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Abstract

We define probabilistic languages and probabilistic automata over a finite set of events. We
also define operators under which the set of probabilistic languages(p-languages) is closed, thus
forming an algebra of p-languages. We show that this set is a complete partial order and our
operators are continuous in it. Hence, recursive equations may be defined in this algebra using
fixpoints of continuous functions. Thus, p-languages form a suitable theoretical foundation for
specifying and analyzing probabilistic systems. The model can easily be extended for performance
analysis by associating timing information with each event. We define many performance indices
for systems expressed using this model and derive techniques to compute them.

1 Introduction

The theory for supervisory control of discrete event dynamical systems has been an active area
of research since its initiation by Ramadge and Wonham [21, 22, 20]. Most research in this area
has used theory of deterministic formal languages [2, 15, 14, 23, 12, 13]. However, discrete event
dynamical systems that occur in practice generally have noise associated with them. Modeling
these system require that probability be associated with any change in the system. The modeling
techniques available for probabilistic systems are generally based on state-transition model such as
Markov chains. In this paper, we present a simple algebraic probabilistic model that can be used
for specification and performance analysis of dynamical systems. Our model is such that logical
analysis, such as safety and progress properties, can be done in the same framework as analysis for
performance and reliability.

We define probabilistic languages over a set of events. We show that the set of all p-languages
forms an inf semi-lattice and a complete partial order with respect to a natural ordering of elements.
Thus, recursive functions can be defined via fix-points on this set. We define various operators
between probabilistic languages (automata) which can be used to build complex systems from simpler
systems. In particular, we define regular operators (union, concatenation and concatenation closure)
and show that these operators preserve finiteness, ordering and least upper bounds of chains. Thus,
p-languages forms a suitable domain for specification and analysis of probabilistic discrete event
dynamical systems. We define many performance indices for systems expressed using this model and
derive algorithms to compute them. Our formalism has the advantage that it shows compositional
properties. For example, we show in this paper that expected completion time of a system can be
derived using expected completion time of its components.

An early attempt to generalize languages was done by researchers in fuzzy set theory [26] [25]. A
fuzzy language is a fuzzy set defined on strings of events. Thus, every string has a grade of member-
ship in [0, 1]. Our definition of probabilistic languages allows only those membership grades which
satisfy certain consistency constraints. An advantage of these constraints is that the membership
grade of a string can be viewed as the probability that the system executes that string. This results
in a richer theory for systems that can be modeled by probabilistic languages.
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There have also been attempts to generalize deterministic automata to probabilistic and stochastic
automata [17][19] [4]. PCCS[6] also extends CCS[16] by explicitly introducing probability for the
summation operator. These attempts emphasized generalization of state machines by attaching
probabilities with edges, however there was little effort to generalize regular operations between
languages. We have taken a more algebraic approach by emphasizing the operations defined on the
set of probabilistic languages.

Our work has many things common with Markov chains, but there are two main differences.
First, there is an emphasis on the alphabet which is generally missing from the theory of Markov
chains. This alphabet has many implications on the questions we ask about a Markov chain. For
example, we would be more interested in the sequence of events rather than the state after some
number of events. Secondly, we do not require the probabilities of transitions from any state to
sum up to 1. We assume that the system terminates at that state with the rest of the probability.
This has implications in defining various operators between multiple Markov chains. For example,
concatenation between two Markov chains implies that the second Markov chain begins executing
whenever the first terminates.

Our work has many aspects common to CSP[9] and FRP[10]. In particular, we define the meaning
of recursion similar to the definition in CSP (Also see [24]). The main difference arises because of
probabilities associated with transitions.

This paper is organized as follows. Section 2 describes the frequently used notation in this paper.
Section 3 defines probabilistic languages. Section 4 describes various operators defined between
probabilistic languages. Section 5 defines probabilistic automata. Section 6 defines many measures
of performance on systems defined using our formalism, and describes methods to compute them.

2 Notation

We use the following notation in this paper.

A finite set of events

a,b events

s,t,u, v strings in A*

K, L p-languages, maps from A* to [0, 1]

L the set of p-languages

c.D completion probability density function
f.g,h  language functions, maps from A* to [0, 1]
F the set of language functions

X,Y,Z State Space

P,Q, R State transition probability functions
fog convolution of f and ¢

f(i) fofo..itimes

f.9,fg product of f and ¢

fi f.f...a times

K..L concatenation binary operator in £

K +. L choice binary operator in £

K + L addition operator in R

Our precedence rules are given by the following list. All operators on the same line, such as +
and — have equal precedence, and all operators on a given line have higher precedence than those
on the lines below them.



exponentiation for . and o

+7_
=<2
Thus, an expression such as fog + h means (fog)+ h and not fo(g+h).

We use calculational style of proofs for many of our Theorems. A proof that [A = ('] will be
rendered in our format as

A

= { hint why [A = B] }
B

= { hint why [B = (] }
C

We also allow implies (=) in the leftmost column. For a thorough treatment of this proof format we
refer interested readers to [Dijkstra 90].

3 Probabilistic Languages

Definition 1 A p-language L is defined as L : A* — [0, 1] with the constraint that
(C1) Lie)=1
(C2) Joralls: 3 ,calLl(sa) < L(s)

The interpretation of L(s) is taken as the probability that s occurs in the system. (C1) says that
the null string is always possible in the system. (C2) captures the property that if a system executes
sa, then it must have executed s. Thus, the combined probability >, L(sa) must not be greater that
L(s). (C2) also implies that if s is a prefix of ¢, then L(s) is greater than or equal to L(?).

This definition generalizes non-empty prefix closed languages. If L is required to map either to
0 or 1, and the second requirement says that (L(sa) = 1) = (L(s) = 1), then we get the definition
of a prefix-closed language.

We note that L(s) <1 for all s can also be derived from (C1) and (C2), but we keep it explicitly
in our formulation for simplicity. Based on L. we can define a probability density function C'y, on the
set A*.

Cr(s)=L(s) — ZL(SQ) for se A” (1)

The interpretation of C'1(s) is that it is the probability that the system does s and stops, that is it
does not do anything afterwards. We will drop the subscript L, when clear from the context. As
Yoo L(sa) < L(s), C(s) is always greater than or equal to zero. Since L(s) is less than or equal to 1,
so is C'(s) for any s. Thus, C(s) always lies between 0 and 1.

Example 2 Let L be defined as: L(¢) = 1, L(a) = 0.4, L(ab) = 0.2, L(b) = 0.6, L(ac) = 0.1 and
L(s) = 0 for all other strings s. Then it is easy to see that the L satisfies required properties. Hence
it is a p-language. Further C' for this p-language is: C'(a) = 0.1,C(ab) = 0.2,C(ac) = 0.1,C(b) = 0.6

Example 3 The nil language I is defined as I(¢) = 1,1(s) = 0 for s # e. For this language
Ci(e) =1,Cq(s) = 0 for s # e.

Example 4 Consider a Bernouli process. Every experiment has two outcomes a or b, with proba-
bility p and (1 — p), respectively. Here, our alphabet A = {a,b}, and



L(s) = p#@9)(1 — p)#®) for any s € A*, where #(a, s) represents the number of occurrences of a
in the string s.
It is easy to check that this language satisfies (C1) and (C2). Also note that C'(s) = 0 for any s.

We note that both p-languages and completion probability are functions defined from A* to [0, 1].
We call them language functions or simply functions. Let F be the set of all functions. We define a
function A : F — F as follows:

For any s, A(f)(s) = Zf(sa)

Thus, if f is a p-language, then A(f) gives the probability that the system will execute something
after s. It is easy to check that A is a linear functional. With this notation, the constraint (C2) on
fis

A< T

Similarly, for any p-language K, its corresponding completion pdf is easily derived as
Cxg =K —A(K)
Now we make the following observations:

Lemma 5 (a)),C(s) <1
(b) For any s : L(s) = 32, C(st) iff limg—co 3 opy=x L(st) =0
(c) 32, C(s) = 1 iff limp—oo 3=y L(1) = 0

Proof (a) : We first show that 37—, L(s) < 1. This can be shown using induction on n. It is
trivially true for n = 0. Assume that it is true for n = k. Then,

Z|s|:k—|—1 L(S)
={s=ta}

D=k 2oa L(ta)
<{(C2)}

Lje=k L(1)
<{ Induction hypothesis }

1
We now show that 3~ 4« C(s) <1
Let

S(n)= > C(s)
|s|<n

Then 3°,C(s) = lim, .o 5(n) It is easy to show by induction that S(n) =13 =41 L(s)
Therefore, 0 < S(n) < 1. Since {S(n)} is a monotone increasing sequence bounded above by 1, the
limit exists and is at most 1.

Proof (b): From equation (1), we get that

L(s)=C(s)+ Z L(sa)

Therefore by repeated application of this equation we get,
L(s) = 21« C(st) + Xjyy=p Lst) for all k> 1
= hmk_wo Z|t|<k C(St) + hmk_wo Z|t|:k L(St)



=2 Cst) + im0 37 = L(s)

The lemma follows.
Proof (c): By substituting € for s in part (b). ]

The first part of the above proposition justifies the use of probability density function for com-
pletion. The second part of the above lemma indicates that given any pdf, we can also view it
as completion probability of a system. It also suggests that, we could have alternatively defined
p-languages using €', and defined L in terms of C'. This, however, required that } C(s) = 1.

We call a system terminating if 3~ C'(s) = 1. From now on we will assume that all our systems are
terminating. This assumption is only for simplicity, as the theory we develop can be easily extended
to the case when there is a non-zero probability that the system does not terminate.

3.1 An Order on P-languages

We can now define an ordering between p-languages. We use L 4(or simply £) to denote the set of
all p-languages defined over the set A.

Definition 6 Let K, L € L. Then,
K < L if and only if Vs : K(s) < L(s)

Example 7 Let K, L,U € £ be defined as : K(a) = 0.4, K(ab)=0.3
L(a)=0.5,L(b)= 0.4, L(ab)= 0.3

U(a) = 0.4,U(b) = 0.5, U(ab) = 0.4

Then, K < L, and K < U, while L and U are incomparable.

Lemmas 8 and 10 describe the properties of this order.
Lemma 8 (£, =) is an inf semi-lattice.

Proof: Let K, L € L. Then their least upper bound (if it exists) is denoted by K'U L, and the greatest
lower bound by K M L. They can be obtained as:
K U L(s) = sup(K(s), L(s))
KN L(s) =inf(K(s), L(s))
Let K,L € Land V = K N L. It is easy to see that V is also a function from A* to [0, 1], and that
V(e) = 1. We now show that
forall s: >, V(sa) < V(s).
For any s
5, V(sa)
= {definition M }
Yoo inf(K(sa), L(sa))
< { arithmetic, using induction }
in f(, K(sa), 5, L(sa))
<{K,LeLl}
in (K (s), L(s))
= {definition M }
V(s). ]

In example 7, V = LN U is defined as V(a) = 0.4,V(b) = 0.4, V(ab) = 0.3. However, K U L may
not exist for all K, L. As an example consider the following: K(¢) =1, K(a)= 0.6 L(¢) =1,L(b) =



0.7 Then K U L is not defined (does not belong to £). Even though U may not exist for any set of
p-languages, it exists for any chain of p-languages. The definition of chain and the Lemma is given
below.

Definition 9 We call a family of p-languages {L;|i = 0,1..} to be a chain iff L; < L1y for all i.
Lemma 10 < is a complete partial order(cpo) on the set L. I is the least element in this cpo.

Proof: 1t is easy to verify that < is reflexive, antisymmetric and transitive. Thus, it is a partial
order. We just need to show that if L; is a chain of p-languages, then its least upper bound exists.
We define | | L;(s) = sup; L;(s). This is well defined because L;(s) is a monotonic sequence bounded
above by 1. We also write it as lim,, ., L;(s). It is easy to see that | | L; is also a function from A*
o [0,1], and that | | L;(¢) = 1. We now show that
forall s: >, Li(sa) <|]Li(s).
For any s,

2o U Li(sa)
= {definition U }

5, sup; Li(sa))
= { L; monotone }

Yo limi oo Li(sa))
= { finite sum }

lim; oo Yo, Li(sa))
<{Lel}

lim; e Li(s))
= {definition || }

LI Li(s).

As a result of the above Lemma, we can easily compute fixed points of continuous functions. An
alternative way of defining fixed points via Cauchy sequences is given in Appendix A.

4 Operators between p-languages

We now define some operations between various languages. These operators are useful in describing
a complex system as a combination of many simple systems.

4.1 choice

This operator captures non-deterministic choice between two systems. Given two p-languages L4
and Ly, and a real number e between 0 and 1, the combined system is denoted by Ly +. L, for e in
[0,1]. We use €’ to be equal to 1 — e in rest of the paper.

Definition 11 Ly 4+, Lo = el + €Ly

The interpretation of the above definition is : do Ly with probability e or Ly with probability 1 — e.
It is easy to verify that the p-language defined above satisfies constraints (C1) and (C2).?

2This operator can easily be generalized for multiple arguments. In essence, the choice operator represents a convex
combination of p-languages



We now derive an expression for the completion probability density function (pdf) for the com-
posed system.
Ci+eCy= L1 +c Lo— A(Ly +c Lo)
= €L1 — A(@Ll) + €/L2 — A(@lLQ)
= 601 + 6/02

The following proposition describes property of choice with respect to the ordering.

Definition 12 A function f: L — L is called monotone iff
K<L= f(K)=<f(L)
It is called continuous iff for all chains {L;},

=L

It can be easily shown that every continuous operator is also monotone.
Proposition 13 Choice is a continuous operator in both of its arguments.

Proof: We need to show that for any e,

K e ([ Li) = (K +e Lo)

K3

The above is easily verified using definitions.

4.2 Concatenation

This operator captures sequencing of two systems. Given two p-languages Ly and Ly, and a real
number e between 0 and 1, the combined system is denoted by Li..L2(s) for e in [0, 1].

Definition 14 Ly..Ly(s) = Li(s) + ey, Ci(t)La(s/t)
= Li(s) — eCy(s) + e 32, Cr(t) La(s/1)

The above definition has the following interpretation. The resulting system does I, and then on
completion does Lo with probability e. The probability that s occurs in the composed system is
equal to the probability that it occurs in the first system, or a part of it occurs in the first system
and a non-null part in the second. It can be shown that L is closed under the operation of ... It is
easy to check that Ly..La(¢) = Li(€) — eCq(¢) + eCq(€)La(c) = 1. Therefore, (C1) holds. We later
derive an expression for C1..Cy = Li..La — A(L1..L3), and show that it is always positive. Hence

(C2) also holds.

We define the convolution operators between two real-valued functions on A* as follows:
Jog(s)=)_ f(t)g(s/t)
i

Thus Lq..Lo(s) is defined more simply as Li(s) — eCy(s) + eCy o Lo(s)
The following proposition describes certain properties of the convolution operator.



Proposition 15 (a) Convolution is associative, i.e.

fo(goh)=(fog)oh

(b) 1 is the identity for convolution, i.e.

fol=1of=f

(¢) Convolution is continuous in both arguments, i.e.
|_|gz —I_l ng |_|fz ng—l_l
(d) Convolution is a linear operator, i.e.
folag+h)y=afog+ foh

(e) If g(e) =
A(fog)=[foAg)+AS)

Proof:

(a)For any s, fo(goh)(s)

=2 f(t)g o h(s/t)

=221 J(1) 2w g(u)h(s/tu)

2w 2o S(D)g(u)h(s/tu)

2w 2 J(Dg(tu/t)h(s/tu) { v = tu }
> fog(v)h(s/v)

>u [ og(v)h(s/v)

(fog)oh(s)

~~

b) By substituting I in the expression for convolution.

(c) We need to show that fo|l, g;=Ll; fogi Forany s,
folligi(s)
={definition o }
> F(U; gi(s/1))
= { real analysis }
L 220 f(1)gi(s/t)
={definition o }
LLi f o9

The continuity in the other argument is similarly proved.

S
ol
Sa—’

For any s,

(ag + h)(s)

Y f(t)(ag + h)(s/t)

Yo f()(ag(s/t) + h(s/t))

> F(Wag(s/t) + 52 f(1)h(s/1))
og+ foh

1 |
[e]

Q2
—

e) For any s,
(fog)
> fog(sa)

=

°9;)



Yic=sa f(D)g(sa /1)
Yics f(D)g(sa/t) + 52, f(sa)g(c)
Alg)+A(f)

We use f(2) to represent fo f. In general we use f() to represent i times convolution of f with
itself. This is well-defined because of associativity of o. We define f(®) to be the I function. From
the proof of associativity, we also note that 37, 5<;<,—1 C(80)C(81)...C(8p-1) = C")(s). We show
the following proposition. -

>a
>a
fo

Proposition 16 Let )  C(s)=1. Then, 3, C(”)(s) =1 for all n.

Proof: We use induction on n. The proposition is clearly true for n = 1. Assume that it is true for

n = k. Then, 3, C+1(s)

We now derive the expression for completion probability for concatenation.
C1.eCy = Ly.Ly — A(L1.Ls)
= { definition of Ly.Ls}
Ll + 601 o L2 - 601 - A(Ll - 601 + 601 ] LQ)
= {definition C; = L1 — A(L1)}
Ci+ 6(01 oLy —Ch— A(Cl o LQ) + A(Cl))
= { property convolution }
Ci+ 6(01 oly—C1—-Cho A(Lg))
= { property convolution, definition C5 }
Ci(8) + eCy o Cy(s) — eCy(s)
= { definition €'}
€'Cy(s) + eCq o Cys)

We note that if e = 0, then the system is identical as before. On the other hand if e = 1, then
the resulting system is obtained as a pure convolution. Since convolution is continuous, it is easy to
show the following Theorem.

Proposition 17 Concatenation is continuous in its second argument, i.e.

K| |Li=|]|K.L

Proof: K..||L;

=K—-eC+eCol|l|L;

=K —-eC+eCol;

=K. L a

However, concatenation is not even monotone in its first argument as shown by the following
example. Let K(a) = 0.2, and L(b) = 1.0. Now I < K, but I.;L is not comparable to K .1 L.

4.3 Recursion

For any K € £, we can use +.K and .. K as unary operators defined from L toitself. For any X € L,
+.K(X)=K+.X,and ..K(X)= K..X. As shown earlier, both of these operators are continuous



in the cpo of L. Note that we use concatenation only in the second argument as it is not continuous
for the first argument. Therefore, any composition of these operators will also be continuous. We
can also define recursion operator denoted by uX.F(z), where F'is any function built out of 4+ and
.. We define uX.F(X) = || F*(I). We show that the above p-language is a fixed-point of I, i.e. it
satisfies X = F(X).
X = Fi(I)
= { application of F' }

F(X) = F(Uiso F(1))
= { F continuous, {F"(I)} a chain }

Uiso (1)
= { I minimum element }

Uiz F7(1)

Proposition 18 Let {X;} be a family of p-languages defined by X,1+1 = A + B.X,,, where + is
simple pointwise addition in R. Then, X, = B". Xo+ 3 i<, B".A
If . is replaced by o uniformly, then the result holds.

Proof: Using induction on n.

Example 19 Let us consider the p-language defined by the following equation:

X = K+, X. Then X = | |[(K+.){(I). We define X,, = | |;«,,(K+¢)'(I). We list first few X,,’s.
Xo=1 -

Xi=K+.1

Xo=K+.(K+.1)

Xj-l-l =K +. X]‘

Xj-l-l =ek + elX]‘

Thus, X; = (eK ) + 3, €"eK (using Proposition 18). Then, X, = lim;_ ., X; We first consider
the case when e = 1. Then all X; except Xy are K. Therefore, X, = K. When e = 0, then X, = 1.
When 0 < e < 1, the above expression in limit reduces to

X, =XeeK

=(1/1-¢€)eK

=(1l/e)ek = K

Example 20 Consider the p-language defined by the following equation:

X =K. .X.If e=0, then X = K. We now assume that e > 0.

Then X = ||(K..)'(I). We define X,, = | |,c,,(K..)"(I). We list first few X,,’s.
Xo=1 -

X1 =K..J
X, = K.(K..I)
Xj-l-l = I(.SX]‘

Xj-l-l = [(—60—|—€COX]‘

We use the following notation: '
D(l,u) = ZeiC(i)
1=l
D(j)=> et
2]
Thus, X; = ¢/C7 + D(0,j — 1) o (K — eC')
=elC7 + D(0,j—1)o K — D(1,5)

10



= D(0,j—1)o K — D(1,j — 1)
Thus, X* = D(0)o K — D(1)

We will use this as the definition of repeated concatenation in the next section.

4.4 Concatenation Closure

This operator captures repetition of any system. Given any p-language L and a real number e
between 0 and 1, the combined system is denoted by L*¢(s) for e in [0, 1].

Definition 21 L*¢(s) = 3, e"C(" o L(s) — 3 ;5 €C0(s)
= D(0)o L — D(1) -

The interpretation of the above definition is - do L and then repeat it with probability e.

Cxe = L* — A(L*)
= { definition of L*c }
D(0)o L — D(1) = A(D(0)o L — D(1))
= { property of A }
D(0)o L — D(1)— D(0)o A(L) = A(D(0)) 4+ A(D(1))
= { A({) is zero uniformly }
D(0)o L — D(1) = D(0)o A(L)
S {C=L-AD)}
D(0)o C' = D(1)
= { dividing and multiplying the first term by e }
e~ tD(1) - D(1)
= { algebra }
e'/eD(1)
= { definition D }
& fe Tz €O

Example 22 Consider a process of tossing a coin which is repeated till the result of the toss is a
head. Assuming that the tail comes with probability e, this system can be modeled as follows:

A = {toss}

L(e) =1, L(toss) = 1, L(s) = 0 for other s.

Then, our system is just repeated concatenation of L. For the primitive function, completion pdf
is given by C(toss) = 1,C(s) = 0 for other s. By using formulas for convolution, we obtain that
C®)((s) = 1 only for s = toss.toss.toss...k times. Thus, L*(toss") = e*=1 4 &b — ek = 51 for
k > 1 by definition 21. This expression can be verified by calculating it directly from the problem.
Similarly, C*(toss*) = ¢/ /e x ¥ = e¥~Le for k > 1.

4.5 Automata for p-languages

Many times it is easier to describe a p-language using an automata associated with it. We define a
p-automata M over the alphabet set A as follows:
(X7 L0, P)

X: a set of states

11



2. initial state
P:X xAx X —[0,1] with the constraint that: 35, >, P(2;,a,2;) < 1 for all 7.

The interpretation of the above automata is as follows. If the system is in state z;, then it makes
a transition to z; on a with probability P(z;,a,z;). We also define

S(z)=1- Z Z P(z,a,y)

acAyeX

If the system is in states z, then it terminates with probability S(x).

We first compute the probability of a string s that occurs in a probabilistic automata. We note
that it may be non-deterministic, and there may be multiple paths corresponding to the same string.
Given any directed path in the above automata starting from g, the probability that path occurs is
simply the product of probabilities of individual edges on that path. We then define a p-language L
for the machine M as follows:

L(s) = sum of all paths that trace s in M.

Proposition 23 L is a p-language.

Proof: If each edge is labeled from [0,1], it is easy to see that L(s) > 0 for all s. Since ¢ traces only
one path - null path- L(e¢) is 1 as required. We just need to show that ), L(sa) < L(s). >, L(sa)
is equal to sum of probabilities of all paths that trace sa. Let U be this set of paths, and V' be the
projection of these paths on string s. Consider any path » in V. For each path v in V there exists a
set of paths U, in U. Let 7 be the function that gives probability for any path. Then for any s,

5, L(sa)
= ZuEU ﬂ-(u)
= eV Luer, T(u)
= Yvev 2oa (va)
< ZUGV 7T(?])
= L(s) O

Thus, every p-automata defines a p-language. We now show that for every p-language there
exists a p-automata. The p-automata for any p-language L is defined as (X, zq, P):
X = A*
Ty = €
pzi a,x;) = L(xj)/Liz) if vj = xia

= 0 otherwise.

In this machine there exists a unique path for each string. The probability of that path is given
by the product of probability of individual edges. By our construction, P(z;) will be equal to L(z;).

A special interesting class of p-automata is that containing finite number of states. The charac-
terization of p-languages of finite p-automata is given using the relation defined as follows:

Definition 24 s =1t iff Vo : L(sx)/L(s) = L(tz)/L(t)
This relation is clearly reflexive, symmetric and transitive. If the number of equivalence classes of
this relation is finite then we say that the p-language L has finite index. Now we can show the

following Theorem:

Proposition 25 A p-language L has finite index iff there exists a finite deterministic p-automata.

12



Proof: If L has finite index, we construct a p-automata with states as equivalence classes. If there
exists a deterministic finite p-automata, the equivalence classes then each state defines an equivalence
class. a

The p-automata constructed in the above Lemma is the one with minimum number of states.
Given any p-automata, its minimization can be done in a manner similar to the algorithm used for
deterministic finite state machines.

If p-languages are given to us as p-automata, then the operations of choice, concatenation, and
concatenation closure can be realized easily.

Proposition 26 If Ly and Ly have finite indices, then Ly +. Lo, Ly1.cLa, and Li° also have finite
indices.

Proof: Let My = (X, 20, P), Mz=(Y,y0,Q)

Case 1: L1 +. Lo

We define My +. My = (X UY U{20}, 20, R) where

7o 1s an additional state

R(zg,2,a) = eP(x¢,2,a)

(20,9,a) = €Q(yo, ¥y, a)

(zg,25,a) = P(z;,z5,a) forall 2, € X 2, € X,a€ A

(Yisyj,a) = Qyi,y;.a) forall y; € Yy, € Y,a€e A

It is easy to see that R satisfies constraint on p-automata. For any path in My from zg, there exists
a path in the new machine with an extra factor of e. For paths in M, there is a factor of ¢’. Thus,
L(My +. Mz) = L(My) +. L(M>)

Case 2: L1..Lo

My..M2=(XUY, 20, R)

R(z,y,a)=€e51(2)Q(yo,y,a) forall z € X,y € Y,a€ A

R(zi,25,a) = Pz, zj,a) forall 2, € X, 2, € X,a€ A

R(yi,y;,a) = Qyi,yj,a) forall y; € Y,y; € Y,a€ A

It is easy to verify that the definition is consistent, i.e.

L(My..M3) = L(My)..L(My)

Consider any string s. All the paths in My are also in My.. M - therefore, the term of Lq(s). Other
possible paths are through transitions with probability e. The factor of eS(x) is multiplied to any
of these paths. The path in the second machine is always non-null therefore the case when s/t = ¢
is subtracted.

Case 3 L}°

Ml*e = (X,$0,R)

R(z,y,a)=eS(x)P(zg,y,a)+ P(z,y,a)

We leave it to readers to verify that L(M*) = L(M)*

PUPUPU

The above Lemma can be viewed as a generalization of Kleene’s theorem in one direction.

5 Performance Indices

In this section, we describe how many performance indices of a complex system can be derived from
performance indices of its components.

13



5.1 Average completion time

Let T : A* — R be any function that gives us time spent on execution of the string s. We require
following properties of T'.

(1) T(e)=0

(2) T(st)=T(s)+ T(t)

In the following discussion, we will use only these two properties of T. Thus, our discussion is valid
for any other performance index that satisfies these two properties. We define average completion
time as follows:

E[C,T]=Y_C(s)T(s)

We need to derive some more properties of convolution operator before discussing these properties
for other operators.

Proposition 27 (a) E[C10Cq,T) = E[C1,T]+ E[Cs,T]
(b) E[C™), T) = nE[C, T)

Proof (a): E[Cy0Cy,T]
= {definition expectation}
25 CroCo(s)T(s)
= {definition convolution, breaking s}
225 22 Cr(1)Cals /)T (1.s/1)
= {property of T}
20 2 Cr(t)Cau)(T (1) + T(u))
= {all operators linear}
{Zu > Cl(t)Cz(u)T}(t) + 22,20 Cr(t)Ca(w)T(w))
= {rearranging terms
(220 Ca(u)) 32, Cr(O)T(1) + (32, C1(1)) 32, Ca(u)) T ()
= {assumption of terminating systems}
> Crt)T(t) + 32, Co(u)T(u))
= {definition expectation}

E[C, T+ E[Cy,T]

Proof (b): We use induction on n. The proposition is trivially true for n = 1. Assume that it is true
for n = k.

Proposition 28 E[Cy +. Co, T = eFE[C1,T] + €' E[Co, T]
E[Cl.SCQ] = E[Cl,T] + €E[CQ,T]
E[C*,T] = E[C,T]/¢

Proof (a) :
We use that C' = ey + €'C

Proof (b) :
E[Cl.SCQ]
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= E[e’Cl + 601 ] CQ,T]

= €/E[01,T] + €E[Cl ] CQ,T]

= €/E[01,T] + €E[01,T] + €E[CQ,T]
= E[Cl,T] + €E[CQ,T]

Proof (c) :

E[C*,T)

= Bl//e sy ¢/ COLT]
= /e ¢ B[CO,T]
=¢ /e oy €E[C,T]
=€ [eE[C,T)Y s €'
= E[C,T))e

The above Theorem shows that average completion time can easily be calculated in a modular
manner. This fact can be used for analysis of timed system [3] [11] [18].

5.2 Average Reliability

In this section, we assume that we are given a reliability function R : A — [0, 1] for each event in A.
We interpret R(a) as the probability that a can be executed without failure. We require following
properties of K.

(1) R(e) =1

(2) R(st) = R(s)R(1)

In the following discussion, we will use only these two properties of R. Thus, our discussion is valid
for any other performance index that satisfies these two properties. We define average reliability as

follows: E[C, R]=3",C(s)R(s)

We need to derive some more properties of convolution operator before discussing these properties
for other operators.

Proposition 29 (a) E[Cy 0 Cy, R] = E[Cy, R]E[C4, R]
(b) E[C™), R] = (E[C, R])"

Proof (a):  E[Cy0Cy, R]
= {definition expectation}
225 CroCas)R(s)
= {definition convolution, breaking s}

26 20 Cat)Cols/t) R(t.5/1)
= {property of R}
2w 22 Cr(t)Co(u) R() R(u)

= {rearranging terms}

> 2ot Cr(t)Ca(u) R(1). 32, 32, Cr(t)Cau) R(u)

= {rearranging terms}

(2w Calu) 32 CLD) R(1)-(32 C1(1) 22, Ca(u) B(w)

= {assumption of terminating systems}
> CLr)R(T). 2y Cau) R(u)

= {definition expectation}
E[Cy, RIE[Cy, R]

Proof (b): From part (a) using induction on n.
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Proposition 30 (a) E[Cy +. Cq, R] = E[C1, R] + €' E[Cy, R]
(b) E[Ch.cCa, R = ¢ E[Ch, R] + ¢E[Ch, RIE[C, R]
(¢c) E[C*,R] = ¢'E[C,R]/(1-eE[C,R])

Proof(a): We use that C' = eCy + €'Cl.

Proof (b) :

E[Cl.€CQ,R]

= E[e’Cl + 601 ] CQ,R]

= €/E[Cl, R] + €E[Cl ] CQ, R]

= €/E[Cl, R] + €E[Cl, R]E[CQ, R]

Proof (¢) : E[C™, R]

= FE[e'/e 2221 eZC(f , R]
=¢'/e iz €' E[CY), R]

= 'fe Y in(eL]C, R])

= E[C, RY/(1- ¢F[C, R)

The above proposition has intuitive interpretation. When two systems are concatenated with
probability e, then with probability ¢’ the resulting reliability is the reliability for the first system,
and with e it is the product. When operations of a system are repeated we get the expression
e E[C,R]/(1—eF[C,R]). Thus, if e = 0, we get E[C, R]. If E[C, R] =1, then we get 1 for all e, and
if e = 1, we get the reliability 0 for F[C, R] < 1.

6 Conclusions

In this paper we have described a modular formalism for specification and analysis of probabilistic
discrete event dynamical system. This formalism is quite natural to apply to non-deterministic
and stochastic systems. We have shown that systems defined in our formalism form a complete
partial order under a suitable ordering relation. As a consequence, it is easy to define systems using
recursion. We show that performance indices such as average completion time and average reliability
can be computed in a modular manner using operators in our algebra.

There are many interesting future research directions. [7] describes concurrent regular expressions
which are extensions of regular expressions for concurrent systems. It will be interesting to define a
probabilistic analogue to that.
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8 Appendix A

In this appendix we show that the set of p-languages form a metric space.

Definition 31 d: L x L — R is defined as:
A(K, L) = sup, |K(s) — L(s)

The following Lemma shows that (£, d) is a metric space.
Lemma 32 d as defined above is a metric on the set L..

The distance is always non-negative. It is also easy to check that d(K,L) = 0 iff K = L. The
symmetry and triangle inequality are also easy to verify.

We further observe that £ is a complete metric space in the following Lemma.
Lemma 33 L is a complete metric space.

Let {L;} be a Cauchy sequence of p-languages. We will show that this sequence converges to a
p-language. As L is a subspace’of [0,1]¥ in the metric d, and [0, 1]* is a complete metric space in
the metric d as defined above, we conclude that the sequence converges to an element L., € [0,1]%.
Our proof obligation is to show that L., is a p-language. We now show that

forall s: 3, Loo(sa) < Loo(s).

For any s,

*By closure under choice operator, we can deduce that £ is a convex set

18



Za LOO(Sa)
= { definition L., monotone }
Yo limi oo Li(sa))
= { finite sum }
lim; oo Yo, Li(sa))
<{Lel}
lim; e Li(s))
= {definition L., }
Leo(s).

We now show that +.K is a contraction for any K and any e.
Lemma 34 +.K is a continuous function in the topology (L,d). It is a contraction for e # 0.

Proof:
for any X1, X9, K € L,
d(K +. X1, K +. X2)
= { definition +., definition d }
sup, e K (s) 4+ ' Xy(s) — eK(s) — €' X3(9)]
= { simplifying }
e’ sup, | X1(s) — Xa(s)|
= { definition d }
€/d(X1,X2)

Therefore, +. K is a continuous function. Further, it is a contraction for e # 0. a

From the above theorem we obtain that any function composed of 4. has a unique fixed point
from Banach fixed-point Theorem.

We now show that .. K is a continuous function for any K and any e.

Lemma 35 ..K is a continuous function in the topology (L,d). It is a contraction for e # 1.

Proof:
We use C(s) = (K — A(K))(s) in the following proof.
for any X1, X € L,
d(K. X1, K..X>)
= { definition .., definition d }
sup, | K(s) —eC(s)+ eC o X1(s)— K(s)+ eC(s) — eC o Xa(s)]
= { simplifying }
esup, |C o Xi(s) — C o Xy(s)
= { definition o}
esup, | T, C(H(X; — Xo)(s/1)
< {>XuC(u)<land Vu:0<C(u) <1}
esup, | sup (X1 — Xo)(s/1)|
= { simplifying }
esup, [ Xi(s) — Xp(s)]
= { definition d }

€d(X1, X2)
Therefore, .. K is a continuous function. Further, it is a contraction for e # 1. Thus, .. K also has a
unique fixed point. a
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9 Appendix B

In this section, we define some additional operators which can be used for constructing p-languages.

product

This operator captures simultaneous execution of two systems. Given two p-languages K and L, the
combined system is denoted by K x L defined as

K x L(s) = K(s)L(s).

It is easy to verify that the p-language defined above satisfies constraints (C1) and (C2).

Reversal

This operator captures execution of a system in a reverse order. This operator is easier to define
using completion pdf. Let C' be a completion pdf for any language L, then C7(s) is defined to be
same as C'(s") where s” represents the reversal of s.

After
This operator captures the information that some string ¢ has already been executed in the system.
Let L be any p-language. The system L after executing of string ¢ is denoted by L/t. It is defined as

L/t(s) = L{ts)/ L(1)

We again leave it to readers to verify that the new system satisfies (C1) and (C2).
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