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Abstract

Inferring the 3D spatial layout from a single 2D image is

a fundamental visual task. We formulate it as a grouping

problem where edges are grouped into lines, quadrilaterals,

and finally depth-ordered planes. We demonstrate that the

3D structure of planar objects in indoor scenes can be fast

and accurately inferred without any learning or indexing.

1. Introduction

Understanding the 3D space depicted in an image is essen-

tial for recognition and navigation. We aim to infer depth-

ordered planes that partition the 3D space without any learn-

ing or specific knowledge of the objects in the scene.

a. depth-ordered planes

b. occluders visualization in 3D

Figure 1: Spatial layout from a single image of an indoor scene.

Planes are ordered in depth along dominant directions in the 3D

space, thicker outlines for those closer to the viewer. Lines in the

image are partitioned into occluders and those that belong to the

spatial frame. We can further visualize their relative depth in 3D.

The problem of 3D reconstruction has been studied ex-

tensively in the past. It involves two relatively independent

subjects: geometry and statistics. The former studies the

constraints on 2D features imposed by the camera imaging

process (e.g. vanishing points, homography [7]), while the

latter studies what types of cues in the image are most cor-

related with the perception of the 3D real world [9] (e.g.

shape-from-X modules, where X could be shading [19, 14],

texture [8, 16], or line junctions [15, 2, 18]).

If camera calibration and manual cue inputs can be as-

sumed, remarkable 3D reconstruction can be achieved us-

ing geometrical approaches [5, 13, 1, 22], whereas if the

type of shape-from-X can be known a priori, then subtly

curved surfaces can be precisely reconstructed using statis-

tical approaches [17, 20]. However, these prerequisites are

non-trivial to satisfy, limiting the use of these methods.

One way to overcome the limitation is to constrain pos-

sible spatial relationships. [10] presents an attribute graph

grammar with 6 production rules for parsing objects, sur-

faces, rectangles and their spatial relations in man-made

scenes. Impressive results are shown on the detection and

grouping of repetitive tiles of rectangles. Other aspects of

spatial layout remain to be seen on more general images.

An alternative to such a rule-based generative approach

is statistical learning [11, 6, 12]. The idea is to extend styl-

ized Shape-from-X features to a list of features whose as-

sociations with 3D attributes can be learned from annotated

images. Given a new image, the list of features are eval-

uated, and the most likely 3D attributes are retrieved from

the memory of associations. The success often depends on

how similar the test image is to the training images.

We propose a grouping formulation where pixels are

turned into depth-ordered planar surfaces based on proxim-

ity, curvilinearity, parallelism, orthogonality, perspectivity,

and depth ordering (Fig. 2). With some heuristics to deduce

proportional depth relationships from a real image [4], we

can visualize relative depth by back-projecting the texture

in the 2D image onto planes in the 3D space (Fig. 1).

2. Method details

Our method has four grouping stages (Fig. 2): 1. Edges

are extracted and grouped into lines. 2. Lines are clustered

based on local parallelism, curvilinearity, orthogonality, and

convergence to common vanishing points. 3. Quadrilater-
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Figure 2: Our method groups edges into lines, line clusters, quadrilaterals, and depth-ordered planes based on cues in the single image.

als are formed by adjacent lines of different directions. 4.

Depth-ordered planes are obtained by grouping quadrilater-

als based on coplanarity and relative depth.

2.1. From Edges to Line Segments

We link edge pixels into line segments. Shown in Fig. 3,

the distribution of line orientations often reveals the spatial

frame of an indoor scene. If we correct the orientations with

vanishing points and rule out shorter lines, the distribution

becomes peakier, indicating stronger correlation.
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Figure 3: Line orientations are indicative of dominant 3D direc-

tions. Row 1: Two room images marked with lines and the spatial

frame. The frame divides the image into floor, left and right walls.

Lines within each region often assume the two dominant direc-

tions that define the region. Rows 2-3: Each plot has three empir-

ical probability distributions of orientations, one for each region

(e.g. red for the floor), collected over 150 such room images. In b

and d, the line angle is defined with respect to the corresponding

vanishing point. In c and d, lines over a certain length are selected.

Such a statistical correlation has been utilized in [3].

However, their solution to extrinsic spatial frames depends

on the orthogonality of three dominant directions, which

we do not assume. Whereas they use raw edges at each

pixel location, we use long lines only. We thus ignore non-

informative short edges (which often result from texture and

small objects), discount dependent edge evidence, and in-

crease the estimation reliability of frame directions.

2.2. From Line Segments to Line Clusters

To classify lines according to their alignment with the

spatial frame, one could estimate vanishing points using

RANSAC [1, 22]. However, such a model-based classi-

fication has two problems: it gets easily confused in the

presence of clutter and does not respect spatial coherence.

Illustrated in Fig. 4a, lines that are parallel in the 3D space

converge to a vanishing point in the image, but the converse

is not true: lines that converge to a single point in the image

do not necessarily correspond to parallel lines in 3D.

a. ambiguity without spatial coherence

parallelism

d

overlap
curvillinearity

dh dv

orthogonality

d

b. line grouping cues

Figure 4: a: Ambiguity of vanishing points without spatial co-

herence. The wrong set of points (×) might explain all the black

lines better than the correct ones (•) in terms of line convergence.

b: Enforcing spatial coherence with grouping cues between lines.

The black horizontal line is curvilinear with the left line, parallel

with the middle line, and orthogonal with the right vertical line.

We address the problem in two steps. The first step is

to cluster lines based on curvilinearity A−, parallelism A‖
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and orthogonality R⊥. Shown in Fig. 4b, extended lines

have high A−; side-by-side lines have high A‖; and nearly

orthogonal lines have high R⊥.
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where θ is angular difference between two lines. We use

σc1 = 3, σc2 = 0.1, σc3 = 0.7, σp1 = 3, σp2 = 0.1,

σp3 = 0.1, σo1 = 2, σo2 = 0.3. All these grouping cues

diminish over distance, and the distance is normalized with

respect to the length of the reference line. A longer line

thus has a larger neighbourhood to evaluate. To account

for perspectivity, we also increase the angular tolerance for

parallelism as the distance between lines increases.

These local grouping cues are effective at enforcing spa-

tial coherence which is missing in Fig. 4a, i.e., the ceiling

and floor lines on the same wall overlap enough to be con-

sidered parallel despite large angular difference, whereas

those on different walls have too large a vertical gap to be

collinear despite their smaller angular difference.

While A− and A‖ measure how likely two lines belong

in the same group, R⊥ measures how likely two lines be-

long to different groups. We treat them as pairwise at-

traction and repulsion respectively, and use the graph cuts

method in [24, 25] to find 3 clusters (Fig. 5a).

a: line grouping result b: relabeled by vanishing points

Figure 5: Line grouping facilitates the estimation of vanishing

points, which in turn lead to a globally constrained classification.

Red, green and blue colors mark vertical lines, left and right dom-

inant lines respectively throughout the paper.

We estimate one vanishing point for each of the three

line clusters [22]. The point-fitting process converges much

faster among the lines in the same cluster. The set of vanish-

ing points in turn provide a more accurate reclassification of

all the lines (Fig. 5b).

2.3. From Lines to Quadrilaterals

Lines that are next to each other but point in different direc-

tions are likely to come from the same planar surface in the

3D space (Fig. 6). Since we know the corresponding van-

ishing point for each line, we can represent the plane by a

quadrilateral that tightly covers the two defining lines. This

also corrects estimation errors in the line orientations.

Figure 6: Quadrilaterals are determined by adjacent lines of dif-

ferent orientations and their vanishing points. The black dots in-

dicate the intersections of such line pairs. A quadrilateral assumes

the color that is complementary to the colors of the lines: e.g., red

and green lines in Fig. 5 define blue quadrilaterals in Fig. 6.

2.4. From Quadrilaterals to Ordered Planes

Quadrilaterals are grouped into planes based on coplanarity

and relative depth orders.

Figure 7: Coplanarity between quadrilaterals is measured by

their degree of overlap. Only quadrilaterals of the same orienta-

tion is considered. Highlighted in thick outlines, two blue planes

overlap well and thus have large coplanarity, whereas the green

one overlaps little with others and becomes a lone quadrilateral.

The coplanarity A2 between two quadrilaterals increases

with the extent of their overlap: More overlap in the im-

age, more likely they lie on the same planar surface in the
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3D space. Since the quadrilaterals share common vanishing

points, the extent of overlap can be measured more straight-

forwardly in a rectified plane. That is, we compute a ho-

mography that maps quadrilaterals into rectangles, with the

aspect ratio determined by the lengths of two defining lines.

The area of intersection between two rectangles is trivial to

compute. We take the value normalized by the minimum of

the two rectangular areas as the degree of overlap (Fig. 7).

Fig. 8 illustrates our relative depth test. Two points can

be ordered along a direction if two conditions hold: 1) Their

pixels must be collinear with the vanishing point that corre-

sponds to the direction; 2) As the vanishing point indicates

an infinite distance away from the viewer, the one that is

closer to the vanishing point must lie behind. If two points

do not line up in that direction in the 3D space, but they lie

in a plane that is parallel to the direction, we can align them

by projecting one point perpendicularly to intersect that di-

rection. This intersection can then be used to infer relative

depth. This procedure has a counterpart in the 2D image

by connecting pixels with vanishing points, and the sign of

displacement often indicates relative depth even when the

two points are not in a plane that is parallel to the direction.

A’

B

V2

V3
C A

b

v2

c

a

v3

in the 3D space in the 2D image

Figure 8: Row 1: Relative depth between two points along a

particular direction. If two points A and B lie in the plane that

is parallel to the direction V3, we can order them by projecting

B to the line AV3. This procedure has a counterpart in the image.

Since c lies closer to the vanishing point v2, C and thus B must lie

behind A. For A
′ and B, such intersection C does not exist. Nev-

ertheless, the corresponding operation in the image still produces

an intersection c, which is often indicative of the relative order-

ing of A
′ and B. Row 2: Relative depth between quadrilaterals

along their normal direction. The red quadrilateral is considered in

front of the green, because both green intersection points lie closer

to the blue vanishing point. Here color indicates depth: red is in

front of green, green is in front of blue.

The relative depth Rd between two quadrilaterals is de-

termined by the relative depth of their end points. A quadri-

lateral is considered in front, only if its end point is in front

along both defining directions.

The coplanarity A2 provides cues to merge two quadri-

laterals into one plane, whereas the relative depth Rd pro-

vides cues to segregate them in depth. Treating them as

pairwise attraction and directional repulsion in a graph cuts

framework [23], we integrate both types of cues simultane-

ously to reach a global depth ordering of quadrilaterals.

We obtain a set of depth-ordered planes by computing

the unions of quadrilaterals at the same depth. The union

is trivial to compute in a homography-rectified coordinate

system. We can also classify all the lines into either frame

lines or occluders. Lines making up those quadrilaterals that

do not lie farthest back must be occluders.

3. Results and Discussions

We implement our algorithm in MATLAB. The same set

of parameters are used for all the results shown in Fig. 9

and Fig. 10. The most time consuming operation is edge

detection, for which we use the MATLAB Canny edge de-

tector (about 5 seconds for an image of size 400 × 400 on

a linux machine with 2GHz CPU). The rest grouping oper-

ations deal with significantly fewer and larger geometrical

entities, which altogether can be done in less than 0.5 sec-

onds. There is no learning or indexing involved.

Our results show that it is possible to use a grouping

mechanism to recover 3D spatial layout information from

a single image. A number of interesting issues remain.

1. Grouping lines into quadrilaterals. Our current

algorithm hypothesizes a quadrilateral area with two adja-

cent lines of different directions. This simple recipe is local

and thus prone to false positives. The middle blue plane in

Fig. 1a is such a case. A red vertical line is taken from the

window curtain, while a green line is taken from the edge

of the bed. This plane does not exist in the 3D space. Such

over-generalizations can also be seen in Fig. 9 (row 2, col-

umn 1). Shading, texture, and cross validation from nearby

planes could help eliminate these false plane hypotheses.

2. Sensitivity of relative depth cues. Our relative depth

test is remarkably accurate at small depth differences. In

Fig. 9 (row 1, column 2): the front side of the night stand

is correctly evaluated to be in front of the left wall, not be-

cause there are green lines between the legs of the stand,

but because both vertical lines corresponding to the two legs

are detected and the spatial relationship between their end-

points provides a powerful cue for perspectivity. On the

other hand, this sensitivity also makes a wall fixture such as

the heater in Fig. 9 (row 1, column 3) to be in front, which

might not be desired.

3. Plane and line ownerships. Our test for occluders
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Figure 9: Depth-ordered planes for a set of indoor images. Planes with thicker lines are in front.
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Figure 10: Occluder lines for the same set of images in Fig. 9.
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is straightforward: lines forming quadrilaterals that do not

lie farthest back are occluders. However, this leaves some

unpaired lines unaccounted for, even if they are contained in

some quadrilateral. Many results in Fig. 10 can be improved

if line-plane grouping is jointly considered.

4. Constraints on depth and extent provided by

planes of different orientations. Our depth-ordering of

quadrilaterals only concerns the quadrilaterals that point in

the same direction. In Fig. 9 (row 2, column 3), there are no

upright blue quadrilaterals detected at the far end, making

the depth 1 plane, which delineates the spatial frame, far

front than it should be. If we take adjacent red and green

planes into account, it is obvious that a blue plane must ex-

ist farther in the back. Therefore, how planes of different

orientations line up in depth need to be considered jointly

in order to derive the spatial frame of a room. For example,

determining the extent of the floor relies on the constraints

provided by the clutters sitting upright on the floor.

4. Summary

We compute a set of depth-ordered planes from a single im-

age with a learning-free grouping method. We show that:

1) Despite the role of shading and texture gradients at re-

vealing depth in certain scenarios, edges are more ubiqui-

tous and sometimes sufficient for global depth analysis; 2)

Gestalt laws of grouping [21] can be used to reliably evalu-

ate perspectivity; 3) Compared to traditional shape-from-X

methods, our depth from intersection point test is more sen-

sitive to subtle depth differences and more universal in a

single image. The relative depth cues allow us to deal with

occlusion and weaker perspectivity, the two major difficul-

ties in inferring spatial layout from a single indoor image.
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