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Abstract
We proposed an intensity-based morphological pyramid
image registration algorithm. This approach utilizes the
global affine transformation model, also considering
radiometric changes between images. With the
morphological pyramid structure, Levenberg-Marquardt
optimization, and bilinear interpolation, this algorithm
can be implemented hierarchically and iteratively with
capability of measuring, to subpixel accuracy, the
displacement between images subjected to simultaneous
translation, rotation, scaling, and shearing. The
morphological pyramid shows better performance than
Gaussian pyramid in this matching technique.

1. Introduction

Image registration is the process of matching two or
more images of the same scene taken at different times,
from different viewpoints, or by different sensors. It is a
fundamental task in automated video tracking, remote
sensing analyses, and sensor fusion. The goal of image
registration is to establish the spatial correspondence
between two images. Several techniques have been
developed for various types of data and applications [1].
Existing techniques fall into two categories: intensity-
based approaches [2, 3] and feature-based techniques [4,
5]. In order to obtain a highly efficient and robust
algorithm, pyramidal architectures are commonly utilized
in the registration process [2, 3, 5, 6].

In this paper, we present a Morphological Pyramid
Image Registration (MPIR) algorithm that uses an
intensity based differential method for matching. This
algorithm considers a model combining a 2-D affine
transformation and an illumination change. The multi-
resolution images are represented by a Morphological
Pyramid (MP), as the MP’s have the capability to
eliminate details and to maintain shape features. The

Levenberg-Marquardt nonlinear optimization algorithm is
employed to estimate the matching parameters. A bilinear
interpolation is performed to resample images and their
derivatives required for the transformation. This algorithm
is capable of measuring, to subpixel accuracy, the
displacement between images subjected to simultaneous
translation, rotation, scaling, and shearing. The benefits of
this method are the accuracy and stability of estimation, the
automated solution, and the low computational cost
without pre-estimation. The novelty of this method lies in
the use of MP's for image registration, which improves the
performance over the Gaussian Pyramid.

2. MPIR Model

The complete model for image matching techniques
should consider the geometric relation and intensity
relation between images [7]. These correspondences
reflecting the total relationship between images can be
described by mapping functions with unknown parameters.
Image registration aims at estimating and evaluating the
parameters within the considered model.

2.1. Global Affine Transformation

The spatial-mapping function and parameters in MPIR
are described by a global affine transformation, which is
commonly used in image registration, since the image
projections from different viewpoints can be well
approximated by using this geometric transformation. The
general affine transformation includes translation (tx, ty),
rotation (θ ), scaling (sx, sy), and shearing (shx, shy) [1]
and can be expressed as
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With six parameters, we can simplify the above equation:
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The affine transformation can accommodate shearing in
addition to scaling, translation, and rotation.

2.2. Radiometric Changes

In most practical cases, consideration of illumination
changes is sufficient, but it may also be necessary to
compensate for brightness and contrast between images,
which are caused by the radiometric variation in imaging.
The intensity-mapping function and parameters in MPIR
take care of the changes in brightness and contrast and are
expressed by the following model:

8172 agag += . (3)

2.3. Intensity-based Differential Model

Combining the spatial mapping and the intensity
mapping functions, we achieve the complete relationship
between the two input images:
       ),(]),([),( 8172 crnaqpgacrg ++= , (4)

where ),( crn  is due to noise existing in both images, and

the eight transformation parameters ka , k = 1, 2, … , 8,

are unknown. The MPIR algorithm utilizes the intensity-
based method for matching, since registration methods
based on initial intensity values can make effective use of
all data available. The objective of MPIR is to estimate
these eight unknown parameters.

Given the approximate initial values ka0  for each ka ,

which give the corresponding point ),( 00 qp  by (2), we

linearize 2g  around the point ),( 00 qp  and only consider

the differential linear model resulting in the following
equations:
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From (5), the sum of squared errors (SSE) between two
images can be obtained as
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We then minimize the SSE with respect to the eight
unknown parameters, ka∆  (k = 1, 2, …, 8), and, thus,

estimate the parameters by
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which yields the six corrections ka∆ , k =1, 2, … , 6 to the

approximate values of geometric transformation and the
corrections ka∆ , k =7, 8 for the radiometric parameters.

Eq. (8) reveals that the estimation of parameters is
independent of the noise and can be estimated simply by
the difference between the two images at the corresponding
positions and the partial derivatives of image 1g . The edge

pixels contribute more than the other pixels to the
estimation process. Finally, we can update the
transformation parameters by using (6) with the estimated
increment A∆ .

3. The MPIR Algorithm

The pyramid architecture offers a framework for image
registration with decreased computational cost and
increased solution quality. The image pyramid is a multi-
resolution representation of an image constructed by
successive filtering and sub-sampling. It allows scale
selection appropriate resolution for the task at hand. For
registration, the differential linear model discussed here is
only valid for subpixel displacements, but employing a
pyramid structure can increase the functionality to
displacements of several pixels. Moreover, the use of a
multi-resolution scheme avoids some local optima in the
solution (because they do not exist at coarse pyramid
representations) and often widens the capture area of the
global optimum. From discussion above, we know that
edge pixels take greater roles than others do in the
differential method. As the inherent goals of
morphological operations are the preservation of region
shapes and elimination of irrelevancies, the morphological
pyramid is a reasonable choice for the differential
matching method.

3.1. Morphological Pyramids

Mathematical morphology is a set-theoretic approach to
image analysis. It provides a quantitative description of the
geometric structures of an image. The morphological
filters, such as open and close, are relatively inexpensive
nonlinear filters. The filters can designed to preserve edges
or shapes of objects, while eliminating noise and details in
an image.

In generating the MP, the morphological open-close
and close-open filters are typically chosen because they are
biased-reduced operators [8]. The MP of an image can be



constructed by successively morphological filtering and
subsampling:
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 where L  is called the pyramid level. 0I  is the original

image, [] d↓⋅  represents a down sampling by a factor of d in

each spatial dimension (along rows and columns), ( )KI o

represents the morphological opening of the image I with
structuring element K, and ( )KI •  represents the

morphological closing. The finest level 0=L  of the MP
contains the input image. The image at any level L  is
created by applying the morphological close-open filter
with a 3x3-element structure to the image at level )1( −L

and then subsampling the filtered image with 2=d .
 
3.2. The Levenberg-Marquardt Algorithm

After we compute the image pyramids, we use
Levenberg-Marquardt (LM) algorithm to estimate the
transformation parameters iteratively. The LM nonlinear
optimization algorithm is well suited for performing
registration based on a least-squares criterion [9]. The
following equation gives the estimate corrections
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for Kth  step, where Kµ  is a changeable parameter and

KU  is an identical matrix (8 x 8). The LM algorithm

provides a compromise between the speed of Newton’s
method and the guaranteed convergence of steepest
descent.

3.3. Bilinear Interpolation

For each step of estimate process, we must resample
one image to update the transformed version of the
registered image and its gradients. The simplest scheme for
gray-level interpolation is based on a nearest neighbor
approach called zero-order interpolation. But the nearest
neighbor interpolation yields undesirable artifacts such as
the distortion of straight edges. Smoother results can be
obtained by using more sophisticated techniques, such as
bicubic interpolation. However, this technique is
computationally expensive. Bilinear interpolation is a
reasonable compromise between smoothness and
computational cost. With this method, the intensity at

),( qp  can be computed by using the gray levels of the

four nearest neighbors, a, b, c, and d, in
     dqpcqbpaqpg +⋅⋅+⋅+⋅=),( . (11)

3.4. Matching Measures

The MPIR technique is based on minimizing the SSE
between two images. Therefore, the matching measures are
based on measuring the SSE. In practice, we consider three
matching criteria for the stopping criteria. The first
criterion is an absolute error

∑ −= ),(ˆ),( 0012 qpgcrgE  less than the threshold 1T .

The second measure uses the observed relative gain EE∆
at each successive iteration step. When this gain is below a
priori threshold 2T , the convergence is reached. The third

criterion compares the maximum corrections of the
transformation parameters { }8,...,2,1,max =∆ kak  to a

threshold 3T .

3.5. Matching Procedure

We introduce an efficient optimization scheme that uses
a coarse-to-fine iterative refinement strategy over the MP
pair. Within each pyramid level, three matching criteria are
used to indicate convergence of the matching process.
Once convergence has been achieved at a particular
pyramid level, a transition to a finer level is made. The
solution from the previous pyramid level is used as an
initial estimate. The new incremental estimate is computed
by minimizing the SSE between the resampled images 1ĝ

and image 2g . The estimated increment is then composed

with the previous estimate to achieve a new estimate. This
whole process is iterated at each pyramid level and then
across pyramid levels to achieve the final estimation. To
verify the matching robustness and accuracy, we
implement both Forward Matching (FM) and Backward
Matching (BM) for each image pair. In FM, we register the
first image with the second image, but reverse the order in
BM (viz., the second image is registered with the first
image).

4. Experimental Results

The proposed algorithm has been tested on artificial
image pairs and natural image pairs. The initial estimated
parameters are set to

 [ ]TA 01010001=
for all matching processes.

Fig. 1 shows an example with the image "Lena." Fig.
1(b) is obtained by transforming Fig. 1(a) with Eq. (1)-(3)
and the following parameters: translation (tx=5.09, ty=-
3.01), rotation (θ =-7.70), scaling (sx=0.91, sy=1.25),
shearing (shx=0.05, shy=-0.15), contrast (7a =1.2),

brightness ( 8a =4.05). These data provide the actual



transformation parameters represented as "Act." in Table
1. Fig. 1(c) shows the FM result of registering Fig. 1(a) to
Fig. 1(b).

The matching results with the MPIR algorithm for
"Lena" are summarized in Table 1, where the row AFE (or
ABE) stands for the absolute error between the actual
parameters and FM (or BM) results. FBE is the error
between the FM and BM estimated parameters. For
example, with FM and BM parameters Fp  and Bp , we

have BF ppFBE −= . The last two columns in the table

show the maximum deformation errors along xth row and
yth column. All error values show us that the matching
algorithm works very well with subpixel accuracy.
Although there are significant errors for the radiometric
parameters, the errors for 256 gray-levels are relatively
small.

Another example of MPIR is presented in Fig. 2 using
the real image pair "Old Central." The original images are
displayed in Fig. 2 (a)-(b) followed by the FM version of
Fig. 2(a) shown in Fig. 2(c). The matching results with
small errors are given in Table 2. In order to show that the
morphological pyramid matching results are more accurate
than that of single resolution, we list the matching errors
for single resolution with the last row (SE) in Table 2.

To further verify the performance of the MPIR
algorithm, we also implement both FM and BM for each
image pair with the Gaussian Pyramid (GP). Table 3
presents the errors for image pairs "Lena" and "Old
Central," where MAE and GAE indicate the errors
between the actual parameters and the estimated
parameters with the MP and GP, respectively. Here, ME
and GE represent the errors between the FM and BM
parameters with respect to the MP and GP. From the last
two columns in the table, we can see that both of the
pyramid structures work well for the image pair "Lena."
However, the GP fails for "Old Central." The errors are
caused by the edge shifting due to Gaussian filtering. The
registration results with GP are also shown in Fig. 3(b)-(c),
where the FM result in Fig. 3(c) appears to be successful,
but the BM result in Fig.  3(b) is not indicative of success.
Comparing the matching results between the MP and GP,

we can infer that MP gives improvements in accuracy and
robustness.

5. Conclusion

The MPIR algorithm with an intensity-based differential
matching technique is reliable and efficient. The MP
architecture improves robustness while decreasing the
likelihood of being trapped at a false local optimum. MPIR
increases the matching range of the differential method,
and reduces the computational cost. With LM nonlinear
optimization and bilinear interpolation, this algorithm is
capable of measuring, to subpixel accuracy, the
displacement between images subjected to affine
transformation, which includes simultaneous translation,
rotation, scaling, and shearing. The matching procedure is
entirely automatic and does not utilize pre-estimation.
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Table 1. MP matching results for "Lena"
I A∆ 1a 2a 3a 4a 5a 6a 7a 8a

Act. 0.8934 0.1839 5.0900 -0.3015 1.2111 -3.0100 1.2000 4.0500
FM 0.8934 0.1839 5.0900 -0.3015 1.2111 -3.0099 1.2000 4.0504
BM 0.8934 0.1838 5.0943 -0.3015 1.2111 -3.0081 1.1760 6.4270

Max.
x∆

(pix.)

Max.
y∆

(pix.)

AFE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0001
ABE 0.0000 0.0001 0.0043 0.0000 0.0000 0.0019 0.0240 2.3770 0.0172 0.0089

L
E
N
A

FBE 0.0000 0.0001 0.0043 0.0000 0.0000 0.0018 0.0240 2.3766 0.0172 0.0089



Table 2. MP matching results for "Old Central"
I A

1a 2a 3a 4a 5a 6a 7a 8a

FM 0.9781 -0.2150 -10.6672 0.2131 0.9789 -6.9803 1.0097 -4.1355
FB 0.9781 -0.2150 -10.6704 0.2131 0.9788 -6.9838 1.0210 -5.8815

Max.
x∆

(pix.)

Max.
y∆

(pix.)
FBE 0.0000 0.0000 0.0032 0.0000 0.0001 0.0035 0.0113 1.7460 0.0133 0.0000

O
C

SE 0.0015 0.0014 0.0630 0.0002 0.0009 0.0580 0.0171 2.5789 0.4324 0.0000

Table 3. Comparison between MP and GP matching results
I A

1a 2a 3a 4a 5a 6a 7a 8a x∆ y∆
MAE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0001L
GAE 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0011 0.0003 0.0007
ME 0.0000 0.0000 0.0032 0.0000 0.0001 0.0035 0.0113 1.7460 0.0133 0.0000O
GE 0.1248 0.1350 2.8422 0.1549 0.0207 4.6797 0.1859 29.8201 34.091 0.0000

Fig. 1: Registration of image pair "Lena": (a) Original Lena, (b) Transformed, (c) Registration of (a) to (b)

Fig. 2:  Registration of image pair "Old Central": (a) Old Central 1, (b) Old Central 2, (c) Registration of (a) to (b)

Fig. 3:  Comparison of MP and GP matching results: (a) BM result (MP), (b) BM result (GP), (c) FM result (GP)


