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Abstract

We present a finite element model for the analysis of a mechanical phenomenon involving dynamic expulsion of

fluids from a fully saturated porous solid matrix in the regime of large deformation. Momentum and mass conservation

laws are written in Lagrangian form by a pull-back from the current configuration to the reference configuration

following the solid matrix motion. A complete formulation based on the motion of the solid and fluid phases is first

presented; then approximations are made with respect to the material time derivative of the relative flow velocity vector

to arrive at a so-called (v; p)-formulation, which is subsequently implemented in a finite element model. We show how

the resulting finite element matrix equations can be consistently linearized, using a compressible neo-Hookean hy-

perelastic material with a Kelvin solid viscous enhancement for the solid matrix as a test function for the nonlinear

constitutive model. Numerical examples are presented demonstrating the significance of large deformation effects on the

transient dynamic responses of porous structures, as well as the strong convergence profile exhibited by the iterative

algorithm.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Porous media consist of a solid phase, usually referred to as a matrix or skeleton, as well as closed and
open pores. Examples of porous materials are soils, rocks, the human bone, and porous aluminum foam, to

name a few. The mechanics of porous media is of utmost relevance in many disciplines in engineering and

science, such as geotechnical engineering, biomechanics, physical chemistry, agricultural engineering, and

materials science. In geotechnical earthquake engineering, multiphase dynamics plays a major role in the

prediction of the local site response where the buildup of fluid pressure induced by seismic shaking could
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lead to a rapid loss of strength of the saturated soil deposit, a phenomenon commonly referred to in the
literature as liquefaction [1].

In biomechanics, multiphase dynamics is essential to hard and soft tissue growth and remodeling as

cyclic stresses applied to the tissue solid/fluid mixture generate solid deformation, resulting in fluid flow and

mass transport through the tissue solid matrix leading to cell nutrition, breakdown, and regeneration [2–5].

Multiphase dynamics also plays a significant role during head impacts as skull and brain tissues contact and

deform with concomitant fluid flow in and out of the tissues [6]. Although deformation of bone is small

(0.4% strain [7]), a geometrically nonlinear theory is needed in order to account properly for large rotations

and translations experienced during dynamic loading such as head impact and knee bending. The finite
deformation theory is also necessary for modeling contact of hard tissue with soft tissue (e.g., skull with

brain, bone with cartilage, etc.) and resulting fluid flow. With regard to multi-phase continuum formula-

tions in biomechanics, two- and three-field formulations (and more fields when chemical and electrical

effects are included) have been used for simulating deformation of soft, hydrated biological tissues, such as

cartilage and heart muscle, for small strains [8] and finite strains [9–15].

In geomechanics, multiphase finite element formulations of coupled deformation-fluid flow in porous

media abound in the literature, but a majority of them ignore the effects of solid and fluid accelerations [16–

23]. In the absence of inertia terms the coupled problem is of parabolic type, and the so-called (v; p)-
formulation is complete (where v ¼ solid velocity field and p ¼ fluid pressure). Large deformation

formulations are available for this type of problem [24–28]. For partially saturated media a three-phase

(v; pw; pa)-approach offers a direct extension of the two-phase formulation [1,29–31] (where pw ¼ pore water

pressure and pa ¼ pore air pressure).

In the presence of inertia terms the coupled problem is of hyperbolic type, and the so-called (v; p)-for-
mulation is no longer complete. Many authors [1,32–37] have shown that for this class of problem it is

necessary to specify not only the motion of the solid phase but also that of the fluid phase to completely

formulate the governing partial differential equations (PDEs). This can be achieved by specifying, for
example, the fluid velocity field vf , or, alternately, the relative flow velocity vector ~v ¼ vf � v, in addition to

the solid velocity field v, resulting in so-called (v; vf )- and (v;~v)-formulations, respectively. The Lagrange
multipliers method is sometimes used for ease in the solution process, leading to either the (v; vf ; p)- or the
(v;~v; p)-formulation.

Whereas the solution techniques for the hyperbolic PDE for porous media have developed rapidly over

the last decade, most deal only with infinitesimal deformations with the exception of a few. Large defor-

mation formulations based on a hypoelastic theory are subject to criticisms that include, among others, the

fact that it assumes negligible elastic deformations and that a unique objective stress rate cannot be possibly
defined [38]. In addition, the hypoelastic formulation does not conveniently accommodate the commonly

used return mapping algorithm in computational plasticity.

In this paper, we revisit the governing hyperbolic PDEs for fully saturated porous media and write them

out in a form that accommodates the effects of finite deformation. The goal of the paper is to present a

framework that can eventually be used to cast finite deformation multiplicative plasticity models. Thus, we

follow the motion of the solid skeleton in a Lagrangian description and write the momentum balance

equations using this description. The mass balance equations may be interpreted to provide volume con-

straints to the governing PDEs; by following the motion of the solid phase, we then write the mass balance
equations identifying the spatial point as the instantaneous material point now occupied by the solid phase.

It is noted that it would be very difficult and impractical to write the mass balance equation for the fluid

phase Lagrangian point of view since this would require that we identify and follow the motion of the fluid

material point.

For the hyperbolic problem we write the complete governing PDEs in (v; vf )-form. By assuming that the

material time derivative of the relative velocity vector ~v is zero, we arrive at the reduced (v; p)-form, and this
is what we then use in the finite element formulation. As noted in [1,32], this approximation is acceptable in
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the low-frequency range such as that encountered in geotechnical earthquake engineering applications. We
then develop finite element matrix equations in residual form and linearize them consistently for iteration

with Newton’s method.

For the porous solid matrix we use a compressible neo-Hookean hyperelastic material model [39] en-

hanced with a Kelvin viscous solid [40]. The choice of this relatively simple material model allows us to

focus more on the formulation and performance of the finite deformation model. Multiplicative plasticity

models are based upon the framework of hyperelasticity [41], so they can easily be cast within the proposed

finite deformation framework. To demonstrate the performance of the resulting finite element model, we

present a number of numerical examples in 1D and 2D comparing the infinitesimal and finite deformation
solutions as well as demonstrating the performance of the iterative solutions.

As for notations and symbols, bold-face letters denote matrices and vectors; the symbol ‘Æ’ denotes an
inner product of two vectors (e.g., a � b ¼ aibi), or a single contraction of adjacent indices of two tensors

(e.g., c � d ¼ cijdjk); the symbol ‘:’ denotes an inner product of two second-order tensors (e.g., c : d ¼ cijdij),
or a double contraction of adjacent indices of tensors of rank two and higher (e.g., D : C ¼ DIJKLCKL);
upper-case subscripts refer to material coordinates while lower-case subscripts refer to spatial coordinates.
2. Mass and momentum balance laws

We consider a two-phase mixture (see [42–52] for relevant background) composed of a solid matrix

whose voids are continuous and completely filled with fluid. The solid matrix, or skeleton, plays a special

role in the mathematical description in that it defines the volume of the mixture, herein written in the

current configuration as V ¼ Vs þ Vf . The corresponding total masses are M ¼ Ms þMf , where Ma ¼ qaVa

for a ¼ solid and fluid; and qa is the true mass density of the a phase. The volume fraction occupied by the a
phase is given by /a ¼ Va=V , and thus

/s þ /f ¼ 1: ð2:1Þ
The partial mass density of the a phase is given by qa ¼ /aqa, and thus

qs þ qf ¼ q; ð2:2Þ
where q ¼ M=V is the total mass density of the mixture. As a general notation, phase designations in
superscripts pertain to average or partial quantities; and in subscripts to intrinsic or true quantities.
2.1. Balance of mass

In writing out the mass balance equations for a two-phase mixture, we focus on the current configuration

of the mixture and describe the motions of the fluid phase relative to the motion of the solid phase. We

denote the instantaneous intrinsic velocities of the solid and fluid phases by v and vf , respectively, and the

total time-derivative following the solid phase motion by

dð�Þ
dt
¼ oð�Þ

ot
þ gradð�Þ � v: ð2:3Þ

For future use we also introduce the operator dfð�Þ=dt, which denotes a material time derivative following

the fluid phase motion and is related to the operator dð�Þ=dt via the relation

dfð�Þ
dt
¼ dð�Þ

dt
þ gradð�Þ � ~v; ~v ¼ vf � v: ð2:4Þ
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Ignoring mass exchanges between the two phases, balance of mass for the solid and fluid phases then write

dqs

dt
þ qs divðvÞ ¼ 0; ð2:5aÞ

dqf

dt
þ qf divðvÞ ¼ �divðqÞ; ð2:5bÞ

Here, q is the Eulerian relative flow vector of the fluid phase with respect to the solid matrix, given explicitly

by the relations

q ¼ qf~v: ð2:6Þ
The flow vector q has the physical significance that its scalar product with the unit normal vector m to a unit

surface area attached to the solid matrix is the mass flux j of the fluid phase relative to the solid matrix

flowing across the same unit area, i.e.,

q � m ¼ j: ð2:7Þ
Based on this definition of q, it therefore follows that (2.5b) gives dfqf=dt þ qfdivðvfÞ ¼ 0. When inter-

preting (2.6), the porous skeleton volume is assumed to have an isotropic distribution of voids so that when

it is sliced in any direction the area fractions are numerically equal to the volume fractions.

For barotropic flows the bulk modulus of the a phase can be defined as [53,54]

Ka ¼ qa

dpa

dqa

; a ¼ s; f ; ð2:8Þ

where pa is the intrinsic Cauchy pressure in the a phase, i.e., the force acting on this phase per unit area of
the same phase. The symbol dpa=dqa is the ordinary total derivative following the assumption of the

existence of a functional relationship of the form faðpa; qaÞ ¼ 0 for each phase. The mass balance equations

then become

d/s

dt
þ /s

Ks

dps
dt
þ /s divðvÞ ¼ 0; ð2:9aÞ

d/f

dt
þ /f

Kf

dpf
dt
þ /f divðvÞ ¼ � 1

qf

divðqÞ: ð2:9bÞ

Adding the last two equations and noting that /s þ /f ¼ 1 gives the Eulerian form of balance of mass

/s

Ks

dps
dt
þ /f

Kf

dpf
dt
þ divðvÞ ¼ � 1

qf

divðqÞ: ð2:10Þ

Now, let F ¼ o/=oX be the deformation gradient of the solid phase motion and J ¼ detðFÞ be the Jaco-
bian, with / and X being equal, respectively, to the coordinates in the current and reference configurations

of the material point X contained in the solid matrix. Thus,

Q ¼ JF�1 � q ð2:11Þ

is the Piola transform of q, and

DIVðqÞ ¼ J divðqÞ ð2:12Þ
is the Piola identity [55]. In (2.12), DIV is the divergence operator evaluated with respect to the reference

solid phase coordinates.
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Multiplying both sides of (2.10) by the Jacobian J , and noting that

J
dpa

dt
¼ dðJpaÞ

dt
� pa

dJ
dt

; a ¼ s; f ; ð2:13Þ

we get

/s

Ks

dhs
dt
þ /f

Kf

dhf
dt
þ 1

�
� /sps

Ks

� /fpf
Kf

�
dJ
dt
¼ � 1

qf

DIVðQÞ; ð2:14Þ

where

hs ¼ Jps; hf ¼ Jpf ð2:15Þ

are the Kirchhoff mean solid pressure and pore fluid pressure, respectively. We note that in the limit of

incompressible solid and fluid phases, we easily recover the relation (see [25])

dJ
dt
þ 1

qf

DIVðQÞ ¼ 0: ð2:16Þ

Fig. 1 shows the motions of the solid and fluid phases. Note that the fluid now occupying the void at a

point uðX ; tÞ, where u is the motion of the solid phase and X is a material point attached to the solid

matrix, is not necessarily the same fluid material that occupied the same void at a reference point uðX ; 0Þ.
Thus, the total mass of the solid–fluid mixture is not necessarily conserved by the motion of the solid

matrix, see [25] for an elaboration of this point.
Fig. 1. Balance of mass: solid and fluid phase motions are described by trajectories uX ðtÞ and uðfÞX ðtÞ. Fluid at X leaves dV while fluid

initially at Y enters dv at time t.



3842 C. Li et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 3837–3870
2.2. Balance of momentum

Let ra denote the Cauchy partial stress tensor for the a phase, with a ¼ solid and fluid. The total Cauchy

stress tensor r is obtained from the sum

r ¼ rs þ rf : ð2:17Þ

This decomposition of the total Cauchy stress tensor readily provides expressions for the intrinsic Cauchy

pressures ps and pf as follows:

ps ¼ �
1

3/s trðrsÞ; pf ¼ �
1

3/f
trðrfÞ: ð2:18Þ

Thus, if rf is an isotropic tensor of the form rf ¼ b1, then b ¼ �/fpf ¼ �pf .
Now, defining the corresponding first Piola–Kirchhoff partial stress tensor as Pa ¼ Jra � F�t, the total

first Piola–Kirchhoff stress tensor is then given by

P ¼ Ps þ Pf : ð2:19Þ
By mixture theory, balance of linear momentum for the a phase may be expressed through the alternative

equations

divðraÞ þ qagþ ha ¼ qa d
ava

dt
; ð2:20aÞ

DIVðPaÞ þ JqagþHa ¼ Jqa d
ava

dt
; ð2:20bÞ

for a ¼ solid and fluid; where vs � v and dsð�Þ=dt � dð�Þ=dt; g is the vector of gravity accelerations; ha is the

resultant body force per unit current volume of the solid matrix exerted on the a phase; Ha ¼ Jha is the

corresponding resultant body force per unit reference volume of the solid matrix; and ‘div’ and ‘DIV’ are

the divergence operators evaluated with respect to the current and reference configurations, respectively.

The forces ha and Ha are internal to the mixture and thus satisfy the relations hs þ hf ¼ H s þH f ¼ 0.

Adding (2.20) for the two phases, we obtain the balance of momentum for the entire mixture expressed

in the alternative forms

divðrÞ þ qg ¼
X
a¼s;f

qa d
ava

dt
; ð2:21aÞ

DIVðPÞ þ q0g ¼
X
a¼s;f

Jqa d
ava

dt
; ð2:21bÞ

where q0 ¼ Jq is the pull-back mass density of the mixture in the reference configuration. We note that the

solid phase material now at point x in the current configuration is the same solid phase material originally

at the point X in the reference configuration, but the fluids at x and X are not the same material points.

Hence, the total reference mass density q0 in V0 is not conserved by q in V .
We now define material acceleration vectors

a :¼ dv

dt
; af :¼

dfvf
dt

; ea :¼ af � a: ð2:22Þ

Clearly, a is the material acceleration of the solid phase, while ea is the relative material acceleration of the

fluid phase to the solid phase. The latter acceleration can be written in alternative forms
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ea ¼ d~v

dt
þ gradðvfÞ � ~v; ð2:23aÞ

¼ o~v

ot
þ gradðvfÞ � vf � gradðvÞ � v: ð2:23bÞ

Rewriting (2.21), we then get

divðrÞ þ qg ¼ qaþ qfea; ð2:24aÞ

DIVðPÞ þ q0g ¼ q0aþ Jqfea: ð2:24bÞ
2.3. Complete and simplified formulations

The relations presented in the previous section, combined with suitable constitutive assumptions, con-

stitute a complete (v; vf )-formulation of the hyperbolic solid deformation-diffusion problem. To demon-
strate the completeness of the formulation, one can write the balance of momentum for the total mixture

and the balance of momentum for the fluid phase,

divðrÞ þ qg ¼ qaþ qfea; ð2:25aÞ

�gradð/fpfÞ þ qfgþ hf ¼ qfaf : ð2:25bÞ
The assumption of barotropic flow determines the intrinsic mass densities qs and qf from the intrinsic

pressures ps and pf . With suitable constitutive assumptions the evolutions of r, hf , and ps can be related to

the evolutions of v and vf and the void fractions. The evolution of the solid volume fraction /s is determined

from balance of mass for the solid phase, (2.9a),

1

/s

d/s

dt
¼ � 1

Ks

dps
dt
� divðvÞ; ð2:26aÞ

which in turn determines the evolution of the fluid volume fraction /f ¼ 1� /s. Thus, (2.25) constitutes six

equations in the unknowns v, vf and the intrinsic fluid pressure pf . The latter unknown is solved from

balance of mass for the fluid phase, (2.9b),

dpf
dt
¼ �Kf

1

/f

d/f

dt

�
þ divðvÞ þ 1

qf
divðqÞ

�
; ð2:26bÞ

where q is also related to v and vf from the field equations. Thus, in principle all of the variables can be

expressed in terms of v and vf , and thus, with suitable constitutive assumptions the (v; vf )-formulation is

complete.

If the relative acceleration ea is ignored, then we recover the simplified (v; p)-formulation. The govern-
ing equations are obtained from imposing balance of momentum and balance of mass for the total mixture as

divðrÞ þ qg ¼ qa; ð2:27Þ

/s

Ks

dps
dt
þ /f

Kf

dpf
dt
þ divðvÞ ¼ � 1

qf

divðqÞ: ð2:28Þ

Alternative expressions are

DIVðPÞ þ q0g ¼ q0a; ð2:29Þ

/s

Ks

dhs
dt
þ /f

Kf

dhf
dt
þ 1

�
� /sps

Ks

� /fpf
Kf

�
dJ
dt
¼ � 1

qf

DIVðQÞ: ð2:30Þ
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2.4. Constitutive assumptions

To complete the mathematical description of the problem, a constitutive relation for the mechanical

deformation of the solid matrix and a constitutive relation for fluid flow in the dynamic regime must be

specified. For the deformation of the solid matrix the constitutive relation may be formulated in terms of

the partial stress tensor Ps introduced in Section 2.2. Alternately, other suitable energy-conjugate relations

may be utilized, such as the effective stress tensor P0 that is energy-conjugate to _F, the rate of the defor-
mation gradient tensor (see [30,50]). Following Terzaghi’s [56] idea, the effective stress equation may be
written in the alternative forms [25]

P ¼ P0 � hF�t; S ¼ S 0 � hC�1; s ¼ s0 � h1; ð2:31Þ

where the effective (primed) stress tensors are given by the relations S 0 ¼ F�1 � P0 ¼ F�1 � s0 � F�t (the general
symbols P and S refer to the first and second Piola–Kirchhoff stress tensors, respectively), and C ¼ F t � F is

the right Cauchy–Green deformation tensor.

For the effective stress tensor S0, we postulate an additive decomposition of the form

S 0 ¼ S0inv þ S0vis; ð2:32Þ

where S0inv and S0vis are the inviscid and viscous parts of S 0, respectively. For the inviscid part we consider a

compressible neo-Hookean hyperelastic material based the stored energy function [39]

WðX ;CÞ ¼ l
2
½trðCÞ � 3
 � l ln J þ k

2
ðln JÞ2; ð2:33Þ

where k and l are the Lam�e constants, and J ¼
ffiffiffiffiffiffi
I3C
p

is the square-root of the third invariant of the

deformation tensor C . This gives

S 0inv ¼ 2
oW
oC
¼ l1þ ðk ln J � lÞC�1: ð2:34Þ

Frame-indifference of S0inv, or invariance under superposed spatial rigid body motions, is guaranteed by

having W vary with deformation through the tensor C .
For the viscous part we consider a Kelvin solid [38,40] and postulate the following form for S0vis:

S 0vis ¼ aC : 1
2
_C

� �
; ð2:35Þ

where a is a parameter reflecting the viscous damping characteristics of the solid matrix, and C is the second

tangential elasticity tensor which takes the form

C ¼ 4
o2W
oCoC

¼ kC�1 � C�1 þ 2ðl� k ln JÞIC�1 ; ð2:36Þ

where IC�1 ¼ oðC�1Þ=oC is a rank-four tensor with components ðIC�1ÞIJKL ¼ ðC�1IK C�1JL þ C�1IL C�1JK Þ=2. Note
that this form for IC�1 differs from that reported in [39] for this particular model, which did not correctly

reflect the minor symmetry of IC�1 . Applying a push-forward on all four indices of C gives the fourth-order
spatial tangential elasticity tensor c with components

cijkl ¼ FiIFjJFkKFlLcIJKL ) C ¼ k01� 1þ 2l0I ; k0 ¼ k; l0 ¼ l� k ln J ; ð2:37Þ
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where k0 and l0 are the equivalent Lam�e constants, and I is a rank-four identity tensor with components

Iijkl ¼ ðdikdjl þ dildjkÞ=2. The choice of the above form for the viscous component of stress is motivated in

great part by its invariance under superposed spatial rigid body motions, which follows by having C vary

with deformation through the tensor C and by the fact that _C is frame indifferent as well.

For fluid flow in the dynamic regime the constitutive equation relates the internal body force vector hf to
the Eulerian relative flow vector q via [1,33]

hf ¼ /fqfgk
�1 � /fðvf � vÞ ¼ /fgk�1 � q; ð2:38Þ

where k is a symmetric, positive-definite second-order tensor of hydraulic conductivities. We recall that hf is
a body force per unit current volume representing the exchange of momentum between the solid and fluid

constituents. Substituting into the balance of momentum for the fluid phase, (2.25b), and solving for q gives

q ¼ qfk �
1

/fqfg
grad

/fh
J

� 	�
þ a� g

g

�
: ð2:39Þ

This is the generalized form of Darcy’s law in the dynamic regime, evident from the presence of the

acceleration vector a (we recall that this vector should have been the material acceleration of the fluid

phase, af , which has now been replaced by the solid matrix acceleration a in light of the assumption that the

relative acceleration vector ea is negligible).

Following [25], the Piola transform of q is given by

Q ¼ JF�1 � q ¼ qfk
0 � 1

/fqfg
grad

/fh
J

� 	�
þ a� g

g

�
; ð2:40Þ

where k0 ¼ JF�1 � k is a two-point hydraulic conductivity tensor with components k0Ij relating the fluid mass
flux in the reference configuration of the solid matrix to the relative fluid velocity at the same material point

in the current configuration. Alternately, we can also pull back the second index of k0 and write the Piola
transform Q as [25]

Q ¼ qfK �
1

/fqfg
GRAD

/fh
J

� 	�
þ F t � a� g

g

�
; ð2:41Þ

where K ¼ JF�1 � k � F�t is a pull-back hydraulic conductivity tensor with components KIJ relating the pull
backs of both the fluid mass flux and the relative fluid velocity vectors from the current to reference

configurations of the solid matrix. The above expressions allow the formulation of the variational equations

for momentum and mass balance with respect to both reference and current configurations.
3. Finite element formulation

In this section we present a finite element formulation for the hyperbolic solid deformation-diffusion

problem. Here, we use the simplified (v; p)-formulation. Furthermore, we assume the solid phase to be

incompressible, Ks !1, which is a physically reasonable assumption in most geomechanics applications.

Finally, we also assume that the intrinsic pressure pf is much smaller than the fluid bulk modulus Kf . For

water with a bulk modulus of 2.2 · 107 kPa [57], the fluid pressure pf can reach this order of magnitude at

thousands of kilometers depth, so the latter assumption is valid in almost all applications. However, if the

fluid itself is a mixture of liquid and gas, then the overall bulk modulus of the fluid mixture could be several
orders of magnitude lower than the bulk modulus of the liquid alone due to the high compressibility of

the gas voids [30], thus limiting the validity of the latter assumption. We note that pf=Kf � 0 does not
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necessarily imply _pf=Kf � 0 since the pore pressure can change quickly with time especially in a dynamic
problem, so by this assumption we are not entirely neglecting the effect of fluid compressibility.
3.1. Strong form of the boundary-value problem

The strong form of the boundary-value problem is as follows. Let B be a simple body with boundary oB
defined by the solid matrix in the reference configuration. We want to find the solid matrix deformation

u : B! Rnsd and fluid pressure function h : B! R1 (with h � hf , dropping the subscript from now on) such

that the following equations are satisfied:

DIVðPÞ þ q0g� q0a ¼ 0 in B; ð3:1Þ

qf

Kf

_hþ qf
_J þDIVðQÞ ¼ 0 in B; ð3:2Þ

u ¼ ud on oBd ; ð3:3Þ

P �N ¼ t on oBt; ð3:4Þ

h ¼ hp on oBp; ð3:5Þ

Q �N ¼ Q on oBq; ð3:6Þ
where a is the material acceleration of the solid phase (also equal to the material acceleration of the fluid

phase based on the assumption that ea � 0), ud and hp are prescribed solid matrix deformation and fluid

pressure function, respectively (Dirichlet boundary conditions); and t and Q are prescribed nominal trac-

tions and nominal fluid fluxes on a unit area with unit normal N in the undeformed solid matrix config-

uration, respectively (Neumann boundary conditions). For purposes of physical definition, h ¼ Jpf is the
intrinsic Kirchhoff pore pressure function.

The initial conditions are

uðX ; 0Þ ¼ u0ðXÞ; _uðX ; 0Þ ¼ _u0ðXÞ; hðX; 0Þ ¼ h0ðXÞ; X 2 B: ð3:7Þ

The evolutions of the state variables are as follows. We assume a constant fluid bulk modulus Kf so that the

intrinsic fluid mass density qf varies with the intrinsic fluid pressure pf according to

Kf ¼ qf

dpf
dqf

¼ constant ) qf ¼ qf0 exp
pf � pf0
Kf

� 	
; ð3:8Þ

where qf0 is the initial reference fluid mass density at initial fluid pressure pf0. Balance of mass for the solid
phase assuming Ks !1 reduces to _/s þ /s divðvÞ ¼ 0, which gives the evolution of the volume fractions as

/s ¼ /s0=J ; /f ¼ 1� ð1� /f0Þ=J ; ð3:9Þ
where /s0 and /f0 are the reference values of /s and /f when J ¼ 1. In the above descriptions the following

usual boundary decompositions hold

oB ¼ oBd [ oBt ¼ oBh [ oBq; oBd \ oBt ¼ oBh \ oBq ¼ ;; ð3:10Þ

where the overlines denote a closure. The overdots are used above in place of the material time

derivative operator dð�Þ=dt since there is no ambiguity now that we only follow the motion of the solid
phase.
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3.2. Weak form

Following the standard arguments of variational principles, we define the following spaces. Let the space

of configurations be

Cu ¼ fu : B! Rnsd j ui 2 H 1; u ¼ ud on oBdg

and the space of variations be

Vu ¼ fg : B! Rnsd jgi 2 H 1; g ¼ 0 on oBdg;

where H 1 is the usual Sobolev space of functions of degree one. Also, we define the space of pressure

functions as

Ch ¼ fh : B! R jh 2 H 1; h ¼ hp on oBpg

and the corresponding space of variations as

Vh ¼ fw : B! R jw 2 H 1;w ¼ 0 on oBpg:

Let G : Cu � Ch �Vu ! R be given by

Gðu; h; gÞ ¼
Z
B

ðGRADg : P � q0g � gþ q0g � aÞdV �
Z
oBt

g � tdA: ð3:11Þ

Then, balance of linear momentum is given by the condition Gðu; h; gÞ ¼ 0, which is equivalent to (3.1)

if P and g are assumed to be C1. Further, let H : Cu � Ch �Vh ! R be given by

Hðu; h;wÞ ¼
Z
B

w
qf

Kf

_h

�
þ wqf

_J �GRADw �Q
	
dV �

Z
oBq

wQdA: ð3:12Þ

Again, one can show that balance of mass is given by the condition Hðu; h;wÞ ¼ 0, which is equivalent to

(3.2) if w and h are assumed to be C1.

The weak form of the boundary-value problem is as follows. Find u 2 Cu and h 2 Ch such that

Gðu; h; gÞ ¼ Hðu; h;wÞ ¼ 0 ð3:13Þ

for all g 2Vu and w 2Vh.

Condition (3.13) emanates directly from the strong form of the boundary-value problem. We note that

both G and H possess a Lagrangian form invoked by a pull back to the solid matrix reference configuration.

The assumption of negligible relative acceleration allows us to capture the fluid degree of freedom in terms

of the scalar field variable h whose variation with time is described materially at a point attached to the

solid matrix. From an implementational standpoint, this is crucial for developing mixed finite elements

containing pressure and displacement nodes that move with the solid matrix, similar to those employed in
the infinitesimal theory. For future reference, we note the following equivalent expressionsZ

B

GRADg : PdV ¼
Z
B

gradg : sdV ¼
Z

utðBÞ
gradg : rdv; ð3:14aÞ

Z
B

GRADw �QdV ¼
Z
B

gradw � JqdV ¼
Z

utðBÞ
gradw � qdv: ð3:14bÞ
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As for the ‘internal virtual work,’ the first (stress) equation writesZ
B

GRADg : PdV ¼
Z
B

GRADg : P0inv dV þ a
Z
B

GRADg : F � C :
1

2
_C

� 	� �
dV

�
Z
B

hGRADg : F�t dV ¼
Z
B

gradg : s0inv dV

þ a
Z
B

gradg : c : gradvdV �
Z
B

hdivgdV ; ð3:15Þ

and we readily see a stiffness-proportional damping represented by the second integral on the right-hand

side. The second (flow) equation writesZ
B

GRADw �QdV ¼
Z
B

qf GRADw � K � 1

/fqfg
GRAD

/fh
J

� 	�
þ F t � a� g

g

�
dV

¼
Z
B

qf gradw � k � 1

/fqfg
grad

/fh
J

� 	�
þ a� g

g

�
dV : ð3:16Þ

Expanding (3.24) gives

G1 þ G2 þ G3 þ G4 ¼ GextðtÞ; ð3:17aÞ

H1 þH2 þH3 þH4 ¼HextðtÞ; ð3:17bÞ
where

G1ða; u; hÞ ¼
Z
B

q0g � adV ;

G2ðv; uÞ ¼ a
Z
B

gradg : c : gradvdV ;

G3ðu; hÞ ¼
Z
B

ðgradg : s0inv � hdivgÞdV ;

G4ðu; hÞ ¼ �
Z
B

q0g � gdV ;

GextðtÞ ¼
Z
oBt

g � tdA

ð3:18Þ

and

H1ða; u; hÞ ¼ �
1

g

Z
B

qf gradw � k � adV ;

H2ðv; u; _h; hÞ ¼
Z
B

w
qf

Kf

_h

�
þ qf

_J
	
dV ;

H3ðu; hÞ ¼ �
1

g

Z
B

1

/f
gradw � k � grad /fh

J

� 	
dV ;

H4ðu; hÞ ¼
1

g

Z
B

qf gradw � k � gdV ;

HextðtÞ ¼
Z
oBq

wQdA:

ð3:19Þ

Further, u ¼ x� X represents the displacement vector of a material point attached to the solid matrix, so

that v ¼ _u and a ¼ €u. We note that all Gi’s andHi’s are functions of the evolving configuration through the
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displacement vector u, as well as of h whenever the fluid mass density appears inside the integral sign (due to
the fluid compressibility). The latter effect is usually ignored in a majority of cases, and if this is done, and

the infinitesimal limit is taken, then G4 andH4 can be moved to the right-hand side and combined with Gext

andHext, respectively. Finally, we note that damping appears through the term G2 (viscous damping of the

solid matrix) and H2 (seepage-induced damping).

3.3. Time integration and linearization

We consider the Newmark [54] family of time integration algorithms for the solution of hyperbolic

boundary-value problems,

u
h

� �
¼ u

h

� �
n

þ Dt
v
_h

� �
n

þ Dt2

2
ð1� 2bÞ a

€h

� �
n

þ bDt2
a
€h

� �
; ð3:20Þ

v
_h

� �
¼ v

_h

� �
n

þ ð1� cÞDt a
€h

� �
n

þ cDt
a
€h

� �
; ð3:21Þ

where Dt ¼ t � tn is the time step, the variables with subscripts n are the given starting values associated

with time tn, and b and c are time integration parameters controlling the accuracy and numerical stability of

the algorithm. With fixed starting values at time tn, the first variations are given by

du
dh

� �
¼ bDt2

da
d€h

� �
;

dv
d _h

� �
¼ cDt

da
d€h

� �
: ð3:22Þ

We shall henceforth adopt the acceleration form and express all the variations in terms of da and d€h.
The recursion relation takes the form

X4
i¼1
ðGiÞnþ1 ¼ Gextðtnþ1Þ;

X4
i¼1
ðHiÞnþ1 ¼Hextðtnþ1Þ: ð3:23Þ

The right-hand sides are prescribed functions of time, whereas the left hand-sides depend in a nonlinear way

on the values of the primary variables as well as on the evolving configurations at each time instant of the

solution. Linearized (i.e., tangential, or incremental) versions are sometimes used to solve this system of

equations, but here the linearization is aimed at developing an expression for the algorithmic tangent

operator useful for Newton iteration. The relevant tangential relations are

X4
i¼1

X
�

oGi

oð�Þ dð�Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dGi

¼ dGext;
X4
i¼1

X
�

oHi

oð�Þ dð�Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
dHi

¼ dHext; ð3:24Þ

where ‘�’ denotes all primary variables on which each of the integral expressions depends. For example, for

G1 the primary variables are a, u, and h (see (3.18) and (3.19)). The partial derivatives with respect to ‘�’

have been presented by Borja and Alarc�on [25] for most of the integral expressions enumerated above, and

below we show the results relevant to dynamic analysis as presented above.

The variation of the Jacobian is

dJ ¼ J divðduÞ ¼ JbDt2 divðdaÞ: ð3:25Þ
This gives the variations of the volume fractions

d/s ¼ �/s0J�1bDt2 divðdaÞ; d/f ¼ ð1� /f0ÞJ�1bDt2 divðdaÞ; ð3:26Þ
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where /s0 þ /f0 ¼ 1. We note that dðJpfÞ ¼ dh ¼ Jdpf þ pfdJ , and thus the variation of the intrinsic fluid

pressure is

dpf ¼
bDt2

J
½d€h� hdivðdaÞ
: ð3:27Þ

From (3.8), the variation of the intrinsic fluid mass density is

dqf ¼
qf

Kf

dpf ¼
qfbDt2

KfJ
½d€h� hdivðdaÞ
; ð3:28Þ

and so the variation of the total mass density (with dqs ¼ 0 from the assumed incompressibility of the solid

grains) is

dq ¼ qsd/s þ qfd/f þ /fdqf ¼ bDt2½c1d€hþ c3 divðdaÞ
; ð3:29Þ
where

c1 ¼
/fqf

KfJ
; c2 ¼

1

J
qfð1

�
� /f0Þ � /fqf

h
Kf

�
; c3 ¼ c2 � qs/

s0=J : ð3:30Þ

Thus, the variation of the pull-back total mass density q0 is

dq0 ¼ dðJqÞ ¼ Jdqþ qdJ ¼ JbDt2½c1d€hþ ðc3 þ qÞdivðdaÞ
: ð3:31Þ
As noted earlier, dq0 6¼ 0 since the mass of the fluid phase is not conserved by the motion of the solid phase.

The variation of G1 from the chain rule is

dG1 ¼
Z
B

q0g � dadV þ
Z
B

dq0g � adV

¼
Z
B

q0g � dadV þ bDt2
Z
B

Jc1g � ad€hdV þ bDt2
Z
B

ðJc3 þ q0Þg � adivðdaÞdV : ð3:32Þ

With dF ¼ gradðduÞ � F, dF�1 ¼ �F�1 � gradðduÞ, and dðgradwÞ ¼ grad dw� gradw � gradðduÞ, we have

dG2 ¼ a
Z
B

dðgradgÞ : c : gradvdV þ a
Z
B

gradg : dc : gradvdV þ a
Z
B

gradg : c : dðgradvÞdV ;

ð3:33Þ
where

dðgradgÞ ¼ �bDt2 gradg � gradðdaÞ;
dðgradvÞ ¼ cDtgradðdaÞ � bDt2 gradv � gradðdaÞ;
dc ¼ 2ðdl0ÞI ¼ �kbDt2 divðdaÞI :

ð3:34Þ

We note that dg � 0 since g is a weighting function.

The variation of G3 has been presented in [25], and here we simply show the result

dG3 ¼ bDt2
Z
B

gradg : ðcþ s0inv � 1Þ : gradðdaÞdV � bDt2
Z
B

½ðd€hÞdivg� hgradtg : gradðdaÞ
dV ;

ð3:35Þ
where ðs0inv � 1Þijkl ¼ ðs0invÞjldik is the stress contribution to the moduli. Also,

dG4 ¼ �
Z
B

dq0g � gdV ¼ �bDt2
Z
B

J ½c1d€hþ ðc3 þ qÞdivðdaÞ
g � gdV ð3:36Þ
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and

dGext ¼
Z
Bt

g � dtdA ð3:37Þ

for the case of dead loading.

Next, we obtain the variation of H1, assuming k ¼constant, as

dH1 ¼ �
1

g

Z
B

qf gradw � k � dadV � 1

g

Z
B

qfdðgradwÞ � k � adV � 1

g

Z
B

dqf gradw � k � adV : ð3:38Þ

Alternative forms for the second and third integrals on the right-hand side are given below,Z
B

qfdðgradwÞ � k � adV ¼ �bDt2
Z
B

qf ½gradw� ðk � aÞ
 : gradðdaÞdV ð3:39Þ

and Z
B

dqf gradw � k � adV ¼ bDt2

Kf

Z
B

qf

J
gradw � k � a½d€h� hdivðdaÞ
dV : ð3:40Þ

The variation of H2 is

dH2 ¼
1

Kf

Z
B

wðqfd _hþ _hdqfÞdV þ
Z
B

wðqfd _J þ dqf
_JÞdV : ð3:41Þ

Since dqf ¼ /fdqf þ d/fqf ¼ bDt2½c1d€hþ c2 divðdaÞ
 from (3.30), an alternative form for the first integral on

the right-hand side of (3.41) is

1

Kf

Z
B

wðqfd _hþ _hdqfÞdV ¼ cDt
Kf

Z
B

wqfd€hdV þ bDt2

Kf

Z
B

w _h½c1d€hþ c2 divðdaÞ
dV : ð3:42Þ

We recall the relation (see [25])

d _J ¼ J ½divðdvÞ � gradtv : gradðduÞ þ divvdivðduÞ
: ð3:43Þ

We can thus rewrite the second integral on the right-hand side of (3.41) as
Z
B

wðqfd _J þ dqf
_JÞdV ¼ cDt

Z
B

wJqf divðdaÞdV þ
bDt2

Kf

Z
B

wqf divvd€hdV

þ bDt2
Z
B

wqf J
��
� h
Kf

	
divvdivðdaÞ � J gradtv : gradðdaÞ

�
dV : ð3:44Þ

The variation of H3 is

dH3 ¼ �
1

g

Z
B

d
1

qf

� 	
gradw � k � grad /fh

J

� 	
dV

� 1

g

Z
B

1

qf

dðgradwÞ � k � grad /fh
J

� 	
dV

� 1

g

Z
B

1

qf

gradw � k � d grad
/fh
J

� 	� �
dV ; ð3:45Þ
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where

d
1

qf

� 	
¼ bDt2

KfJ
½hdivðdaÞ � d€h
;

dðgradwÞ ¼ �bDt2 gradw � gradðdaÞ;

d grad
/fh
J

� 	� �
¼ bDt2 grad

/f

J

� 	
d€h

�
þ h

/s0

J 2

�
� /f

J

	
divðdaÞ

�
� bDt2 grad

/fh
J

� 	
� gradðdaÞ:

ð3:46Þ
Note again that the variation of the weighting function w is zero.

Finally, we obtain the variation of H4 as

dH4 ¼
1

g

Z
B

dqf gradw � k � gdV þ 1

g

Z
B

qfdðgradwÞ � k � gdV ; ð3:47Þ

Alternative forms for the integrals are given below,Z
B

dqf gradw � k � gdV ¼ bDt2

Kf

Z
B

qf

J
gradw � k � g½d€h� hdivðdaÞ
dV ð3:48Þ

and Z
B

qfdðgradwÞ � k � gdV ¼ �bDt2
Z
B

qf ½gradw� ðk � gÞ
 : gradðdaÞdV : ð3:49Þ

Also,

dHext ¼
Z
Bq

wdQdA: ð3:50Þ

To summarize, all the variations of the configuration-dependent integrals are expressible in terms of the

acceleration fields da and d€h.

3.4. Matrix equations and mixed finite elements

Using the standard Galerkin approximation, we construct shape functions and interpolate the solid
matrix displacements and fluid pressure functions through their nodal values. Let d, _d, and €d be the nodal

values of the solid displacement, velocity, and acceleration fields, respectively; and h, _h, and €h the nodal

values of the fluid pressure function and their first and second time derivatives, respectively. The matrix

equations for balance of momentum and balance of mass take the form

M1
€d þ C1

_d þN1ðd; hÞ � Gext ¼ 0; ð3:51Þ

M2
€d þ C2

_d þ C3
_hþN2ðd; hÞ �H ext ¼ 0: ð3:52Þ

All of the coefficient matrices and vectors have standard forms, and below we simply summarize the sources

of each term in the matrix equations, see (3.18) and (3.19)

M1
€d  G1; C1

_d  G2; N1ðd; hÞ  G3; Gext  G4;Gext; M2
€d  H1;

C2
_d þ C3

_h H2; N2ðd; hÞ  H3; H ext  H4;Hext: ð3:53Þ

Nonlinearities arise from the fact that all matrices and vectors are configuration-dependent, including some

of the terms in the external force vectors Gext and H ext. In addition, the material model itself is nonlinear

hyperelastic, which also contributes to the nonlinearity.
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The two matrix equations may be combined to yield the composite system

M1 0

M2 0

� �
€d
€h

� �
þ C1 0

C2 C3

� �
_d
_h

� �
þ N1

N2

� �
� Gext

Hext

� �
¼ 0

0

� �
: ð3:54Þ

As in the variational formulation, Newmark’s method can once again be used to integrate this system

d
h

� �
¼ d

h

� �
n

þ Dt
_d
_h

� �
n

þ Dt2

2
ð1� 2bÞ

€d
€h

� �
n

þ bDt2
€d
€h

� �
; ð3:55Þ

_d
_h

� �
¼

_d
_h

� �
n

þ ð1� cÞDt
€d
€h

� �
n

þ cDt
€d
€h

� �
; ð3:56Þ

where b and c are integration parameters, and Dt is the time step. Note in (3.54) that €h does not enter into

the equilibrium equation; however, Newmark’s method still requires this variable to calculate h and _h.
Substituting into (3.54) thus leads to a system of nonlinear matrix equations in the unknown nodal

acceleration vectors €d and €h, which can be solved by Newton’s method.
Linearized forms of the matrix equations are needed to solve the system of equations described above.

An exact tangent operator is available in closed form, as already illustrated in the preceding section. It must

be noted, however, that some terms in the tangent operator are not easily amenable to coding. Fortunately,

most of these terms result in numerically small values and contribute very little to enhance the convergence

of the iteration, and thus are simply dropped out. Note that the tangent operator is used only for iteration

purposes, and provided the iteration has sufficiently converged no additional approximation is engendered

by ignoring some of its terms.

For the record, the terms ignored in the tangent operator pertain to those of G2, specifically all the terms
involving OðDt2Þ. Thus

dG2 � acDt
Z
B

gradg : c : gradðdaÞdV :

Due to the high value of the fluid bulk modulus Kf , it may also be possible to ignore all the terms having

this quantity in the denominator, but in the present work we decided to keep them in the formulation. All

integrals are evaluated by numerical integration, and ‘mixed’ terms such as gradð/fh=JÞ in the expression
Fig. 2. Motion of solid displacement and fluid pressure nodes in a Q9P4 mixed finite element. Pressure nodes attached to the solid

matrix translate to a new configuration along with displacement nodes.
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for H3 are evaluated at the integration points by interpolating from the nodal values of h and combining

with the values of /f and J at the quadrature points.

As for the time integration, we noted earlier that all material time derivatives are developed following the

motion of the solid matrix, allowing standard mixed finite element interpolations with displacement and

fluid pressure nodes to be employed. Fig. 2 shows the motion of a Q9P4 plane strain mixed finite element,

with a nine-node biquadratic Lagrangian interpolation for the displacement field and a four-node bilinear

interpolation for the fluid pressure. The time variation of the pressure function is reckoned with respect to

the moving solid matrix, and hence the pore pressure node may be attached to the solid matrix and move
along with the displacement node. This particular element is commonly used for ‘mixed’ finite element

analysis in the infinitesimal regime, and passes the LBB condition for infinitesimal deformation [58].
4. Numerical simulations

In this section we present one- and two-dimensional (plane strain) examples highlighting the difference

between the small and finite deformation analyses of fully saturated porous media. Two finite element codes
are used for this purpose: one based on the infinitesimal formulation in which the geometric effects are

completely ignored, and a second based on the proposed finite deformation theory. Details of the infini-

tesimal model are given by Li and Borja [59]. Both the infinitesimal and finite deformation codes utilize the

Q9P4 mixed finite elements for the spatial interpolation of the solid displacement and fluid pressure fields,

as well as the Newmark time integration scheme, with time integration parameters b ¼ 0:3025 and c ¼ 0:6.
Note that for the linear theory, 2b P c P 1=2 results in an unconditionally stable algorithm [58]. Also, in the

infinitesimal regime the neo-Hookean hyperelastic solid readily degenerates to the conventional Hookean

material of linear elasticity, thus making the comparison between the infinitesimal and finite deformation
solutions meaningful.

4.1. Porous layer under uniform step load

As a first example we consider a porous layer of initial thickness H0 ¼ 10 m subjected to a uniform step

load. Although this problem is one-dimensional, we model it as a plane strain problem consisting of a

saturated solid matrix column 10 m deep, see Fig. 3. The upper boundary is perfectly drained and subjected

to a step load of intensity w; the remaining boundaries are rigid and impervious. The assumed material
parameters are: Lam�e constants for the solid matrix (in MPa) k ¼ 29 and l ¼ 7; initial volume fractions

/s0 ¼ 0:58 and /f0 ¼ 0:42; reference intrinsic mass densities (in kg/m3) qs0 ¼ 2700 and qf0 ¼ 1000; fluid bulk

stiffness Kf ¼ 2:2� 104 MPa; hydraulic conductivity k ¼ j1 (isotropic), where j ¼ 0:1 m/s; and solid matrix
damping coefficient a ¼ 0 (inviscid hyperelastic response). The time step was taken as Dt ¼ 0:01 s; other

time steps were also tested but they appear to have no significant influence on the response histories re-

ported herein. The very high fluid bulk modulus, typical for water [57], makes the fluid phase much more

incompressible compared to the solid matrix.

The analytical solution for the steady-state compression DH in the geometrically linear regime is

DH ¼ wH0

Mc

; Mc ¼ kþ 2l; ð4:1Þ

where Mc is the constrained modulus of the solid matrix. For a surface load w ¼ 40 kPa, Fig. 4 shows the

time variations of the predicted compression by the small and finite deformation analyses, along with the

steady-state analytical solution. Because the compression of the porous layer is so small, both numerical

models predict essentially the same compression-time responses, including the steady-state responses which

agree with the analytical solution. On the other hand, with higher loads, w ¼ 2, 4, and 8 MPa, Fig. 5 shows



Fig. 3. Porous layer under uniform step load: (a) problem geometry; (b) finite element mesh.
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Fig. 4. Porous layer under uniform strip load: vertical displacement–time histories at a load level wðtÞ ¼ 40 kPa.
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the small deformation solutions consistenly predicting larger vertical compression compared to the cor-

responding finite deformation solutions.

4.2. Porous matrix under partial compression

As a second example, we consider a porous matrix under partial compression and deforming in plane

strain. The finite element mesh for this problem is shown in Fig. 6. The mesh is composed of 100 Q9P4

mixed elements of dimensions 1 m · 1 m. The loaded part of the top surface is an impervious boundary; the
free part is a drainage boundary. The right and left vertical boundaries are supported horizontally by

rollers, and impervious; the bottom surface is supported vertically by rollers and is also impervious. The

assumed material parameters are as follows: Lam�e constants (in MPa) k ¼ 8:4 and l ¼ 5:6; initial volume
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Fig. 6. Porous matrix under partial compression. Surface pressure wðtÞ is a step load; vertical sides and bottom boundary are

impervious and on roller supports, upper side AB is a drainage boundary, while upper side BC is an impervious boundary.
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fractions /s0 ¼ 0:58 and /f0 ¼ 0:42; reference intrinsic mass densities (in kg/m3) qs0 ¼ 2700 and qf0 ¼ 1000;
fluid bulk stiffness Kf ¼ 2:2� 104 MPa; hydraulic conductivity k ¼ j1 (isotropic), where j ¼ 1:0� 10�4

m/s; and solid matrix damping coefficient a ¼ 0 (inviscid hyperelastic response).

The choice of an ‘optimal’ time step Dt for a given finite element discretization is an important aspect of

dynamic analysis. It is well known that simply reducing the time step while holding the mesh length fixed in

fact worsens the results since in this case we converge to the exact solution of the spatially discrete, tem-

porally continuous system rather than the exact solution of the original partial differential equations [58].

Obviously, the accuracy of the solution also worsens when the time step is very large. For these reasons, it is

desirable to compute at a time step as close to critical as possible, and for a three-node (quadratic) rod
element the critical time step is [58]

Dt ¼ hffiffiffi
6
p
c
; ð4:2Þ

where h is the element length and c is the characteristic wave speed.
In a porous medium three types of body waves exist: a shear wave, a longitudinal wave of the first kind,

and a longitudinal wave of the second kind [44,45,60]. The speed of the shear wave in an elastic porous

medium is given by Coussy [48] as

cs ¼
l

qs þ nqf

� 	1=2

; ð4:3Þ

where l is the elastic shear modulus (also equal to the Lam�e constant l) and n is a function of the tortuosity
of flow. If we set n ¼ 1, then the denominator in (4.3) becomes equal to the saturated mass density q and we

recover the wave speed under a fully undrained condition. For the problem at hand, qs0 þ qf0 ¼ 2000 kg/m3,

and cs � 53 m/s. The longitudinal wave speeds are not as straightforward to estimate since they generally

depend on the elastic and dynamic properties of the material, including its hydraulic conductivity
[44,45,48].

An alternative approach to estimating the speed of the most significant wave (and thus, get an idea of

the critical time step to use in the numerical simulations) is to perform a preliminary analysis. Here we

apply a surface load wðtÞ ¼ 15 kPa on the mesh of Fig. 6 and plot the temporal variations of the vertical

displacements of corner nodes A and C in Fig. 7, using a trial time step of Dt ¼ 0:01 s. The applied load

in this case is so small that the small deformation and finite deformation analyses resulted in nearly

identical response histories. Fig. 7 shows that nodes A and C move by almost the same amount but in

opposite directions, suggesting a nearly undrained (or nearly incompressible) deformation response of the
porous structure. Also, we see that the step load produces a disturbance which is reflected back after a

time period of approximately 0.5 s. If we consider this disturbance to have traveled over a distance equal

to twice the mesh dimensions (20 m in this case), then the speed of the significant wave is roughly 40 m/s,

which is nearly equal to the previously estimated shear wave velocity. Note that the hydraulic conduc-

tivity for this example is so small that the solution at t ¼ 2 s should not be construed as corresponding to

end of consolidation.

To investigate the influence of the hydraulic conductivity on the speed of the significant wave, we repeat

the analysis but this time assume a much higher value of hydraulic conductivity, j ¼ 0:1 m/s. Fig. 8 shows
the time histories of the vertical displacements of corner nodes A and C. We see that corner node A ap-

proaches a steady-state vertical downward displacement of 0.5 mm whereas node C approaches a down-

ward displacement of 8 mm, suggesting a significant compaction of the porous matrix in the vicinity of the

surface load w due to significant drainage that took place over the course of the solution. Note, however,

that the time interval between successive reflected waves remains nearly equal to 0.5 s, suggesting that the

wave speed is not significantly affected by the value of the hydraulic conductivity.
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If we set the wave speed at c ¼ 40 m/s and the element dimension at 1 m, then (4.2) gives a critical
time step of Dt ¼ 0:0102 s. It is thus desirable to select a time step that is very close to this value, and in

the remaining analyses we assume a time step of Dt ¼ 0:01 s. It must be noted that the time interval

between successive waves is not affected much by the time step, i.e., we did not obtain a wave speed of



C. Li et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 3837–3870 3859
40 m/s because we utilized a trial time step of 0.01 s in the preliminary analysis; if we had used a
different time step we would have obtained approximately the same wave speed, although the response

histories would have different amplitudes (and even shapes). This latter statement is elaborated further

below.

With these preliminary results at hand, we now proceed with the finite deformation simulations and

apply a much higher step load wðtÞ ¼ 3 MPa (with the hydraulic conductivity remaining at a value j ¼ 0:1
m/s). The objectives of the remaining part of the analysis are to compare the small and finite deformation

solutions and investigate the effect of the solid matrix damping coefficient a on the predicted response

history curves. To this end, we perform small and finite deformation numerical calculations at the following
values of damping coefficient a: 0.002, 0.02, and 0.2 s. Figs. 9 and 10 show the resulting vertical dis-

placement response histories for nodes A (upper left corner), B (upper middle node), and C (upper right

corner) of the mesh.

Figs. 9 and 10 show that the greatest oscillations occur at the corner nodes, and the least oscillation at

the middle node, which is to be expected. The time interval between successive waves remains approxi-

mately equal to 0.5 s, suggesting the wave speed is not greatly influenced by the value of the damping

coefficient and the nature of analysis (small deformation or finite deformation). Oscillations at the corner

nodes persist over a long period of time with a small a, but the steady-state solution is achieved over a short
period of time with a large a. This indicates a more significant effect of the solid matrix damping as

compared to the seepage-induced damping (since the latter type of damping is present in all the solutions

anyway). Finally, the finite deformation solutions consistently predict smaller vertical displacements

compared to the small deformation solutions.

We return to the undamped case and show in Fig. 11 the influence of the time step on the calculated

vertical displacement time histories of the three subject nodes. Here we utilize the infinitesimal formulation
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B and C as functions of damping coefficient ALPHA (¼ a).
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for illustration purposes and compare the response histories obtained using Dt ¼ 0:01 s, the ‘optimal’ time
step, and Dt ¼ 0:001 s, a much refined time step, in the numerical calculations. Note that the time interval
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between successive reflected waves remains approximately equal to 0.5 s regardless of the time step used.
However, the amplitudes and even the shapes of the response curves are greatly affected by the value of

the time step. We reiterate that the solution obtained using Dt ¼ 0:01 s is closer to the true solution of the

original partial differential equations, whereas the solution obtained using Dt ¼ 0:001 s is closer to the

solution of the spatially discrete temporally continuous problem.

4.3. Strip footing under harmonic loading

As a final example, we consider a saturated porous foundation supporting a vertically vibrating strip
footing. The footing load (in MPa) is given by the harmonic function wðtÞ ¼ 3� 3 cosðxtÞ, where x ¼ 100

rad/s is the circular frequency. The footing is 2 m wide, and the porous foundation block is 20 m wide and

10 m deep. Fig. 12 shows the finite element mesh; the left vertical boundary is the plane of symmetry, and

hence only the right half of the region is modeled. The boundary conditions on the middle line of the block

are applied via horizontal rollers. The upper boundary is free. The left, right and bottom boundaries are

supported, and no drainage is allowed. The material parameters are taken as: Lam�e constants (in MPa)

k ¼ 8:4 and l ¼ 5:6; initial volume fractions /s0 ¼ 0:67 and /f0 ¼ 0:33; reference intrinsic mass densities (in
kg/cm3) qs0 ¼ 2500 and qf0 ¼ 1000; fluid bulk stiffness Kf ¼ 2:2� 104 MPa; hydraulic conductivity k ¼ j1
(isotropic), where j varies from 0.0001 to 0.1 m/s; and solid matrix damping coefficient a ¼ 0:02 s. The time
step is taken as Dt ¼ 0:01 s.

Figs. 13 and 14 show the vertical displacements of node D, located directly below the center of the

footing, corresponding to different values of j as predicted by the small and finite deformation analyses,

respectively. We see that the higher the hydraulic conductivity, the higher the response amplitude and
Fig. 12. Strip footing under harmonic loading. Uniform surface pressure wðtÞ is a harmonic load; vertical sides and bottom boundary

are impervious and on roller supports, upper side is a drainage boundary and free.
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vertical displacements due to increased drainage and faster compaction of the porous matrix. Figs. 15–18
superimpose these curves for each value of the hydraulic conductivity and demonstrate that the vertical

displacements predicted by the small deformation analyses are consistently larger than those predicted by

the finite deformation analyses.
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Fig. 16. Strip footing under harmonic loading: vertical displacement–time histories of node D at j ¼ 0:001 m/s.
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To complete the analysis, we show in Figs. 19–23 the time histories of the excess pore fluid pressure at
node E located at the very bottom of the porous block along the centerline of the footing (lower left corner

node in Fig. 12). The excess pore fluid pressure in this case is defined as the incremental fluid pressure

generated by the application of wðtÞ on top of the initial hydrostatic value at the beginning of the analysis,

and takes on a Cauchy definition. Note in Figs. 19 and 20 that increasing the hydraulic conductivity value
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Fig. 17. Strip footing under harmonic loading: vertical displacement–time histories of node D at j ¼ 0:01 m/s.
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Fig. 18. Strip footing under harmonic loading: vertical displacement–time histories of node D at j ¼ 0:1 m/s.
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not only produces a phase shift but also causes the excess pore fluid pressure–time histories to oscillate
around the value zero due to faster drainage. Figs. 21–23 also show that the amplitudes of the Cauchy

excess pore fluid pressure are higher for the finite deformation solutions than for the small deformation

solutions. The latter observation could have significant implications on the mathematical simulation of the

liquefaction phenomena in saturated granular soils: by neglecting the finite deformation effects the dis-

placements are overestimated while the excess pore fluid pressures are underestimated. This has a com-
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pounding effect inasmuch as for the same displacement the small deformation theory could severely
underestimate the excess pore fluid pressure buildup, possibly leading to a severe underestimation of the

liquefaction susceptibility as well.
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Fig. 21. Strip footing under harmonic loading: excess pore fluid pressure–time histories of node E at j ¼ 0:001 m/s.
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Fig. 22. Strip footing under harmonic loading: excess pore fluid pressure–time histories of node E at j ¼ 0:01 m/s.
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We conclude this example by showing in Fig. 24 the convergence profile exhibited by the Newton
iterations for different time steps. We emphasize that the mixed formulation results in a tangent operator

with a large condition number. However, with direct linear equation solving, convergence to a relative error



Fig. 24. Strip footing under harmonic loading: convergence profile of global Newton iterations (N ¼ step number).
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Fig. 23. Strip footing under harmonic loading: excess pore fluid pressure–time histories of node E at j ¼ 0:1 m/s.
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tolerance of 10�10 (relative to the L2-norm of the residual vector) is very much possible. In fact, even though
some of the terms of the tangent operator have been ignored nearly quadratic rate of convergence of the

iterations was still achieved. This performance well illustrates the potential of the formulation and the

iterative algorithm to accommodate more complex material constitutive models.
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5. Summary and conclusions

We have presented a finite element model for the solution of dynamic consolidation of fully saturated

porous media in the regime of large deformation. Momentum and mass conservation laws have been

written in Lagrangian form by a pull-back from the current configuration to the reference configuration

following the solid matrix motion. A complete formulation based on the motion of the solid and fluid

phases was first presented; then approximations have been made to arrive at a so-called (v; p)-formulation,
which is subsequently implemented in a finite element code.

A finite deformation formulation is necessary to accurately predict the transient response of saturated

porous media at large strains. Geometrically linear models are not suitable for this purpose since they do

not account for the evolving configuration and finite rotation that could have first-order effects on the

predicted responses. A specific application example where the proposed finite deformation formulation

has been noted to be most useful is the prediction of the liquefaction susceptibility of saturated granular

soils since, by neglecting the geometric nonlinearity the liquefaction potential of these materials could be

severely underestimated. Other application areas abound in the fields of biomechanics and materials

science, among many others, where the underlying physics of porous materials is described by multiphase
mechanics.
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