quite different from that of smaller data sets;
when dealing with smaller data sets, discrete mathematics is widely used, but for
large data sets, asymptotic analysis and probabilistic methods must be applied. Ad-
ditionally, this change in the theoretical foundation requires a completely different
kind of mathematical intuition.

We will describe three examples of the science base in this section. Section 3.1
briefly introduces some features of large graphs and two types of random graph mod-
els. Section 3.2 explores the properties and applications of high-dimensional data.
Finally, Section 3.3 discusses some scientific and practical problems involving sparse
vectors.

3.1 Large-Scale graphs

Large graphs have become an increasingly important tool for representing real-
world data in modern computer science research. Many empirical experiments have
been performed on large-scale graphs to reveal interesting findings[3,5,15,21−27]. A
computer network may have consisted of only a few hundred nodes in previous years,
but now we must be able to deal with large-scale networks containing millions or
even billions of nodes. Many important features of such large graphs remain constant
when small changes are made to the network. Since the exact structure of large
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graphs is often unknown, one way to study these networks is to consider generative
graph models instead, where a graph is constructed by adding vertices and edges in
each time interval. Although such graphs typically differ from real-world networks in
many important ways, researchers can use the similarities between the two types of
networks to gain insight into real-world data sets.

A simple but commonly used model for creating random graphs is the Erdös-
Renyi model, in which an edge exists between each pair of vertices with equal prob-
ability, independent of the other edges. A more realistic model is known as the
“preferential attachment” model, in which the probability that an edge is adjacent to
a particular vertex is proportional to the number of edges already adjacent to that
vertex. In other words, a high degree vertex is likely to gain more edges than a low
degree vertex. The preferential attachment model gives rise to the power-law degree
distribution observed in many real-world graphs.

Another interesting feature of real-world networks is the existence of the “giant
component”. The following table describes the number of components of each size in
a protein database containing 2,730 proteins and 3,602 interactions between proteins.

Component Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 1000

# Components 48 179 50 25 14 6 4 6 1 1 1 0 0 0 0 1 · · · 0

As the component size increases, the number of components of that size decreases.
Thus, there are many fewer components of size four or more in this protein graph than
components of size one, two, or three. However, those smaller components contain
only 899 proteins, while the other 1,851 proteins are all contained within one giant
component of size 1,851, as shown in the following table.

Component Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 · · · 1851

# Components 48 179 50 25 14 6 4 6 1 1 1 0 0 0 0 1 · · · 1

Consider the Erdös-Renyi random graph model in which each edge is added
independently with equal probability. Suppose that we start with 1,000 vertices and
zero edges. Then, there are clearly 1,000 components of size one. If we add one edge,
we will have 998 components of size one and one component of size two. However, a
giant component begins to emerge as more edges are added, as shown in the following
table. The graph contains many components of small size and a giant component of
size 101. This occurs because a component is more likely to attract additional vertices
as its size increases.

Size of Component 1 2 3 4 8 10 14 20 55 101

Number of Components 367 70 24 12 2 2 2 1 1 1

Since random graph models mimic some vital features of real-world networks,
it is often helpful to study the processes that generate these features in random
graph models. An understanding of these processes can provide valuable insights for
analyzing real-world data sets.
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3.2 High-Dimensional data

High-Dimensional data is fundamentally different from low-dimensional data,
and it is particularly useful in many real-world applications such as clustering[28−30].
For example, if we randomly generate points in a 2-dimensional plane, the distance
between pairs of points will be quite varied. However, if we randomly generate points
in a 100-dimensional space, then all pairs of points will be essentially the same distance
apart. The reason that randomly generated points in high dimensions are the same
distance apart is the following. Given two random points x1 and x2 in a d-dimensional
space, the square of the distance between them is given by

D2 (x1, x2) =
d∑

i=1

(x1i − x2i)
2

.

By the Law of Large Numbers, the value of D2 (x1, x2), which is the sum of a large
number of random variables, is tightly concentrated about its expected value. Thus,
high-dimensional data is inherently unstable for conventional clustering algorithms.

Another interesting phenomenon in high dimensions is the volume of a unit radius
sphere. As the dimension d increases, the volume of a unit radius sphere goes to zero.
This is easily seen by the following integration:

V (d) =
∫ 1

x1=−1

∫ √
1−x2

1

x2=−
√

1−x2
1

· · ·
∫ √

1−x2
1−x2

2−···−x2
d−1

xd=−
√

1−x2
1−x2

2−···−x2
d−1

dxd · · ·dx1

=
∫

Sd

∫ 1

r=0

rd−1 drdΩ =
A(d)

d
.

where A(d) =
∫

Sd
dΩ is the surface area of a unit radius sphere. Consider the Gaussian

integration:

I(d)=
∫ ∞

x1=−∞

∫ ∞

x2=−∞
· · ·

∫ ∞

xd=−∞
e−(x2

1+···+x2
d)dxd · · ·dx1 =

(∫ ∞

−∞
e−x2

1dx1

)d

=πd/2.

We can also write I(d) as follows:

I(d) =
∫

Sd

∫ ∞

r=0

rd−1e−r2
drdΩ =

A(d)
2

∫ ∞

t=0

td/2−1e−t dt
(
t = r2

)
=

A(d)
2

Γ (d/2) .

Therefore,

V (d) =
2πd/2

dΓ (d/2)
and lim

d→∞
V (d) ≈ lim

d→∞
3d

d!
= 0 .

Consider a standard multivariate Gaussian distribution in one dimension (µ =
0, σ2 = 1). The maximum probability density is at the origin and essentially all of the
probability mass is concentrated within a distance of 3σ of the origin. Now, consider
a standard multivariate Gaussian distribution in high dimensions. If we integrate
the probability mass within distance one of the origin, we get zero since the unit
radius sphere has no volume. In fact, we will not discover any probability mass until
we move away from the origin by a distance such that a sphere of that radius has
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non-zero volume. This occurs when the radius of the sphere reaches
√

d, where d is
the dimension of the space. As we continue to increase the volume of the sphere we
are integrating over, the probability mass will soon stop increasing since the density
function decreases exponentially fast. Therefore, even though the probability density
is maximum at the origin, all of the probability mass is concentrated in a narrow
annulus of radius

√
d.

Given two standard Gaussian processes whose centers are extremely close, each
generating random data points, we should be able to tell which Gaussian process
generated which point. In high dimensions, even though the centers are close to each
other, the two annuli will not overlap by much. An algorithm for determining which
Gaussian process generated which point is to calculate the distance between each pair
of points. Two points generated by the same Gaussian process would be a distance√

2d apart, and the distance between two points generated by different Gaussian
processes would be

√
δ2 + 2d, where δ is the distance between the two centers. To

see this, first consider two random points generated by the same Gaussian process.
Generate the first point and then rotate the coordinate axes such that the point is
at the North Pole. Generate the second point and this point will lie on, or very
near, the equator, since the surface area of a high-dimensional hyper-sphere is close
to the equator. Thus, the two points and the origin form a right triangle. Having
approximated the annulus by a hyper-sphere of radius

√
d, the distance between the

two points generated by the same Gaussian process is
√

2d.
To calculate the distance between two random points generated by different Gaus-

sian processes, again generate the first point and rotate the coordinate axes such that
the point is at the North Pole. Then, generate the second point and it will lie on, or
very near, the equator of the second hyper-sphere. Thus, the distance between the
two points is given by

√
δ2 + 2d as illustrated in Fig. 5.

Figure 5. Two distinct Gaussian processes

Note that δ should be large enough such that
√

δ2 + 2d >
√

2d + γ, where γ includes
the approximation error of the annulus associated with a hyper-sphere and the fact
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that the second point is not exactly on the equator.
If the centers of the Gaussian processes are even closer, we can still separate

the points by projecting the data onto a lower dimensional space that contains the
centers of the Gaussian processes. When projecting the data points onto the hyper-
plane containing the centers of the Gaussian processes, the distances between the
centers are preserved proportionally. The perpendicular distance of each point to the
hyper-plane is considered to be noise. This projection eliminates some of the noise
and increases the signal-to-noise ratio. Apply the above approach to the projected
data, and the dimension of the space has been reduced from d to k, where k is the
number of Gaussian processes we attempt to distinguish among. Now, the Gaussian
processes are required to be some smaller distance apart that depends only on k and
γ.

The question remains of how one determines the hyper-plane through the centers
of the Gaussian processes. This involves singular value decomposition (SVD). Con-
sider the rows of an n× d matrix A as being n points in a d-dimensional space. The
first singular vector of A is the direction of a line through the origin which minimizes
the perpendicular distance of the n points to the line. Further, the best k-dimensional
subspace that minimizes the perpendicular distance of the n points to the subspace
contains the line defined by the first singular vector. This follows from symmetry
assuming that the Gaussian processes are spherical. Given k spherical Gaussian pro-
cesses, the first k singular vectors define a k-dimensional subspace that contains the k

lines through the centers of the k Gaussian processes, and hence, contains the centers
of the Gaussian processes.

A science base for high dimensions would also deal with projections. One can
project n points in a d-dimensional space to a lower dimensional space while approx-
imately preserving pair-wise distances proportionally, provided the dimension of the
target space is not too low. Clearly, one could not hope to preserve all pair-wise
distances proportionally while projecting n points onto a one-dimensional line. How-
ever, with high probability, a random projection to a log n-dimensional space will
approximately preserve all pair-wise distances proportionally[31].

3.3 Sparse vectors

Having sketched an outline of a science base for high-dimensional data, we now
focus on studying sparse vectors as a science base for a number of application areas.
Sparse vectors are useful to reduce the time required to find an optimal solution and
to facilitate reconstructions and comparisons[21,32]. For example, plant geneticists
are interested in determining the genes responsible for certain observable phenomena.
The internal genetic code is called the genotype and the observable phenomena or
outward manifestation is called the phenotype. Given the genotype for a number
of plants and some output parameter, one would attempt to determine the genes
responsible for that particular phenotype, as illustrated in Fig. 6.

Solutions to this type of problem are generally very sparse. Intuitively, one would
expect this since only a small set of genes is probably responsible for the observed
manifestation. This situation arises in a number of areas and suggests the following
underlying problem: given a matrix A, a sparse vector x and a vector b where Ax = b,
how do we find the sparse vector x knowing A and b? This problem can be formally
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Figure 6. The genes responsible for a given phenotype

written as:
minimize ||x||0 subject to Ax = b

where the 0-norm is the number of non-zero elements of the sparse vector x. However,
the 0-norm is non-convex and optimization problems of this nature are often NP-
complete. Thus, the question remains of when the solution to the convex optimization
problem:

minimize ||x||1 subject to Ax = b

correctly recovers the vector x. Note that the above minimization problem can be
solved by linear programming.

4 Conclusion

Future computer science research is believed to employ, analyze, and interpret
large data sets. In this paper, we have discussed several examples of current projects
that represent modern research directions in computer science, ranging from identi-
fying communities in large-scale social networks to tracing bird migration routes in
North America. As computing pervades every facet of our lives and data collection
becomes increasingly ubiquitous, feasible algorithms for solving these problems are
becoming more and more necessary to analyze and understand the vast quantities of
available information. In order to rigorously develop these algorithms, a mathemat-
ical foundation must be established for large data sets, including the theory of large
graphs, high-dimensional data, sparse vectors and so on. These innovative studies
discover striking results that reveal a fundamental change in computer science that
will reshape our knowledge of the world.
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