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ABSTRACT 
Recent research has been undertaken to reduce medical 
errors and to prevent adverse events that may result 
from unsafe and insecure situations in complex 
healthcare practices. Integration of individuals into 
teams is one of the most challenging but promising 
issues in the research. Modeling and simulating the 
complex, dynamic healthcare practices are useful to 
train individual team members, and subsequently 
enhance individual and team competencies to boost 
team performance. In this paper, we propose a 
methodology to model and simulate dynamic medical 
situations in healthcare practices by integrating gap 
analysis with intent inferencing. In intent inferencing, 
individuals’ goals are deduced from their perceptions 
and observations, and collective intent of individuals is 
evaluated through gap analysis. As the vast majority of 
services in healthcare are delivered by a group of 
individuals, enabling the individuals to figure out the 
best decision for the patient beyond existing limitations 
is expected to improve the quality of care significantly. 
 
Keywords: healthcare team, medical procedure, intent 
inferencing, decision making, gap analysis 

 
1. INTRODUCTION 
When a set of planned activities in healthcare practices 
fails to achieve its original goals, we consider it a 
medical error. Medical errors have led to a significant 
number of injuries or patient deaths and have become a 
topic of much concern (Taib, McIntosh, Caponecchia, 
& Baysari, 2011). Injuries caused by medical 
management rather than the underlying disease of the 
patient are identified as adverse events (Bucknall, 
2010). Medical errors and adverse events are not rare 
outcomes nowadays. It is widely acknowledged that 
many modern healthcare practices are so complex that 
they can foster unsafe and insecure conditions for 
patient care. Of the many causes behind these 
undesirable events, poor teamwork is a significant 
contributor. Better integration of individuals into teams 
and optimization of team performance is a promising 
strategy to increase the quality of care.  
 Modeling and simulating the complex, dynamic 
healthcare practices are important in training healthcare 
team members, and boosting team performance by 
enhancing individual and team competencies. An 

effective team performance can be realized if individual 
team members have a profound understanding, beyond 
their own limited perceptions and observations, of 
surrounding environments and teammates. To realize 
this, it is necessary to provide sufficient information to 
healthcare professionals when they need to make 
critical decisions under diverse requests and conflicting 
demands. Previously, state of the art computational 
technologies have been adopted to support safe and 
secure healthcare practices (Adler-Milstein & Bates, 
2010). In the same line of research, we propose a 
methodology to model and simulate dynamic medical 
situations in healthcare practices by integrating gap 
analysis with intent inferencing. 
 Intent inferencing is a branch of knowledge 
engineering, in which individuals’ goals are deduced 
from their perceptions and observations. Beyond 
individuals, collective intent of individuals is addressed 
by gap analysis in this paper. With the information 
provided by our computational tool, we hope to enable 
individuals to make the best decisions for the patient in 
a given situation  
 Previously, studies to improve team performance 
have been conducted through developing measures or 
indicators of team performance, which were commonly 
based on clinical surveys, direct observation or video-
based analysis of real medical performance (Jeffcott & 
Mackenzie, 2008). These measures were useful to help 
train and assess real-life team performance. However, 
these measures have often overlooked patient 
conditions, which are dynamically changing over time 
in real-life healthcare practices, and the fact that 
individuals (healthcare providers) are likely biased 
when making decisions in complex situations 
(Brockopp, Downey, Powers, Vanderveer, & Warden, 
2004). Furthermore, the conflict between these 
individuals during patient management is often the key 
to deteriorating team performance (Coombs, 2003).   
 Organizational behaviors can be realized by each 
individual’s discrete efforts to accomplish their roles, 
plans and goals, while team dynamics depend heavily 
on all individuals’ collaboration, coordination, and 
communication. Thus, team performance in 
multidisciplinary practices cannot be measured by 
simply collecting individuals’ movements. Even if we 
trace all of these behaviors, the available information is 
still incomplete and insufficient to describe overall team 
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performance. Therefore, we employ not only a 
computational technique to infer individuals’ intents 
from their observables but also a strategic methodology 
to evaluate collective intent of individuals through 
integrating gap analysis with intent inferencing.  
 In our earlier studies (Santos, et al., 2010), we 
applied our methodology to model and simulate 
primarily static instances of real-life medical cases in 
which adverse events occurred due to the lack of 
communication between surgeons. In this work, we 
present an advanced methodology to model and 
simulate more dynamic situations over longer periods of 
time in real-life healthcare practices. Through the 
simulation, we address the impact of differences 
between individuals in making clinical decisions by 
investigating a post-op panniculectomy case, in which 
two surgeons made conflicting decisions for the same 
patient. 

In the next section, we will describe BKBs and 
other background studies. Then we will introduce our 
idea to measure team performance with gap analysis. 
After that, we will present a real-life post-op 
panniculectomy case and show how we simulate the 
case with our methodology. Finally, we will end this 
paper with a conclusion and future directions for this 
research. 

 
2. BACKGROUND 
To ensure patient safety in real-life healthcare practices, 
individual team members must perform their roles and 
tasks with continual understanding of dynamic 
situations and of other team members. In this section, 
we review three fundamental ideas associated with 
intent inferencing as a part of our research: (1) 
representing the information relevant to clinical 
decision makings, (2) aggregating new information into 
existing knowledge while properly managing potential 
inconsistencies, and (3) inferring intents of individual 
team members from the information observed, 
perceived and acknowledged by those individuals. 

 
2.1. Bayesian Knowledge Bases (BKBs) 
The information available in healthcare practices can be 
represented by BKBs, which are generalizations of 
Bayesian Networks (BNs) that allow context-specific 
independence and cyclic relationships among 
knowledge. BKBs are rule-based probabilistic models 
to represent knowledge using graphs and probabilistic 
theory. The graphs are composed of nodes and arcs, 
where arcs denote causal relationships between 
knowledge and nodes contain the content of the 
knowledge. Unlike BNs, there are two types of nodes in 
BKBs: the i-node, representing a state of a random 
variables (i.e. how random variables are instantiated) 
and the s-node, denoting a conditional probability of the 
causal relationship as shown in Fig 1, where the 
knowledge that “if body temperature is high, then a 
surgeon determines hospitalization as a potential care 
with the probability of 0.8.” is contained. 

 

 
Figure 1: BKB fragment 

 
BKBs are known to be simpler and more concise 

than BNs in representing knowledge since they can 
accommodate incomplete knowledge and perform 
reasoning with less complexity. BKBs have been 
extensively studied with highly efficient algorithms for 
reasoning (Rosen, Shimony, & Santos, 2004).  

 
2.2. Bayesian Knowledge Fusion 
In order to model dynamic changes in healthcare 
practices, the information represented in BKBs must be 
updated accordingly. Bayesian knowledge fusion is an 
algorithm designed to fuse multiple BKBs into a single, 
large BKB that preserves the information contained in 
all input sources. Originally, the fusion algorithm was 
devised to aggregate information provided by multiple 
experts (E. Santos, J.T. Wilkinson, & Santos, 2009). In 
order to handle potential disagreement among different 
experts, two special nodes are added to original BKBs 
when fused: the source node and the reliability index. 
Source nodes say which rules in the knowledge base 
come from which fragments, while the reliability index 
denotes the trustworthiness of the knowledge contained 
in the particular fragment. With these additional nodes, 
the inference process on the fused BKB can consider 
information from multiple sources and construct an 
explanation for any evidence observed without violating 
the basic rules of BKBs.We apply the algorithm to deal 
with dynamic situations in healthcare practices where 
updated information of patient condition must be 
accounted for and added to existing knowledge bases.  

2.3. Intent inference 
Healthcare team members’ decision making processes 
can be simulated through individual intent inferencing 
based on BKBs. Intent, which can be deduced by 
individuals’ actions, can be defined as a combination of 
goals that are being pursued by individuals. We 
typically construct a behavioral model by optimizing 
individuals’ behavioral patterns. Thus, we collect data 
through observing individuals’ actions and 
environments, and deliver them to the model.  

BKBs have been applied successfully in various 
domains, such as adversary intent inferencing and war-
gaming, in which human intent was inferred through 
reasoning with BKBs (Pioch, Melhuish, Seidel, Santos, 
& Li, 2009) (Santos, McQueary, & Krause, 2008) 
(Santos, et al., 2007). The instantiation of random 
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variables is represented by i-nodes, which are classified 
into the four types: axioms, beliefs, goals and actions. 
These are essential components associated with human 
intent. Axioms represent what a person believes about 
himself; beliefs represent what a person believes about 
others (including other people and surrounding 
situations); goals represent what results a person wants 
to achieve; and actions represent what a person will do 
to realize his goal. Axioms and beliefs may influence 
themselves or each other, and both can contribute to 
goals (mostly sub-goals) (E. Santos, 2003).  
 The intent inferencing can function for three 
purposes: description of personal insights, prediction of 
future events and diagnosis of current outcomes. It can 
describe an insight that motivated individuals and 
anticipate future actions. In addition, it can assess 
earlier predictions by contrasting them with current 
outcomes. It also can provide an explanation of current 
outcomes. 

 
3. EVALUATING TEAM PERFORMANCE  
In addition to individual intent inferencing, we address 
the collective intent of individuals in teams. Teams and 
their performances are a crucial and integral part of 
healthcare practices. To ensure patient safety, teams 
must be well coordinated and communicate well. As a 
part of a computational methodology to model and 
simulate dynamic situations in healthcare practices, we 
use gap analysis as a way to construct a collective intent 
of a team and integrate it into the surgical intent 
inferencing.  With this integrated approach, we can 
simulate real-life medical cases and analyze team 
performance. 

 
3.1. Surgical Intent Modeling 
Surgical intent modeling was proposed to model and 
simulate the clinical decision-making processes of 
healthcare professionals. Through this, we aim to 
improve the healthcare team members’ understanding of 
surrounding environments and other team members’ 
intents (Santos, et al., 2010). Considering the fact that 
healthcare services involve multiple operations and a 
wide range of people who must make discrete efforts to 
accomplish their common goals, tailoring intent models 
for each healthcare team member is necessary. Surgical 
intent models are naturally expected to include the 
entire process of healthcare service from diagnosing to 
discharging the patient. However, it is intractable to 
encompass every detail of the entire process even if all 
of them are necessary to infer intentions completely and 
accurately. Therefore, we select the most relevant 
elements with the appropriate level of detail when 
building the models. For example, the elements we 
choose for intent models of surgeons are beliefs about 
the condition of the patient, axioms about the surgeon’s 
own capability in performing the medical procedure, 
goals regarding choice of procedures, and actions that 
are taken to fulfill the procedure. In general, surgeons’ 
intent models are the most sophisticated since they have 
the greatest authority in clinical decision making. 

 
3.2. Individual Differences 
It is necessary to understand individual differences and 
similarities for modeling an individual’s decision 
making processes in healthcare practices. We classify 
individual differences as either professional or personal. 
Both of these influence individual competence.  

3.2.1. Professional Differences 
Individuals are different due to their educational 
background, malpractice experience, complexity of 
procedures to take during patient care, etc. Therefore, 
their roles in the clinical decision-making process and in 
delivering healthcare services are varied. In general, 
surgeons have the greatest authority in overall clinical 
decision-making processes, while nurses have more 
limited authority to manage patient pain. 

3.2.2. Personal Differences 
Individuals with the same professional background can 
be very different in their personalities. In general, 
individual personalities change over time very slowly. 
However, some attributes are transient and do not last 
long. For example, extremely fatigued individuals do 
not remain in the same state for a long time since the 
level of fatigue can change relatively quickly. On the 
other hand, the self-interest level of individuals is more 
stable, though changes can occur over time.  

3.3. Gap Analysis 
A medical situation is composed of various 

individuals and medical devices; medical errors occur 
when any of these elements does not function 
appropriately. In medical studies, gap analysis has been 
used by Calhoun as a way to assess individuals’ self-
appraisal in communication (Calhoun, Ride, Peterson, 
& Meyer, 2010). In our research, we use gap analysis to 
evaluate the performance of a team delivering 
healthcare services. Based on the probabilistic 
knowledge representation system used for our research, 
we compute gap values by comparing probability 
distributions of individual team members belonging to 
the same team. Since we believe individuals’ intents are 
well coordinated with the collective intent of the team 
in an effective team, we consider the team with the 
smallest gap value as the safest team with respect to 
medical errors. However, when some individuals make 
decisions which are in conflict with others’ and the 
collective intent of the team, this leads to deterioration 
in team performance. By comparing gap values 
obtained from different teams under the same situation, 
we can identify which team is more vulnerable to 
medical errors than others. The formulation to compute 
gap values can be described as 


 
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n

i

n

j

jPiPxg
1 1

)()()(  

where )(xg  denotes the gap value of team x  
composed by n  individual members in an arbitrary 
situation, and )(iP denotes the likelihood of the world 
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of an individual i in the same situation. The gap value 
can be computed and interpreted in various ways, but 
we interpret the gap value as a measure of team 
performance to deliver healthcare service in a safe and 
secure manner. Thus, a team having a large gap means 
that individual team members have a significant 
discrepancy and low team performance. 

 
4. CASE DESCRIPTION 
A patient had a circumferential panniculectomy 
performed by a general surgeon and a plastic surgeon. 
The general surgeon was in charge of the mesh work 
and the plastic surgeon was in charge of the rest of the 
surgery. During the pre-op, the nurse prepped one side 
of the patient at the beginning and cleaned the other side 
a while later, rather than clean both sides at once. The 
Foley catheter, which is commonly implanted at the 
beginning of the prep, was implanted in the middle of 
operation in this case. 

After the surgery, the patient was discharged and 
received home care. After a few days, the visiting nurse 
reported that the drainage came open and the patient 
had a lot of pain. The general surgeon suggested 
admitting the patient to the hospital but the plastic 
surgeon insisted on home care for a few more days. The 
disagreement between the general surgeon and the 
plastic surgeon was never resolved. After a few days, 
another plastic surgeon took over the case since the 
original plastic surgeon was out of town. The new 
plastic surgeon decided to admit the patient 
immediately and pursue a follow-up procedure. By that 
time, the patient had already experienced a lot of pain in 
the past few days. During the follow-up procedure, it 
was confirmed that the wound had been infected. The 
original plastic surgeon should have admitted the 
patient immediately after the wound opened. 

 
4.1. Panniculectomy Case during 5 days after OR 
For modeling and simulating the case dynamically, we 
shortened the duration of the care from 2 weeks to 5 
days after the patient had the panniculectomy operation 
and was discharged from the hospital. We simplified 
this case because the patient condition did not change so 
dramatically that we needed to model each actual day. 
In addition, we are using a discrete representation of 
information. As shown in Table 1, we assume the 
patient condition worsened from Day 1 to Day 4 (as 
shown by the numbers from -2 to -10) and recovered on 
Day 5 after both surgeons (general surgeon and the new 
plastic surgeon) agreed on readmitting the patient to the 
hospital (“Home” denotes the surgeon’s decision to 
discharge the patient from the hospital and take care of 
him at home while “Hosp” represents the surgeon’s 
decision to readmit the patient to the hospital). 

Table 1: Change of Patient Condition 
and Surgeons' Decisions 
Day1 Day2 Day3 Day4 Day5

Patient 
 Status 

-2 -5 -7 -10 -5 

General 
Surgeon 

Home Hosp Hosp Hosp Hosp 

Plastic  
Surgeon 

Home Home Home Hosp Hosp 

 
4.2. Possible Cases depending on Personalities 
 In order to validate our approach, we modeled four 
possible medical situations, where the major differences 
were in the surgeons’ different types of interests. In 
each case, we assumed a healthcare team composed of 
four individuals: general surgeon, plastic surgeon, 
nurse, and patient. For the panniculectomy case, we 
speculated on the role of the plastic surgeon in 
delivering the healthcare service and varied his self-
interest while fixing other members’ best-interests to 
patient-health as the highest priority. While varying the 
plastic surgeon’s best-interest, we addressed four 
categories: patient preference, patient health, surgeon 
liability, and surgeon cost. If the plastic surgeon 
considers a patient’s preference as his first priority, he 
will make a decision that conforms to the patient 
desires. If a surgeon considers a patient’s health to be 
the highest concern, he makes a decision that can 
improve a patient’s health most. When surgeons seek to 
reduce liability as their primary interest, they make 
decisions that help reduce their future liability in case 
any incidents happen. Pursuing surgeon cost as a 
primary interest refers to the situation in which a 
surgeon makes a decision to maximize his individual or 
organizational income. In a real situation, a surgeon 
tends to pursue a mix of these four best-interests rather 
than only one. Thus, we hypothesize four possible 
cases, each of which represents a different type of best-
interests. Each type of best-interest can contribute to 
individual’s best-interest proportionately and the 
weights used for each case are presented inside the 
parentheses. The weights that are not specified 
explicitly are set at 0%. Except for the plastic surgeon, 
we assume the best-interest of other team members is 
patient-health at 100%. 

4.2.1. Case 1  
A plastic surgeon focuses on both satisfying a patient’s 
preference (refers to his preference on the care he will 
receive based on his economic situation, physical and 
mental condition and so forth) and the patient’s health 
during a decision-making process. The weights for two 
types of best interests are roughly equivalent (patient 
preference=100%, patient health=80%).  

4.2.2. Case 2:  
A plastic surgeon considers a patient’s health to be the 
most important factor when making a decision (patient 
health =100%).  
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4.2.3. Case 3:  
A plastic surgeon focuses on reducing his/her liability 
while improving a patient’s health. The weights for 
these two types of best-interests are roughly equivalent 
(patient health=80%, surgeon liability=100%). 
 
4.2.4. Case 4:  
A plastic surgeon focuses on reducing his/her liability 
and improving a patient’s health. The weight of liability 
is considerably larger than that of patient health (patient 
health=50%, surgeon liability=100%).  

 
4.2.5. Experimental Results 

We used the BKB fusion algorithm to simulate the 
dynamic situations in the panniculectomy case. The 
generic BKBs for two surgeons are similar in most parts 
of their decision-making processes and have minor 
differences due to their different roles. In addition, we 
consider the visiting nurse and the patient as separate 
BKBs as well. Even though they are not active 
decision-makers in the patient’s care, we assume they 
both play some roles through providing supplementary 
information to the surgeons. 

In order to simulate the dynamics of the surgeons’ 
decision making processes, which is based on the 
patient condition that changes over time, we used the 
BKB fusion algorithm (E. Santos, J.T. Wilkinson, & 
Santos, 2009). Through the experiments conducted, we 
validate that BKBs can represent the dynamics in 
medical decision making when the patient conditions 
are changed.The fragments of BKBs, which refer to the 
input BKBs in the fusion process, are relatively small 
and contain only the information representing the 
changes through new i-nodes that influence the 
distribution of pre-existing i-nodes.  

With the BKBs specified above, we conducted two 
sets of experiments to examine whether the BKBs and 
their fusion approach can provide a true representation 
of knowledge and correlations among them. In static 
validation, we tested the BKBs on Day 1, with varying 
professional and personal differences. In dynamic 
validation, we tested if the fused BKBs accurately 
represent the changes made in decision-making 
processes with regard to the dynamic patient condition. 

 
4.3. Static Validation 

The purpose of our static validation is to test if the 
BKBs constructed to represent individuals in a 
healthcare team can truly represent a wide range of 
individuals and their decision making processes. Since 
the professional and personal attributes of individuals 
do not change over a short time period in general, we 
assume these attributes are static during the time period 
under our consideration. For example, surgeons’ 
experience does not change during a 5-day or 2-week 
period. In addition, personal self-interest does not 
change within a limited time, although it may change 
smoothly over a longer time period (years or decades). 

 

4.3.1. Professional Differences vs. Error Probability 
As for professional differences, we considered 

experience, complexity and malpractices. One of our 
general assumptions is that less experienced individuals 
make mistakes with a higher probability than highly 
experienced individuals. Table 2 represents the results 
of experiments obtained through the surgeon’s BKB. In 
addition, the malpractice, experience and complexity 
are denoted as M, E and C, respectively and the two 
levels of malpractice, experience and complexity are 
presented as Low (L) and High (H). As shown in Table 
2, when the complexity of the procedure is high, the 
surgeon is highly likely to change his decision from 
home care to hospitalization when his level of 
malpractice and experience is low since the surgeon 
would like to ensure patient safety by keeping him and 
the medical equipment more readily accessible. 
However, the patient can be taken care of well through 
home care if the surgeon is highly experienced. If the 
surgeon has a high malpractice history, he would be 
more risk-averse and would likely change his decision 
from home care to hospitalization when the procedure is 
highly complex even if he is experienced enough with 
the procedure. 

Although we confirmed that all individual BKBs 
follow this tendency, we present here only the 
experimental results obtained from the general 
surgeon’s BKB. 

 

4.3.2. Personal Differences vs. Error Probability 
As personal differences, we address the self-

interest of surgeons and nurses. Table 3 demonstrates a 
few examples of how different types of interests 
influence the final decision when the patient’s condition 
is normal. As evidence for best-interest, PP, PH, SL and 
SC represent patient preference, patient health, surgeon 
liability and surgeon cost respectively, as explained in 

Table 2: Professional Differences vs. Error Probability 
Evidence Target (Planned 

Procedure) 
Potential 
Procedure 

M E C 1st 
rank 

2nd 
rank 

1strank 
prob. 

Home L L L Home Hosp 1.81e-
05 

Home L L H Hosp Home 1.09e-
05 

Home L H L Home Hosp 2.71e-
05 

Home L H H Home Hosp 1.92e-
05 

Home H L L Home Hosp 2.13e-
06 

Home H L H Hosp Home 1.83e-
06 

Home H H L Home Hosp 2.01e-
06 

Home H H H Hosp Home 1.22e-
06 
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Section 4.2. Each row represents how a surgeon 
determines his procedure when his best-interest is set as 
evidence. For example, the first row represents how a 
surgeon determines home care as the best procedure 
when his best-interest is patient preference, which is 
home care in this example.  

 
Table 3: Personal Differences vs. Error Probability 
Evidence Target (Planned Procedure) 
Best-
interest 

1st rank 2nd rank 1st rank 
prob. 

PP (Home) Home Hosp 0.0013 
PP (Hosp) Hosp Home 0.0013 
PH Home Hosp 0.0025 
SL Home Hosp 0.0027 
SC Hosp Home 0.0023 

 
4.4. Dynamic Validation 

Based on the static validation, we expanded the 
simulation into a 5-day period to validate that the fused 
BKBs represented the dynamics of the panniculectomy 
case accurately. To this end, we conducted an additional 
set of experiments and computed gap values over time 
for each case we addressed earlier. 

 
4.4.1. Dynamics of Potential Procedure 
 In the panniculectomy case, the only source of 
dynamics is the change in patient condition, such as the 
wound opening and drainage fall. The potential 
procedure must cope with this change of patient 
condition. Therefore, we conducted a set of experiments 
to test if the procedure predicted by inferencing with the 
BKB changes according to the patient condition, as 
shown by Table 4. 

Table 4:  Dynamics of Potential Care 
  Target (Potential Procedure) 

Case Day 1st rank 2nd rank 1st rank prob. 

1 1 Hosp Home 0.00134 

2 Hosp Home 1.32E-06 

3 Hosp Home 8.23E-07 

4 Hosp Home 2.22E-08 

5 Hosp Home 1.49E-08 

2 1 Home Hosp 0.002489 

2 Hosp Home 2.27E-06 

3 Hosp Home 1.88E-06 

4 Hosp Home 5.54E-08 

5 Hosp Home 2.49E-08 

3 1 Home Hosp 0.00268 

2 Home Hosp 2.64E-06 

3 Home Hosp 1.65E-06 

4 Hosp Home 4.44E-08 

5 Hosp Home 2.49E-08 

4 1 Home Hosp 0.00268 

2 Home Hosp 2.64E-06 

3 Home Hosp 1.65E-06 

4 Home Hosp 3.92E-08 

5 Home Hosp 2.99E-08 

 

4.4.2. Gap Analysis in Panniculectomy Case 
Gap values were computed using Equation (1) for each 
case mentioned in Section 4. As shown in Figure 2, we 
obtained the lowest gap value from case 2 during the 5 
days since the both the general and plastic surgeons 
placed their best-interests towards patient health. In case 
1, the plastic surgeon’s best interest is set towards 
patient preference and health, and he insists on 
readmitting the patient to the hospital from day 1. 
Although his motivation is not ideal, his decision turns 
out to be good for the patient health from day 2 since 
the patient condition gets worse. In case 3, the plastic 
surgeon insists on home care since he cares about his 
liability in addition to the patient health. However, since 
the patient condition gets worse, he changes his 
decision to readmit the patient to the hospital at day 4. 
The gap value becomes negligible after the patient was 
re-hospitalized. Case 4 is a more severe case with 
respect to the patient safety since this plastic surgeon is 
more biased to his liability issue and insists on home 
care until day 5. However, the gap value becomes 
smaller as time goes on since the plastic surgeon would 
become skeptical of his decision when the patient 
condition worsened.  
 

 
Figure 2: Gap Analysis with four cases 

 
 
5. CONCLUSION AND FUTURE WORKS 
In this paper, we proposed a new computational 
framework to simulate dynamic healthcare practices by 
employing the Bayesian knowledge fusion method 
developed to aggregate the information from multiple 
sources. By modeling and simulating complex real-life 
situations, we expect to contribute to training healthcare 
professionals and ensuring patient care. We also 

0.00E+00

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

1.40E-06

day 1 day 2 day 3 day 4 day 5

case 1 case 2 case 3 case 4

24



addressed team performance through gap analysis by 
integrating gap analysis with individual intent 
inferencing. Consequently, we hope to supply 
healthcare practitioners with information of complex 
situations and help them make the best decision for the 
patient. 
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