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Knowledge Representation for Language
Engineering
MATTHEW STONE

1.1 Introduction

I understandKNOWLEDGE REPRESENTATIONfirst and foremost as a techni-
cal practice: the enterprise of specifying information about the world for use
in computer systems. Knowledge representation as a field also encompasses
conceptual results that call practitioners’ attention to important truths about
the world, mathematical results that allow practitioners to make these truths
precise, and computational results that put these truths to work. This chapter
surveys this practice and its results, as it applies to the interpretation of natu-
ral language utterances in implemented natural language processing systems.
For a broader perspective on such technical practice, in all its strengths and
weaknesses, see (Agre 1997).

Knowledge representation offers a powerful general tool for the sci-
ence of language. Computational logic, a prototypical formalism for rep-
resenting knowledge about the world, is also the model for the level of
logical form that linguists use to characterize the grammar of meaning
(Larson and Segal 1995). And researchers from (Schank and Abelson 1977) to
(Shieber 1993) and (Bos to appear) have relied crucially on such represen-
tations, and the inference methods associated with them, in articulating ac-
counts of semantic relations in language, such as synonymy, entailment, infor-
mativeness and contradiction. The new textbooks (Blackburn and Bos 2002a,
Blackburn and Bos 2002b) provide an excellent grounding in this research, and
demonstrate how deeply computational ideas from knowledge representation
can inform pure linguistic study. In this short chapter, I must leave much of
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2 / MATTHEW STONE

this work aside.
Instead, I will focus on those uses of knowledge representation that are

more directly practical. In language engineering, the essential role of knowl-
edge representation is to capture connections between language and the world.
Systems that generate natural language must start from an internal represen-
tation of the information about the world that the user needs. Systems that
interpret natural language must recognize the inferential links that connect the
user’s utterance to presupposed information about the world. Section 1.2 offers
more precise illustrations of the ways we use language to describe the world,
and the pragmatic reasoning that underlies such descriptions. To create systems
that bridge language and the world the same way, language engineers need to
be familiar with the techniques of knowledge representation, which will in-
form the available representations of domain knowledge; and they need to be
comfortable with the practice of knowledge representation, which they must
use to link these domain representations to linguistic constructions. Knowl-
edge representation thus serves as a bridge betweenONTOLOGY, which as
surveyed in (Noy, Chapter 5, this volume) governs systems’ domain represen-
tations, andGRAMMAR WRITING, which as surveyed in (Butt and Holloway
King, Chapter 4, this volume) governs systems’ grammatical description of
linguistic constructions.

At the heart of knowledge representation is a methodology for the design
of computer systems that allows us to understand them as encoding and us-
ing information about the world—any aspect of the world—to solve problems.
However, as Section 1.3 explores in more detail, the key to this methodology
actually lies in the way it aids engineers in developing a precise understanding
of the world in the first place, before system-building gets underway. Our ef-
fortless abilities to act in the world ourselves can easily mask the complexity
and flexibility of the information that we require. The methodology of knowl-
edge representation provides a practical discipline for systematizing such in-
formation. Linguists will find much that is familiar from their own discipline
in this methodology, for linguistics springs from similar motivations. Our ef-
fortless ability to use our native language, acquired without formal instruction,
masks the complexity of the linguistic knowledge that we implicitly rely on. In
fact, in developing and implementing models of pragmatic reasoning, linguists
and knowledge representation researchers share a common project of identify-
ing, describing and formalizing the knowledge that underlies the capacity for
verbal communication.

In the rest of this chapter, I complement these general discussions with a
survey of results that connect the practice of knowledge representation more
specifically to language engineering. Section 1.4 explores the picture of the
world that language presupposes; Section 1.5 surveys the formal methods that
are available to reason about this picture of the world precisely and efficiently.
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I close in Section 1.6 with an assessment of knowledge representation and its
prospects for language engineering.

1.2 Motivation

Language is general. For the countless open-ended situations in which we
might find ourselves, language offers a rather small stock of words and con-
structions, with rough-and-ready meanings which we must fit together cre-
atively to suit our needs. Yet the abstract information we can convey in lan-
guage allows us almost effortlessly to advance our specific projects in specific
contexts. Thus, consider example (1).

(1) I would like coffee.

By uttering (1), a speaker can request an action by the hearer and thereby
coordinate with the hearer to advance goals in the world. In particular, you have
no doubt imagined (1) as an instruction to surrender a mug of steaming liquid
to the speaker’s physical control—thinking of (1) as a response to waitstaff’s
question (2) perhaps.

(2) Would you like a drink with dessert?

The specific content that an utterance carries when used by a speaker on a par-
ticular occasion, as with (1) in answer to (2), is itsINTERPRETATION. Interpre-
tation in this sense is part of linguistic pragmatics. By contrast, I will reserve
MEANING for the general semantic description of the utterance, as provided
by the grammar, abstracting away from any use of the utterance in a particular
context.

The meaning of (1) in this sense is much more general than this one in-
terpretation at first suggests. Too see this, note that (1) works just as well as a
request for a clerk to scoop out an ice-cream cone in the context established
by (3a), as a request for a wealthy host to make certain arrangements with the
household cook on the speaker’s behalf in the context established by (3b), or
as a request for a coach to assign the speaker to affiliation on a particular team
in the context established by (3c).

(3) a. Which of these flavors do you want?

b. What will you have to drink tomorrow morning?

c. Will you program for Team Coke or Team Coffee?

Semantically, (1) specifies the desired action just by its result: through it, the
speaker must come in some sense to possess something identified as coffee.
(1) looks to the context for the object the speaker intends to get, the kind
of possession the speaker requires, and the kind of action the speaker ex-
pects. Here the possibilities are as limitless as the world itself, and when
we link language to context, we seem quite simply to be linking language
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up with our full shared understanding of our present situation. In other
words, interpretation may beFORMALIZED in terms of parameters from the
context, describing speaker, time, place and so forth as is sometimes done
in formal semantics, following (Kaplan 1989), for example; however, inter-
locutors’ pragmatic reasoning must in factCONSTRUCT this formal context
(Thomason 1999), drawing on interlocutors’ shared physical environment,
their information about one another, and their expectation for the interaction.
See (Clark 1996, Stalnaker 1998, Bunt 2000).

Language engineering places a natural emphasis on the interpretation of ut-
terances. By constructing interpretations, interlocutors relate application talk
to the objects that they know about in the domain and the actions that they
can take there. (1), for example, might be something users would say to a vir-
tual barista. In this application, the interpretation of (1) links the utterance to
an action the system can take:serving a cup of coffee to the user, one of the
agent’s primitive capabilities. The meaning of the utterance, by contrast, may
have to be articulated in more general terms, as we have just seen, and so the
meaning may have to abstract away from specific connections with the ap-
plication domain. By reasoning from interpretations, meanwhile, interlocutors
can determine how to proceed with the conversation and the interaction. In any
application, when an utterance expresses preference for some action, a coop-
erative agent may respond by taking that action. Here, then, by reasoning from
the interpretation, the system knows to exercise its capability ofserving a cup
of coffee to the user. Again, the general meaning of utterances may have to be
too abstract to support such inference in an application.

Language engineering also places a natural emphasis on keeping con-
nections between meaning and interpretation as constrained and specific as
possible. Systems do need to work both with meaning and with interpreta-
tion; in fact, they must have interpretive processes that seamlessly combine
SEMANTIC information—knowledge of meaning—withPRAGMATIC infor-
mation, describing the user, task and environment. This helps them to ac-
commodate peoples’ natural variability in language use (Furnas et al. 1987,
Brennan to appear), to mesh with robust designs that give systems some com-
petence in new or unpredictable environments, and to support flexible reuse of
linguistic resources and modules across applications.

However, practical systems cannot implement the connection between
meaning and interpretation in its full generality. For one thing, we are still un-
certain about the shape such a general account will take. Some view the prob-
lem of language understanding as a problem of drawing inferences to make an
utterance relevant, as in (Sperber and Wilson 1986, Hobbs et al. 1993); others
view it as a problem of drawing inferences to fit an utterance into the dis-
course, as in (Grosz and Sidner 1986, Lascarides and Asher 1991); still others
see it as a problem of drawing inferences to attribute an intention to a speaker,
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as in (Grice 1975, Allen and Perrault 1980); or as a problem of inferring how
to participate in a collaboration, as in (Clark 1996, Lochbaum 1998). Indeed,
language use might require a combination of these largely compatible infer-
ences, as suggested in (Stone 2003).

More importantly, no matter how such theoretical questions are resolved,
it seems clear that interpretation in cooperative conversation must sometimes
reflect open-ended reasoning about agents’ actions, choices and motivations—
see (Grice 1957, Searle 1975, Grice 1975, Lewis 1979, Thomason 1990); al-
though such general reasoning has also sometimes been pursued in models of
dialogue in artificial intelligence, too (Allen and Perrault 1980), it remains pro-
hibitively expensive for practical applications. We see the issues involved again
in (1). (1) literally expresses the speaker’s preference for coffee. However, the
utterance functions as a request. This secondary function has a good explana-
tion. Both interlocutors can anticipate that the hearer will act cooperatively to
fulfill this interlocutors’ preferences. Accordingly, in expressing the preference
with (1), the speaker cannot help but convey an expectation that the hearer will
follow through. It seems that, in general, such reasoning should figure in ut-
terance interpretation. But enormous obstacles remain in implementing such
inferences with the robustness, efficiency and usefulness we find in our own
language use.

Rather than attempt such reasoning, a more common strategy is to har-
monize meaning and interpretation to cover frequent cases of indirection. A
system can be constructed so that the action it takes in response to a literal
understanding of an utterance accords with its indirect interpretation. Our dis-
cussion of (1) follows this strategy—from utterances that express a preference
for some action (a literal understanding), the agent responds by taking the de-
sired action (in keeping with an indirect interpretation). Alternatively, a system
can be supplied with new semantic resources that derive an indirect interpreta-
tion directly. For (1), the formI would likecould simply be given the meaning
I request. On occasion throughout this chapter, I will have to offer some other
rather superficial linguistic analyses in the interest of illustrating the practical
compromises in systems that talk about the world. I am optimistic that future
implementations will be able to take fewer of these liberties with meanings and
interpretations.

Overall, then, language engineering brings a natural emphasis on imple-
menting constrained processes that derive utterance interpretation from mean-
ing in context. The key practical and methodological challenge is to capture
the connection between natural language utterances and the underlying ontol-
ogy of our domain of discourse. This domain ontology is typically specified
in advance of any linguistic application; see (Noy, Chapter 5, this volume). So
the burden of knowledge representation here is to identify, describe and for-
malize the further background knowledge about this ontology that figures in
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the meanings and interpretations of utterances in the domain.
Linguists moving into this new intellectual sphere will find that the pre-

supposed background of conversational utterances embraces a panoply of hu-
man concerns in rich and fascinating detail. Interpretations effortlessly draw
on subtle and intricate characterizations of physical action in the world—
see particularly (Crangle 1989, Crangle and Suppes 1994, Webber et al. 1995,
Di Eugenio and Webber 1996, Webber 1998). Interpretations highlight the as-
sumptions about time, action and causality that we must also use to pre-
dict, explain and plan for our changing circumstances; see (Steedman 1997).
And interpretations connect with enduring regularities in our interactions with
one another: our goals, beliefs, relationships and choices; for seminal stud-
ies, see (Charniak 1973, Hobbs 1978, Schank 1980, Grosz and Sidner 1990,
Litman and Allen 1990, Pollack 1990). In accounting for human language use,
researchers often view all such information in aggregate, as a single body of
common-sense knowledge that we all share, and draw freely on in language
use. That may be. As computational systems have not nearly attained such
generality yet, in language processing systems such common-sense facts must
usually be supplied in new, domain-specific formulations.

Even with an example as simple as (1), we see the extent to which such
background knowledge must come into play. We link the words of (1) to what
we talk about in (2), in (3), or elsewhere, by drawing inferences that connect
general linguistic information (for example, thatwould like concerns some
suitable way of getting something) to specific information about our real-world
circumstances (for example, that you can get a mug of coffee by having it de-
livered to you). We link the information (1) provides in words to our ongo-
ing tasks by further inferences still. We cannot enumerate the possible uses
of words across the situations we face; we adapt words and constructions cre-
atively to new situations.

The flexibility and context-sensitivity of language can seem intimidating
at first. However, natural language systems can appeal to strong constraints
on how they connect language and the world—The formal frameworks and
case studies developed by language scientists substantiate this. For example,
one strong constraint on interpretation simply comes from the hypothesis that
utterancesDESCRIBE a rich inventory of generalized or abstract individuals,
picking these objects out from context and contributing them directly to inter-
pretation. For example, (1) describes the virtual barista’s action ofserving a
cup of coffee to the userin this sense. See Section 1.4.

At the same time, the methodology of knowledge representation also an-
ticipates the effort you may need to get a handle on application talk in a
new domain. Knowledge representation not only provides essential mathemat-
ical techniques, such as modeling languages like first-order logic; it provides
guides to apply these techniques to new cases. Thus, the methods of knowl-
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edge representation will suggest abstract features and distinctions that you can
reapply in describing your new domain effectively. Indeed, the central lesson
from knowledge representation is that the way you represent something de-
pends on the inferences you need to draw about it; past research in knowledge
representation already offers analyses of important classes of inference that re-
cur across many domains. Of course, these examples include complex cases
of reasoning about events, change, action and agency; but they also include
numerous useful simpler techniques, to characterize knowledge of categories,
roles, and stereotypical situations. The simplest cases are often the most useful.
See Section 1.5.

Ultimately, natural language processing and knowledge representation
combine together to suggest a variety of declarative programming methods,
ranging from logic programming to supervised statistical parameter estima-
tion, that allow us to engineer systems that use language in a new application
domain out of nothing more than our precise but conceptual understanding of
language as we see it used there. This section has briefly outlined the nature of
the problem. The rest of this chapter will sketch some solutions.

1.3 Methodology and Framework

We start by recognizing that specifying information for natural language inter-
pretation is a complex task. In this as in the other aspects of language engineer-
ing surveyed in this volume, success depends on acknowledging and managing
the complexity of the effort. The practice of knowledge representation adopts
a distinctive methodology and framework to address the problem.

Intelligent systems, including typical text processing applications and dia-
logue interfaces, are particularly difficult to design because their functionality
is typically initially very ill-defined. For example, in an dialogue application,
we will typically have only a vague understanding of the actions and plans in-
volved in carrying out the system’s task, or the language that the system must
master to communicate on the task. Even if we can carry out the system’s role
effortlessly ourselves, we will rarely have access to the intuitive knowledge
which we use to do it.

Nevertheless, clear requirements are a prerequisite for the implementation
of a working system. Clear requirements simplify and clarify implementation
decisions; they ensure that developers can work more independently; and they
suggest regimes of verification and validation that help ensure that the final
implementation functions as intended. (For more on verification and validation
in natural language, see (Barr and Gonzalez 2000, Barr and Klavans 2001).)

To develop these requirements, we must look to the world—we must in-
vestigate the environment in which the system must act and then work to dis-
cover the behavior the system should exhibit. The initial investigation can take
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a number of forms. For some applications, we will have strong initial expec-
tations about how a system should act. We make these expectations explicit
by using our intuitions to compile examples of desired behavior across the
possible situations the system will face (Ratnaparkhi 2000, Walker et al. 2002,
Pan and Weng 2002). In other applications, we may not know what situations
the system may face, or how it should act in them. In such cases, the usual strat-
egy is to create an interactive mock-up of the system, and use it to collect and
evaluate potential interactions that we could choose to realize in a final system
(Dahlbäck et al. 1993, Walker 2000). These experiments simply collect data.
We get requirements by describing, analyzing, and finally modeling this data,
to characterize what we have observed in terms of its precise consequences for
system design. For systems that use natural language, knowledge representa-
tion is an essential part of this process.

For systems that use natural language, our requirements must specify how
the system is to connect input utterances to the application domain, and how the
system should in turn report facts from its application domain back to users in
natural language utterances. These requirements must respond to our observed
data set, so we begin by drawing on the domain ontology to characterize the
observed connections between language and the world in formal terms. Be-
cause the domain ontology will be structured for application inference, the
techniques of knowledge representation will already come into play at this
stage. However, the requirements must abstract away from any individual ex-
amples; requirements must generalize in meaningful ways to the full range of
possible interactions with the system. Knowledge representation really comes
into its own in formulating these meaningful generalizations.

Using the methodology of knowledge representation, we can identify the
abstract concepts and the abstract relationships that tie together domain ele-
ments that surface in language in analogous ways. We can go on to describe
connections between language and the world in this general vocabulary. This
constitutes the linguistic semantics that our system must implement—these
general statements characterize both our attested examples and the many fur-
ther utterances we expect our system to eventually deal with. In addition, we
can use knowledge representation machinery to automate inferences with these
general statements. For example, we can classify new elements of the domain
ontology on the basis of our formal generalizations about connections between
language and the world; we can thereby predict ways these domain elements
could be described in application language, and implement modules for inter-
preting or generating this language.

The methodology of knowledge representation is only one tool of many
in developing natural language systems, of course. Often, it is best combined
with hypothesis-testing and data-mining tools, which help to frame, refine and
validate generalizations about the data as we formulate them. This analysis
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may be necessary for exploring the trade-offs among different perspectives on
system functionality. At the same time, final requirements may underspecify
system behavior; our evidence and intuitions may leave us indifferent among
alternative possible choices for the system. So there is again room to combine
the techniques of knowledge representation with automatic tools that optimize
system behavior, using machine-learning for example.

The rest of this section delineates the practice of knowledge representation
precisely. My presentation proceeds through three successive layers of analysis
that characterize the capabilities of intelligent systems. I start in Section 1.3.1
by considering theKNOWLEDGE LEVEL, which simply characterizes the infor-
mation that an intelligent system must have to act successfully in its environ-
ment. In Section 1.3.2, I introduce the level ofREPRESENTATIONS AND ALGO-
RITHMS, where we introduce the essential features of computation—for exam-
ple, symbol manipulation—while maintaining a precise correspondence with
the knowledge-level theory. Finally, in Section 1.3.3, I consider the level of
IMPLEMENTATION, which describes how proposed representations and algo-
rithms are to be realized in physical mechanisms. These layers of analysis have
been used not only to help create computer programs in artificial intelligence;
they have also been used to frame theoretical and empirical investigation into
natural computation (Marr 1982, Newell 1982). In language engineering, we
adopt the distinction so that we can specify methodically, in manageable steps,
how the system will use real-world information in utterance interpretation.

1.3.1 The knowledge level

To describe language use at the knowledge level, we characterize the infor-
mation about the world and about language that an agent must have if it is to
connect natural language utterances to specific ongoing projects and situations,
as people do. The knowledge level abstracts away entirely from computation
and implementation, so we can draw our account in part from research in se-
mantics and pragmatics, which characterizes our knowledge of meaning, and
in part from research in cognitive science, which characterizes our knowledge
of the common-sense world. Our criterion for work at the knowledge level is
simply that it give a true account of the system’s language and its domain.1

1In an influential paper (Levesque 1984), Hector Levesque showed that knowledge-level anal-
ysis can usefully play a deeper role in the design and implementation of intelligent systems.
Knowledge-level analysis shows how one module in an intelligent system could query the in-
formation available to another, without taking into account the representation and implementation
that underlies the response. This is a particularly elegant way to think about interfaces between
modules in complex, intelligent systems! But the reader should bear in mind that my appeal to the
knowledge level is more modest and circumscribed—an invitation to think of system specification
and implementation first and foremost in terms of the information the system will need and use.
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Interpretation
At the knowledge level we aim first to document what the interpretation of
utterances is. In general, speakers use utterances to describe or portray the
things we are interested in—things as we conceive of them, individuated ab-
stractly through our ideas about real-world causation, function and intention. I
will say that the utteranceDESCRIBESthe things that it links up with and says
something about.2 In an application domain, the best way to characterize the
interpretation of an utterance is in terms of the elements from the domain that
the utterance describes.

Description is so useful because we intuitively understand not just what
an utterance describes in general, but also the individual things that specific
words describe. For example, the wordcoffee, as it is used after (2), describes
something, namelycoffee: a kind of beverage, made from certain roasted and
ground seeds and known for its stimulant qualities. (I will continue to use
italics when typesetting words under analysis and boldface when typesetting
references to things.) And after (3), the wordcoffeedescribes other things:
coffee-ice-cream, a kind of frozen confection flavored with the beverage cof-
fee; orteam-coffee, a group that represents its collective identity in the bever-
age coffee and its stimulant effects. By allowing us to factor the links between
language and the world down to the atoms of linguistic structure, description
naturally sets the stage for models of interpretation that generalize productively
to new utterances and new situations.

The ubiquity of description means that documenting the interpretation of
utterances principally involves annotating words and phrases with the things
in domain that they are understood to describe. In practice, documenting the
interpretation of utterances this way builds closely on given domain represen-
tations, as informed by more general investigations in system-building. To act
or reason effectively, any system needs an ontology of individuals and concepts
which frames its information about the world. When we understand utterances
as descriptions, we take these same individuals and concepts as constituents
of utterance interpretation. By allowing a system to link utterances directly
to its world, we collapse the tasks of delineating the individuals and concepts
the system will reason about and those it will speak about. This gives us less
work to do. It also makes the work easier, because specifying interpretations
directly in domain terms alleviates many of the complexities and ambiguities
of more generic levels of annotation. (Many such pitfalls are considered by
(Vieira and Poesio 2000).)

2Note here that, following philosophers, I am distinguishing description fromREFER-
ENCE; philosophers define reference as an objective real-world connection that links our
thoughts or words to some constituent of the real world. See (Neale 1990) for reference or
(van Deemter and Kibble 2000) for the concomitant difficulties of coreference. Reference is thus
much rarer than description; we can describe Santa Claus, but cannot refer to him!
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When documenting interpretation directly in domain terms, it helps to
understand the process and rationale that has led to domain representations.
Conversely, anticipating an analysis of domain talk early on can avoid dif-
ficulties in characterizing utterances later. The methodology presented by
Brachman and colleagues (1990) represents a standard way of developing do-
main representations, and offers key junctures at which developers can con-
sult evidence from language use representing domain knowledge. (See also
(McGuiness et al. 1995), (Farghaly and Hedin, Chapter 2, this volume) and
(Noy, Chapter 5, this volume).) To begin, we brainstorm to develop a compre-
hensive list of the kinds of things that we will need to reason and speak about
in the domain. If you already have case studies of system reasoning, or a cor-
pus of potential system utterances, the data provides a supplement and check
for this brainstorming.

The next step is to regiment this inventory of concepts to come up with a
single consistent perspective on the domain. Difficult issues are theGRANU-
LARITY of individuals within this perspective and theORGANIZATION of its
relationships among individuals. Granularity refers to the detail and subtlety
of the distinctions you draw among individuals. Your granularity determines,
for example, whether you will create separate domain objects for a copy of a
book, the whole edition, its text, and its content, or whether you can get by
with just one perspective on the book; granularity determines whether you will
inventory locations in the world at the level of seats, rooms, buildings or cities;
and it determines which actions are primitive and which must decompose into
a sequence of steps. Naturally, finer granularity is a source of complexity, and
you want only those distinctions which worthwhile for your application.

Meanwhile, to organize relationships, you need to determine which con-
cepts stand alone, and which are implicitly understood within frames of refer-
ence involving other objects. You then need to determine which concepts are
more general and more specific. Again, these decisions respond to the needs
of an application. In a real-estate application, windows might be understood
relationally, as parts of a room; in lego construction, a window might just be a
kind of piece independent of any others. Likewise, in relating concepts, even
if science-fiction scenarios show that concepts are, in principle, logically unre-
lated, what matters is whether the relationship holds in a system’s environment.

Evidence about a system’s required functionality is thus essential to de-
cide both the granularity of individuals and the organization of concepts; but
linguistic data can also be quite useful. Linguistic usage shows what entities
language users describe in the system’s environment and what distinctions they
make among entities there. The way people describe the environment can also
reveal generalizations about the environment and relationships among con-
cepts that language users presuppose. Thus, the annotation of the interpretation
of such utterances goes hand-in-hand with more general decisions about how a
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system will view and reason about its domain. We will pursue the connection
between linguistic data and world models through specific principles and case
studies in Section 1.4.

Further steps depend on the particular formalism for describing concepts;
we will explore a number of alternatives in Section 1.5. In all cases, though,
this process is iterative. As you refine your concepts to implementation, you
need to return to the original data as a test of your work: can you still describe
the data faithfully now that your concepts are more systematic and precise?
Here the answer depends not just on your implementation, but also on your
interpretation of the data. An important part of this iteration, then, is to settle
boundary cases of description as they arise in domain talk, and to articulate
your decisions as standards for your annotation.

Meaning
Once we have fleshed out our knowledge-level account of individual interpre-
tations, we can proceed to develop knowledge-level generalizations that char-
acterize interpretation in a general way. These generalizations characterize not
just individual utterances, but the complete range of utterances that our sys-
tem will handle. They capture the meaning of language, as it is used in our
application.

Developing these generalizations is a new and coherent task for knowledge
representation. It requires us to identify categories of interpretation, to regi-
ment these concepts into a single consistent perspective that determines the
granularity and organization of our semantic vocabulary, and to state and to
iteratively refine regularities in interpretation in these semantic terms. In pur-
suing this knowledge representation, we can naturally draw on general theories
of interpretation. In particular, in this chapter, I will exploit the characteriza-
tion of interpretation in terms of description, and formulate semantic knowl-
edge as constraints on what words in utterances can describe. As reviewed in
Section 1.2, good practice is to derive interpretation from meaning as straight-
forwardly as possible. By characterizing meaning in terms of description, we
can formulate semantic generalizations that correspond one-to-one to the ele-
ments of interpretation and generalize directly over them.

Consider our case with example (1). A theoretically-inspired model of this
case might describe the use ofcoffeeby adducing the principle in (4a). And it
might offer the principle in (4b) forI and those in (4c) and (4d)would like.

(4) a. Coffeecan describe any kind of thing connected with the beverage
coffee, and always does so.

b. I can and does describe the speaker of an utterance.
c. Would likecan describe any kind of event that brings its grammatical

subject into a certain kind of possession relation with its grammatical
object, andwould likealways does so.
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d. Would likeexpresses the subject’s preference for such an event, and
so describes a particularstate.

These suggestions to some degree encode a range of insights from the lin-
guistic literature. (4a) suggests Nunberg’s theory of deferred reference (1979);
what definite noun phrases and other descriptive expressions contribute to in-
terpretation is often an entity related to what they literally evoke. (4b) treatsI
as an indexical much as Kaplan might (1989);I is interpreted by accessing spe-
cific entities from the utterance context. (Note that in wider domains deferred
reference might also be appropriate forI !) Finally, (4c) and (4d) abstract away
from any predefined link to the world in a way that recalls accounts of produc-
tive polysemy and metaphor (Lakoff and Johnson 1980, Pustejovsky 1991).
Observe that the meaning given in (4c) does not simply say that the subject
will have the object; rather it suggests that the context will supply the relation-
ship that results between subject and object, and uses possession as an abstract
concept to characterize these possible interpretations.

Articulating the principles in (4) involves the typical methods of knowl-
edge representation. We have identified abstract concepts that link utterances
to interpretation; these are concepts likebeing-connected-with, speaker-of,
bring-about, possession, andpreference. We will need to come to a precise
understanding of these concepts in order to determine the full inventory of con-
cepts that we need, and their relationships to one another. (In fact, since pursu-
ing and presenting any case study to this level would be beyond the scope of
this chapter, readers should recognize that specific examples such as (4) must
be illustrative and provisional, not definitive!) Finally, we have applied these
concepts to state constraints that characterize interpretations in a general way.

In articulating the principles in (4), we have also drawn quite closely on a
simple general approach to interpretation. For the suggested principles in (4)
are ready abstractions away from the observed interpretations of (1) in the con-
texts of (2) and (3). To accommodate the different interpretations we observe
for (1), we need only characterize the various things the utterance might de-
scribe in the general terms of our semantic vocabulary. (5) and (6) illustrates
this:

(5) a. The beveragecoffeeis connected with the beveragecoffee(in virtue
of being it).

b. The groupteam-coffeeis connected with the beveragecoffee (in
virtue of representing its collective identity in terms of that beverage
and its stimulant effects).

(6) a. The relation ofphysical-control is a kind of possession and
bringing-a-mugful is a kind of event that can generally result in
the speaker’sphysical-control of the beveragecoffee.

b. The relation of team-affiliation is a kind of possession and
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assignment-to-the-teamis a kind of event that can generally result
in the speaker’steam-affiliation to team-coffee.

At the knowledge level, then, interpretations simply combine semantic gener-
alizations, as in (4), with common-sense generalizations, as in (5) and (6), to
derive specific descriptive interpretations. From (4), (5a) and (6a), it follows
that (1) can express the speaker’s preference to be brought a mug of coffee.
From (4), (5b) and (6b), it follows that (1) can express the speaker’s preference
to be assigned to Team Coffee.

A model of this kind starts by predicting what an utterance can readily de-
scribe, but this should be enough to makePREDICTIONSfor why apparently
unambiguous utterances have the interpretations they do. The actual interpre-
tation of an utterance in context has to satisfy all the semantic constraints on
interpretation simultaneously. In typical cases, this rules out the vast majority
of descriptive possibilities, which are licensed by the semantics of some words
in the utterance but ruled out by others. When we restrict consideration to the
real-world objects and semantic characterizations that are most relevant to the
context—those that fit the speaker’s known intentions and the agreed purposes
of the conversation—even fewer possibilities will remain. In fact, it is quite
likely that there will be just one.

Actually, it is unclear how we would ever be able to understand one another
if this kind of model was not effective. Think of our rational coordination, or of
our uncertain inference, as we infer the interpretation of an utterance in con-
text. Generalizations like (4) ought to be able to capture our full knowledge
of meaning (we can reformulate them, after all). They can instruct us to link
utterances as deeply as possible with our information about the utterance situ-
ation. If so, weMUST take the utterance to describe the possible matches that
are most relevant to context—given that we have applied our full knowledge
of meaning and linked it fully with our knowledge of the situation, what strat-
egy, what convention, what evidence could we have which would allow the
utterance to describe something else?

In fact, the perennial difficulty of operationalizing pragmatic predictions
remains, until we spell out precisely how alternative interpretations fit the con-
text. This is the kind of optimization problem which may require automatic
data-analysis and machine-learning. Nevertheless, if our framework admits too
many possibilities, we should be sceptical that we can find a ranking for them;
many principled difficulties arise (Norvig and Wilensky 1990). This worry in-
spires us to formulate knowledge-level generalizations about meaning as nar-
rowly as we can, and to be optimistic about the role such generalizations can
play in natural language systems.
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1.3.2 Representations and algorithms

The level ofREPRESENTATIONS AND ALGORITHMSoffers us an abstract view
of computation that helps to mediate between a knowledge-level account of a
system’s environment and the specific implementation mechanisms that we
devise to realize the system. REPRESENTATIONSare formal structures that we
can use to define computational operations but that we can also view as en-
coding information about the world. To give this meaning to representations,
we assign them anINTENDED INTERPRETATION, which is a correspondence
with constituents of the knowledge-level theory. In natural language applica-
tions, we need representations to formalize interpretations, and to formalize the
information about language and the world that a system needs to construct in-
terpretations. Meanwhile,ALGORITHMS are abstract but explicit and mechan-
ical descriptions of the operations that the implementation will carry out. The
algorithms in natural language applications include those that can construct
candidate interpretations for utterances from representations of linguistic form
and meaning, and from representations of the context. Representations and al-
gorithms together provide a formal specification for a computational system.
In creating representations and algorithms for natural language, the key project
in knowledge representation is to formalize our account of the background in-
formation and domain concepts that figure in the interpretations of application
utterances and the meaning of application language.

Because of the intended interpretation of representations, we can also char-
acterize algorithms in knowledge-level terms. We can view an algorithm as a
function that produces meaningful results across a meaningful range of real-
world circumstances. This gives us an abstract framework in which to prove
concisely that our computational operations respect their interpretations in the
knowledge-level theory. From then on, we can focus on the level of repre-
sentations and algorithms. For example, to link a specific implementation to
the knowledge-level theory, we need only consider whether the implementa-
tion correctly supports the representations and algorithms we have defined for
it. This breakdown allows us to analyze the implementation with a facility that
might otherwise be impossible. In these cases, it is the theory of representations
and algorithms that allows us to understand our implementation as possessing
and using knowledge.

Interpretation
Let us first explore how to formalize the interpretations of individual utter-
ances. Since at the knowledge level we have characterized the interpretation of
an utterance in terms of the domain elements that the utterance describes, we
must now formalize these descriptive connections.

First, we must have representations that correspond to described domain
elements. Commonly, these representations areSYMBOLS. A symbol is the
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atomic primitive of a representation; it is an unstructured element with an im-
mediate and arbitrary correspondence to something in the domain. For exam-
ple, we could use the symbols in (7) to formalize the thingsI would like coffee
describes on its default interpretation. (I use fixed-width font to typeset sym-
bols.)

(7) a. The symbolu, with an intended correspondence to the speaker of the
utterance (the user of the system).

b. The symbolk c , with an intended correspondence tocoffee, the kind
of beverage.

c. The symbolr p c , with an intended correspondence to the relation
of physical-control.

d. The symbolk b m, with an intended correspondence to the event-
typebringing-a-mugful .

e. The symbols p, with an intended correspondence to the speaker’s
state of preferencefor an event of typebringing-a-mugful .

Evidently, once a knowledge-level account of an utterance’s interpretation
gives you a precise understanding of its described individuals, you can translate
that understanding almost directly into representations. The main challenge is
consistency. For example, since analysis of the underlying domain usually pre-
cedes investigation into application talk, you may have to reuse representations
that have been developed already, determining and respecting these represen-
tations’ existing interpretations.

Next, we must formalize how description plays out in the utterance it-
self. This means integrating representations of utterance interpretation with
our other linguistic representations. For example, to make precise how, on the
intended interpretation of an utterance, its words fit together into a grammati-
cal structure, we typically develop linguistic representations for utterances in
the form of syntactic trees. (8) is a suggestive example.

(8)

S

�����

HHHHH

NP

I

AUX

would

VP

�� HH
V

like

NP

coffee

See also (Butt and Holloway King, Chapter 4, this volume) and (Megerdoo-
mian, Chapter 6, this volume) for more sophisticated structures and a range of
specific representations for them. We must formalize the disambiguated inter-
pretation of the utterance in a way that builds on and extends this representation
of linguistic structure.
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One way to do this is toINDEX each node in the tree by the domain ele-
ments that this constituent is intended to describe. Formally, an index is just a
label or feature of the node; the terminology recalls and generalizes that of the
referential index in syntactic accounts of language structure. (9) shows how
the structure from (8) could be indexed to record its intended interpretation,
by appending the node category with corresponding representations of domain
elements:

(9)

S : s p

�������

HHHHHHH

NP : u

I

AUX

would

VP : k b m

��� HHH

V : r p c

like

NP : k c

coffee

Such structures represent not only what individual words describe but also
how those words fit together to create a complex sentence that describes many
things simultaneously.

We must be systematic in creating representations such as those in (9) that
link linguistic structures to domain information. Inevitably, the effort requires
an understanding of the practicalities of achieving coverage and consistency in
linguistic representations, as described by (Butt and Holloway King, Chapter
4, this volume); and the effort requires a crisp and precise understanding of
domain individuals and concepts, as motivated in Section 1.3.1 and described
more fully in (Noy, Chapter 5, this volume). In many cases, though, this just
means relying on data and standards that others have prepared as documenta-
tion of the available resources; to create representations such as those in (9),
we will not need to adapt the structure and design of the system as a whole.

What we will need is our own standards about connections between lan-
guage and the world. The interpretation of utterances often takes place against
a framework which implicitly involves a range of domain individuals and con-
cepts; we have to choose which individuals to make explicit, and where. Since
the effort calls for consistency, it is essential to assemble a range of criteria that
constrain decision making. For example:

(10) a. When the interpretation of the utterance is different in different con-
texts simply because we take the utterance to describe a different
salient individual, the understood individual should figure explicitly
in the utterance representation.

b. When contexts following the utterance allow something implicit in
the utterance to be evoked with a pronoun or other elliptical expres-
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sion, the understood individual should figure explicitly in the utter-
ance representation.

c. When we choose to make an individual explicit, it should appear at
every node where modifiers that describe it can attach (as determined
syntactically).

The contrast in interpretation of (1) in the contexts of (2) and (3) justifies each
of the annotations added to (9) according to these criteria.

The criteria in (10) grow out of theoretical arguments from linguistics.
(10a) is a consequence of an anaphoric theory of presupposition, in which
context-dependence is achieved by unifying contextual representations and lin-
guistic representations; see (Saeboe 1996). (10b) meshes with a general and
uniform analysis of anaphora in discourse, which links reduced forms to re-
peated description of some domain entity; see (Webber 1983). And (10c) is
required to use a compositional semantics for language in deriving observed
interpretations. Such theoretical considerations already figure in linguistic ac-
counts of implicit arguments; see (Larson 1986) for example. But a natural lan-
guage processing system that implements any of these theories will be depen-
dent on its conditions being met in its representations; see (Stone et al. 2001)
for discussion.

These general insights about interpretation are only half the story, how-
ever; as always, our standards must acknowledge the inevitably circumscribed
functionality of our implementation. For example, there is no point in parame-
terizing interpretation in ways that never change in our domain, even if analysis
of language use more generally might call for it. More challenging is the need
to build on available syntactic and domain representations, which can limit
computational semantics through their own autonomous practical constraints.
For example, to implement a general formal semantics, we should represent
thatwoulddescribes a possibility; see Section 1.4.5. That is, according to the
most general semantic account,I would like coffeegets its interpretation by
evoking a hypothetical possibility where an event of typebringing-a-mugful
occurs. The utterance reports the speaker’s preference indirectly, by describ-
ing the pleasure with which the speaker reacts in this hypothetical possibility.
We could formalize that account by indexingwould in (9) to a representation
intended to correspond with this possibility. The problem is that the system’s
formal model of its domain is very unlikely to already provide such represen-
tations of possibilities. The abstract reasoning required to make sense of possi-
bilities is generally too difficult to implement. There is little value in modeling
the possibility only at the level of interpretation, without the reasoning to go
with it. So rather than fleshing out the interpretation in such cases, it makes
sense to short-circuit the theoretical account. In (9), we treat the modalwould
as a semantically-empty function word, and directly indicate the state that the
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whole utterance describes.

Meaning
Once we have characterized interpretation of application utterances, we can
proceed to formalize the meaning of application language. At the knowl-
edge level, we describe meaning by introducing categories of interpretation;
now, we set up further symbols that correspond to these categories. In par-
ticular, we may havePREDICATES, symbols that correspond to semantically-
significant domain relationships; andOPERATORS, symbols that correspond to
semantically-significant bodies of domain information or restricted domain sit-
uations. We complement these new representations with inference algorithms
that enable us, for example, to classify domain and utterance elements into
semantic categories, or to apply semantic generalizations to flesh out the rep-
resentation of specific utterances. These algorithms implement the links we
have identified between meaning and interpretation in knowledge-level anal-
ysis. Again, this process, because it may require system-builders to connect
autonomous descriptions of domain reasoning and linguistic structure in new
ways, calls for the practice and techniques of knowledge representation.

A perspicuous and representative illustration is the use ofVARIABLES

in representing semantic generalizations and formalizing semantic inference.
Variables are symbols that serve as placeholders; they can be instantiated, or
replaced, by any of a set of alternative symbols, as long as that same symbol
is used consistently everywhere in place of the variable. (For variables, I adopt
the Prolog convention of using symbols with initial capital letters.) Variables
express generalizations over the things that those symbols represent. For ex-
ample, (11) provides a structure analogous to (9) in which variables abstract
away from the things any particular utterance of the sentence might describe:

(11)

S : S

������

HHHHHH

NP : U

I

AUX

would

VP : K E

�� HH
V : R

like

NP : K O

coffee

We can obtain (9) from (11) by the following instantiation:

(12) The variableU for the subject is instantiated tou; the variableR for a
possession relation is instantiated tor p c ; the variableK O for a kind
of object is instantiated tok c ; the variableK E for a kind of event is
instantiated tok b m; and the stateS is instantiated tos p.

Instantiations can themselves be assigned corresponding formal representa-
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tions, as in (13), so that we can readily formulate algorithms that construct
them, operate on them, or apply them to rewrite our other representations.

(13) [U=u,R=r p c ,K O=k c ,K E=k b m,S=S p]

Following the knowledge-level accounts of (4), (5), and (6), we could also
derive representations for the other interpretations of of (1) by instantiating the
variables of (11) to appropriate alternative symbols.

A model of interpretation predicts how variables will be instantiated to
values; simply put, the problem is to classify which variables take which val-
ues. Formal representations, using predicates and operators, provide a way to
describe this classification problem using the semantic concepts and general-
izations that we have developed in a knowledge-level account of meaning. For
example, the generalizations about meaning presented in (4) depend on a few
key relationships. We can create representations of these relationships by using
predicates and operators, and so formalize conditions on the variables in (11),
as in (14).

(14) a. connected (K O, k c), using a predicateconnected to indicate that
the thing described byK O is connected by a close association with
the beveragecoffee.

b. speaker (U), using a predicatespeaker to indicate thatU is the
speaker of the utterance.

c. possession (R), using a predicatepossession to indicate thatR is
a kind of possession relation.

d. result (K E, holds (R, U, K O)), using an operatorresult to de-
scribe a view of the world which restricts attention just to the effects
of K E, and using a predicateholds to indicate that this view of the
world findsU in R with K O.

e. preference (S, U, K E), using a predicatepreference to indicate
thatS representsU’s interest in seeing an event of kindK E.

To formalize the semantics of (11), we pair it with the constraints on values of
variables in (14).

A suitable representation will now allow us to classify domain elements
relevant to the context of utterance in semantically-meaningful terms. This will
allow a system to derive the representations in (15) algorithmically; these rep-
resentations are the formal counterpart of the knowledge-level classification
(5) of domain elements in our semantic vocabulary.

(15) a. connected (k c, k c).

b. speaker (u).

c. possession (r p c).

d. result (k b m, holds (r p c , u, k c)).
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e. preference (s p, u, k b m).

These representations are identical with those in (14) under the instantiation
represented in (13)—a fact which can be readily calculated. Then by applying
(13) to the structure in (11) we get a representation of the intended interpre-
tation (9). Overall, then, we arrive at an algorithmic procedure that uses the
meaning of (11) as (14) to construct a correct candidate interpretation (9).

An important thing to note about such algorithms is that we can show that
they exactly implement our knowledge-level account. As a case study, we will
look more explicitly at the account ofI would like coffeein terms of the con-
straints in (14). Both the knowledge-level account and our representations in-
volveCONSTRAINT-SATISFACTION PROBLEMS. In any constraint-satisfaction
problem, we are given a set of variables (like the variables in (11)), a set of
constraints on the values of the variables (like the constraints in (14)), and a
database of the instances that satisfy each of the constraints (like the classifica-
tion results in (15)). In the simplest case, the solution to the problem is just an
instantiation for the variables under which each constraint is listed as satisfied
in the database (like the instantiation in (13)).3 For the theory of constraint-
satisfaction see (Mackworth 1987); for applications in natural language, see
(Mellish 1985, Haddock 1989, Stone and Webber 1998, Schuler 2001).

Constraint-satisfaction procedures depend onMATCHING operations that
derive possible instantiations for the variables in a constraint using the in-
stances in the database, and onSEARCHoperations that explore these possible
instantiations in turn. (One strength of symbolic representations as a bridge be-
tween theory and implementation is that these operations can be implemented
straightforwardly and with low overhead on digital computers.) Specifically, to
describe a basic constraint-satisfaction solver, we draw on two kinds of state-
ments:

(16) a. Set← match (Instantiation, Constraint, DB)

b. search Setfor Elementwhere Expr returns Result

(16a) succeeds when we can augment the values for variables inInstantiation
in such a way that the termConstrainthas a matching instance in database
DB. Setrecords the set of matching instantiations. (16b) searches throughSet
to find some resultResult; Elementprovides a placeholder for each element of
the set as the search considers it, andExpr defines the operation considered in

3In a more general form of constraint-satisfaction problem, instantiations that make the con-
straints satisfied are merely potential solutions, and these potential solutions are ranked. In partic-
ular, a potential solution might be ranked more highly if a variable is instantiated to a preferred
value, or if a constraint matches a preferred instance from the knowledge base. Among all potential
solutions, we aim to find one that is ranked as highly as possible. When we adopt the knowledge-
level principle that utterances describe what they most readily can, we commit to representations
that encode these more general constraint-satisfaction problems, and to algorithms that solve them.
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the search.
Given these primitives, we can define a constraint-solving algorithm that

scans through the list of constraints, accumulating the solution instantiation
step-by-step. We represent the algorithm as a proceduresolve (S,L), assuming
thatSis an instantiation that satisfies all the constraints thus far considered, and
L is the list of constraints that remain to be tried. We define the procedure by
cases, according to whether no constraints remain, andL is the empty list[]
(17a); or whether at least one constraint remains, andL is a list [C|Cs] whose
first element isC and whose remainder is a listCs(17b). We assumedb names
the database of instances to consider.

(17) a. solve (S, [])
return S

b. solve (S, [C|Cs])
Set← match (S, C, db)
search Setfor E where solve (E,Cs) returns R
return R

To solve the complete list of constraintsL, we construct a null instantia-
tion Z that gives no values to any variables, and runsolve (Z, L). Here is an
explicit demonstration that the algorithm computes the consequences of the
knowledge-level theory. First, see that anything returned must be a solution.
We have assumed that each instantiation returned bymatch (S,C,db) extends
Sand finds an instance forC in db. In running the procedure in (17), then, the
instantiation passed tosolve always represents a solution to each constraint
that has already been considered. When the procedure finally finishes, all the
constraints have been considered. So any instantiation returned bysolve must
satisfy all the constraints inL. Conversely, we can also check thatsolve can-
not fail when there is an instantiation that satisfies all the constraints. For we
have assumed thatmatch returns all results andsearch is capable of explor-
ing each in turn.

The precision and accessibility that we have just seen make knowledge
representation a key tool in developing computational approaches to meaning.
But knowledge representation need not be used on its own. Many machine-
learning methods can also approach the problem of classifying new semantic
structures on the basis of prior labeled instances; see (Megerdoomian, Chap-
ter 6, this volume) and (Callison-Burch and Osborne, Chapter 7, this volume).
In such approaches, we might create a training example for each variable in a
sample of data that we have collected. We represent each example in terms of
available features; these features will be properties of words and surface struc-
ture, as exhibited in (11) for example, which we expect to provide meaningful
information about the value of the variable. If we can, we will also include
straightforward properties of the context as additional features. In training, we
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also specify the example class: the domain individual that the variable is under-
stood to describe. Machine-learning builds a model of this classification task
from the whole collection of training examples. We can then apply the model
to test examples, by formulating each test example in terms of its features and
applying the learned model.

We can use such learning methods as a supplement to knowledge
representation—we can use logical techniques to assemble a judicious range of
alternative candidate interpretations and use learned models to evaluate which
candidate is most likely. Alternatively, we can use knowledge representation as
a supplement to learning. We can treat relationships like those in (14) simply
as additional features of training and test instances, by classifying instances in
semantic terms and supplying this information to machine-learning methods.
By taking these more meaningful features into account, learned models often
may make classification decisions more reliably, or generalize more effectively
(requiring less training data).

1.3.3 Implementation

Implemented resources support every aspect of the practice of knowl-
edge representation—not just the implementation itself. For knowledge-
level work, ANNOTATION tools, such as theAGTK tools described in
(Cotton and Bird 2002) and similar tools described in (Butt and Holloway
King, Chapter 4, this volume), help engineers articulate the elements of lin-
guistic interpretation. Meanwhile,KNOWLEDGE-ACQUISITION tools, such as
the PROTÉGÉ tools described in (Grosso et al. 1999) and (Noy, Chapter 5,
this volume), help engineers articulate the elements of a model of the world.
Equally useful areHYPOTHESIS-TESTING and MODELING tools that help
researchers explore and refine their assumptions about meaningful distinc-
tions in language and the world; see (Witten and Frank 2000) or (Megerdoo-
mian, Chapter 6, this volume) for a practical introduction to these tools. For
work with representations and algorithms, implementation contributes tools
for PROOF, SIMULATION and EXPLORATION, which help developers evalu-
ate their representations and algorithms. Tools such as theMOCHA system
(Alur et al. 1998, Alur and Henzinger 1999) are increasingly general ingredi-
ents of programming practice, though they are not yet widely used in language
engineering.

First and foremost, of course, the level ofIMPLEMENTATION comprises
a repertoire of tools and ideas about how proposed representations and al-
gorithms are to be realized in physical systems. To take a simple case, the
programming language Prolog is a convenient tool for realizing constraint-
satisfaction solvers on digital computers. (Sterling and Shapiro 1994) presents
a high-powered investigation of Prolog as a computer science tool.

Prolog contains primitives for matching and search that are equivalent to
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those defined in (16) and used in (17). Prolog always maintains an instantiation
of values for variables as part of the current state of program execution; so you
can think of any Prolog operation as implicitly extending an input instantiation
to alternative output instantiations. (Actually, instantiations are the only kind of
results that statements can return in Prolog!) Prolog also has a built-in database.
So for matching, Prolog uses a procedureclause (C, true ), which extends the
(implicit) current instantiation of values for variables by looking for a fact that
matchesC in the (implicit) database. Meanwhile, whenever an operation might
return alternative results, Prolog automatically carries out a systematic search
of those results. After a call toclause (C, true ), Prolog will search over all
the alternative matching assignments. In all then, (18) recasts (17) as an equiv-
alent Prolog program—a simple implementation of constraint-satisfaction for
any digital computer.

(18) a. solve([]).

b. solve([C|Cs]) :-

clause(C,true),

solve(Cs).

(18a) represents a successful path of execution, which returns the implicit in-
put instantiation as its implicit result (compare the explicit (17a)). (18b) ex-
tends its implicit input instantiation by matching the first constraint against
the database, then automatically searchers over the alternative results, using
solve recursively to construct and return an assignment that takes the rest of
the constraints into account.

You run a Prolog program by posing a query. Consider the query in (19)
for example:

(19) solve([connected(K O, k c),

speaker(U),

possession(R),

result(K E, holds(R, U, K O))

preference(S, U, K E)])

The query asks for an instantiation in whichK O is stuff related to coffee,U is
the speaker,R is a kind of possession, andK E is the kind of event that will
get the speaker to have the stuff in this sense. Thus, the program in (18) and
the query in (19)—with suitable further clauses describing the domain, as in
(15)—together implement the knowledge-level model of interpretation from
(4). They compute the link between an utterance of (1) and its context.

Evidently, if you anticipate and exploit the resources of the implementation
level—like we used Prolog as a tool here—you can translate your representa-
tions and algorithms almost directly into a specification from which an imple-
mentation follows automatically. In tandem with efforts at the knowledge level



KNOWLEDGE REPRESENTATION FORLANGUAGE ENGINEERING/ 25

and the level of representations and algorithms, this step establishes a tight
connection between your intuitive understanding of some real-world circum-
stances (in language interpretation, say) and your understanding of a system
you have built that acts within those same circumstances.

1.3.4 The Results of Knowledge Representation

This chapter presupposes this framework—of knowledge-level theory, rep-
resentation and algorithms, and implementation—in the further results it
presents. Those results themselves reflect not just this general framework, but
specific insights about the world and about language.

Section 1.4 returns to the knowledge-level treatment ofDESCRIPTIONin
utterances. I argue that to support language use, we must describe key real-
world subjects—matter, space, time, action, mind—in terms of a rich inven-
tory of entities; we must also make explicit important underlying properties
of these entities, in terms of causation, function and agency. These properties
prove essential for expressing deep generalizations about the world, and so, not
surprisingly, they provide the basis for a wide range of linguistic distinctions.

Section 1.5 surveys the representations and algorithms required to create
models of description. We look at the use of logic to provide computational
representations of real-world relationships constituents of interpretation; and
we explore what is involved in deriving such formal representations from gen-
eralizations about language and the world.

Finally, Section 1.6 offers a summary of the results and an assessment of
the requirements and prospects for knowledge representation in language engi-
neering. Inference about interpretation only makes sense in the context of sys-
tems that have reliable, language-independent information, represented with a
certain richness that makes linguistic distinctions meaningful. We can expect
such representations to remain expensive for quite a while—but increasingly
feasible.

Although our language use is intimately tied up with the sophistication of
our own understanding of the world, the structure of language places fewer
constraints on the representation of world knowledge (that is, on thought)
than one might have supposed (contrast (Whorf 1956, Vygotsky 1962)). Ut-
terances can express any relationship in any domain, as long as the relation-
ship is cashed out using elements that can be retrieved from a domain-specific
ontology, and as long as the distinctions made in the utterance distinguish the
required values in that ontology from the alternative possible values there. This
flexible link between language and other representations of the world not only
explains the success of language as a natural system of communication, but
at the same time motivates the attention and the optimism with which we can
continue to explore the practice of knowledge representation for language pro-
cessing.
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1.4 Elements of Interpretation
Natural language in no way limits us to describe just the familiar middle-sized
physical objects of everyday experience. Indeed, any natural language utter-
ance characterizes a wide range ofGENERALIZED INDIVIDUALS, including
such abstract things as categories and kinds; actions, events and times; places
and paths in space; and scales, quantities and measurements. Our analysis of
(1), I would like coffee, as spelled out in the discussion of (4–7), already illus-
trates this key fact. We took (1) to describe aKIND of beverage, aRELATION

of possession, aSTATE of preference.
The importance of generalized individuals to natural language interpreta-

tion rules out a number of simple and effective forms of knowledge represen-
tation. In particular, in many domains you can go quite far with representations
that only use unanalyzed proposition symbols. Agre (1997), for example, for-
mulates sophisticated agent behavior in terms of richly indexical atoms such as
the-bee-I-am-attacking-is-running-away-from-me. The propositions Agre uses
correspond directly to the recurring features of the environment that the agent
must consult in its decisions. This approach is heavily geared toward success
on specific tasks in specific applications, because each possible feature of a
new situation has to be formalized with a completely distinct representation.
However, when the approach fits, it is simple and efficient because rules for
the agent can be written straightforwardly and the agent can realize them with
minimal inference.

More complex structure is simply required for an agent that interacts using
linguistic descriptions of its world. Such agents must have explicit represen-
tations of, and information about, the real-world individuals that human users
attach significance to and talk about. Jackendoff (1983, (3.9) and (3.10), p.
53) crisply illustrates the diversity of these individuals. He proposes to analyze
each of the exchanges in (20) through a represented individual that provides
the topic of the question and the content of the answer.

(20) a. What did you buy? A fish.
b. Where is my coat? In the bathtub.

c. Where did they go? Into the bathtub.

d. What did you do? Go to the store.
e. What happened next? Billy fell out the window.

f. How did you cook the eggs? Slowly.
g. How long was the fish? Twelve feet (long).

It is an ordinary object in (20a), a place in (20b), a path in (20c), an action
in (20d), an event in (20e), a method in (20f) and a measurement in (20g). To
underscore the link of such examples with represented individuals, Jackendoff
also notes the possibility of nonlinguistic answers as well: “producing the fish,
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pointing to the place or in the direction, performing the action, pointing to the
event (or its result), demonstrating the manner, or demonstrating the size.”

The practice of knowledge representation for natural language demands
an unequivocal understanding of such generalized individuals. Analysts must
often draw on this understanding to identify the individuals described in a par-
ticular utterance. More generally, analysts may also be called upon to repre-
sent language-independent real-world generalizations in which such abstract
individuals figure. Accordingly, I now undertake a brief survey of generalized
individuals and the principles that govern them. I will adopt a linguistic per-
spective, whose most direct antecedents may be Hobbs’s discussions of gener-
alized individuals (1985, 1995) in computational linguistics and Bach’s (1986)
in formal semantics. But where appropriate I will suggest connections to more
computational work, particularly the increasingly rich and diverse systems of
representation under development for the semantic web (Fensel et al. 2002).

1.4.1 Objects and Their Associates

Let us begin by considering the constituents of the physical world, where al-
ready we find a broader range of things to talk about than one first suspects.
I’ll take as an example one of the pushpins I use in my office; it’s a round bead
of blue plastic affixed to a short spike of steel wire ending in a point. My ob-
servations will simply be those required to justify the description of the pin I
just gave.

For cognitive scientists, there is just one object here, namely the pin itself.
An OBJECTis something that can move coherently as a unit, and maintains its
internal physical relationships while in motion. So understood, objects are the
basic participants in unfolding physical events: pushing, pulling, dropping and
the like. They are also typical participants in physical relations, including sup-
port and containment. Not surprisingly, we seem predisposed to draw extensive
inferences about such events and relations, in terms of objects that move con-
sistently and coherently, from infancy; see (Spelke 1994) for example. Indeed,
such objects seem fundamental to the operation of the visual system in par-
ticular; see (Scholl 2001) for review and (Siskind 2001) for a computational
realization.

Language is not limited to talk of objects; we can zoom in and focus on
parts of objects. Above, I described three parts of the pushpin: the head, the
spike, and the point. In the typical case, aPART identifies some but not all of
an object because that part has its own shape, its own history and its own action.
Take the pushpin. Its parts are distinguished by shape—the head is round where
the spike is straight and the point sharp. In manufacture, the head is made sep-
arately out of a different material and then affixed to the spike, while the point
also must be specially cut into the spike. In use, the head allows the pin to be
pushed and pulled comfortably by hand, while the point pierces surfaces and
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the spike transfixes them. In general, the parts we perceive may not be the parts
we create or the parts we use; language allows us to talk about any of them.
However, the conspiracy between shape, history and action is genuine: struc-
turally, we seem to segment shapes along boundary curves where the shapes
bend most sharply (Hoffman and Richards 1984). These boundaries would ac-
tually mark the history and extent of shaping processes that produced protrud-
ing parts (Leyton 1992). Of course, in the objects we typically encounter, both
natural and artificial, the processes that create an object and its parts closely
conform to what the object and its parts must eventually be able to do.

Because we can identify parts by this family of distinct but related criteria,
it can be especially difficult to agree on part-whole relationships and to formal-
ize them consistently. To represent domains of parts and wholes successfully
(or other similarly difficult cases), we need precise ways of identifying and
characterizing the alternative domain relationships. One effective discipline is
to articulate principles to use in formalization that help to pin down the con-
cepts under analysis in meaningful causal terms. For example, we may want a
part-concept that covers only physical constituents of the whole that that con-
tribute to its basic function or design. We can help get a fix on this relation by
insisting that whenever the object is destroyed, its parts must be too. We can
use such tests to help us establish, for example, that the muffler is part of a car
in a way that its registration or its ice-scraper are not. See (Artale et al. 1996).

As easily as we can use language to zoom in on parts, we can use it to
zoom out, and describe sets of things. Descriptions of sets can provide conve-
nient summaries of the properties of individuals, as in (21a); such readings
are known asDISTRIBUTIVE. Descriptions of sets also provide convenient
overviews of complex interrelationships among objects, as in (21b); this leads
to COLLECTIVE interpretations which ascribe properties to a set as a whole.

(21) a. The package contains some yellow pushpins, but I never use them.

b. Two blue pushpins attach the announcement securely to the board.

In (21a), each yellow pushpin has found its individual way into the package,
and remains there individually unused. In (21b), though, it is likely that neither
blue pushpin suffices on its own create a secure attachment—both are required.
A good expedient in representing simple domains to to predefine meaningful
groups of individuals directly, just as you predefine meaningful parts; these
groups inherit the distributive properties of their members. Unfortunately, this
does not capture the full subtleties of interpretation.

Summarization and overview are compatible, it turns out. To see this, con-
sider (22):

(22) a. I briefly secured the announcements with pushpins.

b. But they eventually tore holes in them.
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(22a) might describe a situation in which each announcement requires
two pushpins—and I might sometimes economize by overlapping adja-
cent announcements and using a single pin for both. See (Gillon 1987,
Verkuyl and van der Does 1994, Schwarzschild 1994, Schwarzschild 1996).
By following up (22a) with (22b), we make these complex interrelation-
ships among objects the topic of an extended discourse; (22b) suggests that
each announcement got holes from the pushpins it was attached with. See
(van den Berg 1993, van den Berg 1996).

Perhaps paradoxically, the expressive flexibility illustrated in (22) provides
a strong incentive to tie descriptions of sets directly to represented properties
of individuals. That would involve, for example, taking (22) as a report of the
contribution that individual pushpins make to securing or tearing individual an-
nouncements. This has the advantage of making explicit the interrelationships
on which discourse connectivity depends. Linguistic theories along these lines
(e.g., (Schein 1993)) are surprisingly effective; so are computational ones (e.g.,
(Stone 2000, Horacek 2002)).

Language describes a final constituent of the physical world: theMATE-
RIAL that makes things up. The material that makes up the head of the pin
is a quantity of plastic; the rest of the pin contains a quantity of steel. One
might have thought that the pin simplyWAS the plastic and the steel, and
for many applications this would no doubt suffice. Descriptions of material
would then call for new properties but not for new individuals. However, we
shall see that the contrast in perspective, between thing and substance, must
be maintained more broadly across descriptions of time, space and measure-
ment (Jackendoff 1991). We capture this straightforwardly only by taking the
different perspectives systematically to describe different kinds of things.

1.4.2 Categories

In natural language descriptions, kind terms do not just supply predicates, and
are not just used to characterize other things. Kinds are entities with their own
distinctive properties. (23) illustrates this.

(23) a. Dodos are extinct.

b. Paper clips were invented in the early 1900s.

For (23a), the individual dodos are merely dead; only the species,the-
dodo, is extinct. Likewise for (23b), individual paper clips are merely made;
it is the kind of office supply,the-paperclip, that is invented. A classic
source on descriptions of kinds is (Carlson 1980); see also (Carlson 1992,
Krifka et al. 1995).

Once we represent kinds as things, to interpret sentences such as those in
(23), we are free to exploit kinds elsewhere as well. Indeed, it may be that lan-
guage always represents that domain individualx has domain propertyp as a
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relationship between autonomous elements,x andp, drawn from a background
model of the world. So to say something hasp, an utterance would always in-
clude a constituent that describesp. One argument for this derives from the
context-sensitivity we explored extensively in Section 1.2—the properties by
which we characterize domain individuals belong to that domain, not directly
to language. For example, in different domains we might usetape in (24) to
instruct our audience to use any of a variety of kinds of material.

(24) Cover the edge with some tape.

In office work, we might expect thin transparent tape, for the edge of a piece of
paper; in craft work, we might expect masking tape, for the edge of a surface
to be painted; or, in repair, we might expect duct tape, for the edge of a piece
of metal or plastic. (The alternative interpretations of (1) make a similar point.)

It is easy enough to represent the facts about the world that make a par-
ticular kind of tape appropriate to a particular task. What is problematic is
to draw these facts into the processes of language use in a regime that keeps
understanding and generation symmetric and avoids open-ended reasoning in
either. Modeling utterances as descriptions of domain kinds as well as domain
objects solves this problem in a direct and straightforward way; generation and
understanding processes then recover the described kinds by matching linguis-
tic constraints against the context. In (24), then, we taketapeto describe some
kind of material from the context: specifically, the material is required to be a
long thin fabric with a sticky side. Each context supplies its own kind of tape
to satisfy this requirement.

Discourse connectivity provides an independent argument. Read (25) in
the context established by (24).

(25) Isn’t it the most versatile fastener ever invented?

As in (23b), the wordinventedin (25) signals that the utterance describes some
kind, rather than some individual thing. Here that kind is picked out by the
pronounit. In the context of (24),it is naturally understood as whatever kind
of tape we have just been instructed to use. On an analysis that implicates kind
reference in attributions like those in (24)—but only on such an analysis—
this interpretation ofit in (25) is completely consistent with other uses ofit
(Webber 1983). In general,it can describe anything explicitly described in an
earlier utterance, and little else.

Although language impels us to represent kinds pervasively in the interpre-
tation of utterances, language provides little guidance about what kinds there
are. In (24), for instance, language tells us that some kinds of things aretape.
But domain knowledge actually supplies the specifics: there is this particu-
lar kind of transparent tape, this kind of masking tape, that kind of duct tape.
Formalizing kinds in interpretation therefore involves investigating meaningful
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categories as constituents of the real world; this investigation draws on judg-
ments about such real-world matters as causation and function, not judgments
about language.

The literature of cognitive science calls our attention to three sorts of kinds
in particular:NATURAL KINDS, ARTIFACT CATEGORIESandSOCIAL CATE-
GORIES. All of them crucially involve an explanatory understanding that puts
us into contact with meaningful real-world categories. None of these categories
are reducible to a boolean combinations of, say, perceptual features or other
primitives, and none can be described purely in terms of definitions, theories
and inferences in isolation from our connection to the world. See (Fodor 1998).
What distinguishes the different sorts of kinds is the character of the underlying
causal properties and relationships that determine category membership.

Things form aNATURAL KIND when they are created by the same general
causal regularities in the natural world, and when they derive certain common
characteristics from those regularities. Our talk of the natural world—with its
water, its kinds ofjade, its tigers, its elmsand the rest—abounds in terms that
describe natural kinds.

Our judgment that a set of objects forms such a kind represents a hypothe-
sis that the objects’ shared features have a uniform, natural explanation. There
are alternatives to such a judgment. Apparent similarities may have disparate
explanations within the natural world. Or they may result from the intervention
of agents, acting individually and intentionally. They may derive from some ac-
cident or other special and disruptive circumstance. Accordingly, natural kind
membership ultimately depends just on the presence of the right underlying
causal processes, not the exact details of something’s present state. Zebras are
four-legged and striped, but a zebra remains a zebra even without those legs or
stripes. See (Kripke 1982, Putnam 1975, Carlson 1992).

Things form anARTIFACT CATEGORY when they recognizably support a
designated use in virtue of some effective structure, composition or design. Our
sculpting of our environment is manifest in the many terms for artifact cate-
gories we draw upon in describing our surroundings—ourchairs and tables,
ourpensandink, or paper.

Artifacts are not categorized by the processes that create them, but by their
current conditions. A comfortable horizontal surface in a rock formation counts
as a seat whether it has been shaped by the elements or by a hammer and
chisel. And either way, with enough damage to the surface, the rock will be
a seat no longer. Nevertheless, membership in an artifact category is a causal
judgment about what can clearly be done with something, not a direct report
of perceptual features. The chair, for example, remains an enduring inspiration
to designers because of the elasticity of its possible characteristics: an object
can be a chair, as long as its form clearly preferentially accommodates a single
person, sitting. For more on the contrast between our understanding of artifacts
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and natural kinds, see (Keil 1989).
SOCIAL CATEGORIESclassify things in terms of the roles, powers and re-

sponsibilities people give them in specific culturally-sanctioned practices. Our
words for ourselves often describe social categories—studentandteacher; per-
former and audience; teams, committeesand organizations. But in addition
things in the world also fall into social categories, like those we describe with
such words asmoney, signalsand laws. See (Searle 1997). In both sorts of
cases, social categorization just reflects decisions people have to make about
individuals in order to act together. Ultimately, we have social categories be-
cause the powers that be designate things as such, and we all agree. Although
these decisions can be motivated by other properties of things, they are not
determined by them. So membership in social categories is also divorced from
what we see explicitly in the world.

These taxonomies call attention to the kinds of explanations that we use
to make our real-world distinctions. They invite us to pursue the practice of
knowledge representation for language by spelling out interpretations using
represented categories that crystallize the same kinds of explanation. Natu-
rally, we may extend this effort beyond the categories of physical entities I
have emphasized so far. As we consider events, places and measurements, for
example, we expect to find linguistic descriptions of kinds of events, kinds of
places, and kinds of measurements. We expect likewise as we consider rela-
tions among generalized individuals. Moreover, we expect all these kinds to
articulate the same variety of meaningful distinctions, in terms of causality,
function and agency, that we see in kinds of physical entities.

It is important to note that these taxonomies are not taxonomies of words,
however. Words describe categories, and as we have seen from (1) to (25),
they do so extremely flexibly. In fact, for many words, we may be able to say
quite little about the categories they describe in context in taxonomic terms.
For example, depending on the what matters in a particular case, we may take
vinegarto describe a kind of result of fermentation (a natural kind, identified
just by the preponderance of certain chemicals), as a kind of ingredient for
imparting sourness to food (an artifact category, requiring a wholesome present
state), or as a category of import, subject to particular taxes or controls (a social
category, perhaps motivated by, but not identified with, specific methods of
manufacture).

1.4.3 Events and their associates

Objects and kinds are things with an enduring identity; language also describes
things that play themselves out over time. To start, we can describe time itself.
We have expressions likeTuesdaywhich describe intervals of time, and predi-
cates likewas rainythat categorize these temporal intervals.
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(26) Tuesday was rainy.

Moreover, we find many sentences that implicitly characterize an interval of
time, and spell out the condition of the world during it. Sentences such as these
are calledSTATIVE. (27a), for example, fits an interval from August, 1992, to
August, 1998 (and any part of that time).

(27) a. I lived in Philadelphia.
b. I lived in Philadelphia in 1994.
c. When I lived in Philadelphia, I had no car.

The tense of the sentence, if nothing else, describes the time in question. It is
a short step from this implicit description to an explicit one. In (27b), we add
a modifier that specifies the interval at issue; in (27c), we make awhen-clause
out of the sentence to contribute the interval to another characterization. See
(Cresswell 1985) for a thorough linguistic discussion of temporal intervals and
(Allen 1983) for a classic computational one.

Descriptions of times, however, play a surprisingly small part in our ac-
counts of change in the world. EVENTS seem to be more basic. With events,
we isolate a pattern of change, initiated by a coherent causal process and ef-
fected within a definite time, as something in the world. Like the parts we
find within objects or the categories we assemble out of them, the events that
we recognize in our changing world go beyond what the world might actually
seem to contain. Nevertheless, like parts and categories, events are essential to
our knowledge of the world, in the organization they bring to our explanations
of our surroundings. Events package some differences between one time and
another together with the rationale that grounds those differences within stable
schemes of autonomous cause and effect, individual goals and methods, and
social coordination.

The best way to make sense of events is to insist on a strict parallel between
events and the ordinary things in the physical world. See (Davidson 2002b).
The parallel begins with the observation that we have many different ways
to describe the same thing, whether it is an object or an event. For example,
whether we call ita rock, a seat, or a throne, the object is the same; the dif-
ference lies in whether we categorize its nature, its function, or its social sig-
nificance. To pursue this analogy: consider what happens when John says (1)
in the context of (2). John makes a noise; John saysI would like coffee; John
answers. One thing happens; there is one event; but we categorize that same
event within different arenas (Davidson 2002c).

Among events,ACTIONS have a special significance for our own prac-
tical deliberations, and for our judgments of one another. ACTIONS are the
events that we choose; andAGENTSare things that can take actions. More pre-
cisely, each action is a material change in an agent, which that agent initiates
with a commitment to its significant consequences as the agent foresees them
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(Davidson 2002a). Such commitments areINTENTIONS; actions are what an
agent does intentionally, that is, with some intention. But of course, an inten-
tional action need not achieve its intended effect. (On intention more generally,
see (Bratman 1987).)

A characterization in terms of material changes in an agent agrees with
many direct accounts we can give of what we do, as when: I reach my hand
into the handle of a mug of coffee; I contract my reach upward and inward; I
initiate some motions of my lips, tongue, jaws and throat. We must remember,
though, that any such action can, like events more generally, be described in
many different ways. So it is that, with these same actions, I grab the mug, pick
it up, and drink from it. In general, as long as two expressions implicate the
same package of causal connections, playing out in the same stretch of space
and time, we should take these expressions to describe the same actions, and
the same events.

Many actions bring about effects indirectly. I press theon button on my
laptop; it goes about its business in response, and finally displays its login
screen fifteen seconds later. I ignite the burner beneath a kettle for tea; the fire
heats, and then in a few minutes the whistle of escaping steam announces that
the water is ready. In such cases, we parse change in the world into successive
distinct events: I press, and the computer boots up; I ignite, and the water boils.
At the same time, in such cases, we also group the action with its consequences
into larger events: I boot up the computer; I boil water. We readily integrate
the regular and predictable causal relations among these events into a single
package, one thing. Complex events that aggregate actions with their effects
over time are often calledACCOMPLISHMENTS, while instantaneous changes
are calledACHIEVEMENTS; the terminology is due to (Vendler 1967).

Repackaging events involves changes in perspective that call for subtle and
precise language. TheEVENT of pressing a button is not the event of booting
up the computer; the first is almost instantaneous while the second takes fifteen
seconds. But myACTION of pressing the button is my action of booting up the
computer. That is, I do one and the same thing, but we can talk about that action
in different ways by characterizing it in the context of different happenings.

These perspectives show how we can understand events, like objects, as
wholes composed of parts. Other perspectives show how we can also under-
stand events, like objects, as wholes comprised of quantities of stuff. Within
events, we recognizeACTIVITIES or PROCESSES, each a recurring dynamic
that in any instance can continue indefinitely and that can play out again in
other instances. There is one process at work as the computer is booting; an-
other as the water is heating.

Linguistic descriptions are remarkable for the complex perspectives that
individual utterances can encode. See (Steedman 1997) for a review from the
perspective of computational semantics. Take (28) for example.
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(28) I am boiling water for tea.

(28) characterizes an interval of time during which some specific process is
underway: the fire is heating a full kettle, let us assume, adapting our earlier
discussion. And this process is characterized in turn by the role it plays in an
ongoing, as yet incomplete, pattern of change. My action is already done as this
process unfolds; I must have ignited the burner with the intention of keeping
it lit until the water boils. On the other hand, the envisaged culmination of
the process—the water actually boiling—remains in the future and in fact, if I
am interrupted or change my mind, perhaps will never be realized. This is the
imperfective paradox observed by (Dowty 1979).

Linguistic descriptions are also remarkable for the flexibility with which
they reconcile such different perspectives.Drinking describes a process,coffee
describes a kind of substance, and sodrinking coffeenaturally describes an
activity that can be continued indefinitely. By contrast, a mug of coffee is just
an object, with a definite quantity of stuff. And so of coursedrinking a mug
of coffeedescribes an event—a complex one that begins with the activity of
drinking coffee from the mug and concludes with a finishing event that marks
the change when the mug empties and the coffee is drunk. (Jackendoff 1991)
is an accessible discussion of this problem of aspectual composition.

The real-world parallel between objects and events extends to a natural par-
allel in knowledge-representation methodology. We work first with the world.
We individuate events at the level of detail we independently require to sup-
port our system’s real-world reasoning and action; we organize events accord-
ing to the meaningful explanatory connections in the system’s environment.
In fleshing out this model of the world, we can draw both on established
representation formalisms for talking about real-world processes and events,
such as the DAML-S standard ontology for describing action in the semantic
web (Ankolekar et al. 2002), and established practice for applying those for-
malisms to new applications (Brachman et al. 1990). But then we understand
utterances as literal descriptions of the real events. We can add individuals
where language use absolutely requires it; language use might for example
motivate us to make processes explicit that we might otherwise gloss over in
system-building. But although these linguistic descriptions may be complex
and flexible, they must aim ultimately to connect with the real happenings and
the real structure of the world in which the system and the user act.

1.4.4 Space and Quantity

Now across several semantic domains we have encountered the same key prin-
ciples of description. As users of language, we talk about a wide range of
things, we individuate them in ways that serve our explanations of the world,
and we characterize them into underlying categories with explanatory sig-
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nificance. We use description to link utterances directly to these meaningful
individuals—both as users of language and as engineers. Our discussion re-
mains far from exhausting the full range of generalized individuals, but from
now on we can consider further ones only briefly—there will be just the same
few principles to apply.

We can describePLACESand say things about them. A place is a location
in space. (29a) describes the place that isunder the bed.

(29) a. Under the bed is a good place to hide.

b. From New York to Philadelphia is 150km.

We can also describePATHS, and say things about them. A path is a progression
of places, traversed along a dimension of space or time. (29b) describes the
pathfrom New York to Philadelphia.

Places and paths are delimited according to the causal processes by which
objects interact in space. Of course! But note then how places are not deter-
mined by mere geometry; contrast (30a) with (30b) and (30c).

(30) a. Chris stood at the window.

b. Chris stood at the door.

c. Chris stood at the mirror.

In all cases we locate Chris by reference to a rectangular plane, indeed perhaps
one made in each case of framed glass set in a wall. But in (30a) we locate Chris
inside, quite close to the window, looking out; in (30b), though, we probably
locate Chris outside the door, quite close, looking in. As for (30c), Chris is po-
sitioned to look into the mirror, while dressing perhaps, and so, in contrast to
(30a) or (30b), Chris most likely retains a comfortable distance from the mir-
ror. Our descriptions of place in (30) say as much about what Chris is doing,
and how, and why, as they say about where Chris is. Of course the interactions
we describe are quite plausible; they offer us an easy glimpse of Chris’s his-
tory and motivations. But in understanding (30) we are not just imposing our
expectations on a situation described in purely geometric terms. Replaceat by
near in (30) and, continued geometric proximity notwithstanding, much of the
subtlety of interpretation disappears.

We illustrate the same property of paths in (31).

(31) Chris went{ to the window, to the door, to the mirror}.
The alternative prepositional phrases in (31) describe Chris’s path of motion
in going. They characterize the path in terms of its endpoint—basically, the
motion ends with Chrisat the landmark Chris goesto, with its full geometric
and causal implications.

Roughly following (Hobbs 1995), I will use the termGEOMETRIC SYS-
TEM for a pattern of causal interaction played out in space. (The notion has an
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analogue in many theories, such as theSITUATION, or meaningful spatiotem-
poral slice of the world, from Situation Theory (Barwise and Perry 1983); see
also (Kratzer 1989).) So, places and paths are identified as parts of geometric
systems, and, in turn, locating a figure at a place characterizes the meaning-
ful causal relations of the figure within the system. (30a) locates Chris in a
geometric system where the right position affords looking out; (30b) locates
Chris in a geometric system where the right position affords going through
(and in); (30c) locates Chris in a geometric system where the right position
affords looking at an image of oneself.

Naturally, places and paths are also characterized in causal terms. Place
prepositions, such asat, in, over, above, and the rest, categorize a place in
terms of the spatial structure of the interactions that go on there (in the system).
Path prepositions, such asto, into, throughandacrosscharacterize paths in
similar terms. For example, as we just saw,at fits places (and systems) where
action depends just on being in the right position, andto fits paths in similar
systems. A contrasting example isin, which fits places (and systems) where
action depends on containment, andinto, which fits corresponding paths.

Where places and paths overlay the causal order onto the geometric struc-
ture of space,MEASUREMENTS overlay that causal order more generally
across the continuous dimensions of the physical world. Of course, descrip-
tions of measurements can readily make quantity explicit, as in (32):

(32) The Empire State Building is 443 meters tall.

In (32), the wordtall seems to relate an individual, the Empire State Building,
to a measurement of its height; the wordmetersin turn relates the measurement
to a tally (counted in meters), and the numeral443describes the tally.

However, constructions that describe measurements more typically indi-
viduate and characterize them by causal, functional or intentional standards, as
in (33).

(33) a. The Empire State Building is tall enough to see from New Jersey.

b. Choose a tall glass to accommodate plenty of ice.

c. Give me one of the tall glasses.

In (33a), the wordenoughexplicit relates a measurement of height to a causal
result: because the Empire State Building has the height it does, it is possible
to see it from an appreciable distance. In (33b), the use oftall by itself receives
a similar interpretation: the height of a glass counts astall in (33b) in part
because you can use such a glass that size to fit the ice you need. In (33c),
finally, what counts as a tall measurement follows simply from the speaker’s
intention to distinguish two sets of glasses in the context;tall picks the intended
set out by height but does not pick out the other set, the short ones.

To summarize the systematic analogy between descriptions of space and
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description of measure, we can understand measurements as constituents of
SYSTEMS OF VALUES—patterns of meaningful interaction determined by a
measured quantity of something. So for example, to learn how tall something
is to learn what its height enables, within some system of interaction; and to
say that one object is as tall as another is to say that, within some system, their
height affords them the same interactions. Thus, we find once again that we are
led to the individuals we need to describe, and the kinds of characterizations
we need for them, by our explanatory understanding of meaningful real-world
differences.

1.4.5 Abstract Objects

Finally, no discussion of linguistic description could be complete without a
discussion of the range of further abstract objects that grammar implicates,
such asSTATES, POSSIBILITIES, FACTS andPROPOSITIONS. But there is per-
haps one notable difference between these abstractions and the individuals we
have already considered. A specification or system may be equipped with an
inventory of concrete individuals to describe, by listing the objects or places in
its environment, the meaningfully different quantities it can reason about, and
even the events in some history or plan. But to describe abstract individuals
in interesting ways, a system needs a generative understanding of them, and
needs to create representations of them by inference, on the fly. Such inference
in turn requires a more sophisticated implementation. At the same time, the lin-
guistic expressions that describe abstractions are more rarefied. This gives two
reasons why knowledge representation does not approach abstractions with the
same urgency as other individuals. Of course, abstract individuals remain quite
intriguing, as we shall now discover.

A STATE is a fine-grained aspect of the enduring condition of the world at
an interval of time. States are part of the causal order, as the examples in (34)
show.

(34) a. Winning the lottery caused Terry’s happiness.

b. Terry’s happiness lasted three years.

c. Chris saw Terry’s happiness.

In each of these examples, the noun phraseTerry’s happinessseems to describe
an aspect of Terry’s condition. We see in turn that such states can originate
with events (34a), and any termination to a state is also triggered by a corre-
sponding event. States are localized and extended in time (34b). And states
can influence how things turn out, and play a role in ongoing events (34c). See
(Higginbotham 2000).

It is common, especially in computer science, to use the word state to de-
scribe a very coarse-grained condition. The state of an automaton, for example,
refers to a snapshot that completely characterizes an unfolding computation.



KNOWLEDGE REPRESENTATION FORLANGUAGE ENGINEERING/ 39

More colloquially, the “state of the union” is a full account of the United States
and its institutions. But the sentences in (34) cannot describe Terry’s state—
Terry’s ABSOLUTE state—in this coarse-grained sense. At any time, Terry’s
absolute state is only partially due to the lottery, and has countless more im-
mediate antecedents. Maybe Terry is hungry from skipping breakfast: the lot-
tery wouldn’t have caused that, nor would that last three years, nor could Chris
be expected to see that. Evidently, in this case, Terry has a state of hunger,
which is distinct from the state of happiness as described in (34). This is the
sense in which states, as described in language, must be fine-grained: Terry is
simultaneously in many states!

Talk of states meshes readily with approaches to knowledge representation
which characterize objects using a small number of fundamental attributes.
Any time an object has any of these attributes, it must have a correspond-
ing state. But states are trickier to work with when our information about the
world is less decisively regimented. Take Terry’s case: would Terry’s state of
happiness coincide with Terry’s state of glee? And what about simply Terry’s
emotional state? For such questions there are few guidelines, as the answers so
far seem to have rather few consequences, save that, as always in formal work,
absolute consistency is a must.

When we talk about our plans for the future or our explanations of the past,
we are as much concerned with what could be as with what is. And we seem
simply toDESCRIBEthese possibilities:

(35) Terry might win the lottery. Chris would be jealous.

That is,might in (35) describes a possibility where Terry wins the lottery, and
introduces it into the discourse for discussion. Thenwoulddescribes that same
possibility and characterizes it further: in the possibility where Terry wins the
lottery, Chris is jealous. Roberts (1989) called attention to the semantic diffi-
culties of descriptions of possibilities in discourse.

Talk of possibilities in planning meshes readily with approaches to knowl-
edge representation which characterize the effects of actions across alternative
possible histories. Agents that make plans must represent these alternative his-
tories anyway; they must choose among them. Once we represent the possi-
bilities, we can easily take sentences like (35) to describe them. (Isard 1974)
offers the classic demonstration. His program plays and talks about a game of
tic-tac-toe; the program interprets conditionals as descriptions of points in a
space of possible game-histories that branches move-by-move. With less de-
cisively regimented information, though, possibilities like states can become
unmanageable: we can find ourselves required to reason about an new and un-
explored possibility, described with no simple standard to judge how it might
have arisen or what further information would characterize it. See (Ortiz 1999)
for a recent exploration of the computational difficulties involved in construct-
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ing these open-ended possibilities.
In our explanations of the world, we also often somehow appeal to the

FACTS about the world that ground our claims:

(36) a. The fact that Terry departed early meant that most of the party was
fun.

b. Terry’s early departure meant that most of the party was fun.

One might think of facts as the immutable data which constitute the world and
its history, both in all its coherent regularity and in all its contingent detail.
Such data compose into chains of reasons and evidence, but they can onlyACT

in the world indirectly, through their representations (for example in the minds
and statements of agents). Our descriptions of this data can be accomplished
by explicit talk of facts, as in (36a), which apparently identifies something as
the fact that Terry departed early. But perhaps our descriptions of this data can
also be mediated by the grammar, as (36b) suggests. (36b) has much the same
interpretation as (36a), and much the same structure; this argues thatTerry’s
early departurecan describe the same thing asthe fact that Terry departed
early.

The distinction between facts on the one hand and events and states on the
other is subtle at best. Noun phrases such asTerry’s departuredo not always
describe facts; they must sometimes describe events, as in (37a). Events occur
in time and facts do not.

(37) a. Terry’s departure occurred at ten.

b. Terry’s departure disturbed Chris.

A corresponding ambiguity is perceptible in (37b). We can use (37b) to de-
scribe a situation where Terry packs noisily, stomps out the door and slams
it, and all these sounds keep Chris awake. Chris need not know that Terry is
leaving; when we use (37b) this way, we describe the causal connection be-
tween Chris and the event itself. However, we can also use (37b) to describe a
different kind of situation. Terry slinks out silently unnoticed. Only later does
Chris notice that Terry is gone, and infer that Terry must have departed. But
then Chris becomes wildly upset at the implications. In such a scenario, (37b)
can correctly characterize Chris’s relationship to the fact that Terry departed.
The difference between these two interpretations highlights the distinction be-
tween events and states as things inside the world, with powers to act on their
own within the world, and facts as things that constitute the world, which act
through their representations.

Talk of facts is naturally tied to talk ofPROPOSITIONS. A proposition rei-
fies the content of a representation; it is a claim about the world that is either
true or false. (When a proposition is true, we might think that there is some
fact in the world which satisfies the proposition.) As with facts, we can talk
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about propositions explicitly, as in (38a). In fact, we can describe proposi-
tions in many ways, depending on the kind of information they embody:ideas,
thoughts, views, theories, and so forth.

(38) a. Chris suggested the idea that Terry had departed.

b. Chris suggested that Terry had departed.

Again, the parallel structure and interpretation of closely related sentences,
such as (38b) here, suggests that we might treat certain grammatical construc-
tions as descriptions of propositions, too.

It may be that, with effort, we can cultivate the linguistic intuitions sug-
gested by examples such as (36), (37) and (38), and develop a systematic
account of facts and propositions in discourse; see (Asher 1993), for exam-
ple. However, developing a formal ontology of facts or propositions is fraught
with pitfalls, because of the further domain inferences these abstract objects
must support. Many seemingly innocuous assumptions about the form and
content of factual inference bring the surprising and devastating consequence
that there can be only one fact: “the True”. Apparently, inference with facts
must be constructive, not classical, to make sense of the idea that an inference
draws on particular facts; see (Girard et al. 1989). For similar reasons, these
inferences must also expose the information that identifies individuals to the
logical structure of facts and argument; see (Neale 1995). When constructing
propositions, meanwhile, apparently natural ways of describing propositions
turn out to be inconsistent, because they open up the possibility of paradoxes
of self-reference; see for example (Priest 1994). For the moment, these com-
plexities put a systematic treatment of facts and propositions beyond the scope
of practical implementation.

1.5 Meaning and Inference

The generalized individuals surveyed in Section 1.4 let us formalize the re-
lationship between application talk and an underlying domain model. They
provide an index into application knowledge, as captured by domain represen-
tations and portrayed in language. However, to capture the general meaning
of application talk, we need to go further; we need to express the generaliza-
tions over interpretation that constitute semantic knowledge, and we need to
reason from these generalizations automatically in constructing particular in-
terpretations. This section offers a brief survey of the strengths and limitations
of a few notable formalisms. I particularly emphasize the generalizations that
figure most prominently in semantic knowledge and that therefore contribute
most significantly to the applicability of formal techniques to semantic repre-
sentation.
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1.5.1 Description Logic

We begin withDESCRIPTION LOGIC, a particularly simple formalism with
many good implementations; see (Baader et al. 2003). Description logic sys-
tematizes the generalizations over individuals that can be expressed in terms
of simple relationships among abstract concepts. It comes with algorithms that
can assess a variety of relationships among concepts in terms of the available
generalizations; and because the logic is constrained, these algorithms can be
quite efficient.

Saying that description logic is a logic of concepts means that all the log-
ical statements abstract away from particular individuals. For example, rather
than identifying the individual that is currently speaking by a name or vari-
able, in description logic we would use use a conceptspeaker. We can com-
bine concepts with boolean operators to describe individuals logically. For in-
stance, we can create the conceptspeaker∨hearer, true of an individual that
fits speakeror fits hearer, to characterize the participants in a conversation.
Inference often proceeds through definitions for concepts; for example, we
couldDEFINE participantasspeaker∨hearer. When we conjoin together these
concepts, there may be interesting logical relationships among them; and we
can pursue them to infer new consequences and more fully characterize any
object that falls under the concept. For example, any individual that satisfies
participant∧¬hearerin fact satisfiesspeaker.

The expressive power of description logic comes in its ability to construct
complex concepts usingROLES that abstract the relationships between indi-
viduals. Using roles, we can build concepts that characterize individuals indi-
rectly, through a recursive description that follows the link to a related object
and characterizes it in terms of another concept. In fact, description logic lets
us quantify over the related objects universally, usingall; or existentially, using
some. Take (39) for example.

(39) state∧ (some type possession)

(39) is a complex concept that describes a state; the second conjunct describes
the state indirectly—it says that you must be able to find some other related
individual, atypeof the state; this new object must be a kind of possession.
The notation suggests a more compact, and somewhat more natural reading
for the content of (39): this is a state some type of which is a possession. This
more compact wording epitomizes the elegance of the recursive concepts of
description logic.

Many roles are attributes that take exactly one value; here description logic
offers the quantifierthewhich describes the value of the attribute. Thus, (40)
encodes a state of possession whose logical subject is the speaker and whose
logical object is associated with coffee.
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(40) state∧ (some type possession)∧ (the logicalsubject speaker)∧
(the logicalobject(some associateof coffee))

Even the iteration of roles here seems quite natural and effective.
Despite its simplicity, description logic provides a good starting point for

natural language applications. Once we populate our representations with a
plethora of generalized individuals, as suggested in Section 1.4, it becomes
possible to characterize those individuals using just a small number of con-
cepts and roles. For example, to map out the details of a specific scenario in
semantic terms, we might need only to link the generalized individuals of the
domain to the semantic categories they belong to, and flesh out domain re-
lationships such as the roles ordinary individuals play in complex events and
states. Our semantic knowledge is then stated in terms of the concepts char-
acterizing individuals and the roles that link individuals together. Description
logic is often a convenient formalism for expressing this information, since
description logic formulas are particularly good at definingFRAMES, whose
instances package together a number of related objects into a complex using
roles and attributes. In effect, (40) is a simple frame.

At the same time, though, many definitions and inferences fall outside de-
scription logic. Since description logic emphasizes concepts, its focus is on
concept-level inferences likeSUBSUMPTION, whether one concept is more
specific than another, orCONSISTENCY, whether there is any possible way a
concept could be instantiated. There are many extensions to description logic,
which offer additional ways to construct concepts; these extensions increase
the complexity of reasoning but still generally allow constrained algorithms
to decide questions of subsumption or consistency. However, once you can
freely describe multiple objects at once, as needed to construct complex terms,
for example, you get too much expressive power to reason with algorithms of
such limited complexity. Thus, none of the extensions have a robust notion of
equations that require objects to be the same, and they cannot readily perform
unification to construct complex structures that satisfy multiple constraints.
This brings us squarely into the realm of first-order logic.

1.5.2 First-order logic

First-order logic is the logic of arbitrary relationships among individuals. First-
order logic uses terms and variables to represent individuals and predicates to
represent relationships among them; the illustrations of Section 1.3.2 are first-
order representations and Prolog, as described in Section 1.3.3, is a inference
mechanism for an important subset of first-order logic.

In first-order logic, predicates combine with terms and variables to form
SENTENCES; sentences make claims that the specified objects stand in spec-
ified relationships and so can be true or false. First-order logic continues to
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offer complex sentences involving propositional connectives; it adds quanti-
fiers that explicitly describe the possible values of variables:∀xp claims that
p is true no matter what objectx is taken to stand for;∃xp claims thatp is
true for some value ofx. We can also define a quantifier∃!xp which says that
p is true for exactly one value ofx. See (Lepore 2000) for a linguistically-
oriented introduction to first-order logic; for applications in computer science
see (Gallier 1986) and for the representation of the common-sense world in
particular see (Davis 1990).

(41) is the cumbersome equivalent of (40) in first-order logic.

(41) state(s)∧∃r(type(s, r)∧ possession(r))∧∃!u(logical subject(s,u))∧
∃u(logical subject(s,u)∧speaker(u))∧∧∃!v(logical object(s,v))∧
∃v(logical object(s,v)∧∃c(associateof(v,c)∧coffee(c)))

It characterizes a states, wheres has a typer that is a possession; wheres
has exactly one logical subject, where that logical subjectu is the speaker; and
whereshas exactly one logical object, where that logical objectv has an asso-
ciatec that is coffee. Evidently, abbreviation and naturalness are not virtues of
first-order logic! The constraint-satisfaction representations of meaning and in-
terpretation presented in Section 1.3 in fact distill substantial practical wisdom
aimed at making first-order representations accessible and useful.

The value of explicit first-order representations is the flexibility with which
they let you state real-world generalizations. For example, consider how to
characterize an agentu’s action of getting a physical objecto. Call this kind of
actionk a. There is a corresponding kind of possession statek s, whereu has
o under control;k a hask sas a generic consequence. First-order logic lets us
flesh this situation out precisely as in (42).

(42) ∀u∀o(agent(u)∧object(o)⊃
∃k a∃k s(possession(k s)∧genericconsequence(k a,k s)))

We use universal quantifiers∀u∀o to indicate our concern for all agents and
objects explicit, and we use existential quantifiers∃k a∃k s to relativize our
description of the kind of action and the kind of state to the choice of agent and
object. Concretely, first-order logic goes beyond description logic by making it
possible to express simultaneous interrelated descriptions of multiple objects,
as (42) illustrates.

An alternative but equivalent first-order representation is based on a tech-
nique called Skolemization that eliminates quantifiers by introducing suitable
complex names for objects. The technique is intuitively motivated as follows.
Think of narrow-scope existential quantifiers like∃k a∃k s in (42) as implic-
itly describing functions. The functions require values for the outer variables;
they convert these values into an object that makes the existential sentence
true. For (42), the function for∃k a takes the values ofu ando as arguments
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and deliversu’s action of gettingo. We can represent this explicitly by naming
the function with an arbitrary new symbol, sayfk a and constructing a term
describing the function’s result:fk a(u,o). This is called a Skolem term.

We can now eliminate existential quantifiers by replacing the quantified
variable with a suitable Skolem term everywhere it would otherwise occur
free. Meanwhile, we can adopt the convention that any remaining variables
are implicitly universally quantified. In this scheme, (42) becomes (43):

(43) agent(u)∧object(o)⊃
possession( fk s(u,o))∧genericconsequence( fk a(u,o), fk s(u,o))

This is the convention that underlies the logical interpretation of Prolog
clauses; in practice, these Skolem terms aggregate data effectively into com-
plex structures subject to constraint and unification.

First-order inference coincides with computability. That is why Prolog can
implement any algorithm, for example. The result is that drawing inferences in
first-order logic is undecidable; it can involve an arbitrarily long computation
involving arbitrarily many instantiations of clauses and the construction of ar-
bitrarily many data structures. The complexity of first-order inference can be a
real practical problem.

First-order logic matches well with a rich ontology of generalized individ-
uals. There are more powerful logics, but the expressive resources of these log-
ics can generally be captured quite naturally in first-order logic by introducing
abstract individuals for properties, sets, or situations. This is common practice
in knowledge representation, as evidenced for example in current formaliza-
tions of knowledge, action and time (Levesque et al. 1997, Reiter 2001). One
reason to avoid the more powerful logics is that some logical consequences
of their intended models may not even be computable! It is still worth seeing
how more expressive languages work, however. These languages can support
some practical inference; and, more importantly, they can highlight insights
about content and inference that do not come through so clearly in first-order
translations or approximations.

1.5.3 Modal logic

First-order modal logic systematizes the inference about generalized indi-
viduals that we can draw from specified and limited information. For nat-
ural language, this gives us the ability to to formalize the causal, func-
tional and intentional distinctions by which utterances construe the world.
(Fitting and Mendelsohn 1998) is a recent accessible and comprehensive treat-
ment of first-order modal logic from a general standpoint that combines math-
ematics, philosophy and computation. Other classic references for modal logic
include (Chellas 1980, van Benthem 1983, Hughes and Cresswell 1996). Note
that many properties of modal languages are especially clear for propositional
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languages; see (Blackburn et al. 2001) for a recent survey of propositional
modal logic from the point of view of representation and (Fagin et al. 1995)
for a study of propositional modal logic from the point of view of applications
in computer science.

First-order modal logic extends first-order logic by addingMODAL OP-
ERATORS; applying a modal operator to a sentencep gives a new sentence
which describes the truth ofp relative to a specificBODY OF INFORMATION or
MODALITY . There are two kinds of modal operators: operators ofNECESSITY,
written [INFO ] for body of informationINFO ; and operators ofPOSSIBILITY,
written 〈INFO〉 for body of informationINFO . [INFO ]p claims thatp follows
from INFO . 〈INFO〉p claims thatp is consistent withINFO .

You can use modal operators to describe any of the wide range of bodies
of information that figure in rich descriptions of the world. A particularly im-
portant motivation originates with causal reasoning, and its connection to our
explanations and predictions about the world. Explanations and predictions in-
evitably involve an appeal to a limited body of information, because they show
how a narrow range of facts and circumstances suffice to determine some ob-
servation or outcome. For example, we can explain why the grass is wet by
observing that it has rained. The explanation is convincing because it draws on
just a few facts and generalizations: the grass is outside; hence, the rain has
fallen on the grass and wet it; and the subsequent meteorological conditions
that have since prevailed can have done nothing to dry the grass. Since the ex-
planation draws on this narrow body of information, it could apply generally
to many similar situations, and thus locates our observations within a recurring
natural pattern. Indeed, typical explanations presuppose a collection of gener-
alizations that are always in force: aMECHANISM in the sense of (Pearl 2000).
Here it is the dynamics of the weather. Explanations combine these general-
izations with a simple description of a particular case; here it is the rain. The
conclusion follows.

Causal relationships in the world embody these explanatory connections;
thus, they must also express judgments based on limited information. In fact,
the many diverse theories of causality are united in their focus on a scheme
for identifying the presupposed background and the circumstantial facts that
determine causal connections and give them explanatory power. For example,
Lewis’s account of causation in terms of counterfactuals locates the persis-
tence of explanatory generalizations in his notion of similarity between pos-
sible worlds (Lewis 1973). Kratzer explores the circumstantial facts behind
causal and counterfactual judgments, and argues that we “lump these facts
together” in evaluating what else might have happened (Kratzer 1989). Mean-
while, in Goldman’s analysis of theGENERATION relation of bringing about
a result by means of an action, the result must follow from the action by a
principled explanatory connection established by specified background cir-
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cumstances (Goldman 1970). Pearl talks directly of mechanisms that embody
generalizations and surgeries on mechanisms that determine a particular case
(Pearl 2000).

As it turns out, though, typical natural language constructions explicitly
specify the explanatory connections that link a cause to its effects. Resultative
verbal expressions have been a standard example since (Fodor 1970). Let us
return to the rain falling on the grass. A raindropr falls and hits a blade of
grassg, beating it down flat and making it wet. We would happily understand
this as a single complex event, uniting a preparatory processp of falling with a
culminationc of physical interaction involving an exchange of force and mass,
and a consequent stateswhere the newly wet grass has taken on a new position.

With this event in mind, contrast the alternative descriptions we might give
of it in (44).

(44) a. The rain made the grass flat and wet.
b. The rain hit the grass flat.
c. The rain hit the grass wet.
d. The rain wet the grass.
e. The rain wet the grass flat.
f. The rain caused the grass to become flat and wet.

With made, we can happily describe the event as a whole, highlighting any
and all of its direct effects on the grass as in (44a). Withhit, though, not all
descriptions are appropriate: (44b) fits this situation and (44c) does not; indeed
(44c) seems rather incomprehensible. Apparently, when we characterize a re-
sult fromhitting, we link the result to a particular causal mechanism; the result
must be a change of configuration accomplished by the ballistics of physical
interaction (and nothing can get wet that way). Symmetrically, while (44d) de-
scribes this situation, (44e) does not; (44e) suggests that the grass has been
brought down by the very weight of the water, not by the impulse of the rain-
drops as is actually the case. So when we characterize an object’s change of
state fromwetting, we must link the change to the general properties of that
object when wet. In comparison with (44c) or (44e), it makes sense to think
of (44a) as reflecting the combination of causal mechanisms which offer stock
perspectives on events. Famously, of course, only (44f) invites the hearer to
supply an arbitrary mechanism leading indirectly from the action to its ef-
fect, as through an open-ended interpretation of causation. For example, when
we describe a fanciful indoor greenhouse designed with an array of lights and
sprinklers and sensors to mirror outdoor precipitation automatically, only (44f)
would fit an event where the rain triggers the sprinklers of the greenhouse and
indirectly accomplishes the watering of the grass inside.

A typical first-order representation of the event, as in (45), effectively cap-
tures only example (44f).
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(45) result(c,s)∧wet(s,g)∧flat(s,g)

(45) just says that a states of g being wet and flat is somehow the result of
culminationc. Observe that changing the relation betweenc ands does not
help to distinguish the different causal semantics in (45); as long as the other
conjuncts describe the same states, they will have the same truth value.

To articulate the distinction, we have to use modal operators. For exam-
ple, we can introduce an operator[BALLISTICS ] describing what follows from
the causal mechanism involved in hitting and other interactions of physics;
we can introduce an operator[INUNDATION ] describing wetness by its causal
mechanisms. Now we can contrast (46a) and (46b) meaningfully both with one
another and with (45).

(46) a. [BALLISTICS ](result(c,s)∧flat(s,g))
b. [INUNDATION ](result(c,s)∧wet(s,g))

(46a) corresponds to (44b); (46b) corresponds to (46d). In modal logic,
even when all three (46a), (46b) and (45) are true, it may be that
[BALLISTICS ](wet(s,g)) and[INUNDATION ](flat(s,g)) are false, if these as-
pects ofsdo not follow for the right reason.

Modal representations might look rather exotic. But in fact, cutting-edge
knowledge representation systems increasingly treat collections of models and
working assumptions as first-class elements of the logic, since (Guha 1991).
The most common device is a variant and extension of a modal operator called,
rather ambiguously, aCONTEXT (McCarthy 1993). There are also many ways
to approximate model inference effectively in first-order representations. When
you do not need logic within the scope of modal operators, you can rewrite the
modal formulas using structured atomic propositions; the use of (47) for (46a)
suggests the correspondence.

(47) nec(ballistics, result(c,s))∧nec(ballistics,flat(s,g))

Meanwhile, when logical inferences are required within modal scopes but
typically not between scopes, we can add aPOSSIBLE WORLD or SITUA-
TION argument to predicates, as suggested by modal semantics (Kripke 1963,
Fitting 1983, Wallen 1990) and AI techniques (McCarthy and Hayes 1969,
Reiter 2001).

(48) result(c,s,pw(ballistics,w, reality))∧flat(s,g,pw(ballistics,w, reality))

(48) suggests this representation—if you are familiar with possible worlds se-
mantics, you will recognize that the termpw(ballistics,w, reality) can repre-
sent an arbitrary possible world reached from the real world by a transition
w of ballistics-accessibility. For reasoning about possibilities, transitions are
represented by Skolem terms rather than variables.

The opportunities for using these modal representations are very broad.
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Our explanations of function, as embodied in our characterizations of objects
as artifacts, involve a parallel dependence on explicitly-restricted bodies of in-
formation. Think of a wooden bar stool, built solidly, with a round top cut
with the gentle indentations of a seat. When the object stands under a win-
dow with a sprawling spider-plant on top, it does not thereby become a plant
stand (except as a jest); it remains a stool used as a plant stand. We do not
characterize the stool based on its successful function in its full present con-
text. Instead, we assess the stool on its own, restricting our attention to its
individual properties and the broader principles that apply generally to similar
objects. Concretely, we continue to judge the object as stool, for sitting, be-
cause we base our judgments about the object on a restricted subset of what
we know about it—properties such as its shape, its structure, and its design—
information which in fact determines what the object can do, by a public and
persistent standard, and which thereby allows us to explain the object, rather
than just redescribing its actual condition.

Moreover, many individuals come with genuine perspectives of the world,
including agents that see or know the world they experience; and images,
recordings and other sources that depict events in history. We can describe
the content of these real-world representations using the same realistic bodies
of information that we use to formalize judgments of causation and function
(Halpern and Moses 1985, Cohen and Levesque 1990). By further introducing
bodies of hypothetical information, describing consistent scenarios potentially
unrelated to the world as it is, we gain the ability to describe the fallible beliefs
and unrealized goals of agents, and the more rarefied contents of fiction and
imagination.

1.5.4 Developing and Using Knowledge

Description logic, first-order logic and modal logics are some of the most-
used formalisms for knowledge representation, but they are not the only
ones. Logics exist at all level of complexity, aimed at providing the right
expressive power to automate important inferences as conveniently and ef-
ficiently as possible. Hybrid logic (Blackburn 2000, Areces et al. 2001), for
example, stands between description logic and first-order logic. As in de-
scription logic, it expresses general knowledge of concepts and offers infer-
ence algorithms to decide how concepts are related; however, its formulas
do allow you, in restricted ways, to refer back to individuals you have al-
ready described. Higher-order logic, by contrast, adds even more expressive
power—its terms can stand for arbitrary functions and properties. Despite the
complexity, higher-order logic is amenable to logic programming implemen-
tations comparable to Prolog (Nadathur and Miller 1998) and supports the in-
ference required to characterize general relationships in natural language dis-
course such as ellipsis and parallelism (Dalrymple et al. 1991, Gardent 1999).
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Finally, there are formalisms whose inference is based on making assump-
tions and reconciling competing explanations: nonmonotonic logics. See e.g.,
(Gabbay et al. 1994, Brewka et al. 1997). One role for these formalisms in lan-
guage engineering is to capture probabilistic inference with tools continuous
with deductive reasoning (Poole 1993); another is to specify default inferences
that can flesh out interpretations in salient ways when more specific informa-
tion is unavailable (Asher and Lascarides 2003). Clearly, there are lots of alter-
native representations to choose from! You can expect to use the representation
that best supports the inferences that are most important to your application.

Even within a specific representation, however, formalization can seem
unconstrained. For language engineering, a coarse high-level model, like the
constraint-satisfaction model sketched in Section 1.3, can provide important
further guidance. Any general model allows formalization to proceed in tan-
dem with an assessment of the impact of knowledge on the interpretation of
domain utterances. A simple but executable model in fact makes precise pre-
dictions about problems in the treatment of domain utterances such as ambi-
guities and missing information.

As the description of domain information starts to converge, you can
explore more flexible ways of incorporating knowledge into the system’s
decision-making. You can start to write rules that specify the system’s behav-
ior in terms of the system’s knowledge; see (Shoham 1993, Fagin et al. 1995,
Poole et al. 1998). You can of course continue to test out these rules on the de-
velopment data for the system, to help track the viability and progress of your
developing strategies. Alternatively, you can start to associate individual exam-
ples with features of the system’s knowledge, and thereby supply background
knowledge to automatic machine-learning experiments. This gives learners ac-
cess to underlying similarities of instances that are potentially more meaning-
ful than surface correlations. Learned models, rules and classifiers can then
generalize in more principled ways.

1.6 Closing Thoughts

The methods of Sections 1.3, 1.4 and 1.5 make it possible to articulate and
formalize information about the world for language use. But in many respects,
what we have learned serves to quantify the received wisdom that such knowl-
edge is extremely expensive, not to challenge it. It is quite difficult to formulate
representations that are consistent, and even more difficult to formulate ones
that are true! And for an actual application, truth is not enough—what you
say has to be the right information to do useful work in the system’s actual
environment.

Understanding knowledge representation as a practical methodology can
minimize the difficulty. You can take care to do automatic checks to make sure
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you describe the world and its inferences consistently. You can start from a
representative sample of real-world situations to make sure that you describe
them correctly. And you can check as you go along that the representations you
develop are in fact used economically in describing these real-world situations.

Nevertheless, an appreciation of the difficulties of knowledge representa-
tion is required to put knowledge representation to work most effectively. Typ-
ical natural language systems are built to collaborate with partners who bring
their own prodigious and inimitable real-world expertise to the interaction—
human users. It is foolish to attempt to duplicate their strengths in a system
when you could just as well build on those strengths. In using speech systems,
for example, users often can quickly learn not to expect inferences of the sys-
tem, and accommodate by spelling out facts explicitly step-by-step. And in
using text systems, users can often quickly learn to sieve through the rough
suggestions of the system to find those that mesh with their task and context.
What knowledge you need to represent depends on which burdens users are
willing to share, and which can be readily lifted from them.

As language engineering matures, we expect more and more systems
whose knowledge representation is a distinctive ingredient in their success—
accessible interfaces, for users who do not have the knowledge to bear the
collaborative burden in interacting with a system, as in (Yates et al. 2003) for
example; or decision-support systems, where users and system must both have
their act together, because efficiency of interaction is of the utmost importance,
as in (Allen et al. 2001) for example. In these cases, knowledge and inference
brings natural utterances, flexible and robust processing, and efficient dialogue.

1.7 Further information

If you are representing knowledge for natural language systems, you can find
useful ideas across a wide range of work in computer science, psychology,
linguistics and philosophy (as the preceding discussion should already have
made clear). You can expect to consult this literature yourself for inspiration.
But typically, you will find only inspiration, not concrete suggestions, for the
research you find will almost always address itself to the narrow concerns of
one academic discipline, rather than to more general enterprise of computa-
tional modeling of communication, representation and reality.

People who aim to build things that really work are computer scientists,
and no other discipline offers the mix of practice and precision that natural
language engineers must achieve. The web is a great archive of tools and re-
sources for knowledge representation. At the time of writing, Patrick Lamblix
maintains pointers to description logic information, including systems, appli-
cations and tutorials (49a). Michael Kohlhase and Carolyn Talcott maintain
pointers to reasoning systems for more expressive logics, including first-order,
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higher-order and modal logic (49b).

(49) a. http://www.ida.liu.se/labs/iislab/people/patla/DL/index.html

b. http://www-formal.stanford.edu/clt/ARS/systems.html

Tools and resources for data management in computational linguistics and on-
tology management generally, as described in (Noy, Chapter 5, this volume)
and (Megerdoomian, Chapter 6, this volume), will also be helpful.

To get acquainted with more general results of knowledge represen-
tation in computer science, you might consult (Davis 1990, Sowa 1999),
which provide introductions to knowledge representation itself, and
(Genesereth and Nilsson 1987, Poole et al. 1998, Minker 2000), which situate
logic and knowledge representation more broadly within the enterprise of
building intelligent systems. Natural language engineers could also benefit
from introductions to formal specification for and in software systems such
as (Potter et al. 1996, Huth and Ryan 1999). Nowadays, increasing effort in
knowledge representation is geared towards the development of reusable col-
lections of concepts and terminology for large knowledge-based systems; see
(Noy, Chapter 5, this volume) or (Fensel et al. 2002).

In AI, a major thrust of knowledge representation research has been the
treatment of action and change, and theFRAME PROBLEM at is heart—
capturing the common-sense notion that things stay the same when unaffected
by ongoing events. One strategy is to adopt special logics of persistence and
change; see for example (Sandewall 1994, Shanahan 1997). An alternative
is to articulate assumptions about persistence explicitly; see (Schubert 1990,
Reiter 1991, Reiter 2001). (Steedman 1997) offers an excellent discussion of
this literature in its implications for natural language interpretation.

Computational linguistics has also seen extensive research into represent-
ing discourse context, and the abstract concepts that are implicated in the
meanings of discourse-sensitive constructions. Such concepts include infor-
mation units, the open questions raised by the discourse, and their possible
and actual answers (Ginzburg 1995, van Kuppevelt 1995, van Kuppevelt 1996,
Roberts 1996, Steedman 2000). They include discourse relations, the infer-
ential relationships among propositions that connect discourse together; see
(Kehler 2001) and references therein. And they include alternative sets, col-
lections of salient entities and propositions which the concerns of the dis-
course naturally bracket together, and which may therefore need to be dis-
tinguished from and related to one another (Hirschberg 1985, Rooth 1985,
Rooth 1992, Prevost and Steedman 1994, Bierner and Webber 2000). Increas-
ingly, researchers have succeeded in organizing such concepts into compre-
hensive representations of information state for dialogue applications; see
(Larsson and Traum 2000, Matheson et al. 2000, Ginzburg and Cooper 2001).
Implementing more formal theories, particularly from linguistic se-
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mantics, is challenging, but tutorials are available for it, notably
(Blackburn and Bos 2002a, Blackburn and Bos 2002b). More formal propos-
als are invaluable for the close connection between syntax and semantics they
provide. Such research naturally involves a close connection with other aspects
of grammar development, as described in (Butt and Holloway King, Chapter
4, this volume). The papers in (Iwa´nska and Shapiro 2000) directly explore as-
pects of the overlap between knowledge representation and natural language.

The formalism of AI methods can obscure the real-world content of re-
searchers’ proposals—the true and important inferences about the world that
agents need to be successful. By comparison, the psychology literature teems
with case studies of the real-world inferences people draw: on objects and cat-
egories, see for example (Gopnik and Meltzoff 1997); on belief and intention
and mind more generally, see for example (Sperber 2000, Malle et al. 2001);
on language, see for example (Bloom 2000). However, it largely remains
to systematize these case studies with the precision and coverage neces-
sary for implementation. The cognitive semantics literature, as represented
for example by (Langacker 1999, Talmy 2000), offers a similarly intrigu-
ing catalogue of inferences in language interpretation—again, without the
explicitness about meaning required for implementation (sometimes to the
point of rejecting formalism and computation outright). For this reason, the
rather comparable proposals of Jackendoff, e.g. (1983, 1990), and Puste-
jovsky, e.g., (1995), have been much more influential in computational lin-
guistics. In addition, many of the best ideas about language and the world
are to be found in the philosophy of language, and original sources such as
(Davidson 2002b, Grice 1991, Kripke 1982) can be surprisingly accessible.
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Dahlbäck, Nils, Arne J¨onsson, and Lars Ahrenberg. 1993. Wizard of Oz
studies—Why and how. InIntelligent User Interfaces, 193–200.

Dalrymple, Mary, Stuart Shieber, and Fernando Pereira. 1991. Ellipsis and
higher-order unification.Linguistics and Philosophy14(4).

Davidson, Donald. 2002a. Agency. InEssays on Actions and Events. 43–62.
Oxford.

Davidson, Donald. 2002b.Essays on Actions and Events. Oxford. Second
edition.

Davidson, Donald. 2002c. The individuation of events. InEssays on Actions
and Events. 163–180. Oxford.

Davis, Ernest. 1990.Representations of Commonsense Knowledge. Morgan
Kaufmann.

Di Eugenio, Barbara, and Bonnie Webber. 1996. Pragmatic overloading in nat-
ural language instructions.Internationl Journal of Expert Systems9(2):53–
84.

Dowty, David R. 1979.Word Meaning and Montague Grammar. Reidel.

Fagin, Ronald, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 1995.
Reasoning About Knowledge. MIT.

Fensel, Dieter, James A. Hendler, Henry Lieberman, and Wolfgang Wahlster
(ed.). 2002.Spinning the Semantic Web: Bringing the World Wide Web to
its Full Potential. MIT.



58 / A HANDBOOK FOR LANGUAGE ENGINEERS

Fitting, Melvin. 1983. Proof Methods for Modal and Intuitionistic Logics.
Synthese Library, Vol. 169. Reidel.

Fitting, Melvin, and Richard L. Mendelsohn. 1998.First-order Modal Logic.
Synthese Library, Vol. 277. Kluwer.

Fodor, Jerry A. 1970. Three reasons for not deriving ‘kill’ from ‘cause to die’.
Linguistic Inquiry1:429–438.

Fodor, Jerry A. 1998.Concepts: Where Cognitive Science Went Wrong. Ox-
ford.

Furnas, G. W., T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The
vocabulary problem in human-system communications.Communications
of the ACM30:964–971.

Gabbay, Dov, Christopher J. Hogger, and J. A Robinson (ed.). 1994.Handbook
of Logic in Artificial Intelligence, Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning. Oxford.

Gallier, Jean H. 1986.Logic for Computer Science: Foundations of Automated
Theorem Proving. Harper and Row.

Gardent, Claire. 1999. Unifying Parallels. InProceedings of ACL, 49–56.

Genesereth, Michael R., and Nils J. Nilsson. 1987.Logical Foundations of
Artificial Intelligence. Morgan Kaufmann.

Gillon, Brendan. 1987. The Readings of Plural Noun Phrases in English.
Linguistics and Philosophy10(2):199–299.

Ginzburg, Johnathan. 1995. Resolving Questions, I & II.Linguistics and
Philosophy18(5;6):459–527;567–609.

Ginzburg, Jonathan, and Robin Cooper. 2001. Clarification, Ellipsis and the
Nature of Contextual Updates in Dialogue. King’s College London and
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