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Abstract. A new, fully automated method for non-rigid registration of multi-
modal images is presented. Due to the large interdependance of segmentation
and registration, the approach is based on simultaneous segmentation and
edge-alignment. The two processes are directly coupled and thus benefits
from using complementary information of the entire underlying dataset. It is
formulated as a variational joint free discontinuity problem in the Mumford-
Shah framework, with respect to a geometric variable describing the contour
set and a functional variable which represents the underlying deformation.
The contour set is represented by a level-set function. We derive a regularized
gradient flow and describe an efficient numerical method using and Finite
Element discretization and multigrid techniques. Finally, we illustrate the
method in several applications, such as multi-modal intra-patient registration
and reconstruction by registration to a reference object.

1. Introduction

The registration, i. e. the spatial alignment of images is a fundamental problem in
image processing. Given a pair of images, a template and a reference image, it aims
at finding a suitable transformation of the template image, such that it is as similar
as possible to the reference image. The requirement to register two data sets occurs
in various applications, especially in medicine, geophysics and computer vision. In
the last two decades there has been a steep increase in variety as well as quality
of modern (especially medical) imaging technology, thus making a large amount
of information, either anatomical (e. g. computed tomography (CT), magnetic
resonance imaging (MRI), ultrasound, densiometry computer tomography (DXA))
or functional(e. g. functional MRI, positron emission tomography (PET,SPECT))
available for clinical routine. The spatial correspondence of the different images is of
significant benefit to the clinician, since the whole spectrum of sensoring technology
provides images with complementary information. For instance, in radiotherapy
treatment planning, CT is mainly used, while MRI allows a detailed analysis of the
tumor tissue.

On the other hand, the transformation (the spacial correspondence of like points)
itself can provide additional information. A transformation between subsequent
images obtained at a very low temporal resolution can give insight into growth
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processes of characteristic objects found in the image. In this context, the vari-
ability of subsequent image acquisitions may be substantial, leading to difficulties
for differential approaches as e.g. optical-flow estimation. Furthermore, the result-
ing transformation of a registration to a healthy reference dataset may be useful
to measure the extent of the pathology of the individual patient. Scale-space and
multi-resolution methods have become a widely used methodology for variational
registration approaches [21, 35, 36, 47] and a wide range of regularization techniques
and similarity measures are known [26, 39, 44, 46, 48, 62].

Depending on the nature of the underlying input data, the richness of the space
of possible deformation plays an important rôle. If it is a-priori known that the
given multichannel data can be registered by a rigid transformation, the unknowns
within the representation are only the offset and angle of the rigid transforma-
tion. In that case, regularity of the deformation is automatically guaranteed by
the choice of the space of admissible functions. In many applications, especially
interpatient-registration, it is, however, of crucial importance to choose a space
of higher resolution in order to be able resolve local variations in fine geometri-
cal details, offering the possibility of a comprehensive analysis of the deformation
field. In case of medical time series analysis of a single patient, growth processes of
pathological objects such as tumors are of significant interest for diagnosis as well as
surgery-planning. In what follows the computational resolution of the discretization
of the deformation will be the same as the resolution of the input images, allowing
a registration of details of pixel accuracy. However, we want to point out, that
different (coarser) spaces of deformations may be incorporated in a straightforward
manner.

The paper is organized as follows. In Section 2 the approach of coupling registra-
tion to segmentation by the Mumford-Shah functional is formulated as a variational,
joint free discontinuity problem. Furthermore different regularization techniques are
discussed. In Section 3 we present the necessary shape sensitivity analysis by using
the conceptional framework of shape derivatives. This eventually leads to the for-
mulation of a gradient flow equation for the given cost functional. To stabilize the
shape gradient method, we propose regularizations for both, the descent directions
for the shape variable, and the functional variable. This is done in Section 4. In
Section 5 we will describe the actual algorithm to compute stationary points of the
variational formulation proposed in Section 2. Composite Finite Elements (CFEs)
as introduced by Sauter and Hackbusch [34] (see also [56, 61]) provide an elegant
approach for the discretization of PDE’s on complicated domains and, further, al-
low to circumvent numerical difficulties for problems with discontinuous coefficients,
especially in the context of multigrid solvers. Since we will treat the variational for-
mulation as a shape optimization problem with contours evolving according to the
shape analysis, and — as it turns out — certain elliptic PDE’s have to be solved in
every gradient step, we chose the CFE framework to incorporate efficient multigrid
solvers. This is described briefly in Section 6. Finally, computational results are
presented in 7 and a final conclusion is drawn in Section 8.

2. Problem Formulation

The aim of this paper to find a registration between two given two- or three-dim-
ensional images based on a matching of the edges in the images. In their pioneering
paper, Mumford and Shah [50] introduced the following energy functional:

(2.1) EMS(u,Γ) = µ

∫

Ω

(u− ud)2 dx +
∫

Ω\Γ
|∇u|2 dx + αHn−1(Γ)
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where ud is a given image defined on an open bounded set Ω ⊂ Rn and u is
aimed to be a approximation of ud which should be smooth on Ω \ Γ, where Γ
is the set of potential edges (i.e. subsets of Hausdorff dimension n − 1 located
at singularities of the given image). Here Hn−1 denotes the n − 1 dimensional
Hausdorff measure and µ, α are positive weights, which control the balance between
data fit, regularization of the reconstruction u on Ω \ Γ, and the length of the
contour Γ respectively. Existence theory for (2.1) was established after De Giorgi,
Carriero and Leaci [27] proposed to consider the minimization of an equivalent
energy depending on u only.In this formulation, the energy given by an integral over
the entire domain Ω and Γ is represented by Su the complement set of Lebesgue
points of u, i. e. the measure theoretic discontinuity set of u. It can be proved
(cf. Ambrosio, Fusco, Pallara [1, 8]) using compactness of SBV (Ω) and lower-
semicontinuity theorems, that — under mild conditions — there exists a solution
u ∈ SBV (Ω) with Hn−1(Su) <∞. From the numerical point of view, discretizing
the singularity set poses a serious problem. Various approximations Eε of the
Mumford-Shah functional have been introduced and Γ-convergence results have
been proved (cf. e. g. [2, 3, 6, 55]). Ambrosio and Tortorelli [3], for example,
proposed a phase-field type regularization and introduced an auxiliary variable
which itself is regularized by an elliptic functional. Here, we refer to Feng and
Prohl [32] for the numerical analysis of the phase-field approximation. Bourdin
and Chambolle [7] proved Γ-convergence of the discretized finite element schemes.

The Mumford-Shah model has turned out be very versatile and has been ex-
tended and applied in various ways [15, 23, 24, 25, 49, 59]. Esedoglu and Shen
[30] suggested an inpainting method based on the Mumford-Shah idea. Further
modifications have been made concerning the data-fit term in the Mumford-Shah
functional, where the simple L2 distance has been replaced by more elaborate data-
fit criteria [].

In this paper we shall use a Mumford-Shah idea for simultaneously finding the
singularity sets in two given images and mapping the respective sets (and with them
the two images) onto each other. We do not use a reformulation of the Mumford-
Shah functional in the sense of De Giorgi, Carriero and Leaci [27]. Instead, we will
discretize the discontinuity set Γ directly by a level-set function. For the purpose of
segmentation and registration we can confine to simple interface sets, which can be
elegantly described and propagated via the level-set approach of Osher and Sethian
[53, 54]. Level set methods have been successfully applied in various geometric
segmentation models [17, 12, 13, 41, 45, 52, 60]. In [37] Hintermüller and Ring
have derived a Newton-Type regularized optimization algorithm for minimizing
the Mumford-Shah functional by representing Γ by a level-set function.

In our approach to the segmentation-registration problem, the edge sets in the
images are found as minimizers of Mumford-Shah functionals and mapped onto
each other by the registration mapping Φ. To be more precise, the edge sets are
found in such a way that a level-set encoded contour describes the edge set in the
reference image, and, simultaneously, a transformation of the contour by a regular
deformation matches the edge set of the template image. This is demonstrated in
Figure 2, where only a small part of the edges actually overlap. We emphasize that
this viewpoint is different from splitting this process into successively identifying
the edge sets first and determining the corresponding deformation which maps these
sets onto each other afterwards.

Naturally, the strategy described above would determine the registration map
only on the edge set. Therefore, an energy term acting on Φ is added to the
Mumford-Shah energy to ensure uniqueness for the registration mapping away from
the edge set. As mentioned above, we choose the formulation of the Mumford-Shah
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Figure 1. Multimodal complementary registration. The two im-
ages on the left show the initial contour Γ in the images R and T
where the initial deformation is the identity. On the right of the
initial images, the resulting contours, coupled by the deformation
(right image) are shown after 75 steps of the regularized gradient
descent.

energy which is defined for independent geometric and functional variables as e.g.
described in [4, Section 4.2.1]. In this formulation, the problem of minimizing
the Mumford-Shah functional can be treated as a shape optimization problem and
solved numerically using level-set techniques [16, 17, 18, 37]. More precisely, we
consider the following functional

(2.2) EMS(Γ,Φ, R, T ) =
1
2

∫

D

|R−R0|2 dx +
µ

2

∫

D\Γ
|∇R|2 dx

+
1
2

∫

D

|T − T0|2 dx +
µ

2

∫

D\ΓΦ
|∇T |2 dx + αHN−1(Γ)

(the additional regularization term on Φ is omitted for the moment). Here D ⊂
RN is the domain of definition of the images with N = 2, 3, the data T0 and
R0 are the given template images, Γ ⊂ D is (an approximation of) the edge set
of the given image R0 and ΓΦ = Φ(Γ) is the transformed edge-set Γ under the
transformation Φ. Strictly speaking, the term ”edge sets of the data images”, does
not make sense, since the input images only have to be in L2. When using this
term we mean (approximations of) the measure theoretic discontinuity sets of the
SBV functions R and T which approximate R0 and T0 in the Mumford-Shah sense.
In the following we make the simplifying assumption that Γ = ∂Ω for an open set
Ω with Ω ⊂ D. This assumption is justified if the edge-sets in the data are related
to object boundaries as it is usually the case in medical data sets.

Let us point out here, that different approaches can be used to drive the contour
Γ towards the significant features of the images. A geodesic active contour model as
proposed by Caselles, Kimmel and Sapiro [14], would e.g. lead to a coupled energy
of the form

(2.3) Eac(Γ,Φ) =
∫

Γ

gRdHn−1 + ν

∫

Ω

gR dx +
∫

ΓΦ
gT dHn−1 + ν

∫

Ω

gT dx,
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where gR and gT are suitable edge detectors for the images R and T . A common
choice is, for example, gI(x) = 1

1+s|∇I|2 , s > 0 with I = R or I = T . The idea
of coupling segmentation with registration has also been proposed by Yezzi, Zöllei
and Kapur [40].

As already pointed out, the transformation Φ is not uniquely determined by the
functional (2.2). Thus, an additional regularization term Ereg is necessary. Writing
the transformation Φ = id+d with a displacement vector field d : D → R2, we use
d as optimization variable instead of Φ. We set

(2.4) E(Γ,d, R, T ) = EMS(Γ,d, R, T ) + νEreg(d)

In the following we will use Φ and d synonymous to denote the transformation.
There is a wide range of different choices of regularizations energies in the litera-

ture. Apart from adding a Dirichlet-integral which corresponds to a regularization
as proposed by Horn and Schunk in [38] and anisotropic inhomogenous regulariza-
tions introduced by Nagel and Enkelmann in [51] – both originally appearing in
the optical-flow context – linearized elastic regularizations are widely used. In [29]
Droske and Rumpf proposed a nonlinear elastic polyconvex regularization energy
[19] of the form

(2.5) Ereg(d) =
∫

Ω

α‖∇d‖p + β‖Cof ∇d‖q + γ(detd) dx,

where γ(s) →∞ for s→ 0,∞. This approach allows to utilize injectivity techniques
for elasticty introduced by Ball [5] in order to ensure that the resulting deformation
is a homeomorphism. In the context of aligning feature sets this is particularly
important, since we want the transformed contour ΓΦ to have the same topology
as Γ. An extensive discussion of appropriation regularization terms penalizing the
departure from rigidity in the context of image registration can be found in Keeling
and Ring [42].

At this point of the investigation, the study of different regularization strategies
is not our major objective. For the sake of simplicity we will use the Dirichlet
integral

(2.6) Ereg(d) = ‖d‖2H1
0(D) =

∫

D

‖∇d‖2 dx,

as regularization term for the remainder of this paper.

2.1. The reduced functional. The functional (2.4) is quadratic in the variables
R and T . It is therefore possible to minimize E with respect to R and T for fixed Γ
and d by solving a linear optimality system. With this, we can consider the reduced
functional

(2.7) Ê(Γ,d) = E(Γ,d, R(Γ), T (Γ,d)),

where R(Γ) and T (Γ,d) denote the minimizers of (2.4) for fixed Γ and d with
respect to R and T . It is obvious that R(Γ) depends only on Γ, whereas T (Γ,d)
depends also on d via the domain of integration D \ Γd = D \ ΓΦ(d) in the last
term in (2.2). If we specify the functional spaces for the variables R and T as
R ∈ H1(D \ Γ) and T ∈ H1(D \ Γd), we find R(Γ) and T (Γ,d) as solutions to the
systems of optimality conditions

〈∂E
∂R

,ϕ
〉

(H1(D\Γ))∗,H1(D\Γ)
= 0 for all ϕ ∈ H1(D \ Γ);

〈∂E
∂T

, ψ
〉

(H1(D\Γd))∗,H1(D\Γd)
= 0 for all ψ ∈ H1(D \ Γd).

(2.8)
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This yields

(2.9) µ

∫

D\Γ
〈∇R(Γ),∇ϕ〉dx +

∫

D\Γ
R(Γ)ϕdx =

∫

D\Γ
R0 ϕdx

for all ϕ ∈ H1(D \ Γ) and

(2.10) µ

∫

D\Γd

〈∇T (Γ,d),∇ψ〉dx +
∫

D\Γd

T (Γ,d)ψ dx =
∫

D\Γd

T0 ψ dx

for all ψ ∈ H1(D \ Γd).

3. Sensitivity Analysis

In this section we derive the expressions for the derivatives 〈∂Ê
∂d , δ〉 and dE ((Γ,d), F ).

The latter expression denotes the Eulerian derivative of the functional Ê in direc-
tion of a perturbation vector field of the form F nΓ, where nΓ is the exterior unit
normal vector field to Γ. We assume that Γ = ∂Ω ⊂ D and we specify the exterior
direction with respect to Ω. See [58, 28] for the concepts of classical shape sensi-
tivity analysis, [37, Appendix A.1] and [?, 9] for a more level-set based derivation
of the classical results. We refer also to [11], where a framework is presented which
includes the concept of topological derivative into level-set methods.

3.1. Basic shape derivative formulas. Let us give a brief overview on the cal-
culus of variations for energies which depend on a geometric variable as e.g. a
subdomain Ω, of a fixed domain D or a submanifold Γ of D. For a smooth vector-
field ~V : D → Rn with Ω ⊂ D let us first consider the initial value problem

X ′(t) = ~V (X(t))(3.1)
X(0) = X0

for X0 ∈ D. The flow Tt : Ω → Rn (with respect to ~V ) is then defined as Tt(x) =
X(t) where is X(t) is the solution of (3.1) with X0 = x. For a functional E : E → R,
and a fixed perturbation vectorfield ~V , the Eulerian derivative is defined by

(3.2) dE(Γ; ~V ) = lim
t↘0

E(Tt(Γ))− E(Γ)
t

provided that the limit exists. Here E ⊂ 2D denotes a suitable set of geometrical
variables. The functional E is said to be shape-differentiable at Γ if the limit exists
for all ~V ∈ B and if dE(Γ) ∈ B′ i.e. dE(Γ) is a bounded linear functional on B,
where B is a Banach space of perturbation vector fields. The analogous definitions
apply to functions E(Ω) depending on open sets, not on submanifolds. We will
need the following result [58].

Lemma 1. Let Γ be a C2-hypersurface, and f ∈ H2
loc(Rn). Then the functional

E(Γ) =
∫

Γ

f dHN−1

is shape differentiable for any perturbation ~V ∈ C1
0(Rn) and the shape derivative is

given by

E(Γ; ~V ) =
∫

Γ

(
∇f · ~V + f divΓ

~V
)

dHN−1(3.3)

=
∫

Γ

( ∂f

∂nΓ
+ f κ

)
~V · nΓ dHN−1(3.4)

where nΓ denotes the normal to the interface Γ and κ is the additive curvature of
Γ.
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Definition 1 (material derivative). We consider a family of (sufficiently smooth)
open sets F and we suppose that we are given f(Ω) ∈ B(Ω) for each Ω ∈ F , where
B(Ω) is some Banach space of functions on Ω. Let us fix Ω0 ∈ F and suppose that
~V ∈ C1

0(Rn,Rn) be given. We set Ωt = Tt(Ω0) and assume that f(Ωt) ∈ B(Ωt).
The limit

ḟ = lim
t↘0

f(Ωt) ◦ Tt − f(Ω0)
t

is called the (weak) material derivative, if it exists in the strong (weak) topology
on B(Ω0).

Definition 2 (shape derivative). If the weak material derivative and the expression
∇f(Ω) · ~V exist in B(Ω), then we set

f ′(Ω; ~V ) = ḟ(Ω; ~V )− 〈∇f(Ω), ~V 〉
and call it the shape derivative of f at Ω in direction V .

In the next section we will also need the following result [58]:

Proposition 1. Let f(Ω) be given such the weak L1-material derivative ḟ(Ω; ~V )
and the shape derivative f ′(Ω; ~V ) ∈ L1(Ω) exist. Then, the functional

E(Ω) =
∫

Ω

f(Ω,x) dx

is shape differentiable and the derivative is given by

dE(Ω; ~V ) =
∫

Ω

f ′(Ω; ~V ) dx +
∫

Γ

f 〈~V ,nΓ〉dHN−1.(3.5)

It can be shown (see [58]) that the various concepts of (first) derivatives with
respect to a geometric variable depend on the direction of perturbation V only via
its projection

(3.6) F = 〈~V ,nΓ〉
onto the normal direction to Γ. We therefore subsequently write dE(Γ;F ) instead
of dE(Γ;V ) and likewise for the other types of derivatives.

3.2. The first variation of the energy. In the following, we frequently use the
coordinate transformation x 7→ y = Φ(x) = x+d(x) to switch between representa-
tions on the transformed and on the original configuration. Finding first variations
of the functional (2.4) with respect to the geometry Γ requires differentiation with
respect to Γ of functionals

∫
Ω
g dx and

∫
Φ(Ω)

h dx, respectively where ∂Ω ⊂ Γ. For
integrals of the first type, the results of Section 3 directly apply. Suppose that Tt(x)
is a flow map which defines a perturbation of Γ with corresponding vector field ~V .
Then the perturbation of ΓΦ is given by the flow map St(y) = Φ

(
Tt(Φ−1(y))

)
. The

corresponding perturbation vector field has the form ~W (y) =
(∇Φ · ~V )

(Φ−1(y)).
With this, we can apply the results of Section 3 to integrals defined in the trans-
formed configuration. For later use, we recall the following transformation formulas
[20]:

(3.7a) nΓΦ(y) =
Cof ∇Φ(x) · nΓ(x)
‖Cof ∇Φ(x) · nΓ(x)‖ ,

(3.7b) FΦ := 〈 ~W (y),nΓΦ(y)〉 =

det∇Φ(x)
‖Cof ∇Φ(x) · nΓ(x)‖ 〈

~V (x),nΓ(x)〉 =
det∇Φ(x)

‖Cof ∇Φ(x) · nΓ(x)‖ F,
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(3.7c)
∫

ΓΦ
g dHN−1 =

∫

Γ

g ◦ Φ ‖Cof ∇Φ · nΓ‖ dHN−1,

where Cof A ∈ Rn×n denotes the cofactor matrix of a matrix A ∈ Rn×n.
Proposition 1 (see also [58, Section 2.31]) implies that

(3.8) dÊ ((Γ,d);F ) =
1
2

∫

Γ

(
J|R(Γ)−R0|2K+ µJ|∇xR(Γ)|2K

)
F dHN−1

+
1
2

∫

ΓΦ

(
J|T (Γ,d)− T0|2K |+ µJ|∇yT (Γ,d)|2K

)
FΦ dHN−1

+
〈∂E
∂R

,R′F
〉

(H1(D\Γ))∗,H1(D\Γ)
+

〈∂E
∂T

, T ′FΦ

〉
(H1(D\ΓΦ))∗,H1(D\ΓΦ)

+
∫

Γ

κF dHN−1,

where J·K denotes magnitudes of jump discontinuities across Γ (from inside to out-
side) and across ΓΦ respectively. As above κ is the additive curvature of Γ, R′F and
T ′FΦ are the shape derivatives of R and T in direction to the perturbation given by
F and FΦ respectively. It can be shown (using the techniques described in [58, Sec.
3.2 and 2.29]) that R′F is solution to the inhomogeneous Neumann-type boundary
value problems

∫

Ω̃

(
µ〈∇R′F ,∇ϕ〉+R′F ϕ

)
dx = −

∫

∂Ω̃

(
µ〈∇ΓRF ,∇Γϕ〉+ (RF −R0)ϕ)F dHN−1

on each connected component Ω̃ of D \ Γ and for all ϕ ∈ H1(Ω̃). An elliptic
regularity result then shows that the solution R′F |Ω̃ ∈ H1(Ω̃) for each connected
component Ω̃ of D \ Γ and hence R′F ∈ H1(D \ Γ). Analogously we obtain T ′FΦ

∈
H1(D \ ΓΦ). Here we need to assume that the transformation Φ is sufficiently
smooth. Consequently, we can use R′F and T ′FΦ

as test functions in (2.8) to conclude
that the last two terms in (3.8) vanish. Transforming all expressions in (3.8) onto
the undeformed configuration (using (3.7)) and replacing Φ by id + d yields

dÊ ((Γ,d);F ) =
1
2

∫

Γ

(J|R(Γ)−R0|2K+ µJ|∇R(Γ)|2K) F dHN−1

+
1
2

∫

Γ

(q|T (Γ,d)− T0|2 ◦ (id + d)
y
+

µ
q|∇T (Γ,d)|2 ◦ (id + d)

y) |det(I +∇d)|F dHN−1

+ α

∫

Γ

κF dHN−1.

(3.9)

We now consider variation with respect to the displacement d. The cost func-
tional depends on d via the domain of integration D \ Γd and implicitly via
T (Γ,d). The perturbation of the geometry has the form Γd+t δ = Γd + t δ(Γ) =
Γd + t

(
δ ◦ (id + d)−1(Γd)

)
. It can be shown [28, Chapt. 7] that this perturbation

is equivalent to a perturbation of Γd with the velocity vector field δ ◦ (id + d)−1.
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We can therefore apply the results in Section 3 to obtain

〈∂Ê
∂d

, δ
〉

=
〈∂E
∂T

, T ′
(
Γd, δ ◦ (id + d)−1

)〉
(H1(D\Γd))∗,H1(D\Γd)

+
1
2

∫

Γd

(J|T (Γ,d)− T0|2K+ µJ|∇T (Γ,d)|2K) 〈δ ◦ (id + d)−1,nΓd〉 dHN−1

+ ν
〈∂Ereg

∂d
, δ

〉
.

As above we argue that T ′
(
Γd, δ ◦ (id + d)−1

) ∈ H1(D \ Γd) and the first term
vanishes due to (2.8). If the regularization term (2.7) is used, the Frèchet derivative
of Ê with respect to d in direction δ reads as

〈∂Ê
∂d

, δ
〉

=

1
2

∫

Γd

(J|T (Γ,d)− T0|2K+ µJ|∇T (Γ,d)|2K) 〈δ ◦ (id + d)−1,nΓd〉 dHN−1

+ ν

∫

D

∇d : ∇δ dx,

(3.10)

where ”:” stands for the matrix tensor product, i.e. the scalar product corresponding
to the Frobenius norm.

We have not yet specified the function space for the displacement field d. The
natural choice corresponding the choice of the regularization Ereg would be d ∈
H1

0(D) = H1
0 (D,Rn). For the application of shape sensitivity results, however, we

need more regularity for the transformation Γ 7→ (id + d)(Γ). This issue will be
discussed later on when we define updates for the displacement d.

4. Choice of a Descent Direction

We now address the question of finding an appropriate descent direction, i.e. a
direction δd ∈ H1

0(D) and a scalar function Fd defined on Γ such that

(4.1)
〈∂Ê
∂d

, δd

〉
< 0 and dÊ ((Γ,d);Fd) < 0.

The descent directions δd and Fd are found by minimizing the linear approxima-
tions over the unit sphere of appropriate function spaces in which the admissible
directions are chosen. This idea is closely related to the approach chosen in [21, 22],
where the descent direction is determined with respect to a regularizing metric. In
our case the metric is the scalar product of the adequately chosen Hilbert space.
We leave the question of choice of the correct function space for Fd open for the mo-
ment and start with finding a descent direction with respect to d. We say that δd

is the direction of steepest descent for Ê with respect to d and the metric induced
by the H1

0(D)-norm iff δd is solution to the constrained optimization problem

(4.2) min
δ∈H1

0(D)
‖δ‖

H1
0(D)=1

〈∂Ê
∂d

(Γ,d), δ
〉
.
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Note that
〈

∂Ê
∂d (Γ,d), ·〉 defines a bounded linear functional on H1

0(D) provided that
d is smooth enough. To solve (4.2), we introduce the Lagrange function

Lf (δ, λf ) =
1
2

∫

Γd

(J|T (Γ,d)− T0|2K+ µJ|∇T (Γ,d)|2K) 〈δ ◦ (id + d)−1,nΓd〉 dHN−1

+ ν

∫

D

∇d : ∇δ dx + λf

(∫

D

|∇δ|2 dx− 1
)
.

The optimality system for (4.2) reads as ∂Lf

∂δ (δd, λd) = 0 and ∂Lf

∂λf
(δd, λd) = 0.

Therefore, the direction of steepest descent δd is found as the solution to

(4.3)
∫

D

∇δd : ∇ξ dx = − 1
λf

(
ν

∫

D

∇d : ∇ξ dx

+
1
2

∫

Γd

(J|T (Γ,d)− T0|2K+ µJ|∇T (Γ,d)|2K) 〈ξ ◦ (id + d)−1,nΓd〉 dHN−1

)

for all ξ ∈ H1
0(D), where the multiplier λf is chosen such that ‖δd‖H1

0(D) = 1.
Alternatively one might want to allow δd ∈ H1 instead of prescribing homoge-

nous Dirichlet conditions, which can be particularly important in case of large
translations between the reference and the template image. Then δd is given as
solution of

(4.4)
∫

D

(〈δd, ξ〉+∇δd : ∇ξ
)
dx = − 1

λf

(
ν

∫

D

∇d : ∇ξ dx

+
1
2

∫

Γd

(J|T (Γ,d)− T0|2K+ µJ|∇T (Γ,d)|2K) 〈ξ ◦ (id + d)−1,nΓd〉 dHN−1

)

for all ξ ∈ H1(D).
Application of the transformation rules (3.7c) and (3.7b) to the surface integral

on the right hand side of (4.3) and (4.4) yields
(4.5)

1
2

∫

Γ

(J|T (Γ,d)− T0|2K+ µJ|∇yT (Γ,d)|2K ◦ (id + d)
) 〈ξ,Cof ∇d · nΓ〉 dHN−1

for these terms.
We now make a few comments concerning the regularity of the displacement d.

The update δd which solves (4.3) is a function in H1
0(D) which — in general —

does not possess much additional regularity since the source term is a distribution
which is localized on Γ thus introducing a singularity δd along Γ. For the shape
sensitivity results above to hold we need that the displacement is smooth in every
step. To circumvent this difficulty, we can replace δd by a smooth approximation δε

d

for the actual update of the transformation. If the approximation is close enough in
the H1

0(D)-norm the descent property (4.1) will still be satisfied and the theoretical
arguments are justified. In the numerical realization it turns out that smoothing
of the transformation is not necessary.

To find a descent direction for the geometrical variable Γ, we first have to spec-
ify the function space and the corresponding metric for the update direction Fd.
By choosing the update direction δd ∈ H1

0(D), the movement of the transformed
geometry Γd 7→ Γd+tδd corresponds to a movement in normal direction with speed
function given by

Fδd
= 〈δd,nΓd〉 ∈ H 1

2 (Γd).

It is therefore natural to choose the descent direction F also with respect to the H
1
2 -

norm on Γ. This choice should give a good balance between the descents achieved
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by moving the geometrical variable Γ and the functional variable d respectively.
More precisely, we choose the descent direction Fd as solution to the problem

(4.6) min
F∈H

1
2 (Γ)

‖F‖
H

1
2 (Γ)

=1

dE
(
(Γ,d), F

)
.

We introduce again a Lagrange function

Lg(F, λg) = dÊ ((Γ,d);F ) + λg

(
‖F‖2

H
1
2 (Γ)

− 1
)
.

The optimality system for Fd has then the form

(4.7) (Fd, G)
H

1
2 (Γ)

= − 1
λg
dÊ ((Γ,d);G)

for all G ∈ H
1
2 (Γ). To evaluate the inner product (·, ·)

H
1
2 (Γ)

we consider the
boundary value problem

−∆v + v = 0 on Ω
∂v

∂n

∣∣∣
Γ

= H ∈ H− 1
2 (Γ).

(4.8)

Here Ω ⊂ D is chosen such that Γ = ∂Ω. In the level-set context below, Ω can be
chosen as the set of all point with negative function values of the level-set function.
The weak formulation for (4.8) is given by

(4.9)
∫

Ω

(〈∇v,∇ϕ〉+ v ϕ
)
dx =

〈
H,ϕ|Γ

〉
H− 1

2 (Γ),H
1
2 (Γ)

for all ϕ ∈ H1(Ω). We define the Neumann-to-Dirichlet map for the operator
−∆ + id on Ω as the linear operator N : H− 1

2 (Γ) → H
1
2 (Γ) which maps H in (4.8)

to the Dirichlet trace v|Γ of the solution to (4.8). It is well known (see [43]) that
N is an isomorphism and that the inner product on H

1
2 (Γ) can be defined as

(F,G)
H

1
2 (Γ)

= 〈N−1F,G〉
H− 1

2 (Γ),H
1
2 (Γ)

.

With this, we can write (4.7) as

〈N−1Fd, G〉
H− 1

2 (Γ),H
1
2 (Γ)

= − 1
λg
dÊ ((Γ,d);G)

for all G ∈ H 1
2 (Γ). If we use (3.9), we obtain

Fd = − 1
λg
NFg with

Fg =
1
2

(
J|R(Γ)−R0|2K+ µJ|∇R(Γ)|2K

+
(q|T (Γ,d)− T0|2 ◦ (id + d)

y
+ µ

q|∇T (Γ,d)|2 ◦ (id + d)
y) |det(I +∇d)|

)

+ ακ

(4.10)

on Γ.

5. Description of the Algorithm

Let us now assemble all the discussed main building blocks into a regularized
shape gradient descent algorithm within the level-set framework:

Step 1: Choose an initial level-set function u0, choose an initial transforma-
tion d0. Set uc = u0, dc = d0.
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Step 2: For the current level-set function uc set Ω = {x ∈ D : uc(x) < 0},
Γ = {x ∈ D : uc(x) = 0}. Solve the equations (2.9) and (2.10) for R and
T respectively for the current Γ and dc.

Step 3: Evaluate the expression Fg in (4.10).
Step 4: Solve the elliptic equation (4.8) with Neumann data given by Fg.

Evaluate the Dirichlet trace to get Fd on Γ.
Step 5: Extend Fd to a function F ext

d which is defined on a narrow band
around Γ.

Step 6: Solve (4.3) for δd.
Step 7: Solve the level-set equation

ut + F ext
d |∇u| = 0 with u(·, 0) = uc

Set the new uc = u(·, τ). Set dc = dc + τδd. Choose the step-size τ
according to a line search procedure.

Step 8: Stopping criterion. Else go to Step 2.
The finite element approximations of the functions R and T and the axilliary

variable v in (4.9) on the irregular domains D \ Γ, D \ Γd and Ω are done using
composite finite elements (c.f. [34]). The transformation vector field d is discretized
using standard finite elements.

5.1. Step 2. Equations (2.9) and (2.10) are solved using a composite finite elements
for the solution of the second order elliptic equations on the variable and irregular
domains D \ Γ and D \ Γd. The composite finite element code takes as input the
function values of a level-set function, which defines the variable geometry, on a
rectangular grid. For D\Γ the level-set function is given by uc. For the transformed
geometry D\Γd a level-set function is given by ud

c = uc ◦ (id + d)−1. We introduce
a triangulation T on D and approximate d by a piecewise affine transformation on
T .

5.2. Step 3. The data Fg are processed further in Step 4 as Neumann boundary
data in (4.8). It follows from (4.9) that the data are used in the form

∫
Γ
Fg ϕn dHN−1,

for all finite element basis functions ϕn. Hence, it is useful to determine the values
of Fg on the intersection points of the rectangular finite element grid with Γ.

In Fg the jumps Ri−Re and ∇Ri−∇Re occur, where Ri (interior) is the solution
to (2.9) on Ω and Re (exterior) is the solution to (2.9) on D\Ω. We get the function
values for Ri and Re at the intersection points in a straight forward way from the
respective finite element representations.

5.3. Step 4. In order to calculate Fd in (4.10), we solve

(∇φCFE
i ,∇φCFE

j )L2(Ω1)F̄d,i + (φCFE
i , φCFE

j )L2(Ω1)F̄d,i = − 1
λg

(Fg, φi)L2(∂Ω1),

where φCFE
i denote the basis functions of the finite elements space (cf. Section 6),

and F̄d,i denotes the i-th component of the vector F̄d, i.e. the coefficient vector of
Fd with respect to the chosen basis.

5.4. Step 5. We now extend Fd given form the discrete contour Γh to a function
F ext

d defined on a neighborhood of Γh by solving the following transport equation:

(5.1) 〈∇F ext
d ,∇dΓ〉 = 0 on Ω and F ext

d = Fd on Γ.

Here dΓ denotes signed the distance function to Γ. Note, that dΓ and F ext
d can

be computed simultaneously by a modified fast marching method for solving the
eikonal equation |∇d| = 1 (cf. [52, 57] for a comprehensive description of the
algorithm).
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5.5. Step 7. The discretization of the level-set equation

(5.2) ∂tu+ F ext
d |∇u| = 0 on Ω

is carried out using an explicit upwind scheme. In our computations we have applied
a third-order accurate ENO-scheme (cf. [52]).

6. Composite Finite Elements and Multigrid

In this section we will briefly describe the spatial descretization of the H1 func-
tion spaces on Ωi, which are divided by the contour Γ i.e. the zero level-set of u.
Furthermore we outline a multigrid method for the solution of (2.9), (2.10), (4.3)
and (4.9). We use Composite Finite Elements introduced by Hackbusch and Sauter
[34]. Instead of resolving the Ωi by a retriangulation or local adaptive refinement,
we confine ourselves to a uniform quadrilateral resp. hexahedral grid T and define
the triangulations Ti by the following overlap-condition:

(6.1) Ωi ⊆
⋃

T∈Ti

T with T ∈ Ti ⇐⇒ T ∈ T , T ∩ Ωi 6= ∅.

Let us denote by Vh(ΩT ) the usual Finite Element space given by the condition
that for U ∈ Vh(ΩT ), U

∣∣
T

is a multilinear function for each T ∈ T . The corre-
sponding Composite Finite Element space is then given by the restriction of the
functions in Vh(ΩTi) to the domain Ωi, i. e.

(6.2) V CFE
h (ΩTi) := {U |Ωi |U ∈ Vh(ΩTi)}.

Hence, a basis (ϕCFE
i )i of V CFE

h is given by ϕCFE
i := ϕi

∣∣
ΩTi

, where (ϕi)i denotes
a basis of the space Vh(ΩTi).

For the assembly of the mass matrix Mi =
(∫

Ωi
ϕCFE

i ϕCFE
j dx

)
ij

and stiff-

ness matrix Li =
(∫

Ωi
∇ϕCFE

i ∇ϕCFE
j dx

)
ij

we need to apply quadrature rules for

functions on T ∩ Ωi. On each cell T , which is crossed by the zero level-set of u
we generate on-the-fly a partition of T ∩ Ωi into simplices and apply a barycenter
quadrature rule on each simplex.

In order to apply a multigrid method, we generate a sequence of nested Com-
posite Finite Element spaces by applying an approriate coarsening process on the
CFE triangulation on the finest level lmax (Ωlmax

Ti
:= ΩTi), i. e.

(6.3) Ωi ⊂ Ωlmax
Ti

⊂ Ωlmax−1
Ti

⊂ . . . ⊂ Ω0
Ti

leading to correspondingly nested CFE spaces V CFE
h (Ωl

Ti
), 0 ≤ l ≤ lmax. Pro-

longations and restrictions naturally have to be defined with respect to the CFE
discretization, hence prolongation onto level l is defined by evaluation of the basis
functions ϕCFE,l−1

i for Lagrange nodes on level l. Convergence analysis for multi-
grid algorithms using Composite Finite Elements has been investigated by Sauter et
al. [34, 61] and we refer to [33] for a comprehensive overview of geometric multigrid
methods.

7. Numerical Experiments

We have tested our approach in different scenarios. Figure 2 shows an synthetic
image pair, which was designed to test the method in cases, where only very litte
common information is contained in the images. The rotated shape on the upper
left is supposed to be fitted into the structure on the bottom left, which is hence
only determined by the four small objects in the corners of the image. After 75
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steps of the gradient descent, a deformation is found which rotates the propeller-
like shape, and the resulting push-forward of the contour matches quite well to
the rounded corners in the second structure in the bottom. Hence this example
shows the capability of a model-based inpainting, where the shape information of
the inpainted contour is transformed from a reference image. We assume, that the
deviations from the obvious solution of a pure rotation result from the fact, that
the rigid transformations are not in the kernel of our regularization energy, and
we think that this could be improved by a different regularization method as for
example a higher order method [47].

Figure 8 shows again the capability of the method to use complementary infor-
mation from both images. In this situation, however, both images are contaminated
by noise. As a by-product we also obtain smoothed reference and template images
shown on the right-hand side of Figure 8 where the edges detected by the segmen-
tation are preserved. This holds especially for the weak upper edge of the triangle
in the second image.

In Figure 8 we have applied the algorithm to a pair of brain images. The top row
shows a positron density (PD) scan, while the bottom row shows a T1-weighted
magnetic resonance image of the same patient. The initial difference of the im-
age pair consists mainly of a translation of about 8-9 pixels. The algorithm finds
the brain structure in both images well after about 80 steps, and the resulting
deformation consists mainly of a shift enhanced by some minor locally detailed de-
formations. This example underlines the practicability of the level-set approach:
after a few steps the initial contour splits up into three different components which
are henceforth indepently mapped onto the corresponding segments in the template.

The last example in Figure 8 demonstrates the competing effect of the regular-
ization and the energy contributions which pull the contour towards the edges. We
can exploit this in order to map an original reference shape (top row) to a given
object, where the shape is partially corrupted (bottom row). Apart from the de-
stroyed region the shapes differ also by a non-rigid deformation plus a translation.
This can be well observed in the second column. Here the deformation is still close
to the identity and hence the contours are aligning to the edges in the vicinity
first until in subsequent iterations the deformation evolves in such a way that the
contours map to the true edges in both images apart from the borders of destroyed
region. At this stage, the regularization dominates and prohibits the contour in
the bottom row to evolve towards the “visible” edge and prefers to adopt the con-
tour from the reference image. This yields a reconstruction of the destroyed shape,
which is optimal with respect to the regularization energy.

8. Discussion

We have presented a level-set based algorithm for simultaenous segmentation
and registration of images by incorporating a Mumford-Shah type energy on the
reference image as well as the template image, where the contour is transformed
into the template image by a regularized deformation. The work presented here
is motivated by the fact, that given an exact registration of two images of differ-
ent modality, edge-extraction and segmentation can be enhanced considerably by
combining complementary feature information from both modalities. On the other
hand the process of registering a pair of images may rely on segmentations and
feature-extractions of both images, which often is a very tedious process, especially
if in some areas the feature information is very weak. Due to the coupling of the
edge sets by the smooth deformation, the edge is in such areas driven to its correct
shape.



A MUMFORD-SHAH APPROACH FOR IMAGE REGISTRATION 15

We have demonstrated a further important application of this method, namely
that this approach may also be used to perform a fully-automatic model-based
reconstruction and inpainting of destroyed regions, without having to explicitly
mark the region where the object is destroyed as long there are no prominently
dominating edges. Although the results are already very promising, there is still
room for further conceptual modelling, e. g., to avoid competition of the broken
edge and the reference edge along the boundary of the destroyed region.

Due to the regularization of the gradient flow, the minimization process has
turned out to be stable and requiring only a relativly small number of iterations until
convergence. On the other hand, the regularization and necessity of determining
the solutions of the Helmholtz equations in the regions Ω1 and Ω2. In order to
make the method efficient we have applied multigrid techniques which lead to an
enormous speed-up of the algorithm.

We have performed all calculations using only the first variations of the energy.
In further studies, one might investigate Levenberg-Marquart (cf. [10]) or pure
Newton-type methods to further accelerate the minimization process.
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