A New Characterization of Commutative Strongly Π-Regular Rings

Anta Niane Guèye¹, Cheikh Thiécoumba Guèye¹ & Mamadou Sangharé¹

¹ LACGAA, Faculté des Sciences et Technique, UCAD, Dakar, Sénégal

Correspondence: Cheikh Thiécoumba Guèye, Faculté des Sciences et Technique, Université Cheikh Anta Diop, Dakar, Sénégal. Tel: 221-77-630-4770. E-mail:cheikht.gueye@ucad.edu.sn

Received: July 19, 2012 Accepted: August 6, 2012 Online Published: September 11, 2012

doi:10.5539/jmr.v4n5p30 URL: http://dx.doi.org/10.5539/jmr.v4n5p30

Abstract

Let R be a commutative ring. It is known that any injective endomorphism of finitely generated R-module is an isomorphism if and only if every prime ideal of R is maximal. This result makes possible a characterization of rings on which all finitely generated modules are co-hopfian. The motivation of this paper comes from trying to extend these results to mono-correct modules. In doing so, we show that any finitely generated R-module is mono-correct if and only if every prime ideal of R is maximal and we obtain a characterization of commutative rings on which all finitely generated module are mono-correct. Such rings are exactly commutative strongly Π -regular rings. So we have a new characterization of commutative strongly Π -regular rings.

Keywords: FGM ring, monocorrect, cohopfian, strongly Π regular rings

1. Introduction

The Cantor-Bernstein theorem says: if for two sets A, B there are injective maps $A \to B$ and $B \to A$ then there exists a bijection between A and B. As an analogue, an R-module M is said to be mono-correct if for any module N if there are monomorphisms $M \to N$ and $N \to M$ then $M \simeq N$. A R-module M is called co-hopfian if every injective endomorphism of M is an automorphism. Some analogues of the Cantor-Bernstein theorem have been investigated by various research in categories of associative rings (Cornell, 1968), functors (Trnkova & Koubek, 1973) and modules (Rososhek, 1978). And it is shown that semisimple modules and artinian modules are mono-correct (Wisbauer, 2005). Seing that any co-hopfian module is mono-correct, we extend some results of co-hopficity to mono-correctness of modules. We establish as in (Vasconcelos, 1970) that for a commutative ring R, any finitely generated R-module is mono-correct if and only if every prime ideal of R is maximal. The study of rings for which co-hopficity characterizes a particular class of the category of R-modules have given characterizations of commutative rings on which all finitely generated module are co-hopfian (Armendariz, Fisher, & Snider, 1978), of commutative artinian principal ideal rings (Sangharé & Kaidi, 1988), of commutative countable rings on which only finitely generated module are co-hopfian (Barry, Guèye & Sangharé, 1997) etc... Motivated by these results, we give a characterization of commutative rings on which all finitely generated module are mono-correct, we show that these are precisely strongly Π -regular rings.

In this paper, all rings are commutative and associative with $1 \neq 0$ and all modules are unitary. A ring R is called an FGM - ring if every finitely generated R-module is mono-correct.

2. Preliminary Results

Definition 2.1 Two modules M and N are called mono-equivalent if there are monomorphisms $M \to N$ and $N \to M$. We denote $M \stackrel{m}{\simeq} N$.

Definition 2.2 A *R*-module *M* is said to be mono-correct if for any *R*-module *N*, if $M \stackrel{m}{\simeq} N$ implies $M \simeq N$.

Example 2.3 \mathbb{Z} is mono-correct as \mathbb{Z} -module.

Proof. Let N be a \mathbb{Z} -module, $f: \mathbb{Z} \to N$ et $g: N \to \mathbb{Z}$ two monomorphisms. $N \simeq g(N)$ and g(N) is a \mathbb{Z} submodule. $\exists n \in \mathbb{Z}$ such that $g(N) = n\mathbb{Z}$. $\mathbb{Z} \simeq n\mathbb{Z} = g(N) \simeq N$, then \mathbb{Z} is mono-correct.

Definition 2.4 A class C of R-modules is said to be mono-correct if for any $M, N \in C$, $M \stackrel{m}{\simeq} N$ implies $M \simeq N$.

Example 2.5 (Wisbauer, 2005) In R-Mod the following classes are mono-correct:

- 1) the class of artinian modules;
- 2) the class of semismple modules.

Definition 2.6 A *R*-module *M* is said to be co-hopfian if every injective endomorphism $f: M \to M$ is an automorphism.

Example 2.7 Any artinian module is co-hopfian.

Example 2.8 \mathbb{Z} is not co-hopfian as a \mathbb{Z} -module. $f: \mathbb{Z} \to \mathbb{Z}$ is injective but not surjective.

This following result is due to Vasconcelos.

Theorem 2.9 (Vasconcelos, 1976) For a commutative ring R, the following are equivalent:

- 1) any injective endomorphism of a finitely generated R-module is an isomorphism;
- 2) every prime ideal of R is maximal.

Definition 2.10 A *R*-module *M* is said to be a finitely generated *R*-module if *M* has a finite generating set.

Definition 2.11 A ring R is said to be left Π -regular (resp right Π -regular) if given any $a \in R$, there is an element $b \in R$ and an integer $n \ge 1$ satisfying $a^n = ba^{n+1}$ (resp $a^n = a^{n+1}b$).

Definition 2.12 A ring R is said to be strongly Π-regular if it is left Π-regular and right Π-regular.

Proposition 2.13 (Dischinger, 1976) Let R be a ring. R is left Π -regular if and only if R is right Π -regular.

Theorem 2.14 (Lam, 1995) For a commutative ring R, the following are equivalent:

- 1) any prime ideal is maximal;
- 2) the Jacobson radical J of R is nil and R/J is Von Neumann regular;
- 3) for any $a \in R$, the descending chain $Ra \supseteq Ra^2 \dots$ stabilizes;
- 4) for any $a \in R$, there exists $n \ge 1$ such that a^n is regular (i.e $a^n \in a^n Ra^n$).

3. The Main Results

Proposition 3.1 For a commutative ring R, any co-hopfian R-module is mono-correct.

Proof. Let M be a co-hopfian R-module, N a R-module, $f: M \to N$ and $g: N \to M$ monomorphisms. $g \circ f: M \to M$ is injective, then $g \circ f$ is an automorphism. g is surjective. $g: N \to M$ is an isomorphism, then $M \simeq N$. M is mono-correct.

Definition 3.2 A ring R is called an FGM-ring if every finitely generated R-module is mono-correct.

Proposition 3.3 For an artinian ring R, every R-module M is mono-correct.

Proof. If R is an artinian ring, and M a R-module. then M is co-copfian. Therefore by Proposition 3.1 M is mono-correct.

Corollary 3.4 For a commutative artinian ring R, every finitely generated R-module M is mono-correct.

Proposition 3.5 Any commutative artinian ring is a FGM-ring.

Proposition 3.6 Every homomorphic image of a FGM-ring is a FGM-ring.

Proof. Let A be a FGM-ring, $\varphi: A \to B$ a ring surjective homomorphism, and M an finitely generated B-module. The following map:

$$A \times M \to M$$

 $(a,m) \mapsto \varphi(a)m = am$

induce a structure of A-module on the additive abelian group M. And any B-homomorphism is an A-homomorphism.

M is an A-module and φ surjective therefore M is a finitely generated A-module $(x = \sum b_i x_i = \sum \varphi(a_i) x_i = \sum a_i x_i)$.

Let N be a B-module, $f: M \to N$, and $g: N \to M$ two B-monomorphisms.

M and N are A-modules, f and g are A-monomorphisms. M is a finitely generated A module. Therefore M is

mono-correct. This implies $M \simeq N$, as an A-module, hence as a B-module, because φ is surjective. So M is a mono-correct B-module.

Proposition 3.7 *If R is a FGM-ring and I a R-ideal then R/I is a FGM-ring.*

Proof. p: $R \to R/I$ is a surjective homomorphism. Therefore R/I is a FGM-ring.

Proposition 3.8 Any FGM integral domain is a field.

Proof. Let R be a FGM integral domain. Let $a \in R^*$ and M = aR, M is finitely generated module, then M is mono-correct. we have $M \subseteq R$, therefore $i : M \mapsto R$ is a monomorphism. Let

$$f: R \longrightarrow M$$
 $x \longmapsto ax$

f is an homomorphism.

 $f(x) = 0 \Rightarrow ax = 0$ but $a \ne 0$ and R an integral domain then it follows x = 0. f is injective. M is mono-correct implies $R \simeq M$. Then $\exists b \in R$ such that $1 = ab \Rightarrow a$ is invertible. R is a field.

Proposition 3.9 Any prime ideal of a FGM-ring is maximal.

Proof. Let R be a FGM-ring and P a prime ideal of R. R/P is a FGM integral domain. R/P is a field. Therefore P is maximal.

For a commutative ring R, any co-hopfian R-module is mono-correct, but a mono-correct R-module is not always co-hopfian (see Example 2.3 and Example 2.8). In this paper, we extend the result of Vasconcelos to mono-correct modules.

Proposition 3.10 For a commutative ring R, the following are equivalent:

- 1) any finitely generated R-module is mono-correct;
- 2) every prime ideal of R is maximal.

Proof. 1) \Rightarrow 2)

R is an FGM-ring then if P is a prime ideal of R, P is maximal.

$$2) \Rightarrow 1)$$

Let M be a finitely generated R-module. Every prime ideal of R is maximal implies any injective endomorphism of M is an automorphism then M is co-hopfian. Therefore M is mono-correct. We deduce R is a FGM-ring.

As the main result of this paper, we establish the following characterization of commutative strongly Π -regular rings.

Proposition 3.11 *Let R be a commutative ring. Then the following are equivalent:*

- 1) R is strongly Π -regular;
- 2) any prime ideal of R is maximal;
- 3) R is a FGM-ring;
- 4) any finitely generated R-module is mono-correct;
- 5) any finitely generated R-module is co-hopfian.

Proof. 1) \Leftrightarrow 2) is given by Theorem 2.14, because $a^n \in a^n R a^n \Leftrightarrow a^n = a^n c a^n = a^{n-1} c a^{n+1} = b a^{n+1}$.

2) \Leftrightarrow 3) \Leftrightarrow 4) \Leftrightarrow 5) follows from Proposition 3.10 and Theorem 2.9.

Acknowledgements

The authors are grateful to professor Kaidi Amin of Almeria University for his comments and guidance.

References

Armendariz, E. P., Fisher, J. W., & Snider, R. L. (1978). On injective and surjective endomorphisms of finitely generated modules. *Comm. Algebra*, 6(7), 659-672. http://dx.doi.org/10.1080/00927877808822263

Barry, M., Guèye, C. T., & Sangharè, M. (1997). On commutative FGI-Rings. Extracta Mathematicae, 12(3),

255-259.

- Connell, I. G. (1968). Some rings theoretic Schröder-Bernstein theorems. *Amer. Math. Soc.*, 132, 335-351. http://dx.doi.org/10.2307/1994844
- Dischinger, F. (1976). Sur les anneaux fortement Π-régulier. C. R. Acad. Sci. Paris, Ser. A, 283, 571-573.
- LAM, T. Y. (1995). Exercices in Classical Ring Theory. New York: Springer-Verlag.
- Rososhek, S. K. (1978). Correctness of modules (russ.). *Izvestiya VUZ. Mat.*, 22(10), 77-82, translated in Russian Mathematics, Allerton.
- Sangharé, M., & Kaidi, A. (1988). Une caractérisation des anneaux artiniens à idéaux principaux. *L. N. Math.* (pp. 245-254). Springer-Verlag.
- Trnkova, V., & Koubek, V. (1973). The Cantor-Bernstein theorems for functors. *Comm. Math. Univ. Carol.*, 14(2), 197-204.
- Vasconcelos, W. V. (1970). Injective endomorphisms of finitely generated modules. *Proc. Amer. Math. Soc.*, 25, 900-901.
- Wisbauer, R. (2005). Correct classes of modules. Algebra and Discrete Mathematics.