With the pace of innovation and technological advancement accelerating ever faster, engineers hold the keys to the next generation's routine wonders. Today's undergraduates grew up with the Internet. To them, search engines, social media, nanotechnology and genetic engineering are all familiar — even everyday. The University of Pennsylvania's School of Engineering and Applied Science is uniquely positioned to propel those future intellectual leaders, entrepreneurs, thinkers and innovators to success. As an Ivy League institution — and the first university in the nation — Penn ensures its engineering and applied science students a transformative experience in the classroom and laboratory and a fully rounded liberal arts education. Penn Engineering is a pioneer in interdisciplinary education, allowing students the flexibility to craft a program that suits their individual interests, career or graduate education plans. Both Bachelor of Science in Engineering (BSE) and Bachelor of Applied Science (BAS) degrees are offered, along with specialized dual-degree programs, an array of majors and minors, special programs and study-abroad opportunities. Penn Engineering students get valuable and extensive hands-on experience, conducting research and pursuing creative designs and new products alongside faculty renowned in their fields. The working relationship with faculty pervades Penn Engineering, where full-time faculty teach all core undergraduate courses and each student has a faculty advisor. As the global marketplace for technology grows, graduates go on to leadership roles in business, medicine, law and academia, armed with the technical knowledge, imagination, communication skills and understanding of the social and human context of their work, all engendered with a fervor for the future, at Penn Engineering. ### Benjamin Franklin, America's first scientist and engineer, founded the University and his spirit of scientific inquiry still drives the passion for research at Penn Engineering. Undergraduates work alongside faculty renowned in their fields at cutting-edge, interdisciplinary research centers and institutes that span all Penn Engineering departments and foster collaborations with faculty, students and postdocs in the Schools of Medicine, Arts and Sciences and Wharton Business School, just to name a few. Penn's research centers and institutes in fields including biotechnology, robotics, computer animation and nanotechnology are at the forefront of research on each scientific and technological frontier. # To enhance students' research experience, Penn offers a wide range of support services, such as the University's Center for Undergraduate Research and Fellowships and the Penn Undergraduate Research Mentoring Program. Students may also participate in research projects such as SUNFEST, the Summer Undergraduate Fellowship in Sensor Technologies, and Penn Electric Racing, among others. ### Capping the Penn Engineering experience is the yearlong Senior Design project in which students design a new approach to a real-world problem. # The Rachleff Scholars Program offers Penn Engineering undergraduates the opportunity to focus on research with standing faculty and to participate in a community of peers who share a common interest in research and scholarly inquiry. Rachleff Scholars participate in a 10-week, paid Summer Research Experience, complete honors coursework and gain real-world skills and knowledge through interaction with industrial, corporate and community partners. # MAJORS ### BIOENGINEERING Prepares you to apply techniques to understand biomedical products and complex biological systems, quantitative analysis to design innovative develop new drugs The Department of Bioengineering (BE) at Penn, renowned as a pioneer in the field, provides a solid foundation in science and engineering, exposure to a wide variety of bioengineering areas and extensive research opportunities. At the confluence of medicine and engineering, bioengineers — also known as biomedical engineers — use principles from electrical, mechanical, chemical and materials engineering to advance knowledge and innovation in healthcare and the biological sciences. The growing field of bioengineering ranges from its traditional applications in technical design, basic and applied research, health professions and industry, particularly the medical device industry, to business, investing, intellectual property law and government, including the regulation of patents and medical devices. The Bachelor of Science in Engineering (BSE) degree in Bioengineering, the fully accredited flagship professional engineering degree, provides rigorous preparation for professional practice in a great variety of engineering and technical fields. The Bachelor of Applied Science (BAS) degree in Biomedical Sciences presents an option for a more flexible curriculum in bioengineering for those with broader interests. Pre-medical students may choose either the BSE or BAS degree program. Both are identical for the first two years, and students may easily change from one to the other as their career plans become clearer. ### BIOENGINEERING (BE) BSE SAMPLE CURRICULUM | FALL | SPRING | |--|--------------------------------------| | YEAR ONE | | | Calculus I | Calculus II | | General Chemistry I & Lab | General Chemistry II & Lab | | Principles of Physics I | Principles of Physics II | | Introduction to Bioengineering I | Introduction to Bioengineering II | | Social Sciences elective | Writing seminar | | YEAR TWO | | | Calculus III | Calculus IV | | Biomechanics | Biomaterials | | Statistics | Introduction to Computing | | Molecular Biology & Lab | Genetics, Cell Biology or Physiology | | Social Sciences elective | Humanities elective | | YEAR THREE | | | Engineering Physiology | Cell Engineering | | Physical Chemistry | Bioengineering Lab II | | Systems and Signals | Biotransport | | Bioengineering Lab I | Technical elective | | Free elective | Humanities elective | | YEAR FOUR | | | Senior Design | Senior Design | | Bioengineering 4xx/5xx | Bioengineering 4xx/5xx | | Engineering elective | Technical elective | | SSH/TBS elective (Social Sciences | SSH/TBS elective | | & Humanities/ Technology,
Business and Society) | Free elective | | Free elective | | ### CHEMICAL AND BIOMOLECULAR ENGINEERING Prepares you to analyze complex biological and chemical processes, understand the interactions between biomolecules and chemicals and develop new processes Penn's Chemical and Biomolecular Engineering (CBE) program, founded in 1893, has a proud history at the forefront of undergraduate education. Penn added the word "biomolecular" to the program's name in 2002 to reflect the essential role that disciplines such as molecular biology, cellular mechanobiology and genetic engineering now play in the field. Penn's CBE program combines engineering principles with concepts from chemistry, physics and biology. The program's flexible curriculum includes theory, problem-solving techniques and experimental work. Small classes encourage professor-student interactions and the senior process design course utilizes the expertise of industrial colleagues from local chemical and pharmaceutical companies. The CBE program's interdisciplinary approach prepares students for leadership roles in industry, academia and the public sector in a variety of technical areas including energy storage and conversion, chemical, petro-chemical and materials processing, biotechnology, pharmaceutical manufacturing and environmental remediation. #### CHEMICAL AND BIOMOLECULAR ENGINEERING (CBE) SAMPLE CURRICULUM | FALL | SPRING | |--|--| | YEAR ONE | | | Calculus I Principles of Physics I General Chemistry I & Lab Writing seminar Introduction to Biotechnology or Technical elective | Calculus II Principles of Physics II General Chemistry II & Lab Introduction to Chemical Engineering Free elective | | YEAR TWO | | | Material and Energy Balances Calculus III Organic Chemistry I SSH elective (Social Sciences & Humanities) Free elective | Thermodynamics of Fluids Calculus IV Organic Chemistry II Engineering Computer elective SSH elective | | YEAR THREE | | | Fluid Mechanics Advanced Chemical Engineering Science Physical Chemistry I CBE elective SSH elective Free elective | Heat and Mass Transport Separation Processes Organic Chemistry, Physical Chemistry or Biotech and Genetic Chemistry SSH elective | | YEAR FOUR | | | Introduction to Process Design Chemical Engineering Lab Chemical Reactor Design SSH elective | Process System Design Projects Chemical Process Control CBE elective Technical elective | SSH elective Technical elective ### **COMPUTER ENGINEERING** Prepares you to design and engineer computer systems from hardware, to software, to networking and ensuring their performance, energy-efficiency, reliability and security worldwide-distributed systems, The pace at which computers are transforming our world is breathtaking. New ideas and new applications are changing the very fabric of our public and private lives. Think robots, smartphones and tablets, video games, wireless networks, medical devices and anti-lock brakes, to name a few. And it is computer engineers who are pivotal in translating new technological capabilities into new products and services for a global high-tech marketplace. Penn's Computer Engineering (CMPE) major is an innovative and timely degree program, preparing students for a wide range of career opportunities and the kind of intellectual entrepreneurship that is fast shaping the future. In classes led by Penn Engineering's renowned faculty from the departments of Computer and Information Science, Electrical and Systems Engineering, students combine study of the fundamentals of automated information processing and control with rigorous engineering design and optimization, link theory with practice through hands-on experiments and design a new approach to a real-world problem in a yearlong senior design project. COMPUTER ENGINEERING (CMPE) SAMPLE CURRICULUM | FALL | SPRING | |--|--| | YEAR ONE | | | Calculus I Principles of Physics I & Lab Introduction to Programming General Chemistry I or Introduction to Biology I | Calculus II Principles of Physics II & Lab Principles of Digital Design Principles of Digital Design Lab Writing seminar | | | | | Calculus III Introduction to Computer Architecture Electrical Circuits & Systems Electric Circuits & Systems Lab SSH elective (Social Sciences & Humanities) Free elective | Math Foundations of Computer Science
Programming Languages & Techniques I
Digital Audio Basics
Embedded Systems & Microcontroller Lab
SSH elective | | YEAR THREE | | | Statistics Programming Languages & Techniques II Circuit-Level Design for Digital Systems Life Critical Embedded Computing Lab SSH elective | Software Design/Engineering
Computer Organization & Design
Concurrency Lab
SSH elective
M/NS elective (Math & Natural Sciences) | | YEAR FOUR | | | Senior Design Project I Computer Operating Systems Introduction to Networks & Protocols Technical elective SSH elective | Senior Design Project II
Technical elective
SSH elective
Two free electives | ### COMPUTER SCIENCE Prepares you to combine fundamental computing principles with software systems design for applications encompassing everything from artificial intelligence, to graphics, to mobile and networked systems The infrastructure of business, government, science and even everyday social interaction is today dependent upon computers and digital communication. Every time we download music, post an update on social media, drive a car, trade stocks, produce a movie, perform or undergo a medical procedure, play a video game or submit an income tax return, we rely upon networks of computers that store, exchange and process information in evermore elaborate and innovative ways. A Penn Engineering degree in Computer Science (CS) provides students with an in-depth education in the conceptual foundations of computer science and in complex software and hardware systems. It allows them to explore the connections between computer science and a variety of other disciplines in engineering and outside. Combined with a strong education in mathematics, sciences and the liberal arts, it prepares students to be leaders in computer science practice, to create applications for other disciplines or research and to pursue an array of careers, advanced degrees or personal interests at the vanguard of technological innovation. ### COMPUTER SCIENCE (CS) SAMPLE CURRICULUM | FALL | SPRING | |---|--------------------------------------| | YEAR ONE | | | Computer Programming | Programming Languages I | | Calculus I | Calculus II | | Principles of Physics I & Lab | Math Foundations of Computer Science | | Writing Seminar | Principles of Physics II & Lab | | SSH elective (Social Sciences & Humanites) | SSH elective | | YEAR TWO | | | Programming Languages II | Digital Organization & Design | | Computer Architecture | CIS elective | | Discrete Probability (or statistics course) | Math elective | | Engineering elective | Technical elective | | SSH elective | SSH elective | | YEAR THREE | | | Automata, Computability and Complexity | Introduction to Algorithms | | Computing Operating Systems | CIS Project Course | | Natural Science elective | Technical elective | | Technical elective | SSH elective | | Free elective | Free elective | | YEAR FOUR | | | Senior Design I | Senior Design II | | CIS elective | CIS elective | | Math elective | Technical elective | | Engineering elective | SSH elective | | SSH elective | Free elective | | | | Prepares you to understand, program and apply theoretical, artistic, aesthetic and experiential principles associated with computer graphics, animation and digital media design ### **DIGITAL MEDIA DESIGN** Computer-generated imagery is transforming communication — from educational software and motion picture special effects to architectural simulations and medical visualizations. With these new technologies come new questions about the creation and design of virtual environments and their impact upon society. To address these questions, Penn Engineering, in collaboration with the University's Annenberg School for Communication and the School of Design, created the Digital Media Design (DMD) program, an elite Bachelor of Science in Engineering (BSE) degree program for a small number of students. The program is designed to educate a new generation of experts in computer graphics: people who, through their combined education in engineering, design, and communications, are prepared to be and to collaborate effectively with technologists and artists. The curriculum gives students a foundation in three areas: computational basis for the creation of digital media imagery, including simulation of 3D environments; informed understanding of the aesthetic aspects of digital media design; and theory and research concerning viewers' psychological responses to, and uses of, visual media as well as broader sociocultural effects. Students in the program participate in one or two summers of real-world experience in a major multimedia industry. ### DIGITAL MEDIA DESIGN (DMD) SAMPLE CURRICULUM | The state of s | | |--|--| | FALL | SPRING | | YEAR ONE | | | Programming Languages I | Programming Languages II | | Calculus I | Calculus II | | Drawing I | Drawing II | | Writing Seminar | Math Foundations of Computer Science | | SSH elective (Social Sciences & Humanities) | Intro Psychology (SSH) | | YEAR TWO | | | Introduction to Computer Architecture | Introduction to Computer | | Principles of Physics I | Graphics Techniques | | Automata, Computability | Principles of Physics II | | and Complexity 3D | Introduction to Film, Form and Context | | 3D Computer Modeling | App of Scientific Computing | | Calculus III | SSH elective | | YEAR THREE | | | Computer Graphics | Visual Communications | | Introduction to Algorithms | CIS elective | | CIS elective | Natural Science elective | | Psychology (Perception, Learning, etc.) | Info Design | | Comm/FNAR elective
(Communication/Fine Arts) | Free elective | | YEAR FOUR | | | DMD Senior Project | Physically-Based Animation | | Computer Animation | Comm/FNAR elective | | CIS elective | SSH elective | | SSH elective | SSH elective | | Comm/FNAR elective | Free elective | | | | ### **ELECTRICAL ENGINEERING** Prepares you to develop new technologies and create novel devices that use electricity to sense, acquire, store and process information or transform and transmit power Today's electrical engineers are at the vanguard of innovation across a wide spectrum of products and services ranging from communication systems, computers and computer networks to instruments for healthcare and diagnostics. Penn's Electrical Engineering (EE) curriculum covers all major areas of the field including telecommunications and networks, imaging, remote sensing, microelectronics and integrated circuits, computer engineering, image and speech processing, robotics, video coding, neural computation, self-organizing systems, electromagnetics and photonics, electronic materials, silicon micromechanics and nanofluidics. The program is a broad-based major that provides a rigorous grounding in the analytical and experimental foundations of electrical engineering while allowing students to craft an individualized program reflecting their interests and career goals or plans for graduate study. ### ELECTRICAL ENGINEERING (EE) SAMPLE CURRICULUM | FALL | SPRING | |--|---| | YEAR ONE | | | Calculus I Principles of Physics I & Lab Introduction to Computer Programming Writing seminar SSH elective (Social Sciences & Humanities elective) YEAR TWO | Calculus II Principles of Physics II & Lab Electrical Engineering (EE) area elective SSH elective | | Calculus III General Chemistry I or General Biology (with Labs) Electrical Systems and Circuits I Ethics (SSH elective) SSH elective | Mathematics elective Electrical Systems and Circuits II EE area elective (ESE) Professional elective (Engineering/Math/Natural Science) | | Engineering Probability Introduction to Dynamic Systems Two EE area electives (ESE) SSH elective Free elective YEAR FOUR | Mathematics or Natural Science
elective (M/NS)
EE area elective (ESE)
EE specialization elective (ESE)
SSH elective | | Senior Design Project I EE specialization elective (ESE) Professional elective (E) Professional elective (E/M/NS) Free elective | Senior Design Project II
Professional elective (E)
Two professional electives (E/M/NS)
Free elective | ### MARKET AND SOCIAL SYSTEMS ENGINEERING information and security. Prepares you to engineer for tomorrow's social and and analyze systems, protocols and markets technological networks Networks — the Internet, social networks such as Facebook, and traditional organizational and economic networks — touch virtually every aspect of modern life from business and investments, to communication and information access, scientific discovery and medicine, and government To understand the Internet, to predict behavior on it and to design new capabilities and services for it, Penn's Singh Program on Market and Social Systems Engineering (MKSE) considers the Internet as an assembly of people and systems, interlinked by a technological network with particular structure and properties. The world's first course of study to fully integrate the disciplines needed to design and analyze the complex networks that are reshaping our society, the program combines computer science, systems engineering and economics — examining the influence of the Internet as well as the new economies and markets that have developed as a result. ### MARKET AND SOCIAL SYSTEMS ENGINEERING (MKSE) SAMPLE CURRICULUM | FALL | SPRING | |--|---| | YEAR ONE | | | Calculus I Introduction to Computer Programming Mathematical Foundations of Computer Science Principles of Physics I Networked Life YEAR TWO | Calculus II Principles of Physics II Programming Languages I Market and Social Systems on the Internet Writing seminar | | Calculus III Programming Languages II Scalable and Cloud Computing Introduction to Dynamic Systems Humanities elective (Ethics) Depth Technical elective | Probability Linear Algebra Intermediate Microeconomics SSH/TBS elective (Social Sciences & Humanities/Technology, Business & Society) | | Stochastic Systems Analysis and Simulation Theory of Networks Game Theory SSH elective Depth Technical elective YEAR FOUR | Optimization of Systems
Introduction to Algorithms
SSH/TBS elective
Technical elective | | Algorithmic Game Theory Senior Project DepthTechnical elective Technical elective Technical elective | Senior Project
Natural Science elective
Free elective
Free elective | ### MATERIALS SCIENCE AND ENGINEERING Prepares you to use fundamental scientific principles to synthesize, manipulate, design and characterize the structural and functional properties of advanced engineering materials Key to the explosive growth in modern technology is the development of advanced materials by materials science engineers and scientists. New materials from nanostructured and biocompatible materials to electronic ceramics and copolymers are paving the way for new fields, new ideas and new technologies that are changing the way we live and work. Penn's Materials Science and Engineering (MSE) program stresses core principles (thermodynamics, structure, bonding and phase transformations) and areas of concentration (nanoscale materials, biomaterials, polymers, ceramics, mechanical properties and electronic materials). The program offers students advantages seldom found in other MSE programs: the opportunity to tailor the curriculum to their own interests, guaranteed research experience and an excellent student-faculty ratio. ### MATERIALS SCIENCE AND ENGINEERING (MSE) SAMPLE CURRICULUM | FALL | SPRING | |--|---| | YEAR ONE | | | Calculus I General Chemistry I & Lab Principles of Physics I Introduction to Engineering | Calculus II
General Chemistry II & Lab
Principles of Physics II
Introduction to Nanotechnology
Free elective | | YEAR TWO | | | Structural and Biomaterials
Quantum Physics of Materials
Calculus III
Introduction to Computer Programming
Writing seminar | Introduction to Nanoscale Functional
Materials
Nanoscale Materials Lab
Calculus IV
Energetics of Macro/Nanoscale Materials
SSH elective (Social Sciences & Humanities) | | YEAR THREE | | | Self Assembly of Soft Materials
Structure of Materials
Advanced Linear Algebra
Engineering elective
SSH elective | Fabrication and Characterization
of Nanostructured Devices
Materials Selection
Engineering elective
SSH elective
Free elective | | YEAR FOUR | | | Senior Design Project I Polymers and Biomaterials Energy Storage Technology Two SSH electives | Senior Design Project II Phase Transformations Environmental Degradation of Materials SSH elective Free elective | # MECHANICAL ENGINEERING AND APPLIED MECHANICS Prepares you to analyze, design and manufacture components and systems involving machines and energy conversion systems at nano, micro and macro length scales Mechanical engineers design and develop everything we think of as a machine — from rocket engines and nano motors to toasters and power tools. As well, mechanical engineering is at the core of any energy harvesting or conversion technology. Students in Penn's Mechanical Engineering and Applied Mechanics (MEAM) program follow a course of study that contains basic groundwork in all aspects of mechanical engineering, while flexibility in the curriculum allows them to pursue elective programs in fields such as aeronautics, robotics, computers, electronics, automatic controls and materials. Career opportunities for mechanical engineers are perhaps the broadest among all the engineering specialties. Aerospace, automotive, electronics, computers, energy and robotics are but a few of the fields that employ mechanical engineers. Positions range from research and development, to design and manufacturing, to field engineering and marketing. # MECHANICAL ENGINEERING AND APPLIED MECHANICS (MEAM) SAMPLE CURRICULUM | FALL | SPRING | |---|--| | YEAR ONE | | | Intro to Mechanics & Lab | Principles of Physics II & Lab | | Calculus I | Calculus II | | General Chemistry I & Lab | Introduction to Computing (elective) | | SSH elective (Social Sciences and Humanities) | Introduction to Mechanical Design (elective) Writing seminar | | YEAR TWO | | | Statics and Strengths of Materials | Thermodynamics I | | Mechanical Engineering Lab IA | Engineering Mechanics: Dynamics | | Calculus III | Mechanical Engineering Lab IB | | Machine Design and | Calculus IV | | Manufacturing (elective) | SSH elective | | SSH elective | | | YEAR THREE | | | Fluid Mechanics | Heat and Mass Transfer | | Vibrations | Mechanics of Solids | | Mechanical Engineering Design Lab | Mechanical Engineering Design Lab | | SSH elective | Upper-Level MEAM Course | | Free elective | Math elective | | YEAR FOUR | | | Mechanical Engineering Design Projects | Mechanical Engineering Design Projects | | Upper-Level MEAM Course | Upper-Level MEAM Course | | Professional elective | Professional elective | | SSH elective | SSH elective | | Free elective | Free elective | ### SYSTEMS SCIENCE AND ENGINEERING Prepares you to design, analyze, optimize and deploy complex, networked technological systems that ensure efficient and safe operation The field of systems engineering originated at Penn in 1953. Since then, many enterprises that directly affect everyday life — computers, environmental organizations, manufacturing, logistics, transportation, information and telecommunications, economic and financial networks, healthcare and military defense among them — have grown evermore complex and demanding of innovative systems to ensure their effective operation. Penn's Systems Science and Engineering (SSE) program specializes in those aspects of engineering that pertain to effectiveness of whole systems and the synthesis of more complex behaviors from simpler components. In contrast to other engineering specialties, which are grounded in specific biological or physical sciences, systems science is grounded primarily in mathematics, computation and design methodologies. The core curriculum focuses on mathematical modeling, simulation and optimization of complex engineered systems. ### SYSTEMS SCIENCE AND ENGINEERING (SSE) SAMPLE CURRICULUM | FALL | SPRING | |---|---| | YEAR ONE | | | Calculus I | Calculus II | | Principles of Physics I & Lab | Principles of Physics II & Lab | | Introduction to Computer Programming Writing seminar | Systems Science Engineering (SSE) area elective | | SSH elective (Social Sciences
& Humanities elective) | SSH elective | | YEAR TWO | | | Calculus III | Mathematics or Natural Science elective | | General Chemistry I or
General Biology (with Labs) | Systems Methodology | | Electrical Systems and Circuits I | Optimization of Systems Professional elective (Engineering/ | | Ethics (SSH elective) | Math/Natural Science) | | SSH elective | | | YEAR THREE | | | Probability | Statistics | | Introduction to Dynamic Systems | Control of Systems | | Engineering Economics | SSE area elective (ESE) | | Professional elective (Engineering) | Professional elective (Application focus) | | SSH elective | Free elective | | YEAR FOUR | | | Senior Design Project I | Senior Design Project II | | Stochastic Systems Analysis | Professional elective (Engineering) | | SSE specialization elective (ESE) | Professional elective (Application focus) | | Professional elective (Application focus) | SSH elective | | Free elective | Free elective | # SPECIAL PROGRAMS With technology evermore complex and the speed of technological change evermore accelerated, engineers and scientists must be prepared to think big picture and across disciplines. Penn Engineering's interdisciplinary special programs offer students a diverse academic experience and the intellectual grounding essential to collaboration and innovation. **THE BACHELOR OF SCIENCE IN ENGINEERING (BSE)** is Penn's flagship program, preparing students for careers in professional engineering, computer science or digital media design. Minimum BSE requirement: **THE BACHELOR OF APPLIED SCIENCE (BAS)** combines a broader applied science education with specialized interest in engineering and technology. Program options include Biomedical Science, Cognitive Science, Computational Biology, Computer Science and individualized programs. Minimum BAS requirement: 40 course units. In addition to the minors associated with specific Penn Engineering departments, these interdisciplinary minors allow students to explore technologies and take coursework across departments: **MINOR IN ENERGY AND SUSTAINABILITY** provides students with broad coverage of critical technical and societal issues and in-depth treatment of selected topics in technical areas relevant to energy and sustainability. www.seas.upenn.edu/undergraduate/degrees/minor-energy.php **MINOR IN ENGINEERING ENTREPRENEURSHIP** gives students the skills important to the creation of technology-based startups and the ability to market ideas successfully and profitably. www.seas.upenn.edu/entrepreneurship/minor.php **MINOR IN NANOTECHNOLOGY** prepares students for this rapidly growing field with course offerings reflecting the latest advances in research from nanometer scale science/engineering and nanoscale materials to fabrication of nanostructured devices. www.nanotech.upenn.edu/minor_nanotech.html **MINOR IN COGNITIVE SCIENCE** is a special minor offered by Penn Engineering and the College of Arts and Sciences. Students do foundational coursework in parent disciplines of computer science, linguistics, neuroscience, philosophy and psychology along with advanced courses in one or more areas. www.ircs.upenn.edu/education/minor-cogsci.shtml Making Contact With the Right Career Opportunities is Easy at Penn Penn Engineering's reputation for top students attracts top employers, many of them Penn alumni. Close to 400 companies recruit annually through the On-Campus Recruiting Service. More than 120 companies, from multi-national conglomerates to high-tech companies, participate in the annual Engineering Career Awareness Day. Students also benefit from advice on careers and job-hunting from the Career Services Center. Career Paths: Penn Engineering Alumni ### POST-GRADUATION CAREER PATHS | Industry & Business | 72% | |---------------------|-----| | Graduate School | 25% | | Other | 3% | ### EMPLOYMENT BY JOB TYPE | Manufacturing, | | |------------------------|-----| | information technology | 37% | | Financial Services | 21% | | Consulting | 18% | | Scientific Research | 7% | | Other (including | | | start ups, government) | 17% | ### GRADUATE SCHOOL CHOICES | Engineering | 65% | |-------------|-----| | Medicine | 17% | | Sciences | 6% | | Law | 5% | | Biotech | 3% | | Business | 1% | | Other | 3% | Penn Engineering's specialized dual degree programs allow students to combine their BAS or BSE degree with a second degree in one of Penn's other undergraduate schools, pursuing an integrated curriculum jointly offered by the two schools and incorporating interdisciplinary coursework. Students receive two degrees upon completion of the specialized curricula. Minimum dual degree requirement: 46 course units. **THE JEROME FISHER PROGRAM IN MANAGEMENT AND TECHNOLOGY** (M&T) enables students to understand and integrate engineering and business concepts. Graduates receive a BSE or BAS from Penn Engineering and a Bachelor of Science (BS) in Economics from the Wharton School. www.upenn.edu/fisher ### VAGELOS INTEGRATED PROGRAM IN ENERGY RESEARCH (VIPER) offers instruction and state-of-the-art research experience in energy science and technology and prepares students to be innovators in the discovery and development of sustainable approaches to harness, convert and use energy. Graduates earn both a Bachelor of Arts (BA) and a BSE degree. www.viper.upenn.edu **COMPUTER AND COGNITIVE SCIENCE** combines studies in computer science and engineering with linguistics, mathematics, philosophy or psychology. Graduates receive a BSE or BAS and a BA from the College of Arts and Sciences. www.cis.upenn.edu/ugrad/Acad.shtml Penn Engineering students can also enrich their undergraduate experience by satisfying degree requirements in two BSE curricula as a dual major. (BAS students are not permitted to dual major within engineering.) Or, students may find the second major an attractive alternative to the dual degree. Qualified engineering students may pursue a second major in any major offered through the College of Arts and Sciences. www.seas.upenn.edu/undergraduate/ handbook/programs/dual-majors.php www.seas.upenn.edu/undergraduate/ handbook/programs/second-major.php Submatriculation allows Penn Engineering students to enter an engineering graduate program while still completing their undergraduate program, fulfilling both undergraduate and graduate degree requirements. www.seas.upenn.edu/undergraduate/degrees/submatriculation.php Study abroad and global service learning programs offer Penn Engineering students the opportunity to expand their understanding and experience of the world through hands-on engineering challenges as well as academic study. Destinations include virtually all corners of the world, and opportunities range from two-week service programs in the summer to semester-long stays in a leading university overseas. www.seas.upenn.edu/community/international-opps.php ### EDUARDO D. GLANDT Dean ### VIJAY KUMAR Deputy Dean, Education ### JAN VAN DER SPIEGEL Associate Dean, Education ### Accreditation The following Bachelor of Science in Engineering (BSE) programs are accredited by the Engineering Accreditation Commission of ABET (www.abet.org): Bioengineering Chemical and Biomolecular Engineering Computer Engineering Electrical Engineering Materials Science and Engineering Mechanical Engineering and Applied Mechanics Systems Science and Engineering The following Bachelor of Science in Engineering (BSE) program is accredited by the Computing Accreditation Commission of ABET (www.abet.org): Computer Science # 1852 Founding date of School of Mines, Arts and Manufactures that gave rise to School of Engineering and Applied Science # 119 Faculty 37 Chaired professors # 9 Faculty elected to National Academy of Engineering # 14:1 Student/Faculty ratio # 1650 Undergraduates 23% Students enrolled in dual-degree programs ## 32 Engineering student clubs and organizations # 410 Places in entering class # 14.7 Applicants per place # 35% Women in entering class # Middle 50th Percentile SAT score for admitted students # 640-750 Critical reading # 680-780 Math # 650-750 Writing FOR MORE INFORMATION ABOUT PENN ENGINEERING OR TO ARRANGE A PERSONALIZED VISIT TO THE CAMPUS, PLEASE CONTACT: Recruiting and Admissions Office of Academic Programs School of Engineering and Applied Science University of Pennsylvania 220 South 33rd Street Philadelphia, PA 19104-6391 Phone: 215.898.7246 Fax: 215.573.5577 E-mail: ug-admit@seas.penn.edu WWW SEAS LIPENN EDU The University of Pennsylvania values diversity and seeks talented students, faculty and staff from diverse backgrounds. The University of Pennsylvania does not discriminate on the basis of race, sex, sexual orientation, gender identity, religion, color, national or ethnic origin, age, disability or status as a Vietnam Era Veteran or disabled veteran in the administration of education policies, programs or activities; admissions policies; scholarship and loan awards; athletic or other University administered programs or employment. Questions or complaints regarding this policy should be directed to: Executive Director, Office of Affirmative Action and Equal Opportunity Programs, Sansom Place East, 3600 Chestnut Street, Suite 228, Philadelphia, PA 19104-6106 or by phone at 215.898.6993 (voice) or 215.898.7803 (TDD). Penn is committed to providing full access to participation in all University-sponsored programs. A full range of services is available to students with motor or sensory disabilities, chronic illnesses or learning disabilities. Students should contact the Office of Student Disabilities Services at 215.573.9235 (voice) or 215.746.6320 (TDD). The Crime Awareness and Campus Security Act, together with the College and University Security Information Act, requires Penn to provide information on its security policies and procedures and specific statistics for criminal incidents and arrests to students and employees, and to make the information and statistics available to prospective students and employees upon request. To review the University's most recent annual report containing this information, please go to http://www.upenn.edu/almanac.html. To request a paper copy of the report, please call the Division of Public Safety at 215.898.4482.