
Title: Pulse Compression Made Easy1 With VSIPL++

Authors

First Author: Mr. Brian Chase
(US citizen)
VSI/Pro Product Manager
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: brian@mpi-softtech.com

Second Author: Mr. WenhaoWu
(Citizen of China)
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: wenhao@mpi-softtech.com

Third Author: Mr. Dave Leimbach
(US Citizen)
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 209
Fax: +1 (205) 314-3475
E-mail: dleimbac@mpi-softtech.com

Fourth Author: Mr. Rick Pancoast
(US Citizen)
Lockheed Martin Naval Electronics and Surveillance Systems - Surface Systems
199 Borton Landing Road
Moorestown, NJ 08057
E-mail: rick.pancoast@lmco.com

Corresponding and Presenting Author: Dr. Anthony Skjellum
(US citizen)
Chief Software Architect,
Verari Systems Software, Inc.
Suite D103, 110 12th Street North
Birmingham, AL 35203
Phone: +1 (205) 314-3471 ext 205
Fax: +1 (205) 314-3475
E-mail: tony@mpi-softtech.com

Submission session: Open sessions.
Presentation type: Presentation

Work area: Case Study Examples of High Performance Embedded Computing

1 High Productivity – See the abstract for more details.

In December, 2003, Verari Systems Software, Inc. (formerly MPI Software

Technology, Inc.) undertook a phase I SBIR effort produce a high level design for a high

performance next generation embedded VSIPL product that incorporates advanced

language constructs such as those found in the VSIPL++ specification that is now under

consideration. The work was divided as follows: 1) Researching strategies to mitigate

performance degradation from C++ overhead; 2) High level design work for such a

library; 3) Prototype implementation of the new library; 4) Implementing a benchmark

application to gauge performance benefit; 5) Reporting results and making

recommendations that would apply to the ongoing VSIPL++ effort and any follow-on

Phase II work that might be awarded.

The recent introduction of several template based strategies (e.g. PETE, POOMA,

FACT!, Blitz++, and others) suggests that C++ may soon become a suitable choice for

technical and scientific computing application. For certain cases, (e.g., matrix

multiplications) inline function calls and template code outperforms straight C code.

These similar technologies all share a common set of effective strategies that may be

summarized as follows: 1) Avoid excessive temporary copies of objects (both implicit

and explicit, where the implicit ones are generated as a side effect of algebraic type

expressions); 2) Make shallow copies instead of deep cloning; 3) Pass data by constant

reference instead of by value; 4) Use compile time or static polymorphism, such as

templates; 5) Deferred evaluation; 6) Template metaprogramming strategies; 7) Inline

function calls; 8) Loop fusion and loop unrolling. The authors acquired PETE, the

Portable Expression Template Engine, and compiled several examples for the Mercury

MCOE 6.0 platform using a 171MHz SPARC machine. The authors also studied the

tradeoffs between runtime performance and significant compile time penalties.

Verari’s advanced VSIPL package design and prototype implementation strategy is

not unlike the architecture of the VSIPL++ reference implementation, which is built as a

C++ layer on top of a C VSIPL library. That particular configuration readily appeals to

all current vendors of VSIPL compliant middleware who would like to quickly enter the

market with a VSIPL++ offering. Figure 1 shown below depicts the layered hierarchical

software design used in this study.

VSIPL Reference Implementation

VSIPL C API

VSIPL++ API

User Application

VSI/Pro C/ASM Kernel

VSI/Pro C++ Engine

VSI/Pro ++

Object Oriented Strategies -
Deferred Evaluation

Pulse Compression

Additional User Applications

Critical
Benchmarks

Figure 1 Architecture or the prototype versus VSIPL++

Since the API of the prototype package mirrors that of the VSIPL++ reference
implementation, the first experiments were simply tests that are distributed with the
VSIPL++ reference code. These tests mainly check for numerical accuracy. The Phase I
study then progressed to a more complex test, a commonplace benchmarking application
used in radar processing. The pulse compression benchmark typically uses a complex
FFT, a complex reference multiply, followed by an inverse complex FFT. The
performance of the prototype library on this benchmark was inline with performance
figures than can be obtained from the VSI/Pro package. Since the VSI/Pro++ API is
similar to VSIPL++, we should expect high performance from the VSIPL++ API when
the time comes.

Other than improved performance, another noticeable observation that occurred
while porting the pulse compression application from VSIPL to VSIPL++ was the
dramatic reduction in both code size and complexity: The original VSIPL benchmark
code (which was provided by Lockheed Martin as part of this SBIR effort) consisted of
1600 lines of C code. Yet, the ported VSIPL++ code consisted only 100 lines of C++
code and the whole porting effort only required 2 weeks for one engineer. In fact, Pulse
Compression can be fully implemented in a single line of VSIPL++ code:

 OutputVector = fft_ccrv (fft_ccfv (InputVector) * fft_ccfv (WeightVector));

In conclusion, this layered software architectural approach enables high
performance, portability, high productivity, and low time to market for commercial
vendors of VSIPL standard libraries. Future directions include incorporating the
following strategies that will facilitate commercialization of the VSIPL++ standard: 1)
Generic programming for higher productivity. 2) Expression manipulation, as well as 3)
Deferred evaluation for higher performance.

	Authors

