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Abstract

Let R be a commutative ring. It is known that any injective endomorphism of finitely generated R-module is an

isomorphism if and only if every prime ideal of R is maximal. This result makes possible a characterization of rings

on which all finitely generated modules are co-hopfian. The motivation of this paper comes from trying to extend

these results to mono-correct modules. In doing so, we show that any finitely generated R-module is mono-correct

if and only if every prime ideal of R is maximal and we obtain a characterization of commutative rings on which

all finitely generated module are mono-correct. Such rings are exactly commutative strongly Π-regular rings. So

we have a new characterization of commutative strongly Π-regular rings.
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1. Introduction

The Cantor-Bernstein theorem says: if for two sets A, B there are injective maps A→ B and B→ A then there exists

a bijection between A and B. As an analogue, an R-module M is said to be mono-correct if for any module N if

there are monomorphisms M → N and N → M then M � N. A R-module M is called co-hopfian if every injective

endomorphism of M is an automorphism. Some analogues of the Cantor-Bernstein theorem have been investigated

by various research in categories of associative rings (Cornell, 1968), functors (Trnkova & Koubek, 1973) and

modules (Rososhek, 1978). And it is shown that semisimple modules and artinian modules are mono-correct

(Wisbauer, 2005). Seing that any co-hopfian module is mono-correct, we extend some results of co-hopficity to

mono-correctness of modules. We establish as in (Vasconcelos, 1970) that for a commutative ring R, any finitely

generated R-module is mono-correct if and only if every prime ideal of R is maximal. The study of rings for

which co-hopficity characterizes a particular class of the category of R-modules have given characterizations of

commutative rings on which all finitely generated module are co-hopfian (Armendariz, Fisher, & Snider, 1978),

of commutative artinian principal ideal rings (Sangharé & Kaidi, 1988), of commutative countable rings on which

only finitely generated module are co-hopfian (Barry, Guèye & Sangharé, 1997) etc... Motivated by these results,

we give a characterization of commutative rings on which all finitely generated module are mono-correct, we show

that these are precisely strongly Π-regular rings.

In this paper, all rings are commutative and associative with 1 � 0 and all modules are unitary. A ring R is called

an FGM − ring if every finitely generated R-module is mono-correct.

2. Preliminary Results

Definition 2.1 Two modules M and N are called mono-equivalent if there are monomorphisms M → N and

N → M. We denote M
m� N.

Definition 2.2 A R-module M is said to be mono-correct if for any R-module N, if M
m� N implies M � N.

Example 2.3 Z is mono-correct as Z-module.

Proof. Let N be a Z-module, f : Z→ N et g : N → Z two monomorphisms. N � g(N) and g(N) is a Z submodule.

∃ n ∈ Z such that g(N) = nZ. Z � nZ = g(N) � N, then Z is mono-correct.

Definition 2.4 A class C of R-modules is said to be mono-correct if for any M,N ∈ C , M
m� N implies M � N.
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Example 2.5 (Wisbauer, 2005) In R-Mod the following classes are mono-correct:

1) the class of artinian modules;

2) the class of semismple modules.

Definition 2.6 A R-module M is said to be co-hopfian if every injective endomorphism f : M → M is an automor-

phism.

Example 2.7 Any artinian module is co-hopfian.

Example 2.8 Z is not co-hopfian as a Z-module.
f : Z→ Z

n �→ 2n is injective but not surjective.

This following result is due to Vasconcelos.

Theorem 2.9 (Vasconcelos, 1976) For a commutative ring R, the following are equivalent:

1) any injective endomorphism of a finitely generated R-module is an isomorphism;

2) every prime ideal of R is maximal.

Definition 2.10 A R-module M is said to be a finitely generated R-module if M has a finite generating set.

Definition 2.11 A ring R is said to be left Π-regular (resp right Π-regular) if given any a ∈ R, there is an element

b ∈ R and an integer n ≥ 1 satisfying an = ban+1 (resp an = an+1b).

Definition 2.12 A ring R is said to be strongly Π-regular if it is left Π-regular and right Π-regular.

Proposition 2.13 (Dischinger, 1976) Let R be a ring. R is left Π-regular if and only if R is right Π-regular.

Theorem 2.14 (Lam, 1995) For a commutative ring R, the following are equivalent:

1) any prime ideal is maximal;

2) the Jacobson radical J of R is nil and R/J is Von Neumann regular;

3) for any a ∈ R, the descending chain Ra ⊇ Ra2 ..... stabilizes;

4) for any a ∈ R, there exists n ≥ 1 such that an is regular (i.e an ∈ anRan).

3. The Main Results

Proposition 3.1 For a commutative ring R, any co-hopfian R-module is mono-correct.

Proof. Let M be a co-hopfian R-module, N a R-module, f : M → N and g : N → M monomorphisms. go f : M →
M is injective, then go f is an automorphism. g is surjective. g : N → M is an isomorphism, then M � N. M is

mono-correct.

Definition 3.2 A ring R is called an FGM-ring if every finitely generated R-module is mono-correct.

Proposition 3.3 For an artinian ring R, every R-module M is mono-correct.

Proof. If R is an artinian ring, and M a R-module. then M is co-copfian. Therefore by Proposition 3.1 M is

mono-correct.

Corollary 3.4 For a commutative artinian ring R, every finitely generated R-module M is mono-correct.

Proposition 3.5 Any commutative artinian ring is a FGM-ring.

Proposition 3.6 Every homomorphic image of a FGM-ring is a FGM-ring.

Proof. Let A be a FGM-ring, ϕ : A → B a ring surjective homomorphism, and M an finitely generated B-module.

The following map:

A × M → M
(a,m) �→ ϕ(a)m = am

induce a structure of A-module on the additive abelian group M. And any B-homomorphism is an A-homomorphism.

M is an A-module and ϕ surjective therefore M is a finitely generated A-module (x =
∑

bixi =
∑
ϕ(ai)xi =

∑
aixi).

Let N be a B-module, f : M → N, and g : N → M two B-monomorphisms.

M and N are A-modules, f and g are A-monomorphisms. M is a finitely generated A module. Therefore M is
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mono-correct. This implies M � N, as an A-module, hence as a B-module, because ϕ is surjective. So M is a

mono-correct B-module.

Proposition 3.7 If R is a FGM-ring and I a R-ideal then R/I is a FGM-ring.

Proof. p: R→ R/I is a surjective homomorphism. Therefore R/I is a FGM-ring.

Proposition 3.8 Any FGM integral domain is a field.

Proof. Let R be a FGM integral domain. Let a ∈ R∗ and M = aR, M is finitely generated module, then M is

mono-correct. we have M ⊆ R, therefore i : M �→ R is a monomorphism. Let

f : R −→ M
x �−→ ax

f is an homomorphism.

f (x) = 0⇒ ax = 0 but a � 0 and R an integral domain then it follows x = 0. f is injective. M is mono-correct

implies R � M. Then ∃ b ∈ R such that 1 = ab⇒ a is invertible. R is a field.

Proposition 3.9 Any prime ideal of a FGM-ring is maximal.

Proof. Let R be a FGM-ring and P a prime ideal of R. R/P is a FGM integral domain. R/P is a field. Therefore P
is maximal.

For a commutative ring R, any co-hopfian R-module is mono-correct, but a mono-correct R-module is not always

co-hopfian (see Example 2.3 and Example 2.8). In this paper, we extend the result of Vasconcelos to mono-correct

modules.

Proposition 3.10 For a commutative ring R, the following are equivalent:

1) any finitely generated R-module is mono-correct;

2) every prime ideal of R is maximal.

Proof. 1)⇒ 2)

R is an FGM-ring then if P is a prime ideal of R, P is maximal.

2)⇒ 1)

Let M be a finitely generated R-module. Every prime ideal of R is maximal implies any injective endomorphism

of M is an automorphism then M is co-hopfian. Therefore M is mono-correct. We deduce R is a FGM-ring.

As the main result of this paper, we establish the following characterization of commutative strongly Π-regular

rings.

Proposition 3.11 Let R be a commutative ring. Then the following are equivalent:

1) R is strongly Π-regular;

2) any prime ideal of R is maximal;

3) R is a FGM-ring;

4) any finitely generated R-module is mono-correct;

5) any finitely generated R-module is co-hopfian.

Proof. 1)⇔ 2) is given by Theorem 2.14, because an ∈ anRan ⇔ an = ancan = an−1can+1 = ban+1.

2)⇔ 3)⇔ 4)⇔ 5) follows from Proposition 3.10 and Theorem 2.9.
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Barry, M., Guèye, C. T., & Sangharè, M. (1997). On commutative FGI-Rings. Extracta Mathematicae, 12(3),

32



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 5; 2012

255-259.
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