
An Algebra for Probabilistic ProcessesVijay K. Garg1Department of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084AbstractWe de�ne probabilistic languages and probabilistic automata over a �nite set of events. Wealso de�ne operators under which the set of probabilistic languages(p-languages) is closed, thusforming an algebra of p-languages. We show that this set is a complete partial order and ouroperators are continuous in it. Hence, recursive equations may be de�ned in this algebra using�xpoints of continuous functions. Thus, p-languages form a suitable theoretical foundation forspecifying and analyzing probabilistic systems. The model can easily be extended for performanceanalysis by associating timing information with each event. We de�ne many performance indicesfor systems expressed using this model and derive techniques to compute them.1 IntroductionThe theory for supervisory control of discrete event dynamical systems has been an active areaof research since its initiation by Ramadge and Wonham [21, 22, 20]. Most research in this areahas used theory of deterministic formal languages [2, 15, 14, 23, 12, 13]. However, discrete eventdynamical systems that occur in practice generally have noise associated with them. Modelingthese system require that probability be associated with any change in the system. The modelingtechniques available for probabilistic systems are generally based on state-transition model such asMarkov chains. In this paper, we present a simple algebraic probabilistic model that can be usedfor speci�cation and performance analysis of dynamical systems. Our model is such that logicalanalysis, such as safety and progress properties, can be done in the same framework as analysis forperformance and reliability.We de�ne probabilistic languages over a set of events. We show that the set of all p-languagesforms an inf semi-lattice and a complete partial order with respect to a natural ordering of elements.Thus, recursive functions can be de�ned via �x-points on this set. We de�ne various operatorsbetween probabilistic languages (automata) which can be used to build complex systems from simplersystems. In particular, we de�ne regular operators (union, concatenation and concatenation closure)and show that these operators preserve �niteness, ordering and least upper bounds of chains. Thus,p-languages forms a suitable domain for speci�cation and analysis of probabilistic discrete eventdynamical systems. We de�ne many performance indices for systems expressed using this model andderive algorithms to compute them. Our formalism has the advantage that it shows compositionalproperties. For example, we show in this paper that expected completion time of a system can bederived using expected completion time of its components.An early attempt to generalize languages was done by researchers in fuzzy set theory [26] [25]. Afuzzy language is a fuzzy set de�ned on strings of events. Thus, every string has a grade of member-ship in [0; 1]. Our de�nition of probabilistic languages allows only those membership grades whichsatisfy certain consistency constraints. An advantage of these constraints is that the membershipgrade of a string can be viewed as the probability that the system executes that string. This resultsin a richer theory for systems that can be modeled by probabilistic languages.1supported in part by grants from the University Research Institute, University of Texas at Austin, NSF GrantCCR-9110605, TRW award and IBM agreement 153. email: vijay@pine.ece.utexas.edu1

There have also been attempts to generalize deterministic automata to probabilistic and stochasticautomata [17][19] [4]. PCCS[6] also extends CCS[16] by explicitly introducing probability for thesummation operator. These attempts emphasized generalization of state machines by attachingprobabilities with edges, however there was little e�ort to generalize regular operations betweenlanguages. We have taken a more algebraic approach by emphasizing the operations de�ned on theset of probabilistic languages.Our work has many things common with Markov chains, but there are two main di�erences.First, there is an emphasis on the alphabet which is generally missing from the theory of Markovchains. This alphabet has many implications on the questions we ask about a Markov chain. Forexample, we would be more interested in the sequence of events rather than the state after somenumber of events. Secondly, we do not require the probabilities of transitions from any state tosum up to 1. We assume that the system terminates at that state with the rest of the probability.This has implications in de�ning various operators between multiple Markov chains. For example,concatenation between two Markov chains implies that the second Markov chain begins executingwhenever the �rst terminates.Our work has many aspects common to CSP[9] and FRP[10]. In particular, we de�ne the meaningof recursion similar to the de�nition in CSP (Also see [24]). The main di�erence arises because ofprobabilities associated with transitions.This paper is organized as follows. Section 2 describes the frequently used notation in this paper.Section 3 de�nes probabilistic languages. Section 4 describes various operators de�ned betweenprobabilistic languages. Section 5 de�nes probabilistic automata. Section 6 de�nes many measuresof performance on systems de�ned using our formalism, and describes methods to compute them.2 NotationWe use the following notation in this paper.A �nite set of eventsa; b eventss; t; u; v strings in A�K;L p-languages, maps from A� to [0; 1]L the set of p-languagesC;D completion probability density functionf; g; h language functions, maps from A� to [0; 1]F the set of language functionsX; Y; Z State SpaceP;Q;R State transition probability functionsf � g convolution of f and gf (i) f � f � :::i timesf:g; fg product of f and gf i f:f::::i timesK:eL concatenation binary operator in LK +e L choice binary operator in LK + L addition operator in ROur precedence rules are given by the following list. All operators on the same line, such as +and � have equal precedence, and all operators on a given line have higher precedence than thoseon the lines below them. 2

exponentiation for : and ��; :�+;�=;�;�.Thus, an expression such as f � g + h means (f � g) + h and not f � (g + h).We use calculational style of proofs for many of our Theorems. A proof that [A � C] will berendered in our format asA= f hint why [A � B] gB= f hint why [B � C] gCWe also allow implies ()) in the leftmost column. For a thorough treatment of this proof format werefer interested readers to [Dijkstra 90].3 Probabilistic LanguagesDe�nition 1 A p-language L is de�ned as L : A� ! [0; 1] with the constraint that(C1) L(�) = 1(C2) for all s : Pa2A L(sa) � L(s)The interpretation of L(s) is taken as the probability that s occurs in the system. (C1) says thatthe null string is always possible in the system. (C2) captures the property that if a system executessa, then it must have executed s. Thus, the combined probability PaL(sa) must not be greater thatL(s). (C2) also implies that if s is a pre�x of t, then L(s) is greater than or equal to L(t).This de�nition generalizes non-empty pre�x closed languages. If L is required to map either to0 or 1, and the second requirement says that (L(sa) = 1)) (L(s) = 1), then we get the de�nitionof a pre�x-closed language.We note that L(s) � 1 for all s can also be derived from (C1) and (C2), but we keep it explicitlyin our formulation for simplicity. Based on L we can de�ne a probability density function CL on theset A�. CL(s) = L(s)�Xa L(sa) for s 2 A� (1)The interpretation of CL(s) is that it is the probability that the system does s and stops, that is itdoes not do anything afterwards. We will drop the subscript L, when clear from the context. AsPaL(sa) � L(s), C(s) is always greater than or equal to zero. Since L(s) is less than or equal to 1,so is C(s) for any s. Thus, C(s) always lies between 0 and 1.Example 2 Let L be de�ned as: L(�) = 1; L(a) = 0:4; L(ab) = 0:2; L(b) = 0:6; L(ac) = 0:1 andL(s) = 0 for all other strings s. Then it is easy to see that the L satis�es required properties. Henceit is a p-language. Further C for this p-language is: C(a) = 0:1; C(ab) = 0:2; C(ac) = 0:1; C(b) = 0:6Example 3 The nil language I is de�ned as I(�) = 1; I(s) = 0 for s 6= �. For this languageCI(�) = 1; CI(s) = 0 for s 6= �.Example 4 Consider a Bernouli process. Every experiment has two outcomes a or b, with proba-bility p and (1� p), respectively. Here, our alphabet A = fa; bg, and3

L(s) = p#(a;s)(1� p)#(b;s) for any s 2 A�, where #(a; s) represents the number of occurrences of ain the string s.It is easy to check that this language satis�es (C1) and (C2). Also note that C(s) = 0 for any s.We note that both p-languages and completion probability are functions de�ned from A� to [0; 1].We call them language functions or simply functions. Let F be the set of all functions. We de�ne afunction � : F ! F as follows: For any s; �(f)(s) =Xa f(sa)Thus, if f is a p-language, then �(f) gives the probability that the system will execute somethingafter s. It is easy to check that � is a linear functional. With this notation, the constraint (C2) onf is�(f) � f .Similarly, for any p-language K, its corresponding completion pdf is easily derived asCK = K � �(K)Now we make the following observations:Lemma 5 (a)Ps C(s) � 1(b) For any s : L(s) =PtC(st) i� limk!1Pjtj=k L(st) = 0(c) Ps C(s) = 1 i� limk!1Pjtj=k L(t) = 0Proof (a) : We �rst show that Pjsj=n L(s) � 1. This can be shown using induction on n. It istrivially true for n = 0. Assume that it is true for n = k. Then,Pjsj=k+1 L(s)= f s = ta gPjtj=kPa L(ta)� f (C2) gPjtj=k L(t)�f Induction hypothesis g1We now show that Ps2A� C(s) � 1Let S(n) = Xjsj�nC(s)Then PsC(s) = limn!1 S(n) It is easy to show by induction that S(n) = 1�Pjsj=n+1 L(s)Therefore, 0 � S(n) � 1. Since fS(n)g is a monotone increasing sequence bounded above by 1, thelimit exists and is at most 1.Proof (b): From equation (1), we get thatL(s) = C(s) +Xa L(sa)Therefore by repeated application of this equation we get,L(s) =Pjtj<k C(st) +Pjtj=k L(st) for all k � 1= limk!1Pjtj<k C(st) + limk!1Pjtj=k L(st) 4

=PtC(st) + limk!1Pjtj=k L(st)The lemma follows.Proof (c): By substituting � for s in part (b). 2The �rst part of the above proposition justi�es the use of probability density function for com-pletion. The second part of the above lemma indicates that given any pdf, we can also view itas completion probability of a system. It also suggests that, we could have alternatively de�nedp-languages using C, and de�ned L in terms of C. This, however, required that PC(s) = 1.We call a system terminating if PC(s) = 1: From now on we will assume that all our systems areterminating. This assumption is only for simplicity, as the theory we develop can be easily extendedto the case when there is a non-zero probability that the system does not terminate.3.1 An Order on P-languagesWe can now de�ne an ordering between p-languages. We use LA(or simply L) to denote the set ofall p-languages de�ned over the set A.De�nition 6 Let K;L 2 L. Then,K � L if and only if 8s : K(s) � L(s)Example 7 Let K;L; U 2 L be de�ned as : K(a) = 0:4; K(ab) = 0:3L(a) = 0:5; L(b) = 0:4; L(ab) = 0:3U(a) = 0:4; U(b) = 0:5; U(ab) = 0:4Then, K � L, and K � U , while L and U are incomparable.Lemmas 8 and 10 describe the properties of this order.Lemma 8 (L;�) is an inf semi-lattice.Proof: Let K;L 2 L. Then their least upper bound (if it exists) is denoted by KtL, and the greatestlower bound by K u L. They can be obtained as:K t L(s) = sup(K(s); L(s))K u L(s) = inf(K(s); L(s))Let K;L 2 L and V = K u L. It is easy to see that V is also a function from A� to [0; 1], and thatV (�) = 1. We now show thatfor all s : Pa V (sa) � V (s).For any sPa V (sa)= fde�nition u gPa inf(K(sa); L(sa))� f arithmetic, using induction ginf(PaK(sa);PaL(sa))� f K;L 2 L ginf(K(s); L(s))= fde�nition u gV (s). 2In example 7, V = LuU is de�ned as V (a) = 0:4; V (b) = 0:4; V (ab) = 0:3. However, K tL maynot exist for all K;L. As an example consider the following: K(�) = 1; K(a) = 0:6 L(�) = 1; L(b) =5

0:7 Then K t L is not de�ned (does not belong to L). Even though t may not exist for any set ofp-languages, it exists for any chain of p-languages. The de�nition of chain and the Lemma is givenbelow.De�nition 9 We call a family of p-languages fLiji = 0; 1::g to be a chain i� Li � Li+1 for all i.Lemma 10 � is a complete partial order(cpo) on the set L. I is the least element in this cpo.Proof: It is easy to verify that � is re
exive, antisymmetric and transitive. Thus, it is a partialorder. We just need to show that if Li is a chain of p-languages, then its least upper bound exists.We de�ne FLi(s) = supi Li(s). This is well de�ned because Li(s) is a monotonic sequence boundedabove by 1. We also write it as limn!1 Li(s). It is easy to see that FLi is also a function from A�to [0; 1], and that FLi(�) = 1. We now show thatfor all s : PaFLi(sa) � FLi(s).For any s,PaFLi(sa)= fde�nition t gPa supiLi(sa))= f Li monotone gPa limi!1 Li(sa))= f �nite sum glimi!1Pa Li(sa))� f Li 2 L glimi!1 Li(s))= fde�nition F gFLi(s).As a result of the above Lemma, we can easily compute �xed points of continuous functions. Analternative way of de�ning �xed points via Cauchy sequences is given in Appendix A.4 Operators between p-languagesWe now de�ne some operations between various languages. These operators are useful in describinga complex system as a combination of many simple systems.4.1 choiceThis operator captures non-deterministic choice between two systems. Given two p-languages L1and L2, and a real number e between 0 and 1, the combined system is denoted by L1 +e L2 for e in[0; 1]. We use e0 to be equal to 1� e in rest of the paper.De�nition 11 L1 +e L2 = eL1 + e0L2The interpretation of the above de�nition is : do L1 with probability e or L2 with probability 1� e.It is easy to verify that the p-language de�ned above satis�es constraints (C1) and (C2).22This operator can easily be generalized for multiple arguments. In essence, the choice operator represents a convexcombination of p-languages 6

We now derive an expression for the completion probability density function (pdf) for the com-posed system.C1 +e C2 = L1 +e L2 � �(L1 +e L2)= eL1 � �(eL1) + e0L2 � �(e0L2)= eC1 + e0C2The following proposition describes property of choice with respect to the ordering.De�nition 12 A function f : L ! L is called monotone i�K � L) f(K) � f(L)It is called continuous i� for all chains fLig,f(Gi Li) =Gi f(Li)It can be easily shown that every continuous operator is also monotone.Proposition 13 Choice is a continuous operator in both of its arguments.Proof: We need to show that for any e,K +e (Gi Li) =Gi (K +e Li)The above is easily veri�ed using de�nitions.4.2 ConcatenationThis operator captures sequencing of two systems. Given two p-languages L1 and L2, and a realnumber e between 0 and 1, the combined system is denoted by L1:eL2(s) for e in [0; 1].De�nition 14 L1:eL2(s) = L1(s) + ePt<s C1(t)L2(s=t)= L1(s)� eC1(s) + ePtC1(t)L2(s=t)The above de�nition has the following interpretation. The resulting system does L1, and then oncompletion does L2 with probability e. The probability that s occurs in the composed system isequal to the probability that it occurs in the �rst system, or a part of it occurs in the �rst systemand a non-null part in the second. It can be shown that L is closed under the operation of :e. It iseasy to check that L1:eL2(�) = L1(�) � eC1(�) + eC1(�)L2(�) = 1. Therefore, (C1) holds. We laterderive an expression for C1:eC2 = L1:eL2 � �(L1:eL2), and show that it is always positive. Hence(C2) also holds.We de�ne the convolution operators between two real-valued functions on A� as follows:f � g(s) =Xt f(t)g(s=t)Thus L1:eL2(s) is de�ned more simply as L1(s)� eC1(s) + eC1 �L2(s)The following proposition describes certain properties of the convolution operator.7

Proposition 15 (a) Convolution is associative, i.e.f � (g � h) = (f � g) � h(b) I is the identity for convolution, i.e. f � I = I � f = f(c) Convolution is continuous in both arguments, i.e.f � (Gi gi) =Gi (f � gi); (Gi fi) � gi =Gi (f � gi)(d) Convolution is a linear operator, i.e.f � (�g + h) = �f � g + f � h(e) If g(�) = 1 �(f � g) = f � �(g) + �(f)Proof:(a)For any s, f � (g � h)(s)=Pt f(t)g � h(s=t)=Pt f(t)Pu g(u)h(s=tu)=PuPt f(t)g(u)h(s=tu)=PuPt f(t)g(tu=t)h(s=tu) f v = tu g=Pu f � g(v)h(s=v)=Pv f � g(v)h(s=v)= (f � g) � h(s)(b) By substituting I in the expression for convolution.(c) We need to show that f �Fi gi = Fi f � gi. For any s,f �Fi gi(s)=fde�nition � gPt f(t)(Fi gi(s=t))= f real analysis gFiPt f(t)gi(s=t)=fde�nition � gFi f � giThe continuity in the other argument is similarly proved.(d) For any s,f � (�g + h)(s)=Pt f(t)(�g + h)(s=t)=Pt f(t)(�g(s=t) + h(s=t))=Pt f(t)�g(s=t) +Pt f(t)h(s=t))= �f � g + f � h(e) For any s,�(f � g)=Pa f � g(sa) 8

=PaPt<=sa f(t)g(sa=t)=PaPt�s f(t)g(sa=t) +Pa f(sa)g(�)= f � �(g) + �(f)We use f (2) to represent f � f . In general we use f (i) to represent i times convolution of f withitself. This is well-de�ned because of associativity of �. We de�ne f (0) to be the I function. Fromthe proof of associativity, we also note that Psi;0�i�n�1 C(s0)C(s1):::C(sn�1) = C(n)(s). We showthe following proposition.Proposition 16 Let Ps C(s) = 1. Then, Ps C(n)(s) = 1 for all n.Proof: We use induction on n. The proposition is clearly true for n = 1. Assume that it is true forn = k. Then, Ps C(k+1)(s)=Ps C(k) � C(s)=PsPtC(k)(t)C(s=t)=PuPtC(k)(t)C(u)=Pu C(u)Pt C(k)(t)= 1We now derive the expression for completion probability for concatenation.C1:eC2 = L1:L2 � �(L1:L2)= f de�nition of L1:L2gL1 + eC1 � L2 � eC1 � �(L1 � eC1 + eC1 � L2)= fde�nition C1 = L1 � �(L1)gC1 + e(C1 � L2 � C1 � �(C1 � L2) + �(C1))= f property convolution gC1 + e(C1 � L2 � C1 � C1 � �(L2))= f property convolution, de�nition C2 gC1(s) + eC1 � C2(s)� eC1(s)= f de�nition e0ge0C1(s) + eC1 � C2(s)We note that if e = 0, then the system is identical as before. On the other hand if e = 1, thenthe resulting system is obtained as a pure convolution. Since convolution is continuous, it is easy toshow the following Theorem.Proposition 17 Concatenation is continuous in its second argument, i.e.K:eGLi =GK:eLiProof: K:eFLi= K � eC + eC �FLi= FK � eC + eC � Li= FK:eLi 2However, concatenation is not even monotone in its �rst argument as shown by the followingexample. Let K(a) = 0:2, and L(b) = 1:0. Now I � K, but I:1L is not comparable to K:1L.4.3 RecursionFor any K 2 L, we can use +eK and :eK as unary operators de�ned from L to itself. For any X 2 L,+eK(X) = K +e X , and :eK(X) = K:eX . As shown earlier, both of these operators are continuous9

in the cpo of L. Note that we use concatenation only in the second argument as it is not continuousfor the �rst argument. Therefore, any composition of these operators will also be continuous. Wecan also de�ne recursion operator denoted by �X:F (x), where F is any function built out of + and:. We de�ne �X:F (X) = FF i(I). We show that the above p-language is a �xed-point of F , i.e. itsatis�es X = F (X).X = FF i(I)= f application of F gF (X) = F (Fi�0 F i(I))= f F continuous, fF i(I)g a chain gFi�0 F i+1(I)= f I minimum element gFi�0 F i(I)Proposition 18 Let fXig be a family of p-languages de�ned by Xn+1 = A + B:Xn, where + issimple pointwise addition in R. Then, Xn = Bn :X0 +Pi�n�1 Bi:AIf : is replaced by � uniformly, then the result holds.Proof: Using induction on n.Example 19 Let us consider the p-language de�ned by the following equation:X = K +e X . Then X = F(K+e)i(I). We de�ne Xn = Fi�n(K+e)i(I). We list �rst few Xn's.X0 = IX1 = K +e IX2 = K +e (K +e I)Xj+1 = K +e XjXj+1 = eK + e0XjThus, Xj = (eK)j +Pi�n�1 e0ieK (using Proposition 18). Then, X� = limj!1Xj We �rst considerthe case when e = 1. Then all Xj except X0 are K. Therefore, X� = K. When e = 0, then X� = I .When 0 < e < 1, the above expression in limit reduces toX� = �e0ieK= (1=1� e0)eK= (1=e)eK = KExample 20 Consider the p-language de�ned by the following equation:X = K:eX . If e = 0, then X = K. We now assume that e � 0.Then X = F(K:e)i(I). We de�ne Xn = Fi�n(K:e)i(I). We list �rst few Xn's.X0 = IX1 = K:eIX2 = K:e(K:eI)Xj+1 = K:eXjXj+1 = K � eC + eC �XjWe use the following notation: D(l; u) = i=uXi=l eiC(i)D(j) =Xi�j eiC(i)Thus, Xj = ejCj +D(0; j � 1) � (K � eC)= ejCj +D(0; j � 1) �K �D(1; j) 10

= D(0; j � 1) �K �D(1; j � 1)Thus, X� = D(0) �K �D(1)We will use this as the de�nition of repeated concatenation in the next section.4.4 Concatenation ClosureThis operator captures repetition of any system. Given any p-language L and a real number ebetween 0 and 1, the combined system is denoted by L�e(s) for e in [0; 1].De�nition 21 L�e(s) =Pn enC(n) � L(s)�Pi�1 eiC(i)(s)= D(0) � L�D(1)The interpretation of the above de�nition is - do L and then repeat it with probability e.C�e = L�e � �(L�e)= f de�nition of L�e gD(0) � L�D(1)� �(D(0) � L�D(1))= f property of � gD(0) � L�D(1)�D(0) � �(L)� �(D(0))+ �(D(1))= f �(I) is zero uniformly gD(0) � L�D(1)�D(0) � �(L)= f C = L� �(L) gD(0) � C �D(1)= f dividing and multiplying the �rst term by e ge�1D(1)�D(1)= f algebra ge0=eD(1)= f de�nition D ge0=ePn�1 enC(n)Example 22 Consider a process of tossing a coin which is repeated till the result of the toss is ahead. Assuming that the tail comes with probability e, this system can be modeled as follows:A = ftossgL(�) = 1, L(toss) = 1, L(s) = 0 for other s.Then, our system is just repeated concatenation of L. For the primitive function, completion pdfis given by C(toss) = 1; C(s) = 0 for other s. By using formulas for convolution, we obtain thatC(k)((s) = 1 only for s = toss:toss:toss:::k times. Thus, L�e(tossk) = ek�1 + ek � ek = ek�1 fork � 1 by de�nition 21. This expression can be veri�ed by calculating it directly from the problem.Similarly, C�e(tossk) = e0=e � ek = ek�1e0 for k � 1.4.5 Automata for p-languagesMany times it is easier to describe a p-language using an automata associated with it. We de�ne ap-automata M over the alphabet set A as follows:(X; x0; P)X: a set of states 11

x0: initial stateP : X �A�X ! [0; 1] with the constraint that: PaPj P (xi; a; xj) � 1 for all i.The interpretation of the above automata is as follows. If the system is in state xi, then it makesa transition to xj on a with probability P (xi; a; xj). We also de�neS(x) = 1�Xa2AXy2X P (x; a; y)If the system is in states x, then it terminates with probability S(x).We �rst compute the probability of a string s that occurs in a probabilistic automata. We notethat it may be non-deterministic, and there may be multiple paths corresponding to the same string.Given any directed path in the above automata starting from x0, the probability that path occurs issimply the product of probabilities of individual edges on that path. We then de�ne a p-language Lfor the machine M as follows:L(s) = sum of all paths that trace s in M .Proposition 23 L is a p-language.Proof: If each edge is labeled from [0,1], it is easy to see that L(s) � 0 for all s. Since � traces onlyone path - null path- L(�) is 1 as required. We just need to show that PaL(sa) � L(s). PaL(sa)is equal to sum of probabilities of all paths that trace sa. Let U be this set of paths, and V be theprojection of these paths on string s. Consider any path v in V . For each path v in V there exists aset of paths Uv in U. Let � be the function that gives probability for any path. Then for any s,PaL(sa)=Pu2U �(u)=Pv2V Pu2Uv �(u)=Pv2V Pa �(va)�Pv2V �(v)= L(s) 2Thus, every p-automata de�nes a p-language. We now show that for every p-language thereexists a p-automata. The p-automata for any p-language L is de�ned as (X; x0; P):X = A�x0 = �p(xi; a; xj) = L(xj)=L(xi) if xj = xia= 0 otherwise.In this machine there exists a unique path for each string. The probability of that path is givenby the product of probability of individual edges. By our construction, P (xj) will be equal to L(xj).A special interesting class of p-automata is that containing �nite number of states. The charac-terization of p-languages of �nite p-automata is given using the relation de�ned as follows:De�nition 24 s � t i� 8x : L(sx)=L(s) = L(tx)=L(t)This relation is clearly re
exive, symmetric and transitive. If the number of equivalence classes ofthis relation is �nite then we say that the p-language L has �nite index. Now we can show thefollowing Theorem:Proposition 25 A p-language L has �nite index i� there exists a �nite deterministic p-automata.12

Proof: If L has �nite index, we construct a p-automata with states as equivalence classes. If thereexists a deterministic �nite p-automata, the equivalence classes then each state de�nes an equivalenceclass. 2The p-automata constructed in the above Lemma is the one with minimum number of states.Given any p-automata, its minimization can be done in a manner similar to the algorithm used fordeterministic �nite state machines.If p-languages are given to us as p-automata, then the operations of choice, concatenation, andconcatenation closure can be realized easily.Proposition 26 If L1 and L2 have �nite indices, then L1 +e L2, L1:eL2, and L�e1 also have �niteindices.Proof: Let M1 = (X; x0; P); M2 = (Y; y0; Q)Case 1: L1 +e L2We de�ne M1 +e M2 = (X [Y [fz0g; z0; R) wherez0 is an additional stateR(z0; x; a) = eP (x0; x; a)R(z0; y; a) = e0Q(y0; y; a)R(xi; xj; a) = P (xi; xj; a) for all xi 2 X; xj 2 X; a 2 AR(yi; yj ; a) = Q(yi; yj ; a) for all yi 2 Y; yj 2 Y; a 2 AIt is easy to see that R satis�es constraint on p-automata. For any path in M1 from x0, there existsa path in the new machine with an extra factor of e. For paths in M2 there is a factor of e0. Thus,L(M1 +e M2) = L(M1) +e L(M2)Case 2: L1:eL2M1:eM2 = (X [Y; x0; R)R(x; y; a) = eS1(x)Q(y0; y; a) for all x 2 X; y 2 Y; a 2 AR(xi; xj; a) = P (xi; xj; a) for all xi 2 X; xj 2 X; a 2 AR(yi; yj ; a) = Q(yi; yj ; a) for all yi 2 Y; yj 2 Y; a 2 AIt is easy to verify that the de�nition is consistent, i.e.L(M1:eM2) = L(M1):eL(M2)Consider any string s. All the paths in M1 are also in M1:eM2 - therefore, the term of L1(s). Otherpossible paths are through transitions with probability e. The factor of eS(x) is multiplied to anyof these paths. The path in the second machine is always non-null therefore the case when s=t = �is subtracted.Case 3: L�e1M�e1 = (X; x0; R)R(x; y; a) = eS(x)P (x0; y; a) + P (x; y; a)We leave it to readers to verify that L(M�) = L(M)� 2The above Lemma can be viewed as a generalization of Kleene's theorem in one direction.5 Performance IndicesIn this section, we describe how many performance indices of a complex system can be derived fromperformance indices of its components. 13

5.1 Average completion timeLet T : A� ! R+ be any function that gives us time spent on execution of the string s. We requirefollowing properties of T .(1) T (�) = 0(2) T (st) = T (s) + T (t)In the following discussion, we will use only these two properties of T. Thus, our discussion is validfor any other performance index that satis�es these two properties. We de�ne average completiontime as follows: E[C; T] =Xs C(s)T (s)We need to derive some more properties of convolution operator before discussing these propertiesfor other operators.Proposition 27 (a) E[C1 � C2; T] = E[C1; T] +E[C2; T](b) E[C(n); T] = nE[C; T]Proof (a): E[C1 �C2; T]= fde�nition expectationgPs C1 � C2(s)T (s)= fde�nition convolution, breaking sgPsPtC1(t)C2(s=t)T (t:s=t)= fproperty of TgPuPtC1(t)C2(u)(T (t) + T (u))= fall operators lineargPuPtC1(t)C2(u)T (t) +PuPtC1(t)C2(u)T (u))= frearranging termsg(Pu C2(u))Pt C1(t)T (t) + (Pt C1(t))Pu C2(u))T (u))= fassumption of terminating systemsgPtC1(t)T (t) +Pu C2(u)T (u))= fde�nition expectationgE[C1; T] +E[C2; T]Proof (b): We use induction on n. The proposition is trivially true for n = 1. Assume that it is truefor n = k.Ps C(k+1)T (s)=Ps C(k) � C(s)T (s)=Ps C(k)T (s) +Ps C(s)T (s)= (k + 1)Ps C(s)T (s)Proposition 28 E[C1+e C2; T] = eE[C1; T] + e0E[C2; T]E[C1:eC2] = E[C1; T] + eE[C2; T]E[C�e; T] = E[C; T]=e0Proof (a) :We use that C = eC1 + e0C2Proof (b) :E[C1:eC2] 14

= E[e0C1 + eC1 � C2; T]= e0E[C1; T] + eE[C1 � C2; T]= e0E[C1; T] + eE[C1; T] + eE[C2; T]= E[C1; T] + eE[C2; T]Proof (c) :E[C�; T]= E[e0=ePi�1 eiC(i); T]= e0=ePi�1 eiE[C(i); T]= e0=ePi�1 eiiE[C; T]= e0=eE[C; T]Pi�1 eii= E[C; T]=e0The above Theorem shows that average completion time can easily be calculated in a modularmanner. This fact can be used for analysis of timed system [3] [11] [18].5.2 Average ReliabilityIn this section, we assume that we are given a reliability function R : A! [0; 1] for each event in A.We interpret R(a) as the probability that a can be executed without failure. We require followingproperties of R.(1) R(�) = 1(2) R(st) = R(s)R(t)In the following discussion, we will use only these two properties of R. Thus, our discussion is validfor any other performance index that satis�es these two properties. We de�ne average reliability asfollows: E[C;R] =Ps C(s)R(s)We need to derive some more properties of convolution operator before discussing these propertiesfor other operators.Proposition 29 (a) E[C1 � C2; R] = E[C1; R]E[C2; R](b) E[C(n); R] = (E[C;R])nProof (a): E[C1 �C2; R]= fde�nition expectationgPs C1 � C2(s)R(s)= fde�nition convolution, breaking sgPsPtC1(t)C2(s=t)R(t:s=t)= fproperty of RgPuPtC1(t)C2(u)R(t)R(u)= frearranging termsgPuPtC1(t)C2(u)R(t):PuPt C1(t)C2(u)R(u)= frearranging termsg(Pu C2(u)PtC1(t)R(t):(PtC1(t)Pu C2(u)R(u)= fassumption of terminating systemsgPtC1(t)R(t):Pu C2(u)R(u)= fde�nition expectationgE[C1; R]E[C2; R]Proof (b): From part (a) using induction on n. 15

Proposition 30 (a) E[C1+e C2; R] = E[C1; R] + e0E[C2; R](b) E[C1:eC2; R] = e0E[C1; R] + eE[C1; R]E[C2; R](c) E[C�; R] = e0E[C;R]=(1� eE[C;R])Proof(a): We use that C = eC1 + e0C2:Proof (b) :E[C1:eC2; R]= E[e0C1 + eC1 � C2; R]= e0E[C1; R] + eE[C1 � C2; R]= e0E[C1; R] + eE[C1; R]E[C2; R]Proof (c) : E[C�; R]= E[e0=ePi�1 eiC(i); R]= e0=ePi�1 eiE[C(i); R]= e0=ePi�1(eE[C;R])i= e0E[C;R]=(1� eE[C;R])The above proposition has intuitive interpretation. When two systems are concatenated withprobability e, then with probability e0 the resulting reliability is the reliability for the �rst system,and with e it is the product. When operations of a system are repeated we get the expressione0E[C;R]=(1� eE[C;R]). Thus, if e = 0, we get E[C;R]. If E[C;R] = 1, then we get 1 for all e, andif e = 1, we get the reliability 0 for E[C;R]< 1.6 ConclusionsIn this paper we have described a modular formalism for speci�cation and analysis of probabilisticdiscrete event dynamical system. This formalism is quite natural to apply to non-deterministicand stochastic systems. We have shown that systems de�ned in our formalism form a completepartial order under a suitable ordering relation. As a consequence, it is easy to de�ne systems usingrecursion. We show that performance indices such as average completion time and average reliabilitycan be computed in a modular manner using operators in our algebra.There are many interesting future research directions. [7] describes concurrent regular expressionswhich are extensions of regular expressions for concurrent systems. It will be interesting to de�ne aprobabilistic analogue to that.7 AcknowledgementsI am thankful to Professors H. Cragon, R. Kumar, G. Sasaki, and E.Swartzlander Jr. for someuseful discussions on this topic. I am especially grateful to Ratnesh Kumar for pointing out thatthe de�nition of the concatenation operation is very similar to convolution. He also pointed out anerror in Proposition 25 of an earlier draft. This research was supported in part by grants from theBureau of Engineering Research and University Research Institute, University of Texas at Austin,and NSF Grant CCR-9110605, Ernest Cockerel Chair in Engineering (held by Prof. Harvey Cragon),and Schlumberger Chair in Engineering(held by Prof. Earl Swartzlander Jr.).16

References[1] R. D. Brandt, V. Garg, R.Kumar, F. Lin, S. I. Marcus, W. M. Wonham, \Formulas For Calcu-lating Supremal Controllable and Normal Sublanguages," Systems and Control Letters, vol. 15,pp. 111-117, Aug. 1990.[2] R. Cieslak, C. Desclaux, A. S. Fawaz and P. Varaiya, \Supervisory Control of Discrete-EventProcesses with Partial Observations," IEEE Trans. A. C. , vol. 33, no. 3, pp. 249-260, 1988.[3] V. Carchiolo, A. Faro, M. Malgeri \A Tool for the Performance Analysis of Concurrent Systems,"Proc. BCS-FACS Workshop on Speci�cation and Veri�cation of Concurrent Systems, Scotland,July 1988, published by Springer-Verlag 1990, pp 121-139.[4] E. Doberkat, Stochastic Automata: Stability, Nondeterminism and Prediction, Lecture Notes inComputer Science 113, Springer-Verlag 1981.[5] W. Feller, An Introduction to Probability Theory and Its Applications, Wiley, New York, 1970.[6] A. Giacalone, C. Jou, S.A. Smolka, \Algebraic Reasoning for Probabilistic Concurrent Systems",Proc. Programming Concepts and Methods M. Broy, & C.B.Jones (editors), Elsevier SciencePublishers B.V. (North-Holland), IFIP 1990[7] V. Garg, \Modeling of Distributed Systems by Concurrent Regular Expressions", Proc. 2ndInternational Conference on Formal Description Techniques for Distributed Systems and Com-munication Protocols, Vancouver, Dec 1989.[8] M. Heymann, \Concurrency and Discrete Event Control," IEEE Control Systems Magazine,vol. 10, no. 4, pp. 103-112, 1990.[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., Englewood Cli�s, NewJersey 1985[10] K. Inan, P. Varaiya, \Finitely recursive process models for discrete event systems," IEEE Trans.Autom. COntrol, vol. 33, no. 7, pp. 626-639, July 1988.[11] F. Jahanian, A. Mok \Safety Analysis of Timing Properties in Real-Time Systems," IEEETrans. on Software Engineering, SE-12(9), pp. 890-904, 1986.[12] R. Kumar, V. K. Garg, S.I. Marcus, \Language Stability and Stabilizability of Discrete EventDynamic Systems," accepted for SIAM Journal on Control and Optimization[13] R. Kumar, V. K. Garg, S.I. Marcus, \On !-Controllability and !-Observability of DiscreteEvent Dynamic Systems," to appear IEEE Transactions on Automatic Control, Sept. 1992.[14] S. LaFortune,\Modelling and Analysis of Transaction Execution in Database Systems," IEEETrans. Auto. Control, vol. 33, no. 5, pp. 439-447, May 1988.[15] F. Lin and W. M. Wonham, \On Observability of Discrete-Event Systems," Information Sci-ences, vol. 44, no. 3, pp. 173-198, 1988.[16] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol 92,Springer-Verlag 1980[17] Azaria Paz Introduction to Probabilistic Automata Academic Press, 1971.17

[18] J. Quemada, A. Azcoraa, D. Frutos, \TIC: A Timed Calculus for LOTOS," Formal DescriptionTechniques II, S.T. Vuong (Editor), Elsevier Science Publishers B.V. (North-Holland) IFIP,1990, pp 195-209.[19] M.O.Rabin, \Probabilistic Automata," Information and Control, Vol. 6, pp 230-245, 1963.[20] P.J. Ramadge and W.M. Wonham, \The control of discrete event systems," Proc. of the IEEE,vol. 77, no. 1, pp 81-98, Jan 1989.[21] P. J. Ramadge and W. M. Wonham, \Supervisory Control of a Class of Discrete Event Proce-sess," SIAM J. Control and Optim. , vol. 25, pp. 206{230, 1987.[22] P. J. Ramadge and W. M. Wonham, \On the Supremal Controllable Sublanguage of a givenLanguage," SIAM J. Control and Optim. , vol. 25, pp. 637{659, 1987.[23] R. Smedinga,\Using trace theory to model Discrete Event Systems," Discrete Event Systems:Models and Applications, Lecture Notes in Control and Information Sciences, vol. 103, SpringerVerlag, pp 81-99.[24] J.E.Stoy, \Denotational Semantics: The Scott-Strachey Approach to Programming LanguageTheory," MIT Press, 1977.[25] L.A.Zadeh, \Fuzzy Sets," Information and Control Vol. 8, June 1965, pp 338-353.[26] E.T. Lee, and L.A.Zadeh, \Note on Fuzzy Languages," Information Sciences 1 1969, pp 421-434.8 Appendix AIn this appendix we show that the set of p-languages form a metric space.De�nition 31 d : L � L ! R is de�ned as:d(K;L) = sups jK(s)� L(s)jThe following Lemma shows that (L; d) is a metric space.Lemma 32 d as de�ned above is a metric on the set L..The distance is always non-negative. It is also easy to check that d(K;L) = 0 i� K = L. Thesymmetry and triangle inequality are also easy to verify.We further observe that L is a complete metric space in the following Lemma.Lemma 33 L is a complete metric space.Let fLig be a Cauchy sequence of p-languages. We will show that this sequence converges to ap-language. As L is a subspace3of [0; 1]! in the metric d, and [0; 1]! is a complete metric space inthe metric d as de�ned above, we conclude that the sequence converges to an element L1 2 [0; 1]!.Our proof obligation is to show that L1 is a p-language. We now show thatfor all s : Pa L1(sa) � L1(s).For any s,3By closure under choice operator, we can deduce that L is a convex set18

PaL1(sa)= f de�nition L1 monotone gPa limi!1 Li(sa))= f �nite sum glimi!1Pa Li(sa))� f Li 2 L glimi!1 Li(s))= fde�nition L1 gL1(s).We now show that +eK is a contraction for any K and any e.Lemma 34 +eK is a continuous function in the topology (L; d). It is a contraction for e 6= 0.Proof:for any X1; X2; K 2 L,d(K +e X1; K +e X2)= f de�nition +e, de�nition d gsups jeK(s) + e0X1(s)� eK(s)� e0X2(s)j= f simplifying ge0 sups jX1(s)�X2(s)j= f de�nition d ge0d(X1; X2)Therefore, +eK is a continuous function. Further, it is a contraction for e 6= 0. 2From the above theorem we obtain that any function composed of +e has a unique �xed pointfrom Banach �xed-point Theorem.We now show that :eK is a continuous function for any K and any e.Lemma 35 :eK is a continuous function in the topology (L; d). It is a contraction for e 6= 1.Proof:We use C(s) = (K � �(K))(s) in the following proof.for any X1; X2 2 L,d(K:eX1; K:eX2)= f de�nition :e, de�nition d gsups jK(s)� eC(s) + eC �X1(s)�K(s) + eC(s)� eC �X2(s)j= f simplifying ge sups jC �X1(s)� C �X2(s)j= f de�nition �ge sups jPt C(t)(X1�X2)(s=t)j� f Pu C(u) � 1 and 8u : 0 � C(u) � 1ge sups j supt(X1 �X2)(s=t)j= f simplifying ge sups jX1(s)�X2(s)j= f de�nition d ged(X1; X2)Therefore, :eK is a continuous function. Further, it is a contraction for e 6= 1. Thus, :eK also has aunique �xed point. 219

9 Appendix BIn this section, we de�ne some additional operators which can be used for constructing p-languages.productThis operator captures simultaneous execution of two systems. Given two p-languages K and L, thecombined system is denoted by K � L de�ned asK � L(s) = K(s)L(s).It is easy to verify that the p-language de�ned above satis�es constraints (C1) and (C2).ReversalThis operator captures execution of a system in a reverse order. This operator is easier to de�neusing completion pdf. Let C be a completion pdf for any language L, then Cr(s) is de�ned to besame as C(sr) where sr represents the reversal of s.AfterThis operator captures the information that some string t has already been executed in the system.Let L be any p-language. The system L after executing of string t is denoted by L=t. It is de�ned asL=t(s) = L(ts)=L(t)We again leave it to readers to verify that the new system satis�es (C1) and (C2).

20

