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Abstract: In this paper, we propose a multiscale dependence-based methodology to analyze
the dependence structure and to estimate the downside portfolio risk measures in the energy
markets. More specifically, under this methodology, we formulate a new bivariate Empirical Mode
Decomposition (EMD) copula based approach to analyze and model the multiscale dependence
structure in the energy markets. The proposed model constructs the Copula-based dependence
structure formulation in the Bivariate Empirical Mode Decomposition (BEMD)-based multiscale
domain. Results from the empirical studies using the typical Australian electricity daily prices
show that there exists a multiscale dependence structure between different regional markets across
different scales. The proposed model taking into account the multiscale dependence structure
demonstrates statistically significantly-improved performance in terms of accuracy and reliability
measures.

Keywords: energy markets; portfolio value at risk; copula GARCH model; Bivariate Empirical
Mode Decomposition (BEMD); entropy

1. Introduction

The energy markets have been known as one of the most volatile financial markets for a long
time, where significant fluctuations have been observed in their production and consumption [1].
Till now, a majority of previous research has focused on modeling and forecasting the physical
production and consumption of energy, as well as the movement of the prices determined. Typically
employed models include econometric models, artificial intelligence models, etc. [2,3]. However, the
observed significant volatility and the risk measurement in the financial energy markets have received
much less attention, despite their significant impact on the trading, operation and risk management
practice of the energy markets. Accurate measurement of the market price fluctuations and risk level
in the energy markets has both theoretical and practical merits [4].

Theoretically, energy market risk measurement represents an important and tough research
problem in the field of risk measurement [4]. Firstly, as energy is difficult to store and usually
costs too much in storage, it would result in unique price fluctuation patterns and very significant
market risk exposure, so that the current market risk measurement methodology no longer suffices.
New and innovative market risk measurement models are needed theoretically. For example, since
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electricity is difficult to store and the price is settled instantaneously, it is a financial asset mostly of
a consumption nature and demonstrates a significantly high level of volatility [5]. The extreme and
transient events are prevalent in the market with very different behavioral patterns than the other
financial markets [6]. The electricity risk measurement needs to be conducted on a much shorter
scale and needs to pay particular attention to the finer market structure, especially the impact of
the transient and disruptive risk factors on a short-term time horizon [7]. Secondly, market risk
measurement is closely related to other important research topics, including volatility forecasting,
electricity derivative pricing, portfolio optimization, efc. Value at risk serves as an important ex post
measure for the evaluation of the volatility forecasting accuracy, which is a critical parameter for
financial derivative pricing.

Practically accurate electricity market risk measurement serves as the foundation for the risk
monitoring system and the enterprise risk management system in the electricity related industry. It
is a critical factor to consider and control during the operation management and capital budgeting
process for any electricity-intensive companies, such as the electric grid, paper manufacturing
industry, steel industry, efc. It is also an important risk factor to measure and needs to be integrated
into the enterprise-wide risk measure for the cost management and operation management of most
manufacturing companies. For example, according to the survey study by KPMG management
consulting firm, half of the power plants in Russia pay close attention to the risk measurement, and
they usually use value at risk to measure the risk [8].

Over the years, numerous empirical research has conducted the measurement of the market
risk in the energy markets. In the long-term time horizon, we have witnessed widespread
applications of econometric approaches to model the market volatility, especially considering the
spillover effects among different energy markets and other financial markets, in the equilibrium
conditions in different energy markets. For example, Chevallier [9] proposes a bivariate model
to forecast the density function of West Texas Intermediate (WTI) crude oil future returns. They
found that the stochastic jump components contain useful information that needs to be incorporated
into the model and could help improve the forecasting accuracy [9]. Barunik et al. [10] analyzed
the dynamic asymmetry in the volatility spillover among petroleum markets. They found that
there are significant regime changes in volatility asymmetry around both 2001 and 2008 [10]. Lin
and Li [11] used the Vector Error Correction-Multivariate Generalized Autoregressive Conditional
Heteroskedasticity (VEC-MGARCH) model to identify the spillover between crude oil and gas
markets [11]. In the short-term time horizon, the volatility level increases significantly, and
its nonlinear dynamic movement becomes more complex. More assumption-free data-driven
approaches show the superior performance. Typical examples would be the multi-fractal models,
neural network model, efc. Particularly, Youssef et al. [12] used the Fractional Integrated Generalized
Autoregressive Conditional Heteroskedasticity (FIGARCH) model to analyze the fractal, long
memory and extreme risk characteristics and estimated downside risk measures. They found that
the fractal and extreme value-based model would result in the improved risk estimate accuracy in the
energy markets [12]. Wang et al. [13] proposed a Markov switching multifractal model to forecast the
crude oil volatility at a higher level of accuracy [13]. Bildirici and Ersin [14] introduced the neural
network model to augment the nonlinear econometric models and achieved improved crude oil
volatility forecasting performance [14].

Although the data-driven approaches have shown that empirical data contain more complex
data features that violate the assumptions of most traditional approaches and result in interior
performance, what exactly constitute these complex data features remains an open question in the
literature. Recently, in the literature, the recognition and modeling of the heterogeneous risk factors,
which exhibit drastically different data characteristics, emerged as one alternative approach to explain
and model the widely-acknowledged nonlinear risk movements. For example, we would expect the
supply and demand risk factors to demonstrate more stationary long-term behaviors. The shocks in
some other macroeconomic factors may translate into more short-term stochastic behaviors. This is
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why current modeling approaches encounter difficulty, because they usually assume that the market
is efficient and homogeneous, dominated with one particular data feature only. This assumption may
approximate the data over the long-term time horizon. However, for the short and medium time
horizons, when the markets do not reach the equilibrium, this assumption is violated. They need to
be relaxed further to allow the existence of heterogeneous data features for more accurate modeling
of the nonlinear data movement.

When the homogeneous assumption is relaxed, we may assume that the market is dominated
with several heterogeneous risk factors. These risk factors are governed by different underlying Data
Generating Processes (DGPs). Some well-known data features include autocorrelation, volatility
clustering, efc. The multivariate time series models have been proposed to model the multivariate
autocorrelation in the mean and correlations and volatility clustering data characteristics in practice.
Typical models include the multivariate Autoregressive Moving Average (ARMA) models and
multivariate GARCH models. Recently, the non-normal dependence structure among financial
portfolio and the multiscale data characteristics are two recent emerging data features that have
attracted much research attention. They also give rise to some promising methodologies to deal with
the complex data features.

With the heterogeneous data structure in the practical data, the selection and integration
of appropriate models capturing different DGPs is an important research problem. The key
research issue is to explore a new methodology to integrate different models to capture different
components of data. Traditionally, ensemble models in the literature adopting linear or artificial
intelligence models have been widely used. For example, Alamaniotis ef al. [15] proposed a genetic
algorithm that combined relevance vector machines and linear regression models. They applied it in
electricity price forecasting and achieved improved forecasting accuracy, comparing to the traditional
ARMA model [15]. However, traditional ensemble model assumed that models are independently
capturing data characteristics. This integrates different models ex post, where significant estimate
bias resulting from the violation of the assumptions of different models is accumulated. Recently,
an alternative ex ante approach emerged, under different names, such as divide and conquer,
decomposition, efc. For example, Yu et al. [16] purposed the divide and conquer principle to construct
a data characteristics-driven decomposition ensemble methodology. The application of this
methodology in the crude oil price forecasting showed improved performance [16]. Yu et al. [17]
proposed a decomposition and ensemble learning paradigm for crude oil price forecasting [17].
The key to all of these approaches is to separate data components with unique data characteristics
ex ante and to select models with the data-matching assumption. Then, the chosen models are
integrated together, with lower biases and higher forecasting accuracy. However, current approaches
are mainly ad hoc. We argue that different scales in the data could be used as the criteria of separation,
so that different models can be used to model different data features. Thus, we propose a new
multiscale methodology to estimate value at risk for high dimensional portfolio assets. Following
this methodology, we propose the BEMD-copula-based model to demonstrate the effectiveness of
the model in capturing the multiscale dependence structure in the data. We also propose to use
entropy as the criteria to determine the parameters for BEMD-copula model. Empirical studies using
the Australian electricity data as a typical example show that there exists a dynamic time varying
dependence structure between New South Wales (NSW) and Queensland (QLD) markets. We show
that the proposed model incorporating the multiscale dependence structure tracks the risk evolutions
more closely and achieves statistically significant performance improvement in risk measurement
accuracy and reliability. This lends further support to the effectiveness of our proposed methodology.

Work in this paper contributes to the literature in the following aspects. Firstly, a new multiscale
methodology has been proposed to analyze the multiscale characteristics of risk movement and
co-movement. For the proposed methodology, we have identified some important research problems,
including the choice of models and the determination of model parameters. Secondly we have
proposed a BEMD-copula model under the proposed methodology. We have proposed the alternative
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entropy-based approach to tackle these research problems. We show that there are different
constituent portfolio components with a multiscale structure characterized by different copula
functions. The mixture of time varying dependence structure is revealed and explicitly modeled
in the BEMD transformed domain. We have confirmed in the empirical studies that the proposed
model provides the most accurate characterization of the empirical data. More importantly, with the
proposed model, we address explicitly the determination of the multiscale model specifications. We
found that the dependence structure is time varying in both the model specifications and parameters
across different time scale. During the model fitting process, we found that the entropy measure
serves as a better measure to determine the BEMD decomposed multiscale structure.

The rest of the paper proceeds as follows. In Section 2, we present the comprehensive review
on the multiscale analysis in the energy markets, as well as the copula model in the energy markets.
In Section 3, we propose and illustrate the multiscale methodology for the Portfolio Value at Risk
(PVaR) estimate. We also illustrate in detail the numerical algorithm of the BEMD-copula-based
model. In Section 4, we report and analyze in detail the original results from experiments conducted
using the Australian electricity market data. Section 5 provides some summarizing remarks about
the main results, contributions and implications of the work in this paper.

2. Literature Review

2.1. Multiscale Analysis in the Energy Markets

In the literature, multiscale analysis techniques, such as wavelet analysis and empirical mode
decomposing, have received considerable research attention as effective techniques to analyze the
energy commodity market co-movement. For example, Vacha and Barunik [18] used wavelet
coherence analysis to investigate and confirm the existence of the multiscale co-movement among
crude oil, natural gas, gasoline and heating oil energy markets [18]. Ortas and Alvarez [19] used
the wavelet coherent analysis to identify the lead lag relationship between carbon assets and other
energy commodities [19]. Jammazi [20] analyzes the multiscale co-movement relationship between
crude oil and stock returns in the Haar a trous wavelet-transformed time scale domain. It is found
that the multiscale co-movement is more significant in the higher scale [20]. However, as far as the
energy forecasting and risk measurement are concerned, multiscale techniques have received much
less attention. In the electricity markets, Rana and Koprinska [21] used wavelet analysis to extract
data features at different scales to improve the neural network forecasting accuracy in the Australian
electricity market Rana and Koprinska [21]. Voronin and Partanen [22] used wavelet analysis as the
feature extraction tool for the follow-up forecasting using Autoregressive Integrated Moving Average
(ARIMA) and the neural network model. Empirical studies in the Nordic Power Pool have shown
the improved electricity demand and price forecasting accuracy [22]. Shrivastava and Panigrahi [23]
used the wavelet analysis as a preprocessor to improve the forecasting accuracy of the extreme
learning machine in the Ontario and PJM electricity market [23]. Nguyen and Nabney [24] showed
that the combination of wavelet analysis and the neural network model would result in the
improved electricity demand and natural gas forecasting accuracy [24]. Jin and Kim [25] forecasted
the natural gas price using the combination of wavelet analysis and the neural network [25].
He et al. [26] proposed a wavelet decomposed ensemble model for the crude oil market and found the
improved performance of the proposed algorithm against the benchmark models [26]. Zhu et al. [27]
proposed the morphological component analysis-based forecasting model and found improved
forecasting accuracy in the crude oil markets [27]. Li et al. [28] proposed a wavelet denoising ARMA
model ensembled by least square support vector regression. The ensembled crude oil forecasts
in the multiscale domain showed improved forecasting accuracy [28]. He et al. [29] proposed
a new multivariate wavelet denoising-based approach for estimating PVaR. Empirical studies
suggest that the proposed algorithm outperforms the benchmark Exponential Weighted Moving
Average (EWMA) and Dynamic Conditional Correlation-Generalized Autoregressive Conditional
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Heteroskedasticity (DCC-GARCH) model [29]. He et al. [30] proposed a wavelet decomposed-based
nonlinear ensemble algorithm, based on artificial neural networks, to estimate Value at Risk
(VaR) with higher reliability and accuracy in the crude oil markets [30]. He et al. [31] proposed
an Morphological Component Analysis (MCA)-based hybrid methodology for analyzing and
forecasting the risk evolution in the crude oil market. MCA is used to extract and analyze the
underlying transient data components. Empirical studies show that this approach improves the
reliability and stability of VaR estimation [31]. As for the empirical studies using EMD in the energy
markets, Zhang et al. [32] combined the ensemble empirical mode decomposition model with the
least square support vector regression model. They found that this hybrid approach led to improved
forecasting accuracy [32]. Zhu [33] combined the EMD, genetic algorithm and the artificial neural
network to forecast more accurate carbon price movement [33]. Yu et al. [34,35] proposed a series of
multi-scale neural network ensemble forecasting models based on the EMD model and applied them
to the crude oil forecasting exercise [34,35].

2.2. Copula Model in the Energy Markets

When modeling the dependence structure in higher dimensions, dependence modeling
extends beyond the correlations between multiple assets in the traditional elliptical multivariate
distribution framework. In the literature, it has mainly been used to characterize the dependence
structure among portfolio assets in both unconditional and conditional cases. For example, in
the unconditional case, Jaschke [36] analyzed the dependence structure between WTI and Brent
markets using different copula models. The comprehensive performance valuation on different
copula-based risk estimates showed that Gumbel copula provided the best model fitting [36]. Work
by Anne-Laure Delatte [37] also showed that the dependence structure between the commodity
and the stock markets was predominantly symmetric, as described by the Gaussian copula
model [37]. In the conditional case, work by Chih-Chiang Wu [38] showed that the Gaussian
copula model provided the best modeling of the conditional dependence structure between the
crude oil and the exchange rate [38]. Reboredo [39] found a consistent level of crude oil market
linkage, modeled by the copula method in different business cycles, and confirmed the one great
pool hypothesis [39]. Chang [40] proposed the mixture copula GARCH model consisting of both
Gumbel and Clayton copula to model the asymmetric tail dependence in the crude oil spot and
futures markets [40]. Recently, the conditional copula theory has been used to estimate VaR
and Portfolio VaR. Huang et al. [41] proposed a Copula Glosten-Jagannathan-Runkle (GJR) GARCH
model to estimate value at risk and found it was a more optimal risk measure than traditional
variance covariance and Monte Carlo-based approaches [41]. Yan Fang [42] proposed the extended
double asymmetric copula GARCH model to account for the asymmetric effects of positive and
negative shocks individually. Empirical studies showed that the proposed Dynamic Double
Asymmetric Copula (DDAC)-GARCH copula model provided more optimal risk coverage in terms
of the value at risk measure [42]. Karl Friedrich Siburg [43] proposed a non-parametric copula-based
model to estimate the portfolio value at risk better. The lower tail dependence was estimated
non-parametrically, while the dependence specification was estimated using the canonical maximum
likelihood method [43]. Ignatieva and Truck [44] analyzed the dependence structure in the electricity
markets using different copula models and found the Student ¢ copula provided better dependence
structure modeling accuracy and VaR estimation accuracy [44]. Boubaker and Sghaier [45] identifies
the long memory feature in the financial returns dependence structure captured using the copula
model. The portfolio risk is better captured using the copula-based approach. This empirical evidence
has provided the preliminary evidence of positive and improved performance with these methods,
which shows the promising products of these methods in the risk measurement literature [45].

However, we have not identified very inter-disciplinary research crossing the multiscale analysis
literature and dependence modeling literature. One exception was our initial work on testing the
performance of the combination of EMD and the copula model by Wang et al. [46]. Although the
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initial research has demonstrated that the EMD-based copula may lead to improved performance in
the value at risk estimate, in the case of the multivariate forecasting model, the multiscale analysis
and modeling of the dependence structure among the individual assets, including both the model
identification and forecasting model, has remained an open question in the literature [47]. The
main obstacle is the identification and determination of parameters that characterize the multiscale
structure among individual assets. This research problem would translate to the identification of edge
singularities in the two dimensions and geometric multiscale data features in the higher dimensions.

3. A Multiscale Dependence-Based Methodology for Portfolio Value at Risk Estimate

PVaR is defined as the threshold downside risk statistics measuring the maximal level of
losses on the portfolio under the normal market conditions, at the given confidence level and
investment time horizon [48]. As far as statistics is concerned, PVaR is mostly concerned with
the estimation of the particular quantile of the empirical distribution. The prevailing methods
to estimate VaR in the literature mainly include parametric, non-parametric and semi-parametric
approaches [48]. The parametric approach goes to one extreme by imposing very strict assumptions in
deriving the analytical solutions. Riskmetrics’ Multivariate Exponential Weighted Moving Average
(MEWMA) and DCC-GARCH models are two typical approaches [49]. The non-parametric approach
goes to the other extreme by imposing the least amount of assumptions and taking data-driven
approaches. The ideal model should impose more realistic assumptions and have a high level of
traceability. Thus, in recent years, new methodologies with more relaxed assumptions have emerged.
They are usually classified as semi-parametric approaches and may include copula theory, Extreme
Value Theory (EVT) and signal processing techniques, such as Fourier analysis, wavelet analysis, the
EMD algorithm, etc. [34].

Given the diverse range of data features available, we propose an integrated methodology
that takes a decomposition-based multiscale approach to estimate the PVaR of the empirical data
distribution. We assume that the data are generated with different DGPs. In the proposed model,
we assume that different DGPs are distinguished from one another with different time frequency
characteristics. This would imply a one-to-one correspondence between the time scales and frequency
scales. One implication of the assumption in the case of risk assessment is that volatilities are
independent and heterogeneous, while volatilities are homogeneous within scales. Thus, with the
chosen basis functions, the time scale can be used to project the original data into the time scale
domain and to separate different DGPs. In the multiscale approach, there are different model
specifications and parameters employed across different time scales, to capture different frequency
information. Some typical multiscale models used would include the recent emergence of Empirical
Model Decomposition (EMD), wavelet analysis, etc. Multiscale theory can be used to empirically
derive the constituent data components at different scales, given that the constituent data components
are separable and distinguishable by their different speeds of oscillation and the size of fluctuation.
The methodology is illustrated as in Figure 1.

In the first step, in the general case of a portfolio of two assets with returns r;;, (i = 1,2) at
time t, a particular multiscale model is used to project the given multivariate energy data series
simultaneously into the multiscale domain up to scale N, as in Equation (1).

N
g =Y Tipj 1)
=1

where r;; and Titj refer to the original return series and the decomposed return series at scale j at
time ¢, respectively. Among them, decomposed data at one scale 1 are assumed to be the transient
data governed by disruptive factors. Data at the rest of the scales are assumed to be the main factors
governing the normal data behaviors in the market.
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Figure 1. A multiscale integrated Portfolio Value at Risk (PVaR) methodology.
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In the second step, using the training data, we fit a series of multivariate models across different
scales. More specifically, we estimate the parameters for current multivariate models with different
distributions used to fit the energy data in each market individually.

In the third step, we assume that one scale corresponds to the transient data, while the other
scales correspond to the normal data. The transient data reflect the market behavior of the transient
and disruptive risk factors, while the normal data reflect the joint influences of the normal market risk
factors. We assume that the risks of both normal and transient data contribute equally to the overall
market risk level. Thus, using the model tuning data, the aggregated variance-covariance estimate is
calculated with the equal average of the individual variance-covariance matrix for both normal and
transient risk factors as in Equation (2).

Zt = ZNB,t + ZTB,t @)

where ), is the aggregated conditional variance-covariance forecast matrix at time t. Y np;
and ) rp; are conditional variance-covariance forecast matrices for returns over both normal and
transient phenomenon, respectively, at time t. }, = Cov(X;, Y}) is the covariance matrix at time ¢,
Cov(Xnp,t, YTp,t) = 0 and Cov(Xrpt, Ynp,t) = 0.

In the fourth step, we estimate PVaR for the model tuning data using the estimated conditional
mean matrix and conditional variance-covariance matrix. PVaR is estimated as in Equation (3) [48].

PVaR o) = [—hwtRe + Vhy ] wi)_,wl Z,]P ®3)

where & = 1 — cl. ), refers to the variance-covariance matrix. w; refers to the weight matrix for the
portfolio. Z, refers to the relevant quantile from the standard normal distribution. P is the invested
portfolio value. & is the holding period. PVaR , ;) is the PVaR threshold at the confidence level cl.

In the fifth step, assuming that the in-sample PVaR model performance indicates the
out-of-sample generalizing PVaR model performance, we adopt different performance measures and
decision rules to evaluate the in-sample model performance using the model tuning data. Some
typical decision rules and performance measures may include the minimization of the number
of exceedances, the maximization of the p-value of the Kupiec backtesting procedure and the
minimization of the entropy value.

In the sixth step, with the determined model specifications and parameters, including the
optimal scale for the transient factors, we estimate the PVaR for the test dataset. Different performance
measures, such as the Kupiec backtesting procedure, are used to evaluate the model performance.

Under the proposed multiscale dependence methodology, we propose a BEMD-copula-based
portfolio value at risk model to estimate the portfolio risk assessment. Key to the proposed
BEMD-copula PVaR model is the introduction of the BEMD model and copula model, as particular
implementations of the proposed methodology.

Firstly, EMD is a recently-emerging signal processing technique to explore, decompose and
analyze the underlying data structure, with a multiscale approach. It adaptively extracts the
underlying data components, represented as a set of oscillation functions called Intrinsic Mode
Functions (IMFs) with different amplitudes and frequency bands, i.e., different fluctuation bands.
In the univariate setting, these data characteristics of different amplitudes and frequencies across
different scales correspond to different oscillations or fluctuation levels. In the multivariate setting,
defining the boundary for different data structures across different scales represents much more
difficult research problems. The original concept of univariate oscillations is extended to the
rotation in the multivariate case. There are several attempts to define the boundary in the
multivariate setting in the literature, including modulated multivariate oscillation models, complex
EMD, rotation-invariant EMD and univariate EMD. The bivariate EMD is usually preferred, as



Entropy 2016, 18, 170 9of 18

it guarantees the same number of IMFs across data channels and is very flexible in the number
of projection channels. In the bivariate setting, this provides an important alternative to the
traditional multivariate distribution-based analysis to separate the data components with unique
characteristics in both their dependence structure and individual patterns, regardless of their
particular distributional assumptions.

The BEMD algorithm is illustrated in Algorithm 1.

Algorithm 1: Bivariate Empirical Mode Decomposition Algorithm

1. Identify the number of projection directions N and compute the projection directions; ¢, = Z”W”, 1<n<N
2. Project the complex valued signal x(t) on directions; Py, (t) = Re[e /% x(t)]
3. Extract all local maxima of Py, (t), namely { (¢!, Py, (1)) }
(i is denoted as the No. of individual local maxima);
4. Interpolate the set { (£, Py, (¢)) } by spline interpolation to obtain the partial envelop curve in ¢, direction,
and repeat Step 2 to Step 4 until the envelop curves in all N projected directions are obtained;

N
5. Calculate the mean of all envelop curves according to the following equation: m(t) = & ¥ eg, (t)
n=1

6. Extract m(t) and obtain h(t) as such; h(t) = x(t) — e(f)
7. Check whether k() is an IME. If not, replace x(t) with () and repeat Step 2 to Step 6 until h(t) is an IMF;
otherwise, repeat the step from Step 2 on the residual signal;

K
8. Finally, the original signal x(t) can be expressed as the following equation: x(¢) = Y. hg(t) + r¢(¢)
k=1

where K indicates the total number of IMFs and r (t) respectively represent the ky;, subtracted complex
IMF and residue.

Secondly, the copula theory is also introduced in the proposed BEMD-copula algorithm to
model the non-normal dependence structure in the decomposed risk structure, as well as its
dependence structure across different scales. In Heterogeneous Market Hypothesis (HMH), the
dependence structure across different scales is assumed to be different, exhibiting distinctive
frequency characteristics, reflecting different time varying dependence. This demands the use of
different copula functions appropriate to characterize the dependence structures at different scales.
Then, we can construct the time varying multiscale dependence structure in the BEMD decomposed
domain, revealing the heterogeneous time varying risk structure.

When modeling the individual DGPs with the multiscale approach, we assume that the DGPs
follow the same model specification, but with different parameters. This implies that different
trading strategies are adopted with different parameters. In the proposed model, we introduce
the conditional copula model to analyze and model the multivariate conditional distributions.
The proposed conditional copula theory extends the original unconditional copula theory to the
conditional case, which is of relevance to economics and financial forecasting.

Given some information set w, let X;|W, fori = 1,...,n be random variables with conditional
distribution functions F; and conditional joint distribution H of X|W, where X = (X3, X, ..., X;) and
W has support w. The conditional Sklar theorem states that there exits a copula C, such that, for any
Xe E\?andw € w,H(x1,...,xx|W) = C(Fi(x1|w), ..., Ex(xn|w)|w) [50].

H(x1,...,x,|W) = C(F1(x1|w), ..., Fi(xy|w)|w) 4)

With the conditional extension of the Sklar theorem, any #n dimensional joint distribution can
be represented as n dimensional marginal distributions and a dependence function, given that the
information set w is consistently used for both the marginal distributions and the copula.

The copula GARCH model is proposed to model the movement dynamics and the dependence
structure conditional on the past observations. It is one particular realization of the conditional
copula theory, where the random variables X in the marginal distributions are assumed to follow
some time series models, such as the ARMA model for the conditional mean and GARCH model for
the conditional volatility.
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The conditional ARMA-GARCH model following the assumed marginal distributions is defined
as in Equation (5).

iy = aq) + ;“WH) + Z% bij)€—j) + €t
i= j=

€t = Zt0¢
z; ~ Dy(0,1)
~2 2 2 d 2
U(t) = w(p) + 121 w(i)a(tfi) + Jg ,B(j)€(t7]-) 5)

where ji; and @2 are the conditional mean and conditional variance at time ¢, respectively. r;_;(i=1...r)
is the lag r returns with parameter a;, and €; _;(j = 1...m) represents the lag m residuals in the previous
period with parameter bj. 07 ;(i = 1...p) is the lag p variance with parameter wj, and €7_ j=1.9)
is the lag q squared errors with parameter §; in the previous period. Dy(0,1) refers to the selected
probability density function of the residuals from the ARMA model, where & refers to the shape
parameters for the assumed distribution.

The estimation of the multivariate joint distributions boils down to the estimation of the
marginal distribution and the copula function. Popular methods include the inference of margins
and maximum likelihood function. It is a two-step process, where the parameters for the marginal
distributions are estimated first, then the parameters for the dependence structure characterized by
the copula function are estimated.

In the copula GARCH literature, the inference of margin is the dominant method to estimate
the parameters for the marginal distribution, while the maximum likelihood estimation method
is usually used to estimate the parameters for the dependence structure characterized by the
copula function [51].

Following the conditional Sklar theorem, in the two-dimensional case, suppose Fj, ..., F; and C
are n differentiable; the conditional density function can be obtained as in Equation (6) [50].

Hi(x1, x2|w; 0) = fre(x1|w; 61) - for(x2|w; 02) - ¢4 (uq, uz|w; 0c) (6)

where u; = Fy(x;|w), Fi(xi|w;.) = 0F;(x;|w;.)/0x;,i = 1,2 and 6, = [9’1,9,2, 9;] is a vector of
parameters of the joint density.
The log-likelihood function is defined as in Equation (7).

T T T T

Y loghs(x1g, xo¢|w;8y) = Y log fre (x1]w; 01) + Y log for (xo¢|w; 0a¢) + Y loger(u, up|w; 0:)  (7)
t=1 t=1 t=1 t=1

Typical copula functions consist of the Gaussian copula family, including the normal copula
and Student’s t copula, as well as the Archimedean copula family, including the Clayton copula, the
Gumbel copula, the symmetrized Joe-Clayton copula (SJC), and so on.

There are different performance measures available to select the optimal BEMD model
specifications, such as the scale. These include the number of exceedances, the p-value for the Kupiec
backtesting procedure and the entropy measure. The adoption of different performance measures
as the objective function may result in different model specifications determined and will critically
affect the performance of the proposed model in the out-of-sample data: choosing the number of
exceedances to minimize searches for the BEMD-copula PVaR that are more conservative and that
provides the maximal coverage of risks in the market; choosing the p-value to maximize searches
for the BEMD-copula PVaR for which statistically, the number of exceedances correspond to the
theoretical value, but risks overfitting the in-sample data, as the p-value is used as the main criteria
for the out-of-sample model performance valuation. We also propose the entropy measures as the
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objective function to minimize. This would choose the BEMD-copula model that has the lowest
level of information complexity and that provides the minimization of the information content in
the predictors, which suggests that more relevant information is captured in more orderly predictors.
As a well-defined measure of complexity in information theory, the Shannon entropy is defined as
in Equation (8).

H(Y) = E[~logp(Y)] = - [ p(¥)logp(¥)dx ®)

where H(Y) refers to the Shannon entropy of the predictor Y and p(x) refers to the Probability Density
Function (PDF). Y € R" and Y€ R" are the model forecasts and the actual observations, respectively.

4. Empirical Studies

Data Description

Among different energy markets, the Australian electricity market, also known as the Australian
Energy Market Operator (AEMO), is one of the most deregulated electricity markets worldwide,
which is subject to significant risk exposure. Different regional electricity markets are known to be
very closely related in the literature. In this paper, we use the daily average prices in the NSW and
QLD markets, two typical regional Australian electricity markets, to conduct empirical studies for the
evaluation of different models. The data are obtained from AEMO, who made the transaction and
operation data of different regional electricity markets publicly available. The dataset is constructed
using the daily arithmetic average of the original half-hour interval high frequency electricity data.
It spans from 2 January 2004 to 2 May 2014. To facilitate the carrying out of the experiment at different
stages, we adopt the 70% ratio following the machine learning literature to further divide the dataset
into a training set, a tuning set and a test set [52]. The dataset is divided into several parts to facilitate
the experiments. This corresponds to 49%, 21% and 30% of the dataset for the model training, tuning
and test set. The size of the test set is statistically large to ensure that the test results on the model
performance are statistically valid. We assume a one dollar equal holding position and a one day
holding period for the initial investment of the investment portfolio. Since our purpose is to estimate
and evaluate portfolio risk, portfolios with an equal holding position of portfolio assets are assumed.

Following the convention in the literature, we calculated the descriptive statistics of the
individual assets to demonstrate the nonlinear data features and list them in Table 1.

Table 1. Descriptive statistics and statistical tests using the training set data.

Statistics Mean Standard Deviation Skewness Kurtosis pjp  pBps

'NSW 0.0001 0.4015 —0.4325 27.2987  0.001 0
rOLD 0.0002 0.4389 —0.1961 31.6099  0.001 0

where rysw and rgrp refer to the log difference price in the NSW and QLD regions, respectively.
pjs and ppps refer to the p-value of both Jarque-Bera and Brock-Dechert-Scheinkman (BDS) test,
respectively. As expected, the descriptive statistics in Table 1 show that the market deviates from
normal and linear characteristics. We have observed significant standard deviation and kurtosis
values in both markets. The other two moments also deviate from the standard values for the normal
distribution. The slight skewness values indicate the slight asymmetric returns in the electricity
markets, which are more negative return inclined. The non-normal distribution is also confirmed
with the rejection of the test of normality and the test of independence [53,54]. This implies that we
may be able to approximate the market behavior using normal and linear models with the normal
distribution over the macro-scale and a longer period of time.
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We conducted further experiments to evaluate the existence of multiscale data features using
the forecasting performance of the proposed model as an indicator, i.e., if there exists multiscale data
characteristics, improved forecasting accuracy should be obtained due to the better model the fit of
the data. The design of the experiment is divided into two stages as follows.

Firstly, we conducted the experiment to test exhaustively the in-sample performance of the
proposed model under different model specifications and parameters, such as different copulas and
distributions. The PVaRs were forecasted, and the performance was evaluated using the model tuning
data, to show the existence of the multiscale data structure.

Particular model specification tried several different copulas, including both Gaussian and
Student’s ¢ copula, as well as the normal and Student’s t marginal distribution. This results in a
combination of four different model specifications. Although in the literature, there are other types of
copula families, such as the Archimedean copula, etc., as well as distributions, such as the binomial
distribution, the Poisson distribution, the extreme distribution, etc., the model specifications including
all of these other copulas and distributions would result in the exponentially increasing combinatory
number of different model specifications, which is intractable in the analysis. Suppose there are m
copulas and n distributions under consideration; the number of the resulting model specifications
under investigation would be m!n!. Thus, we limit our choice of copula functions and distributions
to the elliptical family, so that the purpose of the study focuses on the multiscale copula model
formulation. During the modeling process, the maximal level of the BEMD decomposition scale is
set to be five. Different criteria, including exceedances and the p-value for the Kupiec backtesting
procedure, are adopted. We assume that the decomposition model at different scales represents
redundant representation of the underlying multiscale data structure, and the performance of the
proposed model indicates the appropriateness of the multiscale decomposition structure. Thus, we
use the number of exceedances and the p-value of the backtesting procedure to indicate the model
reliability. The experiment results of the proposed model based on different parameters are listed
in Table 2.

Nj,i=1,2,3,4,5 refers to the number of exceedances of VaR estimated at scalei. p;,i=1,2,3,4,5
refers to the p-value of the Kupiec backtesting procedure at scale i. Entropy;,i=1,2, 3,4, 5 refers to the
entropy value at scale i. ECy;, ¢ refers to four different copula GARCH specifications attempted, where
the marginal distribution m can take the both Normal (N) and the Student’s t (T) distribution and
the copula ¢ can take both the Gaussian (G) and the Student’s ¢t Copula (CT). In Table 2, we can see
that the performance of the proposed algorithm varies with different parameter sets. No monotonic
relationship can be identified between the scale of the BEMD model and the performance of the
proposed model, in terms of different performance measures. In the empirical studies using the
EMD model in the literature, it is usually assumed that the high frequency component from the EMD
decomposition at higher scales corresponds to disruptive noises, while the low frequency component
from the EMD decomposition corresponds to the trend. Our result suggests an interesting alternative
finding that the noise may not necessarily correspond to the particular scale. There are subtle details
in the market microstructure, especially in the multiscale data characteristics, to be exploited for more
accurate modeling and forecasting of the price movement.

We found that different model specifications and parameters will be chosen when different
criteria are used. We use both the maximization of the p-value of the Kupiec backtesting procedure
and the minimization of the number of exceedances, as the criteria would suggest scale 2 as
the optimal decomposition scale, where the dependence structure is reconstructed with normal
marginal distributions and Student’s t copula. Both the NSW and QLD markets are efficient, while
both are more asymmetrically dependent. Using the minimization of entropy as the criteria, the
optimal performance is achieved when the dependence structure is reconstructed with Student’s
t marginal distributions and the Gaussian copula. The optimal decomposition scale is 1. Thus,
both the NSW and QLD markets are more fat tail distributed, while tail events in both markets are
asymptotically independent.
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Table 2. In-sample model performance comparisons using different performance measures.

13 of 18

Scale Ny P1 N, p2 N3 ps3 Ny P4 N5 ps  Entropyr Entropy, Entropys Entropys Entropys
95% 41.00 0.83 44.00 049 7100 0.00 70.00 0.00 86.00 0.00 6.3108 6.3500 6.2957 6.3958 6.4041
ECng 975%  26.00 0.18 28.00 0.08 50.00 0.00 53.00 0.00 5800 0.00 6.3430 6.3789 6.3275 6.3959 6.3997
99% 1400 0.05 16.00 0.01 31.00 0.00 32.00 0.00 48.00 0.00 6.3718 6.4018 6.3639 6.4138 6.4168
Average 27.00 035 2933 019 5067 0.00 51.67 0.00 64.00 0.00 6.3419 6.3769 6.3290 6.4019 6.4069
95% 4400 049 39.00 092 6300 0.00 7500 0.00 77.00 0.00 6.3025 6.3366 6.3700 6.3279 6.3397
ECycr 975% 2700 012 2400 036 41.00 0.00 49.00 0.00 55.00 0.00 6.3290 6.3657 6.3806 6.3502 6.3515
99% 14.00 0.05 14.00 0.05 28.00 0.00 2300 0.00 36.00 0.00 6.3547 6.3913 6.4023 6.3840 6.3746
Average 2833 022 2567 044 4400 000 49.00 0.00 56.00 0.00 6.3287 6.3645 6.3843 6.3540 6.3553
95% 35.00 044 36.00 055 51.00 0.08 61.00 0.00 56.00 0.01 6.2977 6.3210 6.3782 6.4204 6.4400
ECrg 975%  27.00 012 2600 0.18 39.00 0.00 53.00 0.00 48.00 0.00 6.3142 6.3504 6.3859 6.4138 6.4344
99% 20.00 0.00 16.00 0.01 29.00 0.00 38.00 0.00 38.00 0.00 6.3311 6.3739 6.3975 6.4151 6.4376
Average 2733 019 2600 025 39.67 003 5067 000 4733 0.00 6.3143 6.3484 6.3872 6.4164 6.4373
95% 32.00 020 37.00 0.66 53.00 0.04 5500 0.02 66.00 0.00 6.3874 6.3371 6.3761 6.4241 6.4641
ECrcr 975%  25.00 026 27.00 0.2 41.00 0.00 44.00 0.00 52.00 0.00 6.3854 6.3575 6.3813 6.4162 6.4384
99% 16.00 0.01 18.00 0.00 31.00 0.00 31.00 0.00 43.00 0.00 6.3899 6.3795 6.3865 6.4219 6.4314
Average 2433 016 2733 026 4167 001 4333 001 53.67 0.00 6.3876 6.3580 6.3813 6.4207 6.4446
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These results show that there are different multiscale models to describe the same data with the
multiscale characteristics. This is where the classical information criteria, such as Akaike Information
Criterion (AIC), do not apply, as the information criteria can not accommodate the newly-introduced
scale parameters. More importantly, different models and parameters determined offer drastically
different insights into the market structure and the accuracy of the follow-up analysis. For example,
we show that two models selected using different criteria would lead to contradicting market
efficiency levels, with one being efficient and the other one being not efficient. Any follow-up analysis
based on either model would be arbitrary and unreliable without proper analysis and statistical tests
of the model specifications and parameters.

Secondly, since there are different model specifications available to explain the observed data,
further experiments are conducted to identify the optimal model specifications and parameters for
the proposed model, as well as the best criteria between the Kupiec backtesting procedure and the
entropy to determine the model specifications and parameters. PVaRs were forecasted based on
the determined optimal model specifications under the Kupiec backtesting procedure and entropy
measure. It was evaluated to determine which criteria would lead to the optimal performance, against
the traditional benchmark models, using the out-of-sample dataset. The benchmark models include
EWMA and DCC-GARCH as the two most robust and widely-accepted models in the literature. The
performance measures include the number of exceedances, the p-value of the Kupiec backtesting
procedure and the Mean Squared Errors (MSEs).

Experiment results using current models are listed in Table 3.

Table 3. Predictive accuracy comparison of different models.

Models CL N Pxr MSE
99% 7 0.1642  0.8110
EWMA 97.5% 9 0 0.5863
95% 12 0 0.43238
Average 48 0.0547  0.6070
99% 4 0 0.3054
DCC-GARCH 97.5% 5 0 0.2247
95% 7 0 0.1665
Average  3.3333 0 0.2322
99% 26 0.0002  0.5934
BEMD-Copulay,p 97.5% 38 0.0799  0.4490
95% 66 0.2137  0.3452
Average 43.3333 0.0979  0.4625
99% 13 0.6261  0.7609
BEMD-Copulagptropy 97.5% 22 0.2106  0.5740
95% 36 0.0026  0.4381

Average 23.6667 0.2798  0.5910

where BEMD-Copula;,j = n,p,entropy refers to the BEMD-copula model with the parameters
determined using the number of PVaR exceedances, the p-value of the Kupiec backtesting and the
entropy measure, respectively. CL refers tot the Confidence Level.

From experiment results in Table 3, we found that overall, the proposed model using the
entropy criteria would achieve the optimal forecasting accuracy. The proposed model using the
entropy measure achieves better performance than the one using other performance measures.
Compared to the proposed model, the benchmark EWMA model shows inferior performance. The
DCC-GARCH model shows better MSE at the cost of the worse reliability measures. Thus, the optimal
multiscale structure determined with the optimal out of sample performance would be the model
with parameters determined using the minimum entropy criteria. This also shows that the accuracy of
the multiscale models affects critically the forecasting performance of the multiscale-based forecasting
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models, as well as the empirical analysis based on the extended multiscale analysis. This result
shows that the multiscale dependence structure contributes significantly to the explanation and
forecasting of the risk evolution. Incorporating this information would help to improve the estimation
accuracy and reliability. It would also provide insights to the microstructure of the electricity market
dependence and risk evolution.

We found that the entropy value serves as a better generalizing performance measure in model
determination, compared to the p-value and the number of exceedances commonly used to evaluate
the model performance. This implied that the model chosen with either the number of exceedances
or p-value maximization may over-fit the data. The selected model may be optimal over the training
data, but become sub-optimal outside the training data window. In this experiment, the use of the
p-value implies that the model producing more conservative risk measures is preferred. The superior
performance of the model chosen with minimizing this measure implies that the markets become
more volatile over time, while a more conservative risk measure may lead to less VaR violations.
Meanwhile, the specific model chosen in the end suggests that the multivariate distribution of
bivariate electricity assets does not confirm the standard multivariate ¢ distribution. The marginal
distributions are different t distributions characterized by different degrees of freedom, while their
dependence structure is the Gaussian copula. Thus, the modeling of the empirical distribution of
electricity prices would require the separation and modeling of its different marginal distribution
and the modeling of the time varying dependence structure.

These results have some further economic and financial implications. We found that the bivariate
electricity distribution is best described by the Gaussian copula with the t marginal distribution.
This suggests that the dependence structure among different electricity markets is less correlated or
dependent. The electricity market is fat tailed distributed. This suggests that extremes and transient
events prevail in the markets. An interesting observation is that each electricity market has different
degrees of freedom. This suggests that each market is subject to different market mechanisms and
different degrees of prevalence of extremes and transient events, in addition to the common risk
factors in Australia in general.

5. Conclusions

In this paper, we proposed a multiscale dependence structure methodology for estimating
portfolio value at risk in the energy markets. We introduced the BEMD model as one typical example
of the multiscale model to extract and model different degrees of dependence structure across scales.
The entropy theory is introduced to identify the scale where the noises reside and to remove them
from the constructed PVaR risk measure modeling. We further conducted the empirical studies using
the extensive dataset in the Australia electricity market. Experiment results show that the proposed
multiscale-based model would achieve improved forecasting performance against the traditional
benchmark models. We found that the electricity market is characterized by the multiscale data
features. We also found that entropy theory serves as more appropriate measure for the identification
of the multiscale data feature.

Work in this paper made some important contributions and provided further implications for
the energy risk measurement modeling literature. Firstly, our results in this paper suggest that
the multiscale methodology serves as a viable approach for more accurate risk measurement in
the electricity market. The proposed multiscale methodology represents a significantly changing
paradigm for the multiscale modeling of the finer structure in the energy markets. Secondly, we
identified some arising modeling issues and attempted to provide some initial solutions. The
multiscale modeling methodology incorporates into the modeling process the extra micro-scale
market information only available in the time scale analysis. Since the scale serves as one particular
criterion for human perceptions of the market microstructure, the proposed multiscale methodology
provides an important alternative approach linking the scale of different risk factors with the
assumptions in the modeling methodology. Thus, the determination of the multiscale model
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specifications and parameters under the new assumptions is a difficult research problem. This paper
makes contributions to the entropy theory introduced as the alternative solution.
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