1D, Foley
Eduor

Graphies and
Image Processing

The Keystroke-Level
Model for User
Performance Time
with Interactive
Systems

Stuart K. Card and Thomas P. Moran
Kerox Palo Alto Research Center

Allen Newell
Carnegie-Mellon University

There are several aspects of user-computer
performance that system designers should
systematically consider. This article proposes a simple
model, the Kevstroke-Level Model, Tor predicting one
aspect of performance: the thoe it takes an expert user
to perform a given task on a given computer system.
The model is based on counting keystrokes and other
low-level operations, including the user’s mental
preparations and the system's responses. Performance
is coded in terms of these operations and operator
times sumned 1o give predictions. Heuristic rales are
given for predicting where mental preparations occur.
When tested apainst data on 10 different systems, the
model’s prediction error is 21 percent for individual
tasks. An example is given to Blustrate how the mode
can be wsed to produce parametric predictions and how
sensitivity analysis can be used to redecm conchsions
i the face of yncertain assumptions, Finally, the model
is compared to several shopler versions. The potential
risle for the Kevstroke-Leve]l Model in system design bs
discussed.

Key Words spd Phrases: human-computer aterlace,
human-computer interaction, user model, user
performance, cognitive psychology, ergonomics, human
factors, systems design

CR Categorles: 3.36, 4.6, 8.1

Permission to copy witbont fer all or perr of this material &
gsammi provided that the cogies are not m&é& r d§§zﬂi’“§fsif€ﬁ §“€>§’ d«fﬁm

m»mm & foe and/or ¢

resses. wﬁ;, Qiﬁm wnd

1. latroduction

The design and evaluation of nteraciive computer
systems should take into account the 1otal performance
M”ﬁ*zﬁ* combined user-computer system. Such an atcount
would reflect the psychological characteristics of users
and thewr inwraction with the task and the computer.
This rarely occurs i any svstematic and exphat way,
The causes of this falure may lie parldy o attitudes
toward the possibility of dealing successfully with psy-
chological factors, such as the belief that intuition, sub-
jective expenence, and anecdote form the only possible
bases for dealing with them. Whatever may be true of
these more global issues, one major cause 15 the absence
of good analysis tools for assessing combined user-com-
puter performance.

There exists quite a bit of research relevant to the
area of user-computer performance, but most of it s
prelimunary in nature. Pew et al [14], 10 a review of 40
potentially relevant human-system performance models,
conclude “that integrative models of humanp performance
compatible with the requirements for representing com-
mand and control system performance do not exist at the
present time.” Ramsey and Atwood [15], after reviewing
the human factors literature pertinent 1o computer sys-
tems. conciude that while there exists enough material o
develop a qualitative “human factors design guide,”
there 15 insufficient matenal for a “*qwmzmism reference
handbook.”

This paper presents one specific quantitative analysis
tool: a simple model for the time it takes a user (o
perform a task with a given method on an interactive
computer system. This model appears to us to be simple
enough, accurate enough, and flexible enough o be
apphied in pracucal design and evaluation situations.

The model addresses only a single aspect of perform-
ance. To put this aspect into perspective, note that there
are many different dimensions to the performance of a
user-computer system:

— Time. How long does 1t take a user to accomplish a
given set of tasks using the system”

— Errors, How many errors does a user make and how
serious are they?

— Learning. How long does ot take a novice user to
learn how 10 use the system to do a given set of
tasks?

-~ Functionality. What range of tasks can a user do in
practice with the system?

vvvvv Recall. How easy 15 1t for a user to recall how to use
the system on a task that he has not done for some
time?

RGBS

The wﬁmﬁ w?’ i%m fopor_are Mmf n a%gﬁ%mimiimi mr»&éxf »%
axf g . § o B WW %"@f the %ﬁ&&“%&:i’ m@@aﬁxh ;;smggmzza saf w;m i%w %zmy
dewcribed in Ul paper is 8 part, see {5

Commrpamsiions fuly 1900
of Yoshuena 23
the ALM Hapber 7

Concentration. How many things does a user have
to keep in mind while using the system?

Fatigue. How tired do users get when they use the
system for extended periods?

Acceprability. How do users subjectively evaluate
the system?

Neat, note that there is no single kind of user. Users
vary along many dimensions:

~Their extent of knowledge of the different tasks.
Their knowledge of other systems, which may have
positive or negative effects on the performance in
the system of interest,

~Their metor skills on various input devices (e.g.,
typing speed).

~Their general technical ability in using systems {(e.g.,
Programmers vs. NONProgrammers).

-~ Their experience with the system, i.¢., whether they
are novice users, who know little about the system;
casual users, who know a moderate amount about
the system and use it at irregular intervals; or expert
users, who know the system intimately and use it
frequently.

Finally, note that there is no single kind of task. This
is especially true in interactive systems, which are ex-
pressly built around a command language to permit a
wide diversity of tasks to be accomplished. The number
of qualitatively different tasks performable by a modern
text editor, for instance, runs to the hundreds.

All aspects of performance, all types of users, and all
kinds of tasks are important. However, no uniform ap-
proach to modeling the entire range of factors in a simple
way appears possible at this time. Thus, of necessity, the
model to be presented is specific to one aspect of the
total user-computer system: How long it takes expert
users to perform routine lasks.

The model we present bere is simple, yet effective.
The central idea behind the model is that the time for an
expert to do a task on an interactive system is determined
by the time it takes to do the keystrokes. Therefore, just
write down the method for the task, count the number
of keystrokes required, and multiply by the time per
keystroke to get the total time. This idea 1s a litle too
simplistic. Operations other than keystrokes must be
added to the model. Since these other operations are at
about the same level (time grain) as keystrokes, we dub
it the “Keystroke-Level Model.” (The only other similar
proposal we know of is that of Embley et al. [9], which
we discuss in Section 6.1.)

The structure of this paper is as follows: Section 2
formulates the time prediction problem more precisely.
Section 3 lays out the Keystroke-Level Model. Section 4
provides some empirical validation for the model. Sec-
tion 5 illustrates how the model can be applied in prac-
tice. And Section 6 analyzes some simpler versions of the
model.

k. 4

2. The Time Prediction Problem

The prediction problem that we will address is as
follows:

Given: A task (possibly involving several subtasks);
the command language of a system; the motor skill
parameters of the user; the response time parameters of
the system; the method used for the task.

Predici: The time an expert user will take to execute
the task using the system, providing he uses the method
without error.

Several aspects of this formulation need explication,
especially the stipulations about execution, methods, and
the absence of error.

2.1 Unit Tasks and Execution Time

Given a large task, such as editing a large document,
a user will break it into a series of small, cognitively
manageable, quasi-independent 1asks, which we call unir
tasks [4; 5, c¢h. 11]. The task and the interactive system
influence the structure of these unit tasks, but unit tasks
appear to owe their existence primarily to the memory
limits on human cognition. The importance of unit tasks
for our analysis is that they permit the time to do a large
task 1o be decomposed into the sum of the times to do its
constituent unit tasks. Note that not all tasks have a unit-
task substructure. For example, inputting an entire man-
uscript by typing permiis a continuous throughput or-
ganization.

For our purposes here, a unit {ask has two parts: (1)
acquisition of the task and (2) execution of the task
acquired. During acguisition the user builds a mental
representation of the task, and during execution the user
calls on the system facilities to accomplish the task. The
total time to do a unit task is the sum of the time for
these two parts:

Trosn = qui;im’ + Texecnte

The acquisition time for a unit task depends on the
characteristics of the larger task situation in which 1t
occurs. In a manuscript interpretation situation, in which
unit tasks are read from a marked-up page or from
written instructions, it takes about 2 to 3 seconds to
acquire each unit task. In a routine design situation, in
which unit tasks are generated in the user’s mind, it takes
about 5 to 30 seconds to acquire each unit task. In a
creative composition situation, it can take even longer.

The execution of a unit task involves calling the
appropriate system commands. This rarely takes over 20
seconds (assuming the system has a reasonably efficient
command syntax). If a task requires a longer execution
time, the user will likely break it into smaller unit tasks.

We have formulated the prediction problem to pre-
dict only the execution time of unit tasks, not the acqui-
sition time, This is the part of the task over which the
system designer has most direct control (Le. by manip-
ulating the system’s command language), so its predic-
tion suffices for many practical purposes. Task acquisi-

Communioations Fuly 1980
of Volume 33
the AUM Mumber 7

ton umes are mghly vanable. except i speaial situanions
{such as the manuscnpt interpretation siuationy; and we
can say hittle vet about predicting them.

Two umportant assumptions underlie our treatment
of execution tme. Furst, execution time 15 the same no
matter how a task 5 acquired. Sevond, acusiiion tme
and execution ume are independent {e.g., reducing exe-
cution ume by making the command language more
efficient does not affect acquisivon ume). These assump-
tons are no doubt false at a fine level of detail, but the
error they produce 3 probably well below the threshold
of convern in practical work.

1.1 Methods

A method 15 8 sequence of system commands for
execuling a unit task thas forms a well-integrated (“com-
piled”) segment of a user’s behavior, It is characteristic
of an expert user that be has one or more methods for
each type of unit task that he encounters and that he can
quickly {in about a second) choose the appropriate
method in any instance. This is what makes expert user
behavior routine, as opposed 0 novice user behavior,
which is disunctly nonroutine.

Methods can be specified at several levels. A user
actually knows a method at all us levels, from a general
system-independent functional specification, down
through the commands in the language of the computer
system, 1o the keystrokes and device manipulations that
actually communicate the method to the svstem. Models
mg:x deal with methods defined at any of these levels [4,

11]. The Keystroke-Level Model adopts one specific
level—1he keystroke level—to formalize the notion of a
method, leaving all the other levels 1o be treated infor-
mally.

Many methods that achieve a given task can exist. In
general such methods bear no systematic relationship to
each other {except that of attaining the same end). Each
can take a different amount of time 10 execute, and the
differences can be large. Thus, in general, if the method
is unknown, reasonable predictions of execution time are
not gm@%@%& For this reason, the proper prediction prob-
lemn B the one posed at the beginning of the section:
Predict the time given the method.

1.3 Error-Free Execution

The Keystroke-Level Model assumes that the user
faithfully executes the given method. The user deviates
from a postulated method when he makes an error. Up
to a fourth of an expert’s time can be spent correcting
errors, though users vary in their trade-off between speed
and errors. We are simply ignoring the tasks containing
errors and only predicting the error-free tasks, for we do
oot know how to predict where and how often errors
occur. But, if the method for correcting an error is given,
the model can be used to predict how long it will take 1o
make the correction. Indeed, experts handle most errors
n routine ways, i.e., according 1o fized, available meth-

3 The Reysuroke-Level Model

We lay out the primative operators for the Key ystroke.
Level Model and give a set of heursiios for coding
methods in terms of these operators, Then we present g
few examples of method encoding,

3.1 Operators

The Keystroke-Level Model asserts that the eXecu-
ton part of a task can be described 1o terms of four
different physical-motor operators: K (keystroking), P
{pointing), H (homung). and D (drawing). and vone mental
operator. M, by the user. plus a response operator, R, by
the system. These operators are bisted in Figure |, Exe-
cution tume is sumply the sum of the time for each of the
OPETRLOTS.

= T+ Tp+ T+ Tp+ T+ T th

Muost operators are ;wmmmi 1o take 4 constant tune for
each occurrence, €.g., Tx = ngix, where ny 15 the number
of keystrokes md 5;& 15 the ume per keystroke. (Operators
D and R are treated somewhat differently.)

The most frequently used operator is K, which rep-
resents & keystroke or a button push {on a typewriter
keyboard or any other button device). K refers 10 keys,
not characters (e.g.. hitting the suiFT key counts as a
separate K). The average time for K, 14, will be taken w0
be the standard typing rate, as determined by standard
one-minute (yping tests. This is an approximation in two
respects. First, keying time is different for different keys
and key devices. Second, the ume for immediately caught
typing errors (involving BACKSPACE and rekeying) should
be folded into 15, Thus, the preferred way to calculate 15
from a typing test is to divide the total time 1aken in the
1est by the total number of nonerror keystrokes, which
gives the effecrive keving time. We accept both these
approximations in the interest of simplicity.

Users can differ in their typing rates by as much as
a factor of 15, The range of typing speeds is given in
Figure 1. Given a population of users, an appropriate 1x
can be selected from this range. If a user population has
users with large 1x differences, then the population
should be partitioned and analyzed separately, since the
different classes of users will be likely 1o use different
methods.

The i:%p%ﬁﬁi%iﬁﬂ P represents pointing 1o a target on a
display with a “mouse,” a wheeled device that is rolled
around on a table io guide the display’s cursor. Pointing
time for the mouse varies as a function of the distance to
the target, d, and the size of the target, 5, sccording to
Fitta's Law [2]

tpw B+] logy (dis + 5 sec,

The fastest ime according to this m;sm%m is .8 sec, and
the longest likely time (d/s = 128) is 1.5 sec. Again, 10
keep the model simple, we will use a constant time of 1.1
se¢ for 1p. Often, pointing with the mouse is followed by
pressing one of the buttons on the mouse. This key press
is not part of P; it is represented by a K following the P.

Commmnioations July 1980
o Vasdnmg 13
he AUM HMumber 7

Fig. 1. The Operators of the Keystroke Model,
Oparator Doscription and Remarks Time {(sec)
K Keysiroke or bulton press.
Prasging the SHIFT or COMTRAOL key counts 88 8
separae ¥ oparation. Tune varies with the typing skill of
et wpsr, the Iollowing ahows e rangs of typical values:
Best typist {135 wpm) Rer: L
Good typist (80 wpm) .128
Averags skilled typist {85 wom) 202
Average non-secretary typist {80 wpm) 280
Typing random letters 502
Typing complex codes NEo
Worst typist {unfamiliar with keyboard) 1,202
P Pointing to a target on 3 display with 2 mouse. 1.10°
The tne 10 point varies with distance and targed size according
o Fitle's Law. The time ranges from 810 1.5 sec,
with 1.1 being an sverage e, This operator does mot
wwctuds the bulion press that often follows {2 sec).
H Homing the hand(s) on the keyboard or other device, 408
D{np,1,) Drawing (manually) ny straight-line segments
having a total length of Jycm. Gy 4. 1617
Thin is a very restricted operatorn; it assumes thal drawing s
done with the 3 A that conatraing aif ines to
fall on a square 58 o grid. Users vary in thelr drawing skill
the time given kg an average vatue,
M wdentally preparing for executing physical actions. 1.35
R Response of £sec by the system, t
This takes different Gimes for different commands in the System.
Thess tmes must be ingst 1o the model. The response tme
sournts only i it causes the user 1o wail,
* Bee {B].
* This is the average typing rate of the nonsecretary subjects in the experiment described in
Section 4.1.
© Bee {21
4 See 2, 41

* The drawing time function and the coefficients were derived from least squares fits on the
drawing test data from the four MARKUP subjects. See Sections 3.1 and 4.1.
! The time for M was estimated from the data from experiment described in Section 4.1, See

Section 4.2.1.

The mouse is an optimal pointing device as far as time
is concerned; but the p is about the same for other
analog pointing devices, such as lightpens and some
joysticks [2].

When there are different physical devices for the user
to operate, he will move his hands between them as
needed. This hand movement, including the fine posi-
tioning adjustment of the hand on the device, is repre-
sented by the H (“homing”) operator. From previous
studies {2, 4], we assume a constant fg of 4 sec for
movement between any two devices.

The D operator represents manuaily drawing a set of
straight-line segments using the mouse. D takes two
parameters, the number of segments (np) and the total
length of all segments (Ip). fo(np, Ip) is a linear function
of these two parameters. The coefficients of this function
are different for different users; Figure 1 gives an average
value for them. Note that this is a very specialized
operator. Not only is it restricted to the mouse, but also
it assumes that the drawing system constrains the cursor
to lie on a .56 cm grid. This allows the user to draw

399

straight lines fairly easily, but we would expect ip to be
different for different grid sizes. We make no claim for
the generality of these times or for the form of the
drawing time function. However, inclusion of one in-
stance of a drawing operator serves to indicate the wide
scope of the model.

The user spends some time “mentally preparing” to
execute many of the physical operators just described;
e.g., he decides which command to call or whether to
terminate an argument string. These mental preparations
are represented by the M operator, which we estimate to
take 1.35 sec on the average (see Section 4.2.1). The use
of a single mental operator is, again, a deliberate simpli-
fication.

Finally, the Keystroke-Level Model represents the
system response time by the R operator. This operator
has one parameter, ¢, which is just the response time in
seconds. Response times are different for different sys-
tems, for different commands within a system, and for
different contexts of a given command. The Keystroke-
Level Model does not embody a theory of system re-

Coppninications Fuly 1980
of Volume 23
the ACM Number 7

sponse time. The response times must be input to the
model by giving specific values for the parameter ¢,
which is a placeholder for these input times,

The R times are counted only when they require the
user to wait for the system. For example, a system re-
sponse counts as an R when it is followed by a K and the
system does not allow type-ahead, and the user must
wait until the response is complete. However, when an
M operation follows a response, the response time is not
counted unless it is over 1.35 sec, since the expert user
can completely overlap the M operation with the re-
sponse time. Response times can also overlap with task
acquisition. When a response is counted as an R, only
the nonoverlapping portion of the response time is given
as the parameter to R.

3.2 Encoding Methods

Methods are represented as sequences of Keystroke-
Level operations. We will introduce the notation with
examples. Suppose that there is a command named pUT
in some system and that the method for calling it is to
type its name followed by the RETURN key. This method
is coded by simply listing the operations in sequence:
MK]|r] K[u] K[1] K[RETURN], which we abbreviate as M
dK[p U T RETURN]. In this notation we allow descriptive
notes (such as key names) in square brackets. If, on the
other hand, the method to call the PUT command is to
point to its name in a menu and press the RED mouse
button, we have: H[mouse] MP[pUT] K[RED] H[keyboard].

As another example, consider the text editing task
(called T1) of replacing a 5-letter word with another 5-
letter word, where this replacement takes place one line
below the previous modification. The method for exe-
cuting task T1 in a line-oriented editor called POET (see
Section 4) can be described as follows:

Method for Task T1-Poet:

Jump to next line MKILINEFEED]
Call Substitute command MEKIS]

Specify new 5-digit word SK[word]
Terminate argument MK[RETURN]
Specify old 5-digit word 5K[word]
Terminate argument MK[RETURN]
Terminate command K[RETURN]

Using the operator times from Figure 1 and assuming
the user is an average skilled typist (i.e., tx = .2 sec), we
can predict the time it will take to execute this method:

Texecute = 4ty + IStK = 8.4 sec.

This method can be compared to the method for
executing task T1 on another editor, a display-based
system called DISPED (see Section 4):

Method for Task T1-Disped:

Reach for mouse Hjmouse]
Point to word P{word]
Select word K[{YELLOW]
Home on keyboard Hl[keyboard]
Call Replace command MKIR]

Type new 5-digit word 5K[word]
Terminate type-in MK[ESC]

Texecute = 2tM + 8tK + 2tH +p= 6.2 sec.

400

Fig. 2. Heuristic rules for placing the M operations.

Begin with a method encoding that inciudes alf physical operations and
response operations. Use Rule 0 to place candidate Ms, and then cycle
through Rules 1 to 4 for each M o see whether it should be deleted.

Rule 0. Insert Ms in front of all Ks that are not part of argument
strings proper (e.g., text strings or numbers). Place Ms in front
of all Ps that select commands (not arguments).

Rule 1. If an operator following an M is fully anticipated in the operator
just previous to M, then delete the M (e.g, PMK — PK).

Rule 2. If a string of MKs belong to a cognitive unit (e.g., the name of
a command), then delete all Ms but the first.

Rule 3. If a K is a redundant terminator (e.g., the terminator of a
command immediately following the terminator of its
argument), then delete the M in front of the K.

Rute 4. If a K terminates a constant string (e.g., a command name),

then delete the M in front of the K; but if the K terminates a
variable string (e.g., an argument string), then keep the M.

Thus, we predict that the task will take about two seconds
longer on POET than on DISPED. The accuracy of such
predictions is discussed in Section 4.

The methods above are simple unconditional se-
quences. More complex or more general tasks are likely
to have multiple methods and/or conditionalities within
methods for accomplishing different versions of the task.
For example, in a pISPED-like system the user often has
to “scroll” the text on the display before being able to
point to the desired target. We can represent this method
as follows:

4(MP[scrorLL-ICON] K[RED] R(.5)) Pfword] K[YELLOW].

Here we assume a specific situation where the average
number of scroll jumps per selection is .4 and that the
average system response time for a scroll jump is .5 sec.
From this we can predict the average selection time:

Toxceute = Alag + 141 + L4tp + 4(.5) = 2.6 sec.

For more complex contingencies, we can put the opera-
tions on a flowchart and label the paths with their
frequencies.

When there are alternative methods for doing a
specific task in a given system, we have found [4] that
expert users will, in general, use the most efficient
method, i.e., the method taking the least time. Thus, in
making predictions we can use the model to compute the
times for the alternative methods and predict that the
fastest method will be used. (If the alternatives take
about the same time, it does not matter which method
we predict.) The optimality assumption holds, of course,
only if the users are familiar with the alternatives, which
is usually true of experts (excepting the more esoteric
alternatives). This assumption is helped by the tendency
of optimal methods to be the simplest.

3.3 Heuristics for the M Operator

M operations represent acts of mental preparation
for applying subsequent physical operations. Their oc-
currence does not follow directly from the method as

Communications July 1980
of Volume 23
the ACM Number 7

defined by the command language of the system, bur
from the specific knowledge and skill of the user, The
Keystroke-Level Model provides a set of rules (Figure 2)
for placing M’s in the method encodings. These rules
embody psychological assumptions about the user and
are necessarily heuristic, especially given the simplicity
of the model. They should be viewed simply as guide-
lines.

The rules in Figure 2 define a procedure. The pro-
cedure begins with an encoding that contains only the
physical operations (K, P, H, and D). First, all candidate
M's are inserted into the encoding according to Rule 0,
which is a heuristic for identifying all possible decision
points in the method, Rules | to 4 are then applied to
each candidate M to see if it should be deleted.

There is a single psychological principle behind all
the deletion heuristics. Methods are composed of highly
integrated submethods (“subroutines™) that show up
over and over again in different methods. We will call
them method chunks or just chunks, a term common in
cognitive psychology [17]. The user cognitively organizes
his methods according to chunks, which usually reflect
syntactic constituents of the system’s command language.
Hence, the user mentally prepares for the next chunk,
not just the next operation. It follows that in executing
methods the user is more likely to pause between chunks
than within chunks. The rules attempt to identify method
chunks.

Rule | asserts that when an operation is fully antici-
pated in another operation, they belong in a chunk. A
common example is pointing with the mouse and then
pressing the mouse button to indicate a selection. The
button press is fully anticipated during the pointing
operation, and there 15 no pause between them (ie,
PMK becomes PK according to Rule 1). This anticipa-
tion holds even if the selection indication is done on
another device (e.g., the keyboard or a foot pedal). Rule
2 asserts that an obvious syntactic unit, such as a com-
mand name, constitutes a chunk when it must be typed
out in full

The last two heunstics deal with syntactic termina-
tors. Rule 3 asserts that the user will bundle up redundant
terminators into a single chunk. For example, in the
poET example in Section 3.2, a RETURN is required to
terminate the second argument and then another RETURN
to terminate the command; but any user will quickly
learn to simply hit a double RETURN after the second
argument (i.e., MKMK becomes MKK according to Rule
3). Rule 4 asserts that a terminator of a constant-string
chunk will be assimilated to that chunk. The most com-
mon example of this is in systems that require a termi-
nator, such as RETURN, after each command name; the
user learns to immediately follow the command name
with RETURN.

It 15 clear that these heuristics do not capture the
notion of method chunks precisely, but are only rough
approximations, Further, their application is ambiguous
in many situations, e.g., whether something is “fully

401

anticipated” or is a “cognitive unit.” What can we do
about this ambiguity? Better general heuristics will help
in reducing this ambiguity. However, some of the vari-
ability in what are chunks stems from a corresponding
variability in expertness. Individuals differ widely in
their behavior; their categorization into novice, casual,
and expert users provides only a crude separation and
leaves wide variation within each category. One way that
experts differ is in what chunks they have (see [6] for
related evidence). Thus, some of the difficulties in plac-
ing M’s is unavoidable because not enough is known (or
can be known in practical work) about the experts
involved. Part of the variability in expertness can be
represented by the Keystroke-Level Model as encodings
with different placements of M operations.

4. Empirical Validation of the Keystroke-Level Model

To determine how well the Keystroke-Level Model
actually predicts performance times, we ran an experi-
ment in which calculations from the model were com-
pared against measured times for a number of different
tasks, systems, and users.

4.1 Description of the Experiment

A total of 1,280 user-system-task interactions were
observed, comprised of various combinations of 28 users,
10 systems, and 14 tasks.

Systems. The systems were all typical application
programs available locally (at Xerox PARC) and widely
used by both technical and nontechnical users. Some of
the systems are also widely used nationally. Three of the
systems were text editors, three were graphics editors,
and five were executive subsystems. The systems are
briefly described in Figure 3.

Together, these systems display a considerable diver-
sity of user interface techniques. For example, POET, one
of the text editors, is a typical line-oriented system, which
uses first-letter mnemonics to specify commands and
search strings to locate lines. In conirast, DRAW, one of
the graphics systems, displays a menu of graphic icons
on the crT display to represent the commands, which
the user selects by pointing with the mouse.

Tasks. The 14 tasks performed by the users (see
Figure 4) were also diverse, but typical. Users of the
editing systems were given tasks ranging from a simple
word substitution to the more difficult task of moving a
sentence from the middle to the end of a paragraph.
Users of the graphics systems were given tasks such as
adding a box to a diagram or deleting a box (but keeping
a line which overlapped it). Users of the executive sub-
systems were given tasks such as transferring a file
between computers or examining part of a file directory.

Task-system methods. In all there were 32 task-system
combinations: 4X3 = 12 for the text editors, 3X3 = 15
for the graphics systems, and one task each for the five

Commuaications July 1980
of Volume 23
the ACM Number 7

executive subsystems. For each task-system combination,
the most efficient “natural” method was determined (by
consulting experts) and then coded in Keystroke-Level
Model operations. For example, the methods for Ti-
pokT and T1-DISPED are given in Section 3.2. (A complete
listing of all the methods can be found in [3].)

Experimental design. The basic design of the experi-
ment was to have ten versions of each task on each
system done by four different users, giving 40 observed
instances per task-system. No user was observed on more
than one system to avoid transfer effects. Four tasks were
observed for each of the text-editing systems, five tasks
for each of the graphics systems, and one task for the
executive subsystems.

Subjects. There were in all 28 different users (some
technical, some secretarial): 12 for the editing systems,
12 for the graphics systems, and 4 for the executive
subsystems. All were experts in that they had used the
systems for months in their regular work and had used
them recently.

Experimental procedure. Each user was first given
five one-minute typing tests to determine his keystroke
time, 7. In addition, users of MARKUP (the only system
requiring manual drawing) were given a series of draw-
ing tasks to determine the parameters of their drawing
rate (as discussed in Section 3.1).

After the preliminary tests, the user was given a small
number of practice problems of the sort to be tested and
was told the method to use (see above). In most cases,
the methods presented were those users claimed they
would have used anyway; in other cases, the method was
easily adopted. Users practiced tasks until they were
Jjudged to be at ease with using the correct method; this
was usually accomplished in three or four practice trials
on each task type.

After practicing, the user proceeded to the main part
of the experiment. The user was given a notebook con-
taining several manuscript pages with the tasks to be
done marked in red ink. Text-editing and graphics tasks
appeared in randomized order. Executive subsystem
tasks were always in the order T11, T12, T13, T14. All
ten instances of task T10 were done in succession.

Each experimental session, lasting approximately 40
minutes, was videotaped and the user’s keystrokes re-
corded automatically. Time stamps on the videotaped
record and on each keystroke allowed protocols to be
constructed in which the time of each event was known
to within .033 sec. These protocols are the basic data
from which the results below are derived.

4.2 Results of the Experiment

Each task instance in the protocols was divided into
acquisition time and execution time (see Section 2.1)
according to the following definitions. Acquisition time
began when the user first looked over to the manuscript
to get instructions for the next task and ended when the
user started to perform the first operator of the method.
Execution time began at that point and ended when the

402

Fig. 3. Systems measured in the experiment.

System Description

Text Editors

POET2 Line-oriented with relative line numbers.
508® Ling-oriented with “sticky” line-numbers.
DISPED® Display-oriented; full-page; uses mouse for pointing.

Graphics Systems

MARKUP® Uses mouse to draw and erase lines on a bitmap
display; commands selected from a hidden menu,
which must be re-displayed each time.

DRAW® Lines defined by pointing with mouse to end points;
commands selected with mouse from a menu.

SiL® Lines defined by pointing with mouse to end points;

boxes defined by pointing to opposite vertices;
commands selected by combinations of mouse
buttons.

Executive Subsystems

LOGINY TENEX command for fogging in.

Frpe Program for transferring files between computers.

CHAT® Program for establishing a ‘‘teletype” connection
between two computers.

DIRY TENEX command for printing a file directory; has a
subcommand mode.

DELVER® TENEX command for deleting old versions of a file.

* POET is a dialect of the QED editor [7].

P See {16].

“See [13, ch. 17].

4 See [12].

¢ Experimental systems local to Xerox PARC, designed and implemented
by many individuals, including: Roger Bates, Patrick Baudelaire, David Boggs,
Butler Lampson, Charles Simonyi, Robert Sproull, Edward Taft, and Chuck
Thacker.

Fig. 4. Tasks for the experiment.

Editing Tasks (used for POET, SOS, DISPED)

T1. Replace one 5-letter word with another (one line from previous task).
T2. Add a5th character to a 4-letter word (one line from previous task).
T3. Delete aline, all on one line (eight lines from previous task).

T4, Move a 50-character sentence, spread over two lines, to the end of its
paragraph (eight lines from previous task).

Graphics Tasks (used for MARKUP, DRAW, SIL)

T5. Addabox to adiagram.

T6. Add a 5-character label to a box.

T7. Reconnect a 2-stroke line to a different box.
T8. Delete a box, but keep an overlapped line.
T9. Copy abox.

Executive Tasks

T10. Phone computer and tog in (4 char name, 6 char password).
T11. Transfer a file to another computer, renaming it.

T12. Connect to another computer.

T13. Display a subset of the file directory with file lengths.

T14. Delete old versions of a file.

Communications July 1980
of Volume 23
the ACM Number 7

user looked over 1o the notebook for the next task. (On
the protocol the first measured time at the beginning of
an execution is always the end of the first K of the
method. Thus, operationally, the beginning of execution
tirne was estimated by subtracting from this first K time
the operator times for this first K plus all the operators
that preceded 1)

Those tasks on which there were significant errors
(1.e., other than typing errors) or in which the user did
not use the prescribed method were excluded from fur-
ther consideration. After this exclusion, 855 (69 percent)
of the task instances remained as observations to be
matched against the predictions. No analysis was made
of the excluded tasks.

The resulting observed times for task acquisition and
exgcution were stable over repetition. There was no
statistical evidence for task times decreasing (learning)
or increasing (fatigue) with repetition.

4.2.1 Calculation of execution time. Execution time
was calculated using the method analysis for each task-
system combination together with estimates of the times
required for each operator. All times, except for the
mental preparation time, were taken from sources out-
side of the experiment. Pointing time, fp, and homing
time, 1y, were taken from Figure 1. Typing time, 1, and
drawing time, {p{np, /p), were estimated from the typing
and drawing tests by averaging the times of the four
users involved in each task-system. System response
time, T, for each task-systemn was estimated from in-
dependent measurements of the response times for the
various commands required in each method. For task
T10, logging in to a computer, a telephone button-press
was assumed to take tume fx. Moving the telephone
recetver 1o the computer terminal modem was estimated
to take .7 sec, using the MTM system of times for
industrial operations [10].

Mental preparation time, {5, was estimated from the
experimental data itself. First, the total mental time for
each method was estimated by removing the predicted
time for all physical operations from the observed exe-
cution time. Then 7,4 was estimated by a least-squares fit
of the estimated mental times as a function of the pre-
dicted number of M operations. The result was £y = 1.35
sec (R? = .84, standard error of estimate = .11 sec,
standard error about the regression line = 2.48 sec). A
rough estimate of the SD of 14 1s 1.1 sec, which indicates
that the M operator has the characteristic variability of
mental operators {4].

Execution times for each task-system combination
were calculated by formula (1) in Section 3, The calcu-
lations of the execution times are summarized in Figure
5, which also gives the observed execution times from
the experiment for comparison.

4.2.2 Execution time. The predicted execution times
are quite accurate, This can be seen in Figure 6, which
plots the predicted versus the observed data from Figure

43

5. The scales are logarithmic, since prediction error
appears 10 be roughly proportional to duration. The
root-mean-square (RMS) error is 21 percent of the average
predicted execution time. This accuracy is about the best
that can be expected from the Keysiroke-Level Model,
since the methods used by the subjects were controlled
by the experimental procedure. The 21 percent rMs error
is comparable to the 20-30 percent we have obtained in
other studies on text-editing with more elaborate models
that also predict the method [4].

The distribution of percentage prediction errors is
fairly evenly spread, as an analysis of Figure 6 will show.
No particular systems or tasks make excessively large
contributions. Predictions are not consistently positive or
negative for systems or tasks, except that all the executive
subsystem tasks were overpredicted. Examination of the
individual observations does not reveal any small set of
outliers or particular users that inflate the prediction
error.

Prediction accuracy is related to the duration of the
attempted prediction. The results above are for individ-
ual unit tasks. Since unit tasks are essentially indepen-
dent, prediction of the time (o do a sequence of tasks
will tend to be more accurate. This can be seen directly
in the present data, since each user ran all the tasks for
a given system. For example, consider predicting by the
model how long it took to do g/l four editing tasks. The
average RMs error is only 5 percent. The corresponding
rMs error for the graphics editors over the five tasks is
only 6 percent.

Ideally, all of the parameters of the model should be
determined independently of the experimental situation.
This was achieved for all the physical operation times,
but not for the mental operation time, ty. We did not
have available an appropriate independent source of
data from which to determine 7. The accuracy of the
model is somewhat inflated by the determination of one
of its parameters from the data itself. The substantial
variability of 7,y indicates that this inflation is probably
not too serious, which is to say that small changes in the
value of 15 do not make much difference. For example,
if a 13 as small as 1.2 sec or as large as 2.0 sec were used
in the predictions, the rRMs error for the Keystroke-Level
Model would only increase from 21 to 23 percent. It
should be noted that the 74 estimated from this experi-
ment is now available as an independent estimate for use
by others.

The variability of the observed task times is of interest
per se, since user behavior is inherently variable. In our
data the average coefficient of variation (CV = SD/
Mean) of the individual observations over each task is
31, which is the normal variability for behavior of this
duration [4]. In comparing the predictions of the model
against any actual behavior, the prediction error will
always be confounded with some error from the process
of sampling the behavior. The sampling error for each
of our observed task times is indicated in the SE column
of Figure 5. The average standard error is 9 percent.

Communications July 1980
of Volume 23
the ACM Number 7

Fig. 3. Calculated and Observed Execution Times in the Experiment.

Calouiated® Ohserved
Tank.- o Prag.
Sysiom L8 oy M ony m oA S U T oo Errar®
Yok SELNE
e {8003 fsand fuy FEC
T PopT 234 15 aa® T8k OR2TY (AN Y
71808 224 18 ap 8.8 & 0.8{21) 1%
1. Ons 23 2 8 2 1 6.4% 57 & 033813 1%
Ry 4 g 4 14 2.4 BB 070N 5%
TEE0s 23 A4 1, 9.3 8720838 - 3%
Te DuseEn 242 472 1 5.8 4.1 & D.3(32) 8%
T3.PoEr A8 3 92 8.3 B3 & Qi) [
T3-508 23 2 Fooe 4.3 43 ok 0MET) 8%
T2Dayren 2 3 2 1 ki 33 FHEEO - TR
TPy 48 13 W 353 WrmadEy - 8%
T4-506 o2 4 - - 268 32T R 1IAS) ~20%
Ta-Dwsen 24 2 g 1 3 48 M8 a3t udsy .20%
TS Mnpsr 25 32 - 25 4 24.9 111 WSk 1 En 5%
5D 25 7.8 s - & 188 125 & 30{RD) 3%
TE5un 27 1 4 De 7 4.8 BAEOQTEE -17%
2B o2 3 B4 B2 0434 -23%
2% 0171 y 48 55 DAL -20%
TH-Sn. 27 & 14 1 3.3 A6 0B - 8%
T7 Mo 24 84 - 45 B 3.8 151 180k 2 2%
T7-Dmaw G805 3 8 BO O WB2IEIH Y - 1%
1758 28 8 B 81 I 223 -38%
T8 Mamar 28 B & 3 #.43 123 9.3 % 0422 24%
8- 21 1 5 . 3 57 5.3 % 0.3(85) 7%
T8-S Z7 1 5 4y 2 5.2 4.3k QRN ki
ToWsor 25 2 g 8.5 35 154 130 % 2.528) 15%
TE-DRae 22 B7 - 57 75 WA 1025 ~40%
T8-8n prc) 5 03 3 4.8 E0%1.0{28) ~24%
Tt oo s B 158 a4 sz .7{28 9%
T1y.Fre 3008 3 My B 187 & 0.7(79) 24%
T2y 31 LI B 83 1331 115 2 0.8(38) 1%
Ti-Dim b S 0.5 82 8810335 28%
Tra-DEvER 32 2 2 4.4 2.4 7.5 & 0.4{33) 20%
* The caboulations are done socordiag to formula (1) using the operator bres in Figure | exoept
for &5
® 1 is the wverage time from the iyping tests for the subjects oo 8 gives system. Bach subject’s
tione & weighied by the correct sumber of instances for that sublect on 2 given task {see Section
421

“8E i the arvesr of

of the poprision mesn for

b o size M,

? The prediction error is green a8 5 perventage of the celoulated Hme, T

* The calonlated times for these tasks are difF:

Trows the caleul fimes in the enamples in

Bection 3.2, because dufferent 25 are nsed.

TThe essvats time for this lask also includes 7 see for the operation of moving the wlephone

reotrver {see Section 42,11

That the prediction error of the Keystroke-Level Model
is over two times larger than this indicates that most of
the prediction error is due 10 the inaccuracy of the model
and not just unreliable observations.

4.2.3 Acquisition time. Turning from the execution
part of the task to the acquisition part, the data shows
that it took users 2 sec, on the average, to acquire a task
from the manuscript. This number may be refined by
breaking the tasks into three types: (&) those tasks that
the user already had in memory (the executive subsystem
tasks that were done each time in the same ordery;, (b
those tasks for which the user had ¢ look at the manu-
seript each time (all the graphics tasks, the PoET and 50s
tasks, and task T11) and {c) those tasks for which the

454

user had to look at the manuscript, then scan text on the
CRT to locate the task. The times for these three types of
acquisition are given in Figure 7. Users took only .5 sec
when the task was in memory, 1.8 sec 1o get the task
from the manuscript, and 4.0 sec to get the task from the
manuscript and scan the crt, These times are similar 1o
results obtained in previous experiments [4]. It is inter-
esting 1o note that, although display editors are generally
faster 1o use, they impose a 2 sec penalty by requiring
the user to visually scan the text on the display.

We can use the acquisition times in Figure 7, along
with the predicted execution times in Figure S, to predict
the total task times. The aus error of these predictions is
21 percent, which is just as accurate as predicting the
execution times alone,

Communications July 1980
aif Yobame 23
the ACM Mumbye 7

Fig. 6. Predicted vs. observed execution times in the experiment,

5{.3 [7 T T E A S A S H ¥ ¥
40 o
Kithe " -
: (
201 W =
- .
3 15 s L -
F o L]
£ 10 o N §
5 ol °
g k) i
o]
5 6 e, % Texteditors b
b4 7 f
@ gl 8 POET .
g B 5058
% 4 L & DISPED -
& 3tk Graphics editors E
O MARKUP
1 DRAW
24 A SiL b
Executive subsystems
@ Al subsystems
vi i H i 4. Soncormborsorbommedeoad. A i 3 Loond
1 2 3 4 56 810 1B 20 30 40 50

Predicted execution time {sec)

5. Sample Applications of the Keystroke-Level Model

The experiment has provided evidence for the Key-
stroke-Level Model in a wide range of user-computer
interactions. Given the method used, the time required
for experts to perform a unit task can be predicted to
within about 20 percent by a linear function of a small
set of operators. This result is powerful in permitting
prediction without having to do any measurements of
the actual situation and in expressing the prediction as
a simple algebraic expression. Its limitation lies in re-
quiring that the method be completely specified at the
level of keystrokes and in being limited to error-free
expert behavior.

In this section we illustrate how the Keystroke-Level
Model can be used, both to exploit its power and to work
within its restrictions. The basic application—to predict
a time for a specific situation by writing down a method
and computing the value--has been sufficiently illus-
trated in the course of the experiment, where such point
predictions were made for 32 different tasks involving
10 highly diverse systems. We now show three further
uses: (1) calculated benchmarks for systems; (2) para-
metric analysis, where predictions are expressed as func-
tions of task variables; and (3) sensitivity analysis, where
changes in the predictions are examined as a function of
changes in task or model parameters.

5.1 Calculated Benchmarks

Given the ability to predict tasks, it is possible to
calculate the equivalent of a benchmark for a system and
hence to compare systems. This has obvious cost advan-
tages over obtaining actual measurements. More impor-
tantly, it permits benchmarking at design time, before
the system exists in a form that permits measurement.

405

The analysis for the experimental data lets us illustrate
this easily,

Consider the three text editors, POET, $0S, and DISPED.
Let the benchmark be the four tasks T1 to T4. We can
use the Keystroke-Level Model to compute the total time
to do the benchmark for each system. The answer comes
directly from Figure 5 by summing the calculated Toxecure
for T1-T4 for each editor. This gives 59.8 sec, 50.2 sec,
and 26.9 sec as the predicted execution times, respec-
tively, for pogT, 808, and pIsPED. Taking the POET time
(the slowest) as 100, we get ratios of 100:84:45. Thus, as
we might have expected, the two line-oriented editors
are relatively close to each other and the display editor
is substantially faster. Since we have also done the
experiment, we can compare these calculated bench-
marks with the observed benchmarks (by summing the
observed Teaecuwe from Figure 5). We get 60.1 sec, 56.0
sec, and 27.6 sec, respectively. This gives experimentally
determined ratios 100:93:46, which is essentially the same
result. This agreement between the calculated and ob-
served benchmark provides confidence only in using the
calculated benchmark in place of a measured one. It
does not provide evidence for the validity of the partic-
ular benchmark (tasks T1-T4) or whether benchmarks
are generally a valid way to compare editors.

A similar analysis can be performed for the three
graphics systems, using tasks T5-T9 as the benchmark.
This yields predicted ratios of 100:93:46 for mMarkuUP,
DRAW, and SIL, respectively, with observed ratios of 100:
97:58. MarkUP and DRAW are close enough to raise the
question of whether the predicted difference between
them is too small to be reliable. The calculated difference
between MARKUP and DRAW on the benchmark is 59.0
-54.7 = 43 sec or 7 percent. The model has an Rwms
prediction error of 21 percent for a single unit task. Since
this benchmark is essentially an independent sum of five
unit tasks, the rMS error should theoretically be 21
percent/sQRT(S) = 9 percent. Thus, the predictions for
the two systems are within the rMS error of the model,
and so the predicted difference between them can hardly

Fig. 7. Observed acquisition times in the experiment.

Task Yype Task numbers Acquisition Time
M oE SE2WM
fser} {sec)
All tasks T1-T14 20 * 20 {885}
Repeated task, recalied T10, T12, 713, T14 05 % 03 [130)

from mamory

Task acquired by looking
& manusoript

Task acquired by looking at
manuseript, then Scanning
for task on disphay

T1-T4 [PoET, S08),
T5-T9, Tit

T1-T4 {Ispen}

1 ok L9 {821)

40 % 19 (139

* §E is the standard error of estimation of the population mean for samples

of siaw N,

Communications
of
the ACM

July 1980
Volume 23
Number 7

be reliable. The fact that the model correctly predicted
that prRaw was slightly faster than MarKUP was lucky—
there is no reason to expect the Kevstroke-Level Model
to make such close calls.

5.1 Parametric Analysis

We illustrate the notions of parametric analvsis and
sensitivity analysis with a new example. Consider the
following task: A user 15 typing text mio an editor and
detects a misspelled word # words back from the word
he is currently tvping. How long will it take to correct
the misspelled word and resume typing?

In pispep there are two methods for making the
correction. which we wish 1o compare. Since the methods
may behave quite differently depending on how far back
the misspelled word 1s, we need to determine how long
each method takes as a function of #. The first method
makes use of the Backword command (called by hitting
the cTrL key and then W), which erases the last typed in
word:

Method W {Backwordy
Ser up Buckword command
Execute Backword tizaes
Type new word

S SK{word)

Resvpe destroved 1ex1 33¥n - DK
Tﬁ'ﬁ.i“'&‘”ﬂiﬁi‘&" = ii + ﬁf?f‘f}fﬁf + {% + é’hj;ﬁ ,}fﬁ)

= L6 + 1.16n sec. =
The execution time is a function not only of s, but
also of another parameter, ¢. When a user has to repeat
a single-keystroke command several times, such as the
Backword command in the above method, he will tend
to break the sequence into small bursts or chunks, sepa-
rated by pauses, which are represented as M operations,
according to Rule 2 in Figure 2. Thus, we postulate a
chunk size. ¢, which is the average number of Backword
commands in a burst. This 15 used in the second step in
the above method, where we count 1/¢ M operations for
each call of the Backword command. An exact value for
c i unkpown, but we use a “reasonable” value, ¢ = 4, in
our calculations (we will return to this decision in Section
5.3). In the calculations we also assume an average
nonsecretary typist {15 = .28 sec) and an average word
length of 5.5 characters {including punctuation and
$PACES).
The second method 15 to get out of type-in mode, use
the Replace command to correct the word, and then get
back into type-in mode, so that input can be resumed:

Method B {Replacek

Termunaie type-in mode MEKESCY

Poant by targer word and select o Himouse] Plword]
KIYELLOW]

Call Replace commmand Flkeyboard] MKIR]

Type apw word 4. 58 word]

Termunaie Replace command MRIESCY

Peant 1o last boput word and select i Himouse] Piword)
KIYELLOW!

Hewnter type-in mode Hlkavboard] MEL

Toneonre == Gip + 11510 4 G+ Ltp
w= 12 Y ger,

The predicted ume for each method as a function of
n s plotted as the solid lines in Figure 8(a). As the figure
shows, 1t 1s faster to use the Backword method up unul
a certain crossover point, Awg, afler which it becomes
faster to use the Replace method. Under the above
assumptions, the crossover from the Backword method
1o the Replace method 15 found 1o be at 4.9 words.

Suppose a designer wants to add a feature to DISPED
to improve performance on this task, We wish to deter-
mine, before implementation, whether the proposed fea-
ware 15 likely 10 be much of anamprovement,

The designer proposes two new commands. The first
is a Backskip command (CrTL $), which moves the
insertion point back one word without erasing any text,
The second 15 a Resume command (CTRL R), which
moves the insertion point back to the end of the current
type-in {(where Backskip was first called). These com-
mands allow:

Mlethod 5 {Backskiph

Set up Backskip command MEKICTRL]

Execute Backskip v — Lumes (n — DU/cMESD
Call Backword command MKW

Type pew wond 4. 5hfword]

Call Besume command M2RICTRL R}
Texocute = (3 + (n = D/cYar+ (n+ 7.5)1
= 5.8 + .62n sec.

The predicted time for the Backskip method is plotted
as the dashed line in Figure 8(a). With the addition of
this method there are two additional crossover points,
nws and ags between 1t and the other two methods, As
can be seen, the Backskip method is faster than both of
the other methods between nws and ngs, ie., from 2.7 to
10.2 words. Thus, a brief analysis provides evidence that
the proposed new feature probably will be useful, in the
sense that it will be the fastest method over a region of
the task space.

3)

3.3 Sensitivity Analysis

How sensitive to variations in the parameters of the
methods are the aforementioned calculations? The ques-
ton of interest is whether, over such variations, there is
still a region in the task space in which the Backskip
method is the fastest. An important parameter is the
user’s typing speed, 1x. How much does the crossover
between the Backword method and the Backskip method
change as a function of typing speed? Setting eq. (2)
equal to (3) and solving for n as a function of 15 gives n
= 1.2+ .43/1x. The crossover increases with faster typists
{decreasing fx), going up to 7 = 6.6 words for the fastest
typist {1x = .08 sec). That is to say, faster typists should
prefer the old Backword method {which involves more
typing) for larger n before switching to the new Backskip
method (which involves less typing, but more mental
overhead),

We can plot the crossover boundary between the two
methods in the space of the two parameters: n (charac-
teyizing different tasks) and £x {characterizing different
users). The two boundaries of the new Backskip method
are plotied in Figure 8(b), These boundaries define the
foommunications July 1980

of Yolume 23
the AOM Mumber 7

Fig Blay. Execution time for three methods as a funetion of #,

{5ee)

s

n

{words]

Fig. 8(b}. Phase diagram for the fastest method.

1.2

1.0

Method §

T =4
Method R

n {words})

Fig. B(c). Phase diagram adjusted for different chunk sizes.

1.2

1.0

A

i

Y

n (words)

regions in the parameter space where each method is
fastest. The circles mark the crossover points correspond-
ing to the ones in Figure 8(a) (i.e., at /x = .28 sec). This
diagram clearly shows the shift of crossovers for fast
typists. It also shows that, for any speed of typist, there
are some tasks for which the Backskip method is the
fastest.

We are not sure of the exact chunk size, ¢, and so we
must check whether our conclusions about the usefulness
of the Backskip method are sensitive to the choice of a
value for ¢. To do this, we rederive the crossover between
the Backword and Backskip methods by setting eq. (2)
equal to (3) and solving for n as a function of both ¢ and
ix; this gives n = 1.2 + 49/1x — 24/ctx. Although we do
not know an exact value for ¢, we can be reasonably
confident that it will be between 2 and 6. With 14 = 28
sec, for example, the crossover varies between 2.5 and
2.8 words as ¢ varies between 2 and 6; so the value of ¢
does not seem to have a great effect at this point.

The best way to see the overall affect of the value of
¢ is to replot Figure 8(b) using the reasonable extreme
values of ¢. The two crossover boundaries for the Back-
skip method are plotted in Figure 8(c) as “fat” lines
defined by setting ¢ to 2 and 6 in the crossover equations.
This diagram clearly shows that the value of ¢ affects
one boundary more than the other. The boundary be-
tween the Backword and Backskip methods is not af-
fected much by ¢, because the chunk size is involved in
both methods in exactly the same way. But the boundary
between the Backskip and Replace methods is greatly
affected by the value of ¢, since ¢ is not involved in the
Replace method at all. Small chunk sizes, especially,
penalize the Backskip method. Overall, however, varying
¢ does not squeeze out the region for the Backskip
method; and our basic conclusion—that the new method
is a useful addition—still holds.

There are other aspects of the above methods for
which we could do a sensitivity analysis. (For example,
if the last two M operations of the Backskip method
were eliminated according to Rule 1, how much would
the value of the Backskip method increase?) However,
the sensitivity analyses above illustrate how the Key-
stroke-Level Model can be used to evaluate design
choices—even when many aspects of the calculation are
uncertain—for the principal conclusions are often insen-
sitive to many of the uncertainties.

6. Simplifications of the Keystroke-Level Model

The question naturally arises as to whether further
simplifications of the Keystroke-Level Model might do
reasonably well at predicting execution time. One could
{a) count only the number of keystrokes, (b} count just
the physical operators and prorate the time for mental
activity, or (¢) use a single constant time for all operators.
We show below that such simplifications substantially
degrade accuracy. However, they provide useful approx-
imations where the lowered accuracy can be tolerated.

Communications July 1980
of Volume 73
the ACM Number 7

6.1 Keystrokes Only
With this simplification, execution time 15 propor-
tional 1o the number of keystrokes:

Tﬁxmjm{x = KMy b Yn!z’-

We separate out the system response times, g, 50 as not
o confound the comparison. The constant of propor-
tionality, x, should be distinguished from 74, the typing
speed. which is determined from standard typing tests.
Estimating the value of « from a least-squares fit of the
values of nx and the observed T 1n Figure 5 gives
x = 49 sec/keystroke. The correlation between the times
predicted by this model and the observed times 15 87,
and the rMs error 15 49 percent. The staustics for com-
paring all models are presented in Figure 9. As can be
seen, using kevstrokes only is substantially less accurate
than the full Keystroke-Level Model. This simplhification
is inappropriate for tasks that are not dominated by
keystroking. For example, it only predicts about a third
of the observed ume for the MaryUP iasks, which are
dominated by pointing and drawing operations.

The above estimate of x 15 held down by one outlving
point in the data, T4-poET (nx = 92). Esumating « with
this one point removed gives x = 60 sec, a value close 10
another estimate obtained in an earlier benchmark study
[1: 5, ¢h. 3]. T4-poET is the only task that requires any
input-typing of text. One obvious refinement of the
keystrokes-only model would be o distinguish two kinds
of keystrokes: mass input-typing (at fx sec/keysiroke)
versus command-language keying {at « sec/kevstroke).
For this purpose, a x of .60 sec is the more reasonable
value.

The model of Embley et al. [9] is formally similar 1o
our kevstrokes-only version. However, their model 13
conceptually different from ours. The Keystroke-Level
Model is based on the notion of a unit task structure;
Embley et al. use commands instead. Our model is
restricted to skilled expert behavior, whereas they at-
tempt to model all kinds of users {essentially, by varying
their versions of the parameters Thoqur and «). Unfor-
tunately, they did not compare their model against any
empirical performance data, 50 we CAnnol COMPAre our
results 10 theirs. The keystrokes-only model can, perhaps,
be taken as an mdicator of the acouracy of thelr model
for expert behavior.

6.2 Prorated Mental Time

According to this simplification, execution time is the
time required for the physical operations multiplied by
a factor to account for the mental time:
Lenpeae = &gg‘?ﬂg + Tu+ To+ T, p) T
The idea 13 that the physical operations will require a
certain average overhead of mental activity. Thus, in-
stead of trying to predict exactly how many mental
sperations there are, we can do faurly well by just using
& multiplicative mental overhead constant, u,

Using a least-squares analysis to determine p from
the sum of the calculated times for the physical opera-

s

Fig. 9 Comparison of the keysiroke model with sumpler vanahons

Model Yarialion Parameivrs Corralation (1) % Breo®
s Ny K ow ar A%
wiesd Wantal Tivme ot E A%
ongtant Operater Time v o A3 sotsoperato® a7 4%
meysirokg Modet iSen Faguee 9} 95 rre

" The correlations are betwesn the oaeoplion Limes pradicted by cach of the
models and the obs
The BMS eroor 1 gaven a3 8 percentage of the observed execytiom tume,

EREE-N

sepd eaorytion Lungs from Figure &

* More useful parameter values are 4 = B0 se0 and £ om0 49 sec (see Sechons

1 and &3

tions and the observed values of 7. in Figure 5 gives
w = 1.67; 1.e. there is a 67 percent overhead for mental
activity. The correlation between predicted and observed
times 15 .81, and the rMS error 1s 45 percent.

This simphification is also less accurate than the
suggests that the extra detail in the Keystroke-Level
Model, involving the placements of the mental prepar-
edness operator, M. 1s effective. 1t 1s thus operator that
qualifies the Keystroke-Level Model as a genuine psy-
chological model and not simply as an analysis of the
physical operations.

There 15 an interesting relation between these (wo
simpler models and the rules for placing occurrences of
M in the Keystroke-Level Model (Figure 2). The initial
placement of M's, by Rule 0. with certain K's and P’s is
essentially an assumption that mental time i5 propor-
tional to a subset of the physical operators. If Rule 0 had
specified all physical operators, Rule 0 by itself would
have been equivalent to prorating mental time. If the
other physical operators (P, H, and D) had been ignored,
this would have been equivalent to counting keystrokes
only. Therefore, the deletion of the M’s according to
Rules 1 to 4 constitutes the ways in which the Keystroke-
Level Model deparis from these simpler models. The
evidence for the superiority of the Keystroke-Level
Model presented in Figure 9 is also evidence that Rules
1 1o 4 had a significant effect. In fact, each of the rules
individually makes a significant contribution, in the
sense that its removal leads to a decrease in the accuracy
of the Keystroke-Level Model.

6.3 Constant Operator Thne

According to this simplification, execution time is
proportional to the number of Keystroke-Level opera-
tions:

T exewmte 7 T{tiar + nig + np + ng + 1p) + T

The idea here 1s the statistical observation [18] that the
accuracy of linear models is not sensitive 1o the differ-
ential weighting of the factors—equal weighting does
nearly as well as any other weighting. Thus, we disregard
the different operator times and use a single time, 7, for

Lommrpamications Jaly 1980
of Yolume 23
s AR Bdurrvrbonr 7

all operators. Note that the constant-operator-time
model s formally similar to the keystrokes-only model;
the latter can be viewed 45 using ng as a crude gslimate
of the total number of operators.

Estimating 7 by a least-squares fit of the data in
Figure 5 gives 7 = 43 sec/operator. The correlation
between predicted and observed times 15 .92, and the ’Ms
error 15 34 percent. (For the reason discussed in Section
6.1, 1t 15 useful to estimate v with the T4-poET task
removed, getling v = 49 sec/operator.)

The constant-time model is quite a bit more accurate
than the keystrokes-only model, which tells us that taking
into account operators other than K is useful. In fact,
most of the action in the constant-time model (over the
set of data in Figure 5, at least) comes from counting
only the K, P, and M operators. In any particular task,
of course, any of the operators can be dominant, On the
other hand, the constant-time model is still less accurate
than the Keystroke-Level Model, showing that taking
into account accurate estimates of each operator’s time
vields another increment of accuracy.

In summary, all of the simplifications presented in
this section are less accurate than the Keystroke-Level
Model. However, these simplified models are probably
good enough for many practical applications, especially
for “back-of-the-envelope” calculations, where it is
too much trouble to worry about the subtleties of count-
ing the M’s that the full Keystroke-Level Model
requires,

7. Conclusion

We have presented the Keystroke-Level Model for
predicting the time it will take a user to perform a task
using a system. We view this model as a system design
tool. We have shaped it with two main concerns in mind.
First, the tool must be quick and easy to use, if it is to be
useful during the design of interactive systems. The exist-
ing strengths of psychology and human factors methods
are primarily in the design and analysis of experiments;
but experiments are too slow and cumbersome to be
incorporated into practice. Ease of use implies that the
tool be analytical—that it permit calculation in the style
familiar to all engineers. Second, the tool must be useful
to practicing computer system designers, who are not
psychologists. This implies that the entire tool must be
packaged to avoid requiring specialized psychological
knowledge. We think that the Keystroke-Level Model
satisfies these concerns, along with the primary consid-
eration of being accurate enough to make design deci-
sions. We believe that the Keystroke-Level Model be-
longs in the system designer’s tool-kit.

It is possible to formulate more complicated and

refined models than the Keystroke-Level Model by in-

creasing its accuracy or by relaxing some of its serious
restrictions (e.g., models that predict methods or that

4

predict errors). One of the great virtues of the Keystroke-
Level Model, from our own perspective as scientists
trying to understand how humans interact with computer
systems, is that it puts a lower bound on the effectiveness
of new proposals. Any new proposal must do better than
the Keystroke-Level Model (improve on its accuracy or
lessen 1is restrictions) 1o merit serious consideration,

The Keystroke-Level Model has several restrictions:
The user must be an expert; the task must be a routine
unit task; the method must be specified in detail; and the
performance must be error-free, These restrictions are
important and must be carefully considered when using
the model. Yet, we believe that the Keystroke-Level
Model model represents an appropriate idealization of
this aspect of performance and that i 15 a flexible (ool
allowing the system designer to deal systematically with
this aspect of behavior.

The Keystroke-Level Model predicts only one aspect
of the total user-computer interaction, namely, the time
to perform a task. As we discussed at the beginning of
this paper, there are many other important aspects of
performance, there are nonexpert users, and there are
nonroutine tasks. All of these must be considered by the
system designer. Designing for expert, error-free per-
formance time on routine tasks will not satisfy these
other aspects. We would like to see appropriate models
developed for these other aspects. However, even with a
collection of such models, the designer still must make
the inevitable trade-offs. Scientific models do not elimi-
nate the design problem, but only help the designer
control the different aspects.

Acknowledgments. We thank J. Farness, who ran the
experiments described in this report, and T. Roberts,
who helped in some of our early explorations of the
keystroke-counting idea and provided extensive com-
ments on earlier drafts of this paper.

Received 3/7% revised 2/80; accepied 3/80

References

1. Card, S.K. Studies in the psychology of computer text-editing
systems. Ph.Dx Th.. Dept. of Psychol, Carnegie-Mellon Univ., Pitts-
burgh, Pa., May 1978.

2. Card, S$.X., English, WK, and Burr, B.J. Evaluation of mouse,
rate-controlled isometric joystick, step keys, and text keys for text
selection on 8 CRYT. Ergonomics 21 {1978), 601-613.

3. Card, $.K., Moran, T.P, and Newsli, A. The keystroke-level
medel of user performance time with interactive systems, Rep. S8L-
79-1, Xerox, Palo Alio Res. Cir., Palo Alte, Ca,, March 1979,

4, Card, $.K., Moran, T.P, and Newell, A. Computer text-editing:
An information-processing analysis of a routine cognitive skill. Cog-
nitive Psychol, 17 (1980), 32-74,

% Card, §.K.. Moran, TR, and Newell, A Applied fnpormuion
Proceysing Pyyehology: The Human-Computer Interface. Erlbaurm,
Hitlsdale, N1 (in preparation).

6 Chase, W.G., and Simon, HA. Perception in vhess. Cognitive
Prechol 4 (1973}, 55-81

1. Deutsch, PL. and Lampson, BW, An online sditor, Comm.

ACM 18,12 {Dec, 1967), 793799

July 1980
Volume 23
Number 7

Compmunications
of
the ACM

s, HEE-S {1967y, 3132
9. Embley, DW.,

539650
0. &
New York,

Ird ed, 197

11, Moran, T.P. The command language grammar
for the wser wnterface of interactive computer systems, Jaternar. J.

Y

Man- %!f un’m‘ Neuadies (in pressy.
. and deﬁ@h‘

Mass., 1973,

Devoe, 2.8, Alternatives to handpriniing in the manual eatry of
Lan, M.T., Leinbaugh, DW .
gmmmiarﬁ for predicting program eduor performance from the user's

point of view, Farernat, J ifﬁfx~ Muching Neudies 1011978

aynsrd, HB. Industrial Engineering Handbook, MoGraw-Hill,

LR Tenex executrve language
manual for users. Bolt, Beranek, and Newman, Inc., Q&mbmﬁge

13, Mewman, W,

and Nagy. G

Cambrnidge. *‘\,‘!aw
14, HM%{W HER

Arf Intell Lab,|

and Sproull,

Graphics. MoGraw-Hill, New York, Znd ed.,

4. %’w R.W ., Baron, 5., Fechrer, CE

review and analvsis of performance models

machine svstems evaluatoen. Bolt, Beranek, and Mewman, Inc.
1@??

~oand Atwood, ME

sterns: A review of the hierature, Science Applications, Ing,

A Tepreseniauon Englewood, Colorado, 1979,

16, Saviisky. 5 Son of STOPGAP Rep. SAILON 501

Stanford, Ca., 1969,

17. Samon, HLA. How big 1 a chunk? Scence 133 (1974), 432458

18, Wainer, H. Esumatng coeflicients in Lnear models: 1t don’y

R. Principles of Interavtive Compuier
3&) T

cand Milter, DO Critieal
applicable to man-

Human factors in computer

. Stanford

make no severmnd, Psyohol Bull 87 (1976), 213217,

Professional Activities
Calendar of Events

Sy Maveommber TR

Federal Office Antomation Conference, W
wgton, O Sponsor, Office Automaton (1
Contact Federal 06

ACKEs calendar polwy s 0 BSt open computer
: meelings that are held on & oot éw
w%m}es‘i’ n b calemdar an
. ansntutes, and 7k 5
stamtbated with name of the s
e sobedule, and chainman's

oring orga-
wﬁw and full

wledress.
é;‘m sl

phone munber copiact for those iveresied
;g WR&« be given when & number

E %mzxm Mem‘ 3
t o the Eur

cal Meeting Reguest "éfzrzm for
be oldamed %’mm AUM He&ég@aﬁ 3
Ewropean Regional Repo :
showld include ¥ months £3 mon
H 4 PEOCESSING of the request, N SECTSERTY
mvonihs {minbmum 33 for any publivity 1o appear i
Cermermais ot ions.

1 ?mm the
Lead wme
{ fur Europe}

8 This symbol indicaies thal the Conferences anid
Symposia Commities has grven s approval for

ACM gy ip OF COOpETELOn
Iy this savar the cobendar iv given 1o
Mew Lissrer are zhown ;2;‘*—’1 Jxm wishf zzﬁ:&em fetg o
mspmch @y Peovigwy i,mmg&

Box E. Wayland, MA 0

3 Movember 1980
(m@m@iw Related Crime: Training Workshep
b s, wnd Prose-
Dept. of Jus-
00 Flonda

vuthon, Uharioson, BA0

tice, Contacr Koba Asso

Avp., NW, Washingron. [

TER P

COREASTIVE Nal

Sponsors: ORSA, TIMS, *iwn*m:s Mmm "-«M; s

Sehoo! of Business, University of Houston, Houswon,
kf

EX17 %mm@r (A meu .AL&
Twensy Ninth Sreent, Boulder, CO 80303, 3
H4H

3 485

3-8 Jumuary 1981

soneal Meeting of AAAS, Toronto, Canada

fz pnsor Amencss Assocstion fr the Advapooment
Soence. Copmtmet AAASR, 1513 Mamsachusells

o, D RS

7% Ianuary 1981

Second Western Conderence and Exhibition,
mm m. Calif. Spon Armed Foroes Communi-
Association, Comtaon AF-
ste MY S205 Leesburg Pike,

12-14 January 1981
FIC 81, Eémw%zzm H.mm ‘\p&mﬁm Pacifie

HEW LISTINGS

1922 July 1980

“"zﬂmm “Couference om Computer Reluted
Crimee. Washing il DA Spemsor U8 Dept of
Fugtice, Comtact Koba Assod I Flonida
HAve., MW, Washingron, TN 2086 2 R-5735

5 Septerober 1950
Cmaiemm»: westd %w&@lmp i Whomded Aw«:&%
W % 34 B8, G

Optimizat
He %m%?gaﬁm Sprs
" v oy 4

w%w £t i £
yarwka 81, Solke, Bulgaria

Q-T2 htedver Y0

’fsm% »&w‘i@i&m ﬁm hﬁx& Gt m;m ‘%w

Telex o ; Riwhard J.
Barber, 2814 i‘«ém% %M #*M mez wlu, Hawi

2628 Fawumry 1981
B b Aveuel AUM SHGACT-SIGPLAN Sym-
fw&mm on Prinviples of Programming Languages,
W . Ya. sors: ACM SIGACT, S0
%"’i . Conizer Roben B Noonan, Dept. of Math-
s and Oy sence, College of Witham
& Mary, Williamsbuarg, VA 23155,

§2-13 March 1981

o 5 e aod & bese 13eh Bympo
siwmm om the Interface, Pitsbur rgh, Pa. i‘:ﬁpcmmr Cay-

e-Mellon University. Symp. choe William F.
Dept. of Statisties, Camegin-Melon Univer
«.wx Pistshurgh, PA J5213

&40 Apni 1581
toternationsl oagress on Logh, Info

17 Fune 1981

Seventh Conference c%f the Cangdian Man-Com-
puter Communkoations Rockery, Watetlon, Ootano
(0 comiynction with il?") Natwonal ¢ M*ww)
Spons Cangdian Man-Computer Communica-
tions Bowiety. Prog. chan %wwu Wein, Computer
Graphics Section, Division of EE, National Research
Counedd, Duawa, Ontarie, Canada K1a ORE

3-7 Avgust 1981
B ACM SICGRAPH BL Dellys, Tex Sponson
pecial tnterest Group on Computer Graph-
conf, chm: Anthony Luado, Indusinal Engi-
U8 Services Dhivision, Tesas A&M
THAZ T13 8435531

s
neering Dept.
University, {ollege Station, TX 7

2428 August 1981

CO 81, Conference on Cnmbingtoriad Optimi-
mmm Stirling, Bootland, ’xp«mwr Sticling Lniver
3 - Wilson (00 81y, Dept. of Comput-
g, Stirting University, Stirling, ‘wzx&%»md

9-11 September 1981

Eurographics 81, Ansual Conference of the Fu-
regraphics Sectety. Techuische Hechschule, Darme
stadt, FRG. Sponsor: German Computer Socwly.
Prog. chm: . Encarnecao, Euwrographics 81, Tech-
nische Hochsehule Darmstady, FG Graphisch-Intes-
akuive Systeme, Steubgnplatz 12, D-6100 Darmstade,
Federal Republic of Germany.

1415 September 1981
B ACM SIGMETRICS Conference on Measure-
ment sed Modeling of Comp Systems, Las Ve-
as. Mev, Sponsor: ACM Special Interest Group on
Messurement and Evaluation. Conference (hom
Herbert Schwetman, Dept. of Computer Science,
Purdue University, West Lafavene, IN 47907, 317
E93-B 566,

PREVIOUS LISTINGS

21.23 July 1980

Kinth South African Symposium on Numerical
Mathematics, Durban, Rep. of South Africa, Spon-
sor: University of Natal Contact Chairman, Com-
puter Beience Depl. Univermity of Matal, King
George ¥ Ave, Durban 4001, f{i’:;&ﬁbiiu of South
Alrica.

-8 August 1980

Conference on Humen Abed Opthmization,
Whanon School, Philadelphia, Ps. ’ipﬁmmm Otice
of Maval Research, Wharton Bchool. Conll chy
Crerald Huest, Decision Sciences, W33 Distnch
Hall/CL, Universaty of Peansylvana, Philadelphia,
PA LRI 215 24377,

1701 August 1930

1986 Urban sod Regional fnformation Systems

Lo,
m@mwﬁmw gmmé,;
#

e . &

Haly. Spossor Isttmo per la docu-
B @é‘ ¢ angﬁw Marionsie delle
i 1 Ip documnentazione
36/16- 50427 Florence,

peariding, ‘af'n:t Pancistichi,
taly.
M Agrik-l ‘wﬁ:w 3
Teeaihth Pistshurgh Conference on
Muodeling and *'&xmaa&m%m Pigaburgh, Pa. Spomsor
Univeraty of Posh ’: in cooperation with Pitts.

. & an and Cyber-
aetics Bockety, 18A ‘:si“i Internaticnal Asocintion
e Ma;%m&&m £ s Sienlation,
ot co-ch Wzﬁmm G5, Yot and Marlin H. Mic-
ki, %ﬁi Benedum Enginesring Hall, University of
Papburgh, Pilsbungh, PA 15561

wy 1R
%&»K‘f‘& Aam & thons, Sob
s Association fir E«sﬁw&mm& §

410

L oanenunieations
o
the ALM

Assocke Conferesee, Toronts, Ont, Canada,
Spopgor URISA. Contact URISA, 180 Morth Mich-
igan Ave., Sunte 800, Chicago, 11 60601

1822 August 1980

4th Hympt oy O I st
Edumburgh Umv«sm:y, ‘wﬁi!amé Sponsor: imsﬁmg
tienal Assocaton for Siatiatical Computing. Con-
ey COMPETAT 1980, ¢/n Director, Program Li-
brary Undt, Edinburgh Usiversity, 13 Buocleuch
Place, Edinburgh EHE 9LN, Scotand,

1921 August 1940
B Matonsl Aniiicis! Intellipence Cosdersne, Polo
A, Calif. ‘@gw wr. American Associastion for Ar
tfichul Intelligenos w cooperaiion with AUM 5L
GART. Conf. chm: 3 Marty Tenesbaum, SRI In-
ternativasl, 353 i%;wmwm%? Ave, Menlp Park, A
SAEES; 413 D6-6200 nd 16T

32T Avgast 1980

it BIMULA Userd’ Conderence, Ualifornia
Sty Usnbvarsity, Morthrldge, Culif. Sponsor Asse

{Calencdor continined on p, #14)

Fuly 1980
Volume 23
Mumber 7

