Computer Architecture and Organization: From Software to
Hardware

Manoj Franklin
University of Maryland, College Park

(©Manoj Franklin 2007

Preface

Introduction

Welcome! Bienvenidoes! Bienvenue! Benvenuto! This book provides a fresh introduction
to computer architecture and organization. The subject of computer architecture dates back
to the early periods of computer development, although the term was coined more recently.
Over the years many introductory books have been written on this fascinating subject, as the
subject underwent many changes due to technological (hardware) and application (software)
changes. Today computer architecture is a topic of great importance to computer science,
computer engineering, and electrical engineering. It bridges the yawning gap between high-
level language programming in computer science and VLSI design in electrical engineering.
The spheres of influence exercised by computer architecture has expanded significantly in
recent years. A fresh introduction of the subject is therefore essential for modern computer
users, programmers, and designers.

This book is for students of computer science, computer engineering, electrical engineer-
ing, and any others who are interested in learning the fundamentals of computer architecture
in a structured manner. It contains core material that is essential to students in all of these
disciplines. It is designed for use in a computer architecture or computer organization
course typically offered at the undergraduate level by computer science, computer engineer-
ing, electrical engineering, or information systems departments. On successful completion
of this book you will have a clear understanding of the foundational principles of computer
architecture. Many of you may have taken a course in high-level language programming
and in digital logic before using this book. We assume most readers will have some fa-
miliarity with computers, and perhaps have even done some programming in a high-level
language. We also assume that readers have had exposure to preliminary digital logic de-
sign. This book will extend that knowledge to the core areas of computer architecture,
namely assembly-level architecture, instruction set architecture, and microarchitecture.

The WordReference dictionary defines computer architecture as “the structure and or-
ganization of a computer’s hardware or system software.” Dictionary.com defines it as “the
art of assembling logical elements into a computing device; the specification of the rela-
tion between parts of a computer system.” Computer architecture deals with the way in
which the elements of a computer relate to each other. It is concerned with all aspects of
the design and operation of the computer system. It extends upward into software as a
system’s architecture is intimately tied to the operating system and other system software.
It is almost impossible to design a good operating system without knowing the underlying
architecture of the systems where the operating system will run. Similarly, the compiler
requires an even more intimate knowledge of the architecture.

It is important to understand the general principles behind the design of computers, and
to see how those principles are put into practice in real computers. The goal of this book is

to provide a complete discussion of the fundamental concepts, along with an extensive set
of examples that reinforce these concepts. A few detailed examples are also given for the
students to have a better appreciation of real-life intricacies. These examples are presented
in a manner that does not distract the student from the fundamental concepts. Clearly, we
cannot cover every single aspect of computer architecture in an introductory book. Our goal
is to cover the fundamentals and to lay a good foundation upon which motivated students
can easily build later. For each topic, we use the following test to decide if it should get
included in the text: is the topic foundational? If the answer is positive, we include the
topic.

Almost every aspect of computer architecture is replete with trade-offs, involving char-
acteristics such as programmability, software compatibility, portability, speed, cost, power
consumption, die size, and reliability. For general-purpose computers, one trade-off drives
the most important choices the computer architect must make: speed versus cost. For
laptops and embedded systems, the important considerations are size and power consump-
tion. For space applications and other mission-critical applications, reliability and power
consumption are of primary concern. Among these considerations, we highlight programma-
bility, performance, cost, and power consumption throughout the text, as they are funda-
mental factors affecting how a computer is designed. However, this coverage is somewhat
qualitative, and not intended to be quantitative in nature. Extensive coverage of quantita-
tive analysis is traded off in favor of qualitative explanation of issues. Students will have
plenty of opportunity to study quantitative analysis in a graduate-level computer architec-
ture course. Additional emphasis is also placed on how various parts of the system are
related to real-world demand and technology constraints.

Performance and functionality are key to the utility of a computer system. Perhaps one
of the most important reasons for studying computer architecture is to learn how to extract
the best performance from a computer. As an assembly language programmer, for instance,
you need to understand how to use the system’s functionality most effectively. Specifically,
you must understand its architecture so that you will be able to exploit that architecture
during programming.

Coverage of Software and Hardware

Computer architecture/organization is a discipline with many facets, ranging from trans-
lation of high-level language programs through design of instruction set architecture and
microarchitecture to the logic-level design of computers. Some of these facets have more
of a software luster whereas others have more of a hardware luster. We believe that a
good introduction to the discipline should give a broad overview of all the facets and their
interrelationships, leaving a non-specialist with a decent perspective on computer architec-
ture, and providing an undergraduate student with a solid foundation upon which related
and advanced subjects can be built. Traditional introductory textbooks focussing only on
software topics or on hardware topics do not fulfill these objectives.

Our presentation is unique in that we cover both software and hardware concepts. These
include high-level language, assembly language programming, systems programming, in-
struction set architecture design, microarchitecture design, system design, and digital logic
design.

There are four legs that form the foundation of computer architecture: assembly-level
architecture, instruction set architecture, microarchitecture, and logic-level architecture.
This book is uniquely concerned about all four legs. Starting from the assembly-level
architecture, we carry out the design of the important portions of a computer system all
the way to the lower hardware levels, considering plausible alternatives at each level.

Structured Approach

In an effort to systematically cover all of these fundamental topics, the material has been
organized in a structured manner, from the high-level architecture to the logic-level archi-
tecture. Our coverage begins with a high-level language programmer’s view—expressing
algorithms in an HLL such as C—and moves towards the less abstract levels. Although
there are a few textbooks that start from the digital logic level and work their way to-
wards the more abstract levels, in our view the fundamental issues of computer architec-
ture/organization are best learned starting with the software levels, with which most of the
students are already familiar. Moreover, it is easier to appreciate why a level is designed
in a particular manner if the student knows what the design is supposed to implement.
This structured approach—from abstract software levels to less abstract software levels to
abstract hardware levels to less abstract hardware levels—is faithfully followed through-
out the book. We make exceptions only in a few places where such a deviation tends to
improve clarity. For example, while discussing ISA (instruction set architecture) design
options in Chapter 5, we allude to hardware issues such as pipelining and multiple-issue,
which influence ISA design.

For each architecture level we answer the following fundamental questions: What is
the nature of the machine at this level? What are the ways in which its building blocks
interact? How does the machine interact with the outside world? How is programming
done at this level? How is a higher-level program translated/interpreted for controlling the
machine at this level? We are confident that after you have mastered these fundamental
concepts, building upon them will be quite straightforward.

Example Instruction Set

As an important goal of this book is to lay a good foundation for the general subject of com-
puter architecture, we have refrained from focusing on a single architecture in our discussion
of the fundamental concepts. Thus, when presenting concepts at each architecture level,
great care is taken to keep the discussion general, without tailoring to a specific architecture.
For instance, when discussing the assembly language architecture, we discuss register-based

approach as well as a stack-based approach. When discussing virtual memory, we discuss a
paging-based approach as well as a segmentation-based approach. In other words, at each
stage of the design, we discuss alternative approaches, and the associated trade-offs. While
one alternative may seem better today, technological innovations may tip the scale towards
another in the future.

For ease of learning, the discussion of concepts is peppered with suitable examples. We
have found that students learn the different levels and their inter-relationships better when
there is a continuity among many of the examples used in different parts of the book. For
this purpose, we have used the standard MIPS assembly language [ref] and the standard
MIPS Lite instruction set architecture [ref], a subset of the MIPS-I ISA [ref]. We use MIPS
because it is very simple and has had commercial success, both in general-purpose com-
puting and in embedded systems. The MIPS architecture had its beginnings in 1984, and
was first implemented in 1985. By the late 1980s, the architecture had been adopted by
several workstation and server companies, including Digital Equipment Corporation and
Silicon Graphics. Now MIPS processors are widely used in Sony and Nintendo game ma-
chines, palmtops, laser printers, Cisco routers, and SGI high-performance graphics engines.
More importantly, some popular texts on Advanced Computer Architecture use the MIPS
architecture. The use of the MIPS instruction set in this introductory book will therefore
provide good continuity for those students wishing to pursue higher studies in Computer
Science or Engineering.

In rare occasions, I have changed some terminology, not to protect the innocent but
simply to make it clearer to understand.

Organization and Usage of the Book

This book is organized to meet the needs of several potential audiences. It can serve as an
undergraduate text, as well as a professional reference for engineers and members of the
technical community who find themselves frequently dealing with computing. The book
uses a structured approach, and is intended to be read sequentially. Each chapter builds
upon the previous ones. Certain sections contain somewhat advanced technical material,
and can be skipped by the reader without loss in continuity. These sections are marked
with an asterisk. We recommend, however, that even those sections be skimmed, at least
to get a superficial idea of their contents.

Each chapter is followed by a “Concluding Remarks” section and an “Exercises” section.
The exercises are particularly important. They help master the material by integrating a
number of different concepts. The book also includes many real-world examples, both his-
torical and current, in each chapter. Instead of presenting real-world examples in isolation,
such examples are included while presenting the major concepts.

This book is organized into 9 chapters, which are grouped into 3 parts. The first part
provides an overview of the subject. The second part covers the software levels, and the
third part covers the hardware levels. The coverage of the software levels is not intended

to make the readers proficient in programming in these levels, but rather to help them
understand what each level does, how programs at immediately higher level are converted
to this level, and how to design this level in a better way.

A layered approach is used to cover the topics. Each new layer builds upon the previous
material to add depth and understanding to the reader’s knowledge.

Chapter 1 provides an overview of It opens with a discussion of the expanding role
of computers, and the trends in technology and software applications. It briefly introduces
..... Chapter 2 ... Chapter 3 Most of the material in Chapter 3 should be familiar
to readers with a background in computer programming, and they can probably browse
through this chapter. Starting with Chapter 4, the material deals with the core issues in
computer architecture. Chapter 4 Chapter 5 Chapter 6

The book can be tailored for use in software-centric as well as hardware-centric courses.
For instance, skipping the last chapter (or the last 3 chapters) makes the book becomes suit-
able for a software-centric course, and skipping chapter 2 makes it suitable for a hardware-
centric course.

“If you are planning for a year, sow rice;

if you are planning for a decade, plant trees;

if you are planning for a lifetime, educate people.”
— Chinese Proverb

“Therefore, since brevity is the soul of wit, And tediousness the limbs and outward
flourishes, I will be brief”
— William Shakespeare, Hamlet

Soli Deo Gloria

Contents

1 Introduction

1.1

1.2

1.3

14

1.5
1.6

1
Computing and Computers 3
1.1.1 The Problem-Solving Process 3
1.1.2 Automating Algorithm Execution with Computers 5
The Digital Computer 9
1.2.1 Representing Programs in a Digital Computer: The Stored Program
Concept e 10
1.2.2 Basic Software Organization 12
1.2.3 Basic Hardware Organization 13
1.2.4 Software versus Hardware 15
1.2.5 Computer Platforms 16
A Modern Computer System 17
1.3.1 Hardware e 17
1.3.2 Software 19
1.3.3 Starting the Computer System: The Boot Process 20
1.3.4 Computer Network 21
Trends in Computing 22
1.4.1 Hardware Technology Trends 22
1.4.2 Software Technology Trends 23
Software Design Issues L 25
Hardware Design Issues 25
1.6.1 Performance o 25
1.6.2 Power Consumption 26
1.6.3 Price. 27

CONTENTS

1.6.4 Size e 27
1.6.5 Summary 27
1.7 Theoretical Underpinnings L oL 27
1.7.1 Computability and the Turing Machine 27
1.7.2 Limitations of Computers 28
1.8 Virtual Machines: The Abstraction Tower 30
1.8.1 Problem Definition and Modeling Level Architecture 33
1.8.2 Algorithm-Level Architecture 33
1.8.3 High-Level Architecture 37
1.8.4 Assembly-Level Architecture 38
1.8.5 Instruction Set Architecture (ISA) 38
1.8.6 Microarchitecture oL 39
1.8.7 Logic-Level Architecture 39
1.8.8 Device-Level Architecture 40
1.9 Concluding Remarks L 41
1.10 Exercises e e e e e 41
PROGRAM DEVELOPMENT — SOFTWARE LEVELS 43
Program Development Basics 45
2.1 Overview of Program Development 46
2.1.1 Programming Languages. 47
2.1.2 Application Programming Interface Provided by Library 50
2.1.3 Application Programming Interface Provided by OS 50
2.1.4 Compilationo 50
2.1.5 Debugging. L e 50
2.2 Programming Language Specification 50
221 Syntax 50
2.2.2 Semantics 50
2.3 Data Abstraction L 50
231 Constants 51
2.3.2 Variables 52

2.3.3 10 Streams and Files 58

CONTENTS 9

2.3.4 Data Structures. 60
2.3.5 Modeling Real-World Data 60

2.4 Operators and Assignments 64
2.5 Control Abstraction L 65
2.5.1 Conditional Statements 65
2.5.2 Loops 66
2.5.3 Subroutines 67
2.5.4 Subroutine Nesting and Recursion 68
2.5.5 Re-entrant Subroutine 68
2.5.6 Program Modules 69
2.5.7 Software Interfaces: APland ABI 69

2.6 Library API 69
2.7 Operating System APT 70
2.7.1 What Should be Done by the OS? 72
2.7.2 Input/Output Management 72
2.7.3 Memory Management oL 73
2.7.4 Process Management Lo oo 74

2.8 Operating System Organization 74
2.8.1 System Call Interface 76
2.8.2 File System 76
2.8.3 Device Management: Device Drivers 77
2.8.4 Hardware Abstraction Layer (HAL) 78
2.8.5 Process Control System 78

2.9 Major Issues in Program Development 80
2.9.1 Portability 80
2.9.2 Reusability 80
2.9.3 Concurrencyo 80

2.10 Concluding Remarks L 80
2.11 EXercises oo e 80
3 Assembly-Level Architecture — User Mode 81
3.1 Overview of User Mode Assembly-Level Architecture 82

3.1.1 Assembly Language Alphabet and Syntax 83

10

3.2

3.3

3.4

3.5

3.6

CONTENTS

3.1.2 Memory Model 83
3.1.3 Register Modelo 85
3.1.4 DataTypeso 87
3.1.5 Assembler Directives 89
3.1.6 Instruction Types and Instruction Set 90
3.1.7 Program Execution o 0. 93
3.1.8 Challenges of Assembly Language Programming 94
3.1.9 The Rationale for Assembly Language Programming 95
Assembly-Level Interfaces L 96
3.2.1 Assembly-Level Interface Provided by Library 97
3.2.2 Assembly-Level Interface Provided by OS 97
Example Assembly-Level Architecture: MIPS-I 97
3.3.1 Assembly Language Alphabet and Syntax 97
3.3.2 Register Model o 98
3.3.3 Memory Model 101
3.3.4 Assembler Directives o 102
3.3.5 Assembly-Level Instructions 103
3.3.6 An Example MIPS-I AL Program 104
3.3.7 SPIM: A Simulator for the MIPS-I Architecture 107
Translating HLL Programs to AL Programs 107
3.4.1 Translating Constant Declarations 108
3.4.2 Translating Variable Declarations 110
3.4.3 'Translating Variable References 118
3.4.4 Translating Conditional Statements 119
3.4.5 Translating Loops o 122
3.4.6 Translating Subroutine Calls and Returns 123
3.4.7 Translating System Calls, 127
3.4.8 Overview of a Compiler 128
Memory Models: Design Choices 129
3.5.1 Address Space: Linear vs Segmented 129
3.5.2 Word Alignment: Aligned vs Unaligned 130
3.5.3 Byte Ordering: Little Endian vs Big Endian 131

Operand Locations: Design Choices 131

CONTENTS 11

3.6.1 Imstruction 131
3.6.2 Main Memoryo 131
3.6.3 General-Purpose Registers 132
3.6.4 Accumulator 132
3.6.5 Operand Stack 133

3.7 Operand Addressing Modes: Design Choices 136
3.7.1 Instruction-Residing Operands: Immediate Operands. 137
3.7.2 Register Operands 137
3.7.3 Memory Operands o 138
3.74 Stack Operands i 140

3.8 Subroutine Implementation 141
3.8.1 Register Saving and Restoring 142
3.8.2 Return Address Storingo 143
3.8.3 Parameter Passing and Return Value Passing 145

3.9 Defining Assembly Languages for Programmability 146
3.91 Labels 146
3.9.2 Pseudoinstructions Lo oL 146
3.9.3 Macros e e e e 146

3.10 Concluding Remarks 147
3.11 EXercises e e e e e 147
4 Assembly-Level Architecture — Kernel Mode 149
4.1 Overview of Kernel Mode Assembly-Level Architecture 150
4.1.1 Privileged Registers o oL 151
4.1.2 Privileged Memory Address Space 152
4.1.3 TO Addresses 152
4.1.4 Privileged Instructions o Lo 152

4.2 Switching from User Mode to Kernel Mode 153
4.2.1 Syscall Instructions: Switching Initiated by User Programs 154
4.2.2 Device Interrupts: Switching Initiated by IO Interfaces. 156
4.2.3 Exceptions: Switching Initiated by Rare Events 157

4.3 TO Registers e e 158

4.3.1 Memory Mapped IO Address Space 158

12

CONTENTS

4.3.2 Independent 10 Address Space 158
4.3.3 Operating System’s Use of IO Addresses 160
4.4 Operating System Organization, 162
4.4.1 System Call Layer 164
4.4.2 File System 164
4.4.3 Device Management: Device Drivers 165
4.4.4 Process Control System 167
4.5 System Call Layer for a MIPS-IOS. 168
4.5.1 MIPS-I Machine Specifications for Exceptions 168
4.5.2 OS Usage of MIPS-I Architecture Specifications 170
4.6 10O Schemes Employed by Device Management System 173
4.6.1 Sampling-Based IO oL 173
4.6.2 Program-Controlled IO 0. 174
4.6.3 Interrupt-Driven IO oo 177
4.6.4 Direct Memory Access (DMA) 181
4.6.5 10 Co-processing L 182
4.6.6 Wrap Up e 183
4.7 Concluding Remarks L 183
4.8 EXercises e e 183
Instruction Set Architecture (ISA) 185
5.1 Overview of Instruction Set Architecture 186
5.1.1 Machine Language o 186
5.1.2 Register, Memory, and IO Models 189
5.1.3 Data Types and Formats 189
5.1.4 Instruction Types and Formats 189
5.2 Example Instruction Set Architecture: MIPS-I 190
5.2.1 Register, Memory, and IO Models 190
5.2.2 Data Types and Formats 190
5.2.3 Instruction Types and Formats 190
5.2.4 An Example MIPS-I ML Program 191
5.3 Translating Assembly Language Programs to Machine Language Programs 191

5.3.1 MIPS-I Assembler Conventions o v v v v v v v .. 192

CONTENTS

11

5.3.2 Translating Decimal Numbers
5.3.3 Translating AL-specific Instructions and Macros
5.3.4 Translating Labels oo
5.3.5 Code Generation
5.3.6 Overview of an Assembler L.
5.3.7 Cross Assemblers
54 Linkingo
5.4.1 Resolving External References
5.4.2 Relocating the Memory Addresses
5.4.3 Program Start-Up Routine
5.5 Instruction Formats: Design Choices
5.5.1 Fixed Length Instruction Encoding
5.5.2 Variable Length Instruction Encoding
5.6 Data Formats: Design Choices and Standards
5.6.1 Unsigned Integers: Binary Number System
5.6.2 Signed Integers: 2’s Complement Number System
5.6.3 Floating Point Numbers: ANSI/IEEE Floating Point Standard . . .
5.6.4 Characters: ASCII and Unicode
5.7 Designing ISAs for Better Performance
5.7.1 Technological Improvements and Their Effects
5.7.2 CISC Design Philosophy
5.7.3 RISC Design Philosophy
5.74 Recent Trends
5.8 Concluding Remarks L L

5.9 EXercises e

PROGRAM EXECUTION — HARDWARE LEVELS

Program Execution Basics

6.1 Overview of Program Execution

6.2 Selecting the Program: User Interface
6.2.1 CLIShells.
6.2.2 GUI Shells

13

192
192
193
195
196
196
197
198
198
198
199
201
203
203
204
205
206
212
213
214
215
215
217
217
218

219

14

CONTENTS

6.23 VUIShells 225

6.3 Creating the Process 227
6.4 Loading the Program 227
6.4.1 Dynamic Linking of Libraries 228

6.5 Executing the Program L. 230
6.6 Halting the Program oo 231
6.7 Instruction Set Simulator o0 oL 231
6.7.1 Implementing the Register Space 233
6.7.2 Implementing the Memory Address Space 234
6.7.3 Program Loading 235
6.7.4 Instruction Fetch Phase 235
6.7.5 Executing the ML Instructions 235
6.7.6 Executing the Syscall Instruction 236
6.7.7 Comparison with Hardware Microarchitecture 237

6.8 Hardware Design 237
6.8.1 Clock e 237
6.8.2 Hardware Description Language (HDL) 237
6.8.3 Design Specification in HDL 238
6.8.4 Design Verification using Simulation 238
6.8.5 Hardware Design Metrics oo 238

6.9 Concluding Remarks 239
6.10 Exercises 239
Microarchitecture — User Mode 241
7.1 Overview of User Mode Microarchitecture 243
7.1.1 Dichotomy: Data Path and Control Unit 243
7.1.2 Register File and Individual Registers 244
7.1.3 Memory Structures 245
7.1.4 ALUs and Other Functional Units 246
7.1.5 Interconnects 247
7.1.6 Processor and Memory Subsystems 249
7.1.7 Micro-Assembly Language (MAL) 249

7.2 Example Microarchitecture for Executing MIPS-0 Programs 251

CONTENTS 15

7.3

7.4

7.5

7.6

7.7

7.8
7.9

721 MAL Commands e 253
7.2.2 MAL Operation Set 253
7.2.3 An Example MAL Routine 253
Interpreting ML Programs by MAL Routines 254
7.3.1 Interpreting an Instruction — the Fetch Phase 256
7.3.2 Interpreting Arithmetic/Logical Instructions 257
7.3.3 Interpreting Memory-Referencing Instructions 258
7.3.4 Interpreting Control-Changing Instructions 259
7.3.5 Interpreting Trap Instructions. 260
Memory System Organization 260
7.4.1 Memory Hierarchy: Achieving Low Latency and Cost 260
7.4.2 Cache Memory: Basic Organization 263
7.4.3 MIPS-0 Data Path with Cache Memories 264
7.4.4 Cache Performance, 264
7.4.5 Address Mapping Functions 264
7.4.6 Finding a Word in the Cache 267
7.4.7 Block Replacement Policy 268
7.4.8 Multi-Level Cache Memories 269
Processor-Memory Bus Lo o o 269
7.5.1 BusWidth 270
7.5.2 Bus Operations 270
Processor Data Path Interconnects: Design Choices 272
7.6.1 Multiple-Bus based Data Paths 272
7.6.2 Direct Path-based Data Path 273
Pipelined Data Path: Overlapping the Execution of Multiple Instructions . 274
7.7.1 Defining a Pipelined Data Path 275
7.7.2 Interpreting ML Instructions in a Pipelined Data Path 279
7.7.3 Control Unit for a Pipelined Data Path 279
7.7.4 Dealing with Control Flow 280
7.7.5 Dealing with Data Flow 284
7.7.6 Pipelines in Commercial Processors 286
Wide Data Paths: Superscalar and VLIW Processing 287
Co-Processors e 288

16

CONTENTS

7.10 Processor Data Paths for Low Power 288
7.11 Concluding Remarks 290
7.12 Exercises 291
Microarchitecture — Kernel Mode 293
8.1 Processor Management L L L L 293
8.1.1 Interpreting a System Call Instruction 294
8.1.2 Recognizing Exceptions and Hardware Interrupts 295
8.1.3 Interpreting an RFE Instruction 297
8.2 Memory Management: Implementing Virtual Memory 297
8.2.1 Virtual Memory: Implementing a Large Address Space. 297
8.2.2 Paging and Address Translation 301
8.2.3 Page Table Organization 304
8.2.4 Translation Lookaside Buffer (TLB) 306
8.2.5 Software-Managed TLB and the Role of the Operating System in
Virtual Memoryo 309
8.2.6 Sharing in a Paging System 312
8.2.7 A Real-Life Example: a MIPS-I Virtual Memory System 312
8.2.8 Interpreting a MIPS-I Memory-Referencing Instruction 319
8.2.9 Combining Cache Memory and Virtual Memory 320
8.3 10 System Organization 321
8.3.1 Implementing the IO Address Space: 10 Data Path 322
8.3.2 Implementing the IO Interface Protocols: I0 Controllers 323
8.3.3 Example IO Controllers 324
8.3.4 Frame Buffer: o 325
8.3.5 10 Configuration: Assigning IO Addresses to IO Controllers 329
8.4 System Architecture 332
8.4.1 Single System Bus L 332
8.4.2 Hierarchical Bus Systems 333
8.4.3 Standard Buses and Interconnects 341
8.4.4 Expansion Bus and Expansion Slots 352
8.4.5 10 System in Modern Desktops 354
8.4.6 Circa 2006 355

84.7 RAID 356

CONTENTS 17

8.5 Network Architecture 357
8.5.1 Network Interface Card (NIC) 358
8.5.2 Protocol Stacks 359

8.6 Interpreting an IO Instruction oL, 359

8.7 System-Level Design 359

8.8 Concluding Remarks 360

8.9 Exercises 360

9 Register Tranfer Level Architecture 361

9.1 Overview of RTL Architecture 362
9.1.1 Register File and Individual Registers 362
9.1.2 ALUs and Other Functional Units 363
9.1.3 Register Transfer Language 363

9.2 Example RTL Data Path for Executing MIPS-0 ML, Programs 364
9.2.1 RTL Instruction Set 366
9.2.2 RTL Operation Types oo 367
9.2.3 An Example RTL Routine 368

9.3 Interpreting ML Programs by RTL Routines 369
9.3.1 Interpreting the Fetch and PC Update Commands for Each Instruction369
9.3.2 Interpreting Arithmetic/Logical Instructions 371
9.3.3 Interpreting Memory-Referencing Instructions 372
9.3.4 Interpreting Control-Changing Instructions 373
9.3.5 Interpreting Trap Instructions. 374

9.4 RTL Control Unit: An Interpreter for ML Programs 375
9.4.1 Developing an Algorithm for RTL Instruction Generation 375
9.4.2 Designing the Control Unit as a Finite State Machine 377
9.4.3 Incorporating Sequencing Information in the Microinstruction 380
9.4.4 State Reduction oo 381

9.5 Memory System Design o 382
9.5.1 A Simple Memory Data Path 383
9.5.2 Memory Interface Unit 383
9.5.3 Memory Controller 383

9.54 DRAM Controller 383

18 CONTENTS
9.5.5 Cache Memory Design, 383
9.5.6 Cache Controller: Interpreting a Read/Write Command 384

9.6 Processor Data Path Interconnects: Design Choices 384
9.6.1 Multiple-Bus based Data Paths 385
9.6.2 Direct Path-based Data Path 387

9.7 Pipelined Data Path: Overlapping the Execution of Multiple Instructions . 390
9.7.1 Defining a Pipelined Data Path 390
9.7.2 Interpreting ML Instructions in a Pipelined Data Path 393
9.7.3 Control Unit for a Pipelined Data Path 393

9.8 Concluding Remarks 394

9.9 Exercises 395

10 Logic-Level Architecture 397

10.1 Overview oo e e e e e 397
10.1.1 Multiplexers 399
10.1.2 Decoders e e 400
10.1.3 Flip-Flops o 402
10.1.4 Static RAM 403
10.1.5 Dynamic RAM 404
10.1.6 Tri-State Buffers oo oL 405

10.2 Implementing ALU and Functional Units of Data Path 405
10.2.1 Implementing an Integer Adder 406
10.2.2 Implementing an Integer Subtractor 415
10.2.3 Implementing an Arithmetic Overflow Detector 416
10.2.4 Implementing Logical Operations 419
10.2.5 Implementing a Shifter. L. 419
10.2.6 Putting It All Together: ALU 419
10.2.7 Implementing an Integer Multiplier 420
10.2.8 Implementing a Floating-Point Adder 425
10.2.9 Implementing a Floating-Point Multiplier 425

10.3 Implementing a Register File L. 425
10.3.1 Logic-level Design L 426

10.3.2 Tramnsistor-level Design oo 429

CONTENTS

10.4

10.5

10.6

10.7

10.8
10.9

B.1
B.2

B.3
B.4
B.5

Implementing a Memory System using RAM Cells
10.4.1 Implementing a Memory Chip using RAM Cells
10.4.2 Implementing a Memory System using RAM Chips
10.4.3 Commercial Memory Modules
Implementinga Bus
10.5.1 Bus Design L e
10.5.2 Bus Arbitration.
10.5.3 Bus Protocol: Synchronous versus Asynchronous
Interpreting Microinstructions using Control Signals
10.6.1 Control Signals
10.6.2 Control Signal Timing
10.6.3 Asserting Control Signals in a Timely Fashion
Implementing the Control Unit
10.7.1 Programmed Control Unit: A Regular Control Structure.
10.7.2 Hardwired Control Signal Generator: A Fast Control Mechanism . .
10.7.3 Hardwired versus Programmed Control Units
Concluding Remarks L

Exercises e

MIPS Instruction Set

Peripheral Devices

Types and Characteristics of IO Devices
Video Terminal
B.2.1 Keyboard
B.2.2 Mouse e
B.2.3 Video Display
Printer e
Magnetic Disk
Modem

19

431
431
431
432
433
434
435
435
439
439
442
442
443
443
446
449
449
450

451

20

CONTENTS

Chapter 1

Introduction

Let the wise listen and add to their learning, and let the discerning get guidance

Proverbs 1: 5

We begin this book with a broad overview of digital computers This chapter serves
as a context for the remainder of this book. It begins by examining the nature of the
computing process. It then discusses the fundamental aspects of digital computers, and
moves on to recent trends in desktop computer systems. Finally, it introduces the concept
of the computer as a hierarchical system. The major levels of this hierarchical view are
introduced. The remainder of the book is organized in terms of these levels.

“The computer is by all odds the most extraordinary of the technological clothing
ever devised by man, since it is an extension of our central nervous system. Beside
it the wheel is a mere hula hoop....”

— Marshall McLuhan. War and Peace in the Global Village

Born a few years back, digital computer technology, in cohort with telecommunication
technology, has ushered us into the information age and is exerting a profound influence
on almost every facet of our daily lives!. Most of us spend a substantial time every day in
front of a computer (most of it on the internet or on some games!). Rest of the time, we are
on the cell phone or some other electronic device with one or more computers embedded
within. On a more serious note, we are well aware of the critical role played by computers
in flying modern aircraft and spacecraft; in keeping track of large databases such as airline
reservations and bank accounts; in telecommunications applications such as routing and
controlling millions of telephone calls over the entire world; and in controlling power stations
and hazardous chemical plants. Companies and governmental agencies are virtually crippled

IThis too shall pass

2 Chapter 1. Introduction

when their computer systems go down, and a growing number of sophisticated medical
procedures are completely dependent on computers. Biologists are using computers for
performing extremely complex computations and simulations. Computer designers are using
them extensively for developing tomorrow’s faster and denser computer chips. Publishers
use them for typesetting, graphical picture processing, and desktop publishing. The writing
of this book itself has benefitted substantially from desktop publishing software, especially
Latex. Thus, computers have taken away many of our boring chores, and have replaced
them with addictions such as chatting, browsing, and computerized music.

What exactly is a computer? A computer science definition would be as follows: a com-
puter is a programmable symbol-processing machine that accepts input symbols, processes
it according to a sequence of instructions called a computer program, and produces the
resulting output symbols. The input symbols as well as the output symbols can represent
numbers, characters, pictures, sound, or other kinds of data such as chess pieces. The most
striking property of the computer is that it is programmable, making it a truly general-
purpose machine. The user can change the program or the input data according to specific
requirements. Depending on the software run, the end user “sees” a different machine; the
computer user’s view thus depends on the program being run on the computer at any given
instant. Suppose a computer is executing a chess program. As far as the computer user
is concerned, at that instant the computer is a chess player because it behaves exactly as
if it were an electronic chess player?. Because of the ability to execute different programs,
a computer is a truly general-purpose machine. The same computer can thus perform a
variety of information-processing tasks that range over a wide spectrum of applications—
for example, as a word processor, a calculator, or a video game—by executing different
programs on it; a multitasking computer can even simultaneously perform different tasks.
The computer’s ability to perform a wide variety of tasks at very high speeds and with high
degrees of accuracy is what makes it so ubiquitous.

“The computer is only a fast idiot, it has no imagination, it cannot originate action.
It is, and will remain, only a tool to man.”

— American Library Association’s reaction to the UNIVAC computer exhibit at the
1964 New York World’s Fair

2In the late 1990s, a computer made by IBM called Deep Thought even defeated the previous World Chess
Champion Gary Kasparov. It is interesting to note, however, that if the rules of chess are changed even
slightly (for example, by allowing the king to move two steps at a time), then current computers will have
a difficult time, unless they are reprogrammed or reconstructed by humans. In contrast, even an amateur
human player will be able to comprehend the new rules in a short time and play a reasonably good game
under the new rules!

1.1. Computing and Computers 3

1.1 Computing and Computers

The notion of computing (or problem solving) is much more fundamental than the notion
of a computer, and predates the invention of computers by thousands of years. In fact,
computing has been an integral aspect of human life and civilization throughout history.
Over the centuries, mathematicians developed algorithms for solving a wide variety of math-
ematical problems. Scientists and engineers used these algorithms to obtain solutions for
specific problems, both practical and recreational. And, we have been computing ever since
we entered kindergarten, using fingers, followed later by paper and pencil. We have been
adding, subtracting, multiplying, dividing, computing lengths, areas, volumes and many
many other things. In all these computations, we follow some definite, unambiguous set of
rules that have been established. For instance, once the rules for calculating the area of a
complex shape have been established—divide it into non-overlapping basic shapes and add
up the areas of the shapes—we can calcuate the area of any complex shape.

A typical modern-day computing problem is much more complex, but works on the same
fundamental principles. Consider a metropolitan traffic control center where traffic video
images from multiple cameras are being fed, and a human operator looks at the images
and takes various traffic control decisions. Imagine automating this process, and letting a
computer do the merging of the images and taking various decisions! How should we go
about designing such a computer system?

1.1.1 The Problem-Solving Process

Finding a solution to a problem, irrespective of whether or not we use a computer, involves
two important phases, as illustrated in Figure 1.1:

e Algorithm development

e Algorithm execution

We shall take a detailed look at these two phases.

1.1.1.1 Algorithm Development

The first phase of computing involves the development of a solution algorithm or a step-
by-step procedure that describes how to solve the problem. When we explicitly write down
the rules (or instructions) for solving a given computation problem, we call it an algorithm.
An example algorithm is the procedure for finding the solution of a quadratic equation.
Informally speaking, many of the recipes, procedures, and methods in everyday life are
algorithms.

What should be the granularity of the steps in an algorithm? This depends on the
sophistication of the person or machine who will execute it, and can vary significantly from

4 Chapter 1. Introduction

¢ Problem

‘ Algorithm Development ’

Input Data Algorithm

Y Y

Algorithm Execution ’

¢ Output Data (Results)
Figure 1.1: The Problem Solving Process

one algorithm to another; a step can be as complex as finding the solution of a sub-problem,
or it can be as simple as an addition/subtraction operation. Interestingly, an addition step
itself can be viewed as a problem to be solved, for which a solution algorithm can be
developed in terms of 1-bit addition with carry-ins and carry-outs. It should also be noted
that one may occasionally tailor an algorithm to a specific set of input data, in which case
it is not very general.

Algorithm development has always been done with human brain power, and in all likeli-
hood will continue like that for years to come! Algorithm development has been recorded as
early as 1800 B.C., when Babylonian mathematicians at the time of Hammurabi developed
rules for solving many types of equations [4]. The word “algorithm” itself was derived from
the last name of al-Khwérizmi, a 9th century Persian mathematician whose textbook on
arithmetic had a significant influence for more than 500 years.

1.1.1.2 Algorithm Execution

Algorithm execution—the second phase of the problem-solving process—means applying
a solution algorithm on a particular set of input values, so as to obtain the solution of
the problem for that set of input values. Algorithm development and execution phases
are generally done one after the other; once an algorithm has been developed, it may be
executed any number of times with different sets of data without further modifications.
However, it is possible to do both these phases concurrently, in a lock-step manner! This
typically happens when the same person performs both phases, and is attempting to solve
a problem for the first time.

The actions involved in algorithm execution can be broken down into two parts, as
illustrated in Figure 1.2.

e Sequencing through the algorithm steps: This part involves selecting from the algo-
rithm the next step to be executed.

1.1. Computing and Computers 5

e FEzxecuting the next step of the algorithm, as determined by the sequencing part.

¢ Algorithm Input Data

Determine Next Step Execute the Step
Step

A

¢ Output Data (Results)

Data

Figure 1.2: The Algorithm Execution Process

For hundreds of years, people relied mainly on human brain power for performing both of
these parts. As centuries went by (and the gene pool deteriorated), a variety of computing
aids were invented to aid human brains in executing the individual steps of solution algo-
rithms. The Chinese abacus and the Japanese soroban were two of the earliest documented
aids used for doing the arithmetic calculations specified in algorithm steps. The slide rule
was a more sophisticated computing aid invented in the early 1600s by William Oughtred,
an English clergyman; it helped to perform a variety of computation operations including
multiplication and division. Later examples of computing aids included Pascaline, the
mechanical adder built in 1642 by the French mathematician Blaise Pascal (to assist his
father in adding long columns of numbers in the tax accounting office) and the stepped-
wheel machine of Gottfried Wilhelm Leibniz in 1672 (which could perform multiplication
and division in addition to addition and subtraction).

As problems increased in complexity, the number of steps required to solve them also
increased accordingly. Several mechanical and electrical calculators were commercially pro-
duced in the 19th century to speed up specific computation steps. The time taken by a
calculator to perform a computation step was in the order of a few milliseconds, in contrast
to the several seconds or minutes taken by a person to perform the same step. It is impor-
tant to note that even after the introduction of calculators, the sequencing part of algorithm
execution was still done by people, who punched in the numbers and the operations. It is
also important to note that the granularity of the steps in an algorithm is related to the
capabilities and sophistication of the calculating aids used. Thus, a typical calculator lets
us specify algorithm steps such as multiplication and square root, for instance, whereas an
abacus can perform only more primitive computation steps.

1.1.2 Automating Algorithm Execution with Computers

We saw that calculators and other computing aids allowed an algorithm’s computation
steps to be executed much faster than what was possible without any computing aides.
However, the algorithm execution phase still consumed a significant amount of time for

6 Chapter 1. Introduction

the following reasons: (i) the sequencing process was still manual, and (ii) the execution of
each computation step involved manual inputting of data into the calculating aid. Both of
these limitations can be overcome if the sequencing process is automated by means of an
appropriate machine, and the data to be processed is stored in the machine itself. This is
the basic idea behind computers.

“Stripped of its interfaces, a bare computer boils down to little more than a pocket
calculator that can push its own buttons and remember what it has done.”
— Arnold Penzias. Ideas and Information.

One of the earliest attempts to automate algorithm execution was that of Charles Bab-
bage, a 19th century mathematics professor. He developed a mechanical computing ma-
chine called Difference Engine. This computer was designed to execute only a single
algorithm—the method of (finite) differences using polynomials. Although this algorithm
used only addition and subtraction operations, it permitted many complex and useful func-
tions to be calculated. (Chapter 1 of [2] provides a good description of the use of this
algorithm in calculating different functions.) The Difference Engine performed the se-
quencing process automatically, in addition to performing the operation specified in each
computation step. This is a major advantage because it allows the algorithm execution
phase to be performed at machine speeds, rather than at the speed with which it can be
done manually. One limitation of executing a single algorithm, however, is that only a few
problems can be solved by a single algorithm; such a computing machine is therefore not
useful for general-purpose computing.

After a few years, Babbage envisioned the Analytical Engine, another massive brass,
steam-powered, mechanical (digital) computing machine. The radical shift that it intro-
duced was to have the machine accept an arbitrary solution algorithm (in punched card
format), and execute the algorithm by itself. This approach allows arbitrary algorithms to
be executed at the speed of the machine, making the machine a general-purpose computer.
The radical idea embodied in the Analytical Engine was the recognition that a machine
could be “programmed” to perform a long sequence of arithmetic and decision operations
without human intervention.

“What if a calculating engine could not only foresee but could act on that foresight?”
— Charles Babbage. November 183/.

The Analytical Engine served as a blueprint for the first real programmable computer,
which came into existence a century later3. The basic organization proposed by Babbage
is given in Figure 1.3. The main parts are the mill, the store, the printer and card punch,
the operation cards, and the variable cards. The instructions were given to the machine on
punch cards, and the input data was supplied through the variable cards. Punched cards had

3Primitive forms of “programmable” machines had existed centuries ago, dating back to Al-Jazari’s
musical automata in the 13th century and even to Heron’s mobile automaton in the 1st century.

1.1. Computing and Computers 7

been recently invented by Jacquard for controlling weaving looms. Augusta Ada, Countess
of Lovelace as well as a mathematician, was one of the few people who fully understood
Babbage’s vision. She helped Babbage in designing the Analytical Engine’s instruction set,
and in describing, analyzing, and publicizing his ideas. In an article published in 1843,
she predicted that such a machine might be used to compose complex music, to produce
graphics, and would be used for both practical and scientific use. She also created a plan
for how the engine might calculate a mathematical sequence known as Bernoulli numbers.
This plan is now regarded as the first “computer program,” and Ada is credited as the first
computer programmer.

“The Analytical Engine has no pretensions whatever to originate anything. It can
do whatever we know how to order it to perform.”

“Supposing, for instance, that the fundamental relations of pitched sounds in the
science of harmony and of musical composition were susceptible of such expression
and adaptations, the engine might compose elaborate and scientific pieces of music
of any degree of complexity or extent.”

— Countess Ada Lovelace

Mill Store Printer and

Data Card Punch

(Arithmetic/ (Main

Logic Unit) | Memory) (Output Unit)

Instructions
Operation Variable
Cards Cards
Program

Figure 1.3: Basic Organization of Babbage’s Analytical Engine

Automated algorithm execution has two side-effects that we need to keep in mind. First,
it forces the algorithm development and algorithm execution phases to happen one after
the other. It also implies that the algorithm must allow for the occurrence of all possible
inputs. Hence computer algorithms are seldom developed to solve just a single instance
of a problem; rather they are developed to handle different sets of input values. Thus, in
moving from the manual approach to the automated approach, we are forced to sacrifice
the versatility inherent in the concurrent development and execution of an algorithm. The
big gain, however, is in the speed and storage capabilities offered by the computer machine.

Another side-effect of automated algorithm execution is that for a machine to follow
an algorithm, the algorithm must be represented in a formal and detailed manner: the less

8 Chapter 1. Introduction

sophisticated the follower, the more detailed the algorithm needs to be! Detailed algorithms
written for computers are called computer programs. By definition, a computer program
is an expression of an algorithm in a computer programming language, which is a precise
language that can be made understandable to a computer. Because of the extensive efforts
involved in developing a computer program to make it suitable for execution in a computer,
the program itself is often developed with a view to solve a range of related problems rather
than a single problem. For instance, it may not be profitable to develop a computer program
to process a single type of bank transaction; instead, it is profitable to develop the program
with the ability to process different types of transactions.

In spite of these minor side-effects, the idea of using computers to perform automated
algorithm execution has been found to have tremendous potential. First of all, once an
algorithm has been manually developed to solve a particular problem, computers can be used
to execute the algorithm at very high speeds. This makes it possible to execute long-running
algorithms that require billions of operations, which previously could never be executed in
a reasonable period of time?*. In fact, a lion’s share of computer development took place in
the 1930s and 1940s, mostly in response to computation problems that arose in the WW
II effort, such as ballistic computations and code-breaking. The ability to execute complex
algorithms in real-time is the leading reason for the acceptance of computers in many
embedded applications, such as automobiles and aircraft. Secondly, the same computing
machine can be used to execute different algorithms at different times, thus having a truly
general-purpose computing machine. Thirdly, computers are immune to emotional and
physical factors such as distraction and fatigue, and can provide accurate and reliable results
almost all the time®. Finally, embedded applications often involve working in hazardous
environments where humans cannot go, and computers are good candidates for use in such
environments.

At this stage, it is instructive to contrast the computing machine against other types of
machines such as clocks, which predate the computer by hundreds of years. Such machines
are constructed to perform a specific sequence of internal actions to solve a specific problem.
For instance, the hands of a clock go around at fixed speeds; this is in fact a mechanical
implementation of an algorithm to keep track of time. A digital clock keeps track of time
using a quartz crystal and digital circuitry. Such machines can only do the one thing they
are constructed to do. A computing machine, on the other hand, is general-purpose in that
it can perform a large variety of widely differing functions, based on the algorithm that
it is operating upon at any given time. Because the algorithm can be changed, different
functions can be implemented by acquiring a single hardware system and then developing
different algorithms to perform different functions in the hardware. Thus, by executing a

“Interestingly, even now, at a time when computers have become faster by several orders of magnitude,
there are prodigies like Sakuntala Devi [] who have demonstrated superiority over computers in performing
certain kind of complex calculations!

5We should mention that computers are indeed susceptible to some environmental factors such as elec-
trical noise and high temperatures. Modern computers use error-correcting codes and other fault tolerance
measures to combat the effect of electrical noise and other environmental effects.

1.2. The Digital Computer 9

computer program for keeping track of time, a computer can implement a clock! This feature
is the crucial difference between general-purpose computing machines and special-purpose
machines that are geared to perform specific functions.

We have described some of the landmark computers in history. Besides the few comput-
ers mentioned here, there are many other precursors to the modern computer. Extensive
coverage of these computers can be found in the IEEE Annals of the History of Computing,
now in its 28th volume [ref].

“Computers in the future will weigh no more than 0.5 tons.”
— Popular Mechanics: Forecasting Advance of Science, 1949

1.2 The Digital Computer

We saw how computers play a major role in executing algorithms or programs to obtain
solutions for problems. Solving a problem involves manipulating information of one kind
or other. In order to process information, any computer—mechanical or electrical—should
internally represent information by some means. Some of the early computers were analog
computers, in that they represented information by physical quantities that can take values
from a continuum, rather than by numbers or bit patterns that represent such quantities.
Physical quantities can change their values by an arbitrarily small amount; examples are the
rotational positions of gears in mechanical computers, and voltages in electrical computers.
Analog quantities represent data in a continuous form that closely resemble the information
they represent. The electrical signals on a telephone line, for instance, are analog-data
representations of the original voices. Instead of doing arithmetic or logical operations, an
analog computer uses the physical characteristics of its data to determine solutions. For
instance, addition could be done just by using a circuit whose output voltage is the sum of
its input voltages.

Analog computers were a natural outcome of the desire to directly model the smoothly
varying properties of physical systems. By making use of different properties of physical
quantities, analog computers can often avoid time-consuming arithmetic and logical opera-
tions. Although analog computers can nicely represent smoothly changing values and make
use of their properties, they suffer from the difficulty in measuring physical quantities pre-
cisely, and the difficulty in storing them precisely due to changes in temperature, humidity,
and so on. The subtle errors introduced to the stored values due to such noise are difficult
to detect, let alone correct.

The 20th century saw the emergence of digital computers, which eventually replaced
analog computers in the general-purpose computing domain. Digital computers represent
and manipulate information using discrete elements called symbols. A major advantage of
using symbols to represent information is resilience to error. Even if a symbol gets distorted,
it can still be recognized, as long as the distortion does not cause it to appear like another

10 Chapter 1. Introduction

symbol. This is the basis behind error-correcting features used to combat the effects of
electrical noise in digital systems. Representing information in digital format has a side-
effect, however. As we can only have a limited number of bits, only a finite number of values
can be uniquely represented. This means that some of the values can be represented with
high degree of precision, whereas the remaining ones will need to be approximated.

Electronic versions of the digital computer are typically built out of a large collection
of electronic switches, and use distinct voltage states (or current states) to represent dif-
ferent symbols. Each switch can be in one of two positions, on or off; designing a digital
computer will therefore be a lot simpler if it is restricted to handling just two symbols.
So most of the digital computers use only two symbols in their alphabet and are binary
systems, although we can design computers and other digital circuits that handle multiple
symbols with multiple-valued logic. The two symbols of the computer alphabet are usu-
ally represented as 0 and 1; each symbol is called a binary digit or a bit. Computers often
need to represent different kinds of information, such as instructions, integers, floating-point
numbers, and characters. Whatever be the type of information, digital computers repre-
sent them by concatenations of bits called bit patterns, just like representing information in
English by concatenating English alphabets and puctuation marks. The finite number of
English alphabets and puctuation marks do not impose an inherent limit on how much we
can communicate in English; similarly the two symbols of the computer alphabet do not
place any inherent limits on what can be communicated to the digital computer. Notice,
however, that information in the computer language won’t be as cryptic as in English, just
like inofmration in English is not as cryptic as in Chinese (which has far more symbols).

“Fuven the most sophisticated computer is really only a large, well-organized volume
of bits.”
— David Harel. Algorithmics: The Spirit of Computing

By virtue of their speed and other nice properties, these electronic versions completely
replaced mechanical and electromechanical versions. At present, the default meaning of the
term “computer” is a a general-purpose automatic electronic digital computer.

1.2.1 Representing Programs in a Digital Computer: The Stored Pro-
gram Concept

We saw that a computer solves a problem by executing a program with the appropriate set
of input data. How is this program conveyed to the computer from the external world? And,
how is it represented within the computer? In the ENIAC system developed at University of
Pennsylvania in early 1940s, for instance, the program was a function of how its electrical
circuits were wired, i.e., the program was a function of the physical arrangement of the
cables in the system. The steps to be executed were specified by the connections within the
hardware unit. Every time a different program needed to be executed, the system had to be
rewired. Conveying a new program to the hardware sometimes took several weeks! Other

1.2. The Digital Computer 11

early computers used plug boards, punched paper tape, or some other external means to
represent programs. Developing a new program involved re-wiring a plugboard, for instance.
And, loading a program meant physically plugging in a patch board or running a paper
tape through a reader.

A marked change occurred in the mid-1940s when it was found that programs could be
represented inside computers in the same manner as data, i.e., by symbols or bit patterns.
This permits programs to be stored and transfered like data. This concept is called the
stored program concept, and was first described in a landmark paper by Burks, Goldstein,
and von Neumann in 1946 [1]. In a digital computer implementing the stored program
concept, a program will be a collection of bit patterns. When programs are represented
and stored as bit patterns, a new program can be conveyed to the hardware very easily.
Moreover, several programs can be simultaneously stored in the computer’s memory. This
makes it easy not only to execute different programs one after the other, but also to switch
from one program to another and then back to the first, without any hardware modification.
Stored program computers are truly “general-purpose,” as they can be easily adapted to do
different types of computational and information storage tasks. For instance, a computer
can instantaneously switch from being a word processor to a telecommunications terminal,
a game machine, or a musical instrument! Right from its inception, the stored program
concept was found to be such a good idea that it has been the basis for virtually every
general-purpose computer designed since then. In fact it has become so much a part of the
modern computer’s functioning that it is not even mentioned as a feature!

In a stored program computer, the program being executed can even manipulate another
program as if it were data—for example, load it into the computer’s memory from a storage
device, copy it from one part of memory to another, and store it back on a storage device.
Altering a program becomes as easy as modifying the contents of a portion of the computer’s
memory. The ability to manipulate stored programs as data gave rise to compilers and
assemblers that take programs as input and translate them into other languages.

The advent of compilers and assemblers have introduced several additional steps in
solving problems using modern digital computers. Figure 1.3 depicts the steps involved in
solving a problem using today’s computers. First, an algorithm, or step-by-step procedure,
is developed to solve the problem. Then this algorithm is expressed as a program in a
high-level programming language by considering the syntax rules and semantic rules of the
programming language. Some of the common high-level languages are C, FORTRAN, C++,
Java, and VisualBasic.

The source program in the high-level language is translated into an executable program
(in the language of the machine) using programs such as compilers, assemblers, and linkers.
During this compilation process, syntax errors are detected, which are then corrected by the
programmer. Once the syntax errors are corrected, the program is re-compiled. Once all
syntax errors are corrected, the compiler produces the executable program. The executable
program can be executed with a set of input values on the computer to obtain the results.
Semantic errors manifest as run-time errors, and are corrected by the programmer.

12 Chapter 1. Introduction

Problem

[Algorithm Development] Human
Algorithm

[Program Development] Human

Syntax

Source Program
Errors

Semantic

Errors [Program Translation] Program

Input Data _l Executable Program

[

Program Execution] Hardware

Output Data (Results)

Figure 1.4: Basic Steps in Solving a Problem using a Computer

1.2.2 Basic Software Organization

As discussed in the previous section, today’s computers use the stored program concept.
Accordingly the software consists of symbols or bit patterns that can be stored in storage
devices such as CD-ROMs, hard disks, and floppy disks. A program consists of two parts—
instructions and data—both of which are represented by bit patterns. The instructions
indicate specific operations to be performed on individual data items. The data items can
be numeric or non-numeric.

It is possible to write stand-alone programs that can utilize and manage all of the system
resources, so as to perform the required task. This is commonly done in controllers and
embedded computers, which typically store a single program in a ROM (read-only memory),
and run the same program forever. In the mid and higher end of the computer spectrum,
starting with some embedded computers, a dichotomy is usually practiced, however, for
a variety of reasons. Instead of writing stand-alone programs that have the ability to
access and control all of the hardware resources, the access and control of many of the
hardware resources (typically IO devices) are regulated through a supervisory program
called the operating system. When a program needs to access a regulated hardware resource,
it requests the operating system, which then provides the requested service if it is legitimate
request. This dichotomy has led to the development of two major kinds of software—user
programs and kernel programs—as shown in Figure 1.4.

The operating system is one of the most important pieces of software to go into a modern
computer system. It provides other programs a uniform software interface to the hardware

1.2. The Digital Computer 13

User programs Kernel programs

(Application software) (Operating system)

Figure 1.5: Basic Software Organization in a Digital Computer

resources. In addition to providing a standard interface to system resources, in multitasking
environments, the operating system enables multiple user programs to share the hardware
resources in an orderly fashion®. This sharing increases overall system performance, and
ensures security and privacy for the individual programs. To do this sharing in a safe and
efficient manner, the operating system is the software that is “closest to the hardware”. All
other programs use the OS as an interface to shared resources and as a means to support
sharing among concurrently executing programs.

A hardware timer periodically interrupts the running program, allowing the processor to
run the operating system. The operating system then decides which of the simultaneously
active application programs should be run next on the processor; it takes this decision with
a view to minimize processor waste time. Peripheral devices also interrupt the running
program, at which times the operating system intervenes and services the devices.

For similar reasons, memory management and exception handling functions are also
typically included in the operating system. Memory management involves supporting a large
virtual memory address space with a much smaller physical memory, and also sharing the
available physical memory among the simultaneously active programs. Exception handling
involves dealing with situations that cause unexpected events such as arithmetic overflow
and divide by zero.

1.2.3 Basic Hardware Organization

Even the most complex software, with its excellent abstraction and generality features, is
only like the mental picture an artist has before creating a masterpiece. By itself it does
not solve any problem. For it to be productive, it must be eventually executed on suitable
hardware with proper data, just like the artist executing his/her mental picture on a suitable
canvas with proper paint. The hardware is thus an integral part of any computer system.

“You’ll never plow a field by turning it over in your mind.”
— An Irish Proverb

While nearly every class of computer hardware has its own unique features, from a func-

SEven in multitasking computers, hardware diagnostic programs are often run entirely by themselves,
with no intervention from the operating system.

14 Chapter 1. Introduction

tional point of view (i.e, from the point of view of what the major parts are supposed to
do), the basic organization of modern computers—given in Figure 1.5—is still very similar
to that of the Analytical Engine proposed in the 19th century. This organization consists
of three functionally independent parts: the CPU (central processing unit), the memory
unit, and the input/output unit. The actions performed by the computer are controlled
and co-ordinated by the program that is currently being executed by the CPU. The in-
put/output unit is a collection of diverse devices that enable the computer to communicate
with the outside world. Standard input/output devices include the keyboard, the mouse,
the monitor, and so on. Programs and data are brought into the computer from the external
world using the input devices and their controllers. The input unit’s function is to accept
information from human users or other machines, through devices such as the keyboard, the
mouse, the modem, and the actuators. The results of computations are sent to the outside
world through the output unit. Some of the input/output devices are storage devices, such
as hard disks, CD-ROMs, and tapes, which can store information for an indefinite period
of time.

CPU
Input
Data Path
Memory Output
Control Unit
Storage

T !

Figure 1.6: Basic Hardware Organization of a Digital Computer

When the program and data are ready to be used, they are copied into the memory unit
from either the external environment or a storage device. The memory unit stores two types
of information: (i) the instructions of the program being executed, and (ii) the data for the
program being executed. The CPU executes a memory-resident program by reading the
program instructions and data from the memory. The execution of the program is carried
out by the CPU’s control unit, which reads each instruction in the program, decodes the
instruction, and causes it to be executed in the data path. The control unit is the brain of
the system, and behaves like a puppeteer who pulls the right strings to make the puppets
behave exactly as needed.

It is interesting to compare and contrast this organization with that of a human being’s
information processing system, which among other things, involves the brain. The main
similarity lies in the way information is input and output. Like the digital computer, the
human information processing system obtains its inputs through its input unit (the sense
organs), and provides its outputs through its output unit by way of speech and various

1.2. The Digital Computer 15

motions. The dissimilarity lies both in the organization of the remaining parts and in the
way information is stored and processed. All of the information storage and processing
happens in a single unit, the brain. Again, the brain stores information not as 0Os and 1s in
memory elements, but instead by means of its internal connectivity. Information processing
is done in the brain on a massively parallel manner. This is in contrast to how information
processing is done in a digital computer, where the information is stored in different memory
units from where small pieces are brought into the CPU and processed”.

1.2.4 Software versus Hardware

Software consists of abstract ideas, algorithms, and their computer representations, namely
programs. Hardware, in contrast, consists of tangible objects such as integrated circuits,
printed circuit boards, cables, power supplies, memories, and printers. Software and hard-
ware aspects are intimately tied together, and to achieve a good understanding of computer
systems, it is important to study both, especially how they integrate with each other.
Therefore, the initial portions of this book deal with software and programming, and the
latter portions deal with the hardware components. This introductory chapter introduces a
number of software and hardware concepts, and gives a broad overview of the fundamental
aspects of both topics. More detailed discussions follow in subsequent chapters.

The boundary between the software and the hardware is of particular interest to systems
programmers and compiler developers. In the very first computers, this boundary—the
instruction set architecture—was quite clear; the hardware presented the programmer with
an abstract model that took instructions from a serial program one at a time and executed
them in the order in which they appear in the program. Over time, however, this boundary
blurred considerably, as more and more hardware features are exposed to the software, and
hardware design itself involves software programming techniques. Nowadays, it is often
difficult to tell software and hardware apart, especially at the boundary between them. In
fact, a central theme of this book is:

Hardware and software are logically equivalent.

Any operation performed by software can also be built directly into the hardware. Em-
bedded systems, which are more specialized than their general-purpose counterpart, tend to
do more through hardware than through software. In general, new functionality is first in-
troduced in software, as it is likely to undergo many changes. As the functionality becomes
more standard and is less likely to change, it is migrated to hardware.

“Hardware is petrified software.”
4

Of course, the reverse is also true: Any instruction executed by the hardware can also

"Research is under way to develop computers made from quantum circuits, and even biological circuits.
In the next decade, we may very well have computers made with such “hardware”, and working with different
computation models!

16 Chapter 1. Introduction

be simulated in software. Suppose an end user is using a computer to play a video game.
It is possible to construct an electronic circuit to directly handle video games, but this is
seldom done. Instead a video game program is executed to simulate a video game. The
decision to put certain functions in hardware and others in software is based on such factors
as cost, speed, reliability, and frequency of expected changes. These decisions change with
trends in technology and computer usage.

1.2.5 Computer Platforms

Classification is fundamental to understanding anything that comes in a wide variety. Auto-
mobiles can be classified according to manufacturer, body style, pickup, and size. Students
often classify university faculty based on their teaching style, sense of humor, and strictness
of grading. They classify textbooks according to price, contents, and ease of understanding.
Likewise, computers come in various sizes, speeds, and prices, from small-scale to large-
scale. Table 1.1 gives a rough categorization of today’s computers. This categorization is
somewhat idealized. Within each category, there is wide variability in features and cost; in
practice the boundary between two adjacent categories is also somewhat blurred. The ap-
proximate price figures in the table are only intended to show order of magnitude differences
between different categories. All computers are functionally similar, irrespective of where
they line up in the spectrum. The general principles of computer architecture and organi-
zation are the same for the entire computer spectrum, from workstations to multiprocessors
and distributed computer systems.

Category Price | Typical applications

Disposable computer $1 | Greeting cards, watches
Embedded computer $10 | Home appliances, cars
Entertainment PC $100 | Home video games

Desktop or laptop PC $1000 | Word processing, CAD design
Server $10,000 | Network server

Collection of workstations $100,000 | LAN

Mainframe $1,000,000 | Bank accounts, airline reservations
Supercomputer $10,000,000 | Weather forecast, oil exploration

Table 1.1: Different categories of currently available computers

At one end of the spectrum we have disposable computers like the ones used in greeting
cards, inexpensive watches, and other similar applications. These are quite inexpensive
because they use a single chip with small amounts of memory, and are produced in large
quantities. Then there are a wide variety of embedded computers, used in applications such
as automobiles and home appliances. The entertainment PCs are computer systems that
are optimized for games, personal communications, and video playback. They typically

1.3. A Modern Computer System 17

have high-quality graphics, video, and audio so as to support high clarity and realism.
Desktop computers and laptop computers are typically intended for a single user to run
applications such as word processing, web browsing, and receiving/sending email. These
computers come with different features and costs. In the immediately higher category,
we have servers. A server is a high-performance computer that serves as a gateway in a
computer network. At the other end of the spectrum, we have the supercomputers, which
are used for applications involving very complex calculations, such as weather prediction
and nuclear explosion modeling. The lower end of the spectrum often provides the best
price/performance ratio, and the decision on which system to purchase is often dictated by
such issues as software and object code compatibility.

1.3 A Modern Computer System

As discussed earlier, computers come in various sizes and kinds. Among these, perhaps the
most commonly seen one and one that comes to mind vividly when one thinks of a computer,
is a desktop computer. Desktop computers are designed to be truly general-purpose. For
these reasons, we provide a detailed description of a typical desktop computer system in
this section. In fact, many of the issues discussed here are applicable to all members of the
computer spectrum.

1.3.1 Hardware

Figure 1.6 shows a typical desktop computer. It has a system unit which is the case or
box that houses the motherboard, other printed circuit boards, the storage devices, and the
power supply. The system unit is generally designed in such a way that it can be easily
opened to add or replace modules. The different components in the system unit are typically
connected together using a bus, which is a set of wires for transferring electrical signals. Each
printed circuit board houses a number of chips, some of which are soldered and the rest are
plugged into the board. The latter permits the user to upgrade the computer components.
Circuits etched into the boards act like wires, providing a path for transporting data from
one chip to another.

Figure 1.7: Photograph of a Typical Desktop Computer System

Processor: The processor, also called the central processing unit (CPU), is perhaps the
most important part of a computer. It carries out the execution of the instructions of a
program.

18 Chapter 1. Introduction

Chip Sets: The chipsets provide hardware interfaces for the processor to interact with
other devices, such as DRAM and graphics cards.

Motherboard: The motherboard is the main printed circuit board, and holds the com-
puter’s processor chip(s), ROM chips, RAM chips, and several other key electronic com-
ponents. The processor is an important part of a computer, and can be a single chip or
a collection of chips. ROM chips typically contain a small set of programs that start the
computer, run system diagnostics, and control low-level input and output activities. These
programs are collectively called BIOS (basic input output system) in PCs. The instructions
in the ROM chips are permanent, and the only way to modify them is to reprogram the
ROM chips. RAM chips are volatile and hold program and data that is temporary in na-
ture. A battery powered real-time clock chip keeps track of the current date and time. The
motherboard also typically contains expansion slots, which are sockets into which exzpansion
cards such as video card, sound card, and internal modem, can be plugged in. An expansion
card has a card edge connector with metal contacts, which when plugged into an expansion
slot socket, connect the circuitry on the card to the circuitry on the motherboard. The
number of expansion slots in the motherboard determines its expandability.

Figure 1.8: Photograph of a Motherboard

Storage Devices: The commonly used storage devices are floppy disk drives, hard disk
drives, CD-ROM drives, and ZIP drives. A floppy disk drive is a device that reads and
writes data on floppy disks. A typical floppy disk drive uses 3%—inch floppy disks each of
which can store up to 1.44 MB. A hard disk drive can store billions of bytes on a non-
removable disk platter. A CD-ROM drive is a storage device that uses laser technology to
read data from a CD-ROM. The storage devices are typically mounted in the system unit.
The ones involving removable media such as the floppy disk drive, the CD-ROM drive, and
the ZIP drive are mounted on the front side of the system unit, and the hard disk drives
are typically mounted inside the system unit.

Input/Output Devices: Two of the commonly used input devices in a desktop computer
are the keyboard and the mouse. A computer keyboard looks similar to that of a typewriter,
with the addition of number keys, as well as several additional keys that control computer-
specific tasks. The mouse is useful in manipulating objects depicted on the screen. Other
commonly used input device is the microphone. The primary output device in a desktop
computer is the monitor, a display device that forms an image by converting electrical
signals from the computer into points of colored light on the screen. Its functioning is very
to a television picture tube, but has a much higher resolution so that a user sitting at close
quarters can clearly see computer-generated data such as text and images. Other frequently
used output devices are the printer and the speakers.

1.3. A Modern Computer System 19

Device Controllers: Each device—keyboard, mouse, printer, monitor, etc—requires spe-
cial controller circuitry for transferring data from the processor and memory to the device,
and vice versa. A device controller is designed either as a chip which is placed in the
motherboard or as a printed circuit board which is plugged into an expansion slot of the
motherboard. The peripheral devices are connected to their respective controllers in the
system unit using special cables to sockets called expansion ports. The ports are located
on the backside of the system unit and provide connections through holes in the back of
the system unit. Parallel ports transfer several bits simultaneously and are commonly used
to connect printers to the computer. Serial ports transfer a single bit at a time, and are
commonly used to connect mice and communication equipment to the computer. Device
controllers are very complex. Each logical command from the processor must typically be
decomposed into long sequences of low-level commands to trigger the actions to be per-
formed by the device and to supervise the progress of the operation by testing the device’s
status. For instance, to read a word from a disk, the disk controller generates a sequence of
commands to move the read/write arm of the disk to the correct track, await the rotational
delay until the correct sector passes under the read/write arm, transfer the word, and check
for a number of possible error conditions. A sound card contains circuitry to convert digital
signals from the computer to sounds that play through speakers or headphones that are
connected to the expansion ports of the card. A modem card connects the computer to the
telephone system so as to transport data from one computer to another over phone lines.
A network card, on the other hand, provides the circuitry to connect a computer to other
computers on a local area network.

1.3.2 Software

A desktop computer typically comes with pre-installed software. This software can be
categorized into two categories—application software and systems software.

Application Software: Application programs are designed to satisfy end-user needs by
operating on input data to perform a given job, for example, to prepare a report, update
a master payroll file, or print customer bills. Application software may be packaged or
custom. Packaged software includes programs pre-written by professional programmers,
and are typically offered for sale in a floppy disk or CD-ROM. Custom software includes
programs written for a highly specialized task.

Systems Software: Systems software enables the application software to interact with
the computer, and helps the computer manage its internal and external resources. Systems
software is required to run applications software; however, the converse is not true. Systems
software can be classified into three types—utility programs, language translators, and the
operating system. Utility programs are generally used to support, enhance, or expand the
development of application programs. Examples consist of editors and programs for merging

20 Chapter 1. Introduction

files. A language translator or compiler is a software program that translates a program
written in a high-level language such as C into machine language, which the hardware
can directly execute. Thus a compiler provides the end user with the capability to write
programs in a high-level language.

Operating System: The operating system is a major component of the systems software.
Desktop operating systems allocate and control the use of all hardware resources: the
processor, the main memory, and the peripheral devices. They also add a variety of new
features, above and beyond what the hardware provides. Running the shell provides the end
user with a more “capable” machine, in that the computer system provides direct capability
to specify commands by typing them on a keyboard. The GUI (graphical user interface)
goes one step further by providing the user with a graphical view of the desktop, and letting
the user enter commands by clicking on icons. The multitasking feature of the OS provides
the user with the capability to run multiple tasks “concurrently”. The file system of the OS
provides the user with a structured way of storing and accessing “permanent” information.
The operating system is thus an important part of most computer systems because it exerts
a major influence on the overall function and performance of the entire computer. Normally,
the OS is implemented in software, but there is no theoretical reason why it could not be
implemented in hardware!

Device Driver (Software Driver): Most application programs need to access input/output
devices and storage devices such as disks, terminals, and printers. Allowing these programs
to perform the low-level 10 activity required to directly control an input/output device
is not desirable for a variety of reasons. First, most application programmers would find
it extremely difficult to do the intricate actions required to directly control an IO device.
Second, inappropriate accesses of the IO devices by amateur or malicious programmers can
wreck plenty of havoc. The standard solution adopted in computer systems is therefore to
provide a more abstract interface to the application programmer, and let an interface pro-
gram perform the required low-level 10 activity. This interface program is called a device
driver or software driver. Each device requires specific device driver software, because
each device has its own specific commands whereas an application program uses generic
commands. The device driver receives generic commands from the application program
and converts them into the specialized commands for the device, and vice versa.

1.3.3 Starting the Computer System: The Boot Process

Now that you have a good understanding of the role of an operating system in a modern
computer, it would be interesting to learn how the operating system is activated each time
a computer is turned on. When a computer is turned off, the data in the registers and
memory are lost. Thus when the computer is turned on, the OS program is not residing in
the main memory, and needs to be brought into main memory from a storage device such as

1.3. A Modern Computer System 21

a diskette or hard disk. In modern computers, this copying is done by executing a program
called the bootstrap program or boot program for short. How can the computer execute
this copy program if the memory contains no useful contents? To solve this dilemma, a
portion of the memory is implemented using non-volatile memory devices such as a read-
only memory (ROM). This memory contains the boot program. When the computer is
turned on, it starts executing instructions from the starting address of the boot program.
The boot program contains code to perform diagnostic tests of crucial system components
and load the operating system from a disk to the main memory. This bootstrap loader may
be comprehensive enough to copy the nucleus of the operating system into memory. Or it
may first store a more comprehensive loader that, in turn, installs the nucleus in memory.
Once loaded, the OS remains in main memory until the computer is turned off.

For copying the OS from a disk drive to the RAM, the computer needs to know how
the disk has been formatted, i.e., the number of tracks and sectors and the size of each
sector. If information about the hard disk were stored in the ROM, then replacing the
hard disk becomes a difficult proposition, because the computer will not be able to access
the new hard disk with information about the old disk. Therefore, a computer must have
a semi-permanent medium for storing boot information, such as the number of hard disk
drive cylinders and sectors. For this purpose, it uses CMOS (complementary metal oxide
semiconductor) memory, which requires very little power to retain its contents and can
therefore be powered by battery. The battery helps the CMOS memory to retain vital
information about the computer system configuration, even when the computer is turned
off. When changing the computer system configuration, the information stored in the CMOS
memory must be updated, either by the user or by the plug-and-play feature.??

1.3.4 Computer Network

Till now we were mostly discussing stand-alone computers, which are not connected to any
computer network. Most of today’s desktop computers are instead connected to a network,
and therefore it is useful for us to have a brief introduction to this topic. A computer network
is a collection of computers and other devices that communicate to share data, hardware,
and software. Each device on a network is called a node. A network that is located within
a relatively limited area such as a building or campus is called a local area network or
LAN, and a network that covers a large geographical area is called a wide area network
or WAN. The former is typically found in medium-sized and large businesses, educational
institutions, and government offices. Different types of networks provide different services,
use different technology, and require users to follow different procedures. Popular network
types include Ethernet, Token Ring, ARCnet, FDDI, and ATM.

Give a figure here

A computer connected to a network can still use all of its local resources, such as hard
drive, software, data files, and printer. In addition, it has access to network resources,
which typically include network servers and network printers. Network servers can serve as

22 Chapter 1. Introduction

a file server, application server, or both. A file server serves as a common repository for
storing program files and data files that need to be accessible from multiple workstations—
client nodes—on the network. When an individual client node sends a request to the file
server, it supplies the stored information to the client node. Thus, when the user of a client
workstation attempts to execute a program, the client’s OS sends a request to the file server
to get a copy of the executable program. Once the server sends the program, it is copied
into the memory of the client workstation, and the program is executed in the client. The
file server can also supply data files to clients in a similar manner. An application server, on
the other hand, runs application software on request from other computers, and forwards
the results to the requesting client.

In order to connect a computer to a network, a network interface card (NIC) is required.
This interface card sends data from the workstation out over the network and collects
incoming data for the workstation. The NIC for a desktop computer can be plugged into
one of the expansion slots in the motherboard. The NIC for a laptop computer is usually
a PCMCIA card. Different types of networks require different types of NICs.

A computer network requires a network operating system to control the flow of data,
maintain security, and keep track of user accounts. Commonly used operating systems such
as UNIX, Windows XP, and Windows Vista already include networking capability. There
are also software packages such as Nowell Netware that are designed exclusively for use as
network operating system. A network operating system usually has two components: server
software and client software. The server software is installed in the server workstation; it
has features to control file access from the server hard drive, manage the print queue, and
track network user data such as userids and passwords. The client software is installed
on the local hard drive of each client workstation; it is essentially a device driver for the
NIC. When the client workstation boots up, the network client software is activated and
establishes the connection between the client and the other devices on the network.

1.4 Trends in Computing

Computer systems have undergone dramatic changes since their inception a few decades
ago. It is difficult to say whether it is the hardware that drives the software or if it is the
other way around. Both are intimately tied to each other; trends in one do affect the other
and vice versa. We shall first discuss trends in hardware technology.

1.4.1 Hardware Technology Trends

Ever since transistors began to be integrated in a large scale, producing LSI and VLSI (Very
Large Scale Integration) circuits, there have been non-stop efforts to continually reduce the
transistor size. Over the last three decades, the feature size has decreased nearly by a factor
of 100, resulting in smaller and smaller transistors. This steady decrease in transistor sizes,

1.4. 'Trends in Computing 23

coupled with occasional increases in die sizes, have resulted in more and more transistors
being integrated in a single chip. This has translated

In 2008, Intel®released the first processor chip that integrates more than 2 billion
transistors—the quad-core Tukwila. As of 2008, it is also the biggest microprocessor made,
with a die size of 21.5 x 32.5mm?.

Below we highlight some of the main trends we see in hardware technology today:

e Clock speed: Clock speed had been steadily increasing over the last several decades;
however, the current trend hints more of a saturation. In 2007, IBM released the
dual-core Power6 processor, which operates at an astonishing 4.7 GHz clock.

e Low-power systems: In the late 1990s, as the number of transistors as well as the
clock speed steadily increased, power consumption—especially power density—began
to increase at an alarming rate. High power densities translated to higher temper-
atures, necessitating expensive cooling technologies. Today, power consumption has
become a first-order design constraint, and power-aware hardware designs are com-
monplace.

e Large memory systems: Memory size has always been increasing steadily, mir-
roring the downward trend in price per bit. However, memory access time increases
with size, necessitating the use of cache memories to reduce average memory latencies.
Nowadays, it is commonplace to see multi-level cache organizations in general-purpose
computers.

e Multi-core processors: The current trend is to incorporate multiple processor cores
on the same die. These cores parallely execute multiple threads of execution.

e Embedded systems: Although embedded systems have been around for a while,
their popularity has never been as high as it is today. Cell phones, automobile controls,
computer game machines — you name it! — all have become so sophisticated, thanks
to advances in embedded system technology.

Some of these trends become clear when we look at the microprocessors developed over
the last four decades for desktop systems by one of the major processor manufacturers,
Intel®. Table 1.2 succinctly provides various features of these processors.

1.4.2 Software Technology Trends

As processors and memory became smaller and faster — providing the potential for signifi-
cant boosts in performance — application programs and operating systems strived to offset
that benefit by becoming bigger and sluggish. The time to boot up a computer, for instance,
has remained steady—if not increased—over the years. This does not mean that software

24 Chapter 1. Introduction

Processor Word | Intro Feature Die | Number of Clock
Name size | Year | size (um) | area (mm?) | Transistors Freq.
4004 4 1971 10 13.5 2300 108 KHz
8008 8 1972 10 3500 | 200 KHz
8080 8 1974 6 6000 2 MHz
8085 8 1976 3 6500 2 MHz
8086 16 1978 3 29K | 4.77 MHz
80286 16 1982 1.5 134K 6 MHz
Intel3867M 32 1985 1.5 275K | 16 MHz
Intel4867M 32 1989 1 81 1.2M | 25 MHz
Pentium®) 32 1993 0.8 294 3.1M 66 MHz
Pentium®Pro 32 1995 0.35 195 5.5M | 200 MHz
Pentium®]I11 32 1997 0.35 131 7.5M | 300 MHz
Pentium®111 32 1999 0.18 106 28M | 733 MHz
Pentium®4 32 2000 0.18 217 42M 2 GHz
Pentium®D 64 2005 0.09 206 230M 3.2 GHz

Table 1.2: Progression of Intel®Microprocessors Designed for Desktop Systems

technology has made no progress. On the contrary, there have been tremendous improve-
ments in software application development. The driving philosophy in software technology
development has also been performance and efficiency, but of the programmer!.

Below we highlight a few of the current trends in software applications:

e Application Nature:

Multimedia

Graphics
Bioinformatics
— Web-based

e Programming Methodology and Interface:

Object-oriented programming: Java, C#

Visual programming: Scripting, HTML
Multi-threading
— Application Programming Interface (API): POSIX, Windows API

e Operating System:

— Linux

1.5. Software Design Issues 25

— Windows Vista
— Mac OS X

e Security:

1.5 Software Design Issues

A good software piece is not one that just works correctly. Modularity, simplicity,

1.6 Hardware Design Issues

Among the two phases in the life of a program — its development and execution — hardware
designers are concerned with the execution phase. As we will see in Section 1.8, hardware
design is carried out in various stages, at different levels of abstraction. When designing
hardware, the factors that stand at the forefront are performance, power consumption, size,
and price; well designed hardware structures are those that have adequate performance and
long battery life (if running off a battery), and are compact and affordable. Other issues
that become important, depending on the computing environment, are binary compatibility,
reliability, and security.

1.6.1 Performance

The speed with which computer systems execute programs has always been a key design
parameter in hardware design. We can think of two different metrics when measuring the
speed of a computer system: response time and throughput. Whereas response time refers
to how long the computer takes to do an activity, throughput refers to how much the com-
puter does in unit time. The response time is measured by time elapsed from the initiation
of some activity until its completion. A frequently used response time metric is program
execution time, which specifies the time the computer takes for executing the program once.
The execution time of a program, ET, can be expressed as the product of three quantities:
(i) the number of instructions executed or instruction count (IC'), (ii) the average number
of clock cycles required to execute an instruction or cycles per instruction (CPI), and (iii)
the duration of a clock cycle or cycle time (CT'). Thus,
ET = ICxCPIxCT

Although this simple formula seems to provide a good handle on program execution time,
and therefore on computer performance, the reality is not so simple! The instruction count
of a program may vary depending on the data values supplied as input to the program. And,
the cycles per instruction obtained may vary depending on what other programs are simul-
taneously active in the system®. Finally, we have computer systems that dynamically adjust

8Nowadays, almost all computer systems execute multiple programs at the same time.

26 Chapter 1. Introduction

the clock cycle time—dynamic frequency scaling—in order to reduce power consumption.

While reporting program execution time, the standard practice used to deal with the
first problem is to measure the execution time with a standard set of input data. The
second and third problems are avoided by not running only one benchmark program at a
time and by not exercising dynamic frequency scaling.

Throughput, the other metric of performance, specifies the number of programs, jobs,
or transactions the computer system completes per unit time. If the system completes
C programs during an observation period of T seconds, its throughput X is measured as
C/T programs/seconds. For processors, a more commonly used throughput measure is the
number of instructions executed in a clock cycle, referred to as its IPC (instructions per
cycle).

Although throughput and response time are related, improving the throughput of a
computer system does not necessarily result in reduced response time. For instance, the
throughput of a computer system improves when we incorporate additional processing cores
and use these cores for executing independent tasks, but that does not decrease the execution
time of any single program. On the other hand, replacing a processor with a faster one would
invariably decrease program execution time as well as improve throughput.

1.6.2 Power Consumption

After performance, power consumption is perhaps the biggest design issue to occupy the
hearts and minds of computer designers. In fact, in some application domains, power
consumption has edged out performance as the most important design factor. Why is
power such an important issue? This is because it directly translates to heat production.
Most of the integrated circuits will fail to work correctly if the temperature rises beyond a
few degrees.

Again, the designer’s goal is to reduce the power consumption occurring during program
execution, as program development can be carried out in a different system where power
consumption may not be burning issue.

Power consumption has two components: dynamic and static. Dynamic power relates to
power consumed when there is switching activity (or change of state) in a system, whereas
static power relates to power consumed even when there is no switching activity in the
system. Dynamic power is directly proportional to the extent of switching activity in the
system and the clock frequency of operation. It is also proportional to the capacitance in
the circuits and wires, and to the square of the supply voltage of the circuits.

Static power consumption occurs due to leakage currents in the system. With continued
scaling in transistor technology—reduction in transistor sizes—static power consumption
is becoming comparable to dynamic power consumption. Static power consumption is also
related to the supply voltage. Therefore, to develop low-power systems, computer hardware
designers strive to reduce the supply voltage of the circuits as well as reduce the amount of

1.7. Theoretical Underpinnings 27

hardware used to perform the required functionality.

1.6.3 Price

Price is an important factor that makes or breaks the success of any computer system. Be-
tween two comparable computer systems, all things being equal, price will be an important
factor. The major factors affecting the price are design cost, manufacturing cost, and profit
margin, all of which may be impacted by the sales volume. In general, price increases expo-
nentially with the complexity of the system. Therefore, it is imperative to reduce hardware
complexity at all costs.

1.6.4 Size

Size is an important design consideration, especially for laptops and embedded systems.

1.6.5 Summary

From the above discussion, it is apparent that design the computer hardware is a complex
process, where one has to focus on several factors at the same time. Often, focusing on one
factor comes at the expense of others. For instance, attempting to improve performance by
using substantial amounts of hardware generally results in high power consumption as well
as size and price. A good design will attempt to achieve good performance without increase
in hardware complexity, thereby conserving power, and reducing the size and price as well.

1.7 Theoretical Underpinnings

1.7.1 Computability and the Turing Machine

The fledgling days of computers saw them only solving problems of a numerical nature;
soon they began to process various kinds of information. A question that begs an answer is:
What kinds of problems can a computer solve? The answer, as per computer science theory,
is that given enough memory and time, a computer can solve all problems for which a finite
solution algorithm exists. One of the computer pioneers who defined and formalized compu-
tation was the British mathematician Alan Turing. While a graduate student at Princeton
University in 1936, Turing published a seminal paper titled “On Computable Numbers
with an Application to the Entscheidungsproblem,” which laid a theoretical foundation for
modern computer science. In that paper he envisioned a theoretical machine, which later
became known as a Turing Machine, that could read instructions from a punched paper tape
and perform all the critical operations of a computer. One of Turing’s remarkable achieve-
ments was to prove that a universal Turing machine—a simulator of Turing machines—can

28 Chapter 1. Introduction

perform every reasonable computation [?]. If given a description of a particular Turing
machine TM, the universal Turing machine simulates all the operations performed by TM.
It can do anything that any real computer can do, and therefore serves as an abstract model
of all general-purpose computers. Turing’s paper also established the limits of computer
science by mathematically demonstrating that some problems do not lend themselves to
algorithmic representations, and therefore cannot be solved by any kind of computer.

1.7.2 Limitations of Computers

“Computers are useless. They can only give you answers.”
— Pablo Picasso (1881 - 1973).

For the computer to solve a problem, it is imperative to first develop a solution algorithm,
or step-by-step procedure, for the problem. Although a general-purpose computer can be
used to solve a wide variety of problems by executing appropriate algorithms, there are
certain classes of problems that cannot be solved using a computer, either in principle or
in practice! Such problems may be grouped into three categories:

e Undecidable or non-computable problems
e Unsolvable problems

e Intractable problems

Undecidable or Non-computable

Problems: This category includes Well-defined problems
problems that have been proven not
to have finite solution algorithms.
Kurt Godel, a famous mathemati-
cian, proved in the 1930s his famous
incompleteness theorem [ref]. An
important consequence of Godel’s
theorem is that there is a limit
on our ability to answer questions
about mathematics. If we have a
mathematical model as complex as
the set of integers, then there is no
algorithmic way by which true state-
ments can be distinguished from
false ones. In practical terms, this
means that not all problems have an
algorithmic solution, and therefore a computer cannot be used to solve any arbitrary prob-
lem. In particular, a computer cannot find proofs in sufficiently complex systems. A. M.

Computable Noncomputable

Partially

Tractable NP-complete computable

Unsolvable

Figure 1.9: Categorization of Well-Defined Problems
based on Computability

1.7. Theoretical Underpinnings 29

Turing and Alonzo Church demonstrated a set of undecidable problems in 1936. One of
these is what has become known as the Turing machine halting problem, which states that
no algorithm exists to determine if an arbitrary Turing machine with arbitrary input data
will ever halt once it has started working. A practical implication of this result is that given
a sufficiently complex computer program with loops, it is impossible to determine if under
certain inputs the program will ever halt. Since the 1930s, a number of other problems
have been proven to be undecidable. It will never be possible in a logically consistent sys-
tem to build a computer, however powerful, that by manipulating symbols can solve these
undecidable problems in a finite number of steps!

Unsolvable Problems: This category includes well-defined problems that have not been
proved to be undecidable, but for which no finite algorithm has yet been developed. An
example is Goldbach’s conjecture, formulated by the 18th century mathematician Christian
Goldbach. The conjecture states that every even integer greater than 2 is the sum of exactly
two prime numbers. Although this conjecture has been verified for a large number of even
integers, it has not yet been proved to be true for every even integer, nor has any finite
algorithm been developed to prove this conjecture. An algorithm that examines all even
integers is not finite, and therefore will not terminate. An unsolved problem may eventually
be solved or proved to be undecidable.

Intractable Problems: This category includes problems that have a finite solution al-
gorithm, but executing the best available algorithm requires unreasonable amounts of time,
computer memory, and/or cost. In general, this is the case when the complexity of the
best available algorithm grows exponentially with the size of the problem. An example of
an intractable problem is the traveling salesman problem. The objective in this problem is
to find a minimum-distance tour through a given set of cities. The best available solution
algorithms for this problem are exponential in n, where n is the number of cities in the tour.
This means that the execution time of the algorithm increases exponentially as n increases.
For reasonably large values of n, executing such an algorithm becomes infeasible. Many
problems that occur in real life are closely related to the traveling salesman problem; two
common examples are the scheduling of airline flights, and the routing of wires in a VLSI
chip. An intractable problem becomes more tractable with technological advances that
make it feasible to design faster computers. Algorithm developers often tackle intractable
problems by devising approximate or inexact solution algorithms. These approximate al-
gorithms often involve the use of various heuristics, and are near-optimal most of the time.
Simulated annealing is an example of such an algorithm. Recent research seems to indicate
that quantum computing has the potential to solve many of the intractable problems more
efficiently.

30 Chapter 1. Introduction

1.8 Virtual Machines: The Abstraction Tower

If we look at the computer as a physicist would do, we will see that a digital computer
executes an algorithm by controlled movement of electrons through silicon substrates and
metal wires. A complete description of a computer could be given in terms of all of its silicon
substrates, impurity dopings, wire connections, and their properties. Such a view, although
very precise, is too detailed even for computer hardware designers, let alone the program-
mers. Hardly any programs would have been written in all these years if programmers were
given such a specification!

Like many other machines built today, computers are incredibly complex. The functions
involved in developing programs and in designing the hardware to execute them are so
diverse and complex that it is difficult for a user/programmer/designer to have mastery
of all of the functions. A practical technique for dealing with complexity in everyday
life is abstraction®. An automobile driver, for instance, need not be concerned with the
details of how exactly the automobile engine works. This is possible because the driver
works with a high-level abstract view of the car that encapsulates the essentials of what
is required for driving the vehicle. The car mechanic, on the other hand, has a more
detailed view of the machine. In a similar manner, abstraction is used to deal with the
complexity of computers. That is, computer software and hardware can be viewed as a
series of architectural abstractions or virtual machines. Different users see different (virtual)
machines depending on the level at which they use the computer. For instance, a high-
level language programmer sees a virtual machine that is capable of executing statements
specified in a high-level language. An assembly language programmer, on the other hand,
sees a different machine with registers and memory locations that can execute instructions
specified in an assembly language. Thus, the study of a computer system is filled with
abstractions. There is yet another advantage to viewing the computer at several abstraction
levels. Programs developed for a particular abstraction level can be executed in different
platforms—which differ in speed, cost, and power consumption—that implement the same
abstract machine.

The user who interacts with a computer system at a particular abstraction level has
a view of what its capabilities are at this level, and this view results directly from the
functions that the computer can perform at this level. Conceptually, each architectural
abstraction is a set of rules that describes the logical function of a computer as observable by
a program running on that abstract machine. The architecture does not specify the details of
exactly how its functions will be performed; it only specifies the architecture’s functionality.
Implementation issues related to the functionality are left to the lower-level machines. The

9An abstraction is a representation that hides details so that one can focus on a few concepts at a time.
Formal abstractions have a well-defined syntax and semantics. Hence, they provide a way of conveying the
information about a system in a consistent way that can be interpreted unambiguously. This abstraction (or
specification) is like a contract: it defines how the system behaves. The abstraction defines how the outside
world interacts with the system. The implementation, on the other hand, defines how the system is built,
as seen from the inside.

1.8. Virtual Machines: The Abstraction Tower 31

entire point of defining each architectural abstraction is to insulate programmers of that
level from those details. The instruction set architecture, for instance, provides a level of
abstraction that allows the same (machine language) program to be run on a family of
computers having different implementations (i.e., microarchitectures).

““There are many paths to the top of the mountain,
but the view is always the same.”
— Chinese Proverb

In order to make it easier for comprehension purposes, we have organized the computer
virtual machines along a single dimension as an abstraction tower, with one machine “above”
the other. Each virtual machine except the one at the lowest level is implemented by the
virtual machine below it. This approach is called hierarchical abstraction. By viewing the
computer as a hierarchy of abstractions, it becomes easier to master the complexity of
computers and to design computer systems in a systematic, organized way.

Appropriate interfaces are used to specify the interaction between different abstractions.
This implementation is done by translating or interpreting the steps or instructions of one
level using instructions or facilities from the lower level. A particular computer designer
or user needs to be familiar only with the level at which he/she is using the computer.
For instance, a programmer writing a C program can assume that the program will be
executed on a virtual machine that directly executes C programs. The programmer need
not be concerned about how the virtual machine implements C’s semantics. Similarly,
in a multitasked computer system, each active program sees a separate virtual machine,
although physically there may be only a single computer! Some of the machine levels
themselves can be viewed as a collection of multiple abstractions. One such breakdown
occurs in the assembly-level language machine where we further break it into User mode
and Kernel mode.

Figure 1.10 depicts the principal abstraction levels present in modern computers. In
the figure the planes depict the abstract machines. For each machine level, we can write
programs specific to that level to control that machine. The solid blocks depict the peo-
ple/software/hardware who transform a program for one machine level to a program for the
machine level below it. For the sake of clarity and to put things in proper perspective, the
figure also includes a few levels (at the top) that are currently implemented by humans. It
is important to note that these abstract machines are somewhat different from the virtual
machines seen by end users when they run different programs on a computer system. For
instance, when you run a MIPS assembler program on a host computer system, you do not
“see” that host as a MIPS assembly-level machine or a MIPS ISA-level machine. Instead,
your view of the host is simply that of a machine capable of taking a MIPS assembly lan-
guage program as input, and churning out an equivalent MIPS machine language program
as output! You can even run that assembler program without knowing anything about the
MIPS assembly language or machine language. The person who wrote the MIPS assem-
bler, on the other hand, does see the MIPS assembly-level architecture as well as the MIPS

32 Chapter 1. Introduction

ISA. Finally, the MIPS assembler program may have been originally written in an HLL,
for example C, in which case its developer also sees an abstract C machine that takes as
commands C statements!

The Use of a Language for an Abstraction: FEach virtual machine level provides an
abstraction that is suitable for the computer user/designer working at that level. In order to
make use of a particular abstraction, it must be possible to specify commands/instructions
to that virtual machine. Without a well-defined language, it becomes difficult to specify a
program of reasonable size and complexity. Most of the abstraction levels therefore provide
a separate language to enable the user at that level to specify the actions to be performed
by the virtual machine. The language specifies what data can be named by a program at
that level, what operations can be performed on the named data, and what ordering exists
among the operations. The language must be rich enough to capture the intricacies of the
corresponding virtual machine. When describing each of the abstraction levels, we will show
how the language for that level captures the essence of that level, and how it serves as a
vehicle to represent the commands specified by the user of that level.

“The limits of my language mean the limits of my world.”
— L. Wittgenstein. Tractatus Logicio-Philosophicus

Translators, Interpreters, Emulators, and Simulators: An important aspect of the
layered treatment of computers is that, as already mentioned, the commands specified at
each abstraction level need to be converted to commands specific to the immediately lower
level. Such a transformation makes the computer behave as a different machine than the
one for which the original program was written. This transformation process can be done by
translation or interpretation. In computer parlance, the term translation indicates taking a
static program or routine, and producing a functionally equivalent static program, usually
at a lower level. A static program is one that is not being executed currently. Thus,
translation of a loop involves translating each command of the loop exactly once. The term
interpretation, on the other hand, indicates taking individual steps of a dynamic program
and producing an equivalent sequence of steps, usually at a lower level. A dynamic program
is one that is in the process of being executed. Thus, interpretation of a loop involves
interpreting each command of the loop multiple times, depending on the number of times
the loop gets executed. Because of this dynamic nature, an interpreter essentially makes
one machine (the host machine) appear as another (the target machine). A translator is
almost always implemented in software, whereas an interpreter is implemented in software
or hardware. A software interpreter is often called a simulator, and a hardware interpreter is
often called an emulator. Of course, it is possible to build interpreters that use a combination
of software and hardware techniques. A simulator is often used to illustrate the working of
a virtual machine. It is also used to allow programs compiled for one machine to execute
on another machine. For instance, a simulator can execute programs written for an older

1.8. Virtual Machines: The Abstraction Tower 33

machine on a newer machine.

Advantages of using interpretation include (i) the ability to execute the (source) program
on different platforms, without additional compilation steps, and (ii) the ease of carrying
out interactive debugging. The main disadvantage is performance.

1.8.1 Problem Definition and Modeling Level Architecture

“At the highest level, the description is greatly chunked, and takes on a completely
different feel, despite the fact that many of the same concepts appear on the lowest
and highest levels.”

— Douglas R. Hofstadter, in Godel, Escher, Bach: An Eternal Golden Band

The highest abstraction level that we can think of is the level at which problem definition
and modeling are done. At this level, we can view the computer system as a machine that can
solve well-defined computer problems. We loosely define a well-defined computer problem
as one that can be represented and manipulated inside a computer.

The problem modeling person, therefore, takes complex real-life problems and precisely
formulates them so as to be solved on the computer. This process involves representing
the real-life problem’s data by some form of data that can be manipulated by a computer.
This process is called abstraction or modeling— creating the right model for the problem
so as to make it possible to eventually develop an appropriate algorithm to solve it. Notice
that in this context, modeling often implies simplification, the replacement of a complex
and detailed real-world situation by a comprehendable model within which we can solve a
problem. That is, the model captures the essence of the problem, “abstracting away” the
details whose effect on the problem’s solution is nil or minimal.

Almost any branch of mathematics or science may be utilized in the modeling process.
Problems that are numerical in nature are typically modeled by mathematical concepts
such as simultaneous linear equations (e.g., finding currents in electrical circuits, or finding
stresses in frames made of connected beams) and differential equations (e.g., predicting
population growth, or predicting the rate at which chemicals will react). Several problems
can be modeled as graph theoretical problems. Symbol and text processing problems can
be modeled by character strings and formal grammars. Once a problem is formalized, the
algorithm developer at the lower level can look for solutions in terms of a precise model and
determine if an algorithm already exists to solve that problem. Even if there is no known
solution, knowledge of the model properties might aid in developing a solution algorithm.

1.8.2 Algorithm-Level Architecture

The architecture abstraction below the problem definition level is the algorithm-level archi-
tecture. At this level, we see the computer system as a machine that is capable of executing

34 Chapter 1. Introduction

algorithms. An algorithm, as we saw earlier, is a step-by-step procedure that can be carried
out mechanically so as to get a specific output from a specific input. A key feature of com-
puter algorithms is that the steps are precisely defined so as to be executed by a machine.
In other words, it describes a process so unambiguously that it becomes mechanical, in the
sense that it does not require much intelligence, and can be performed by rote or a machine.
Computer scientists also require that an algorithm be finite, meaning that (i) the number
of steps must be finite so that it terminates eventually, and (ii) each step must require only
finite time and computational resources.

The basic actions involved in a computer algorithm are:

e Specify data values (using abstract data types)

e Perform calculations and assign data values

e Test data values and select alternate courses of actions including repetitions

e Terminate the algorithm

The algorithm-level architecture supports abstract data types and abstract data struc-
tures; the algorithm designer formulates suitable abstract data structures and develops an
algorithm that operates on the data structures so as to solve the problem. Providing ab-
stract data types enables the algorithm designer to develop more general algorithms that
can be used for different applications involving different data types. This is often called
algorithm abstraction. For instance, a sorting algorithm that has been developed without
specifying the data types being sorted, can be programmed to sort a set of integers or a
set of characters. Similarly, when considering a data structure, such as an array, it is often
more productive to ignore certain details, such as the exact bounds of its indices. This is
often called data abstraction.

Algorithm Efficiency: Computer theorists are mainly concerned with discovering the
most efficient algorithms for a given class of problems. The algorithm’s efficiency relates its
resource usage, such as execution time or memory consumption, to the size of its input data,
n. The efficiency is stated using the “Big O” notation, O(n). For example, if an algorithm
takes 4n - 2n + 2 steps to solve a problem of size n, we can say that the number of steps is
O(\%). Programmers use their knowledge of well-established algorithms and their respective
complexities to choose algorithms that are best suited to the circumstances. Examples of
such algorithms are quick-sort for sorting data (which has an an (nlogn) average running
time), and binary search for searching through sorted data (which has an O(logc\) time).

Algorithms can be specified in different ways. Two common methods are pseudocode
descriptions and flowchart diagrams. A pseudocode description uses English, mathematical
notations, and a limited set of special commands to describe the actions of an algorithm. A
flowchart diagram provides the same information graphically, using diagrams with a finite
set of symbols in the place of the more elegant features of the pseudocode. A computer

1.8. Virtual Machines: The Abstraction Tower 35

cannot directly understand either pseudocode or flowcharts, and so algorithm descriptions
are translated to computer language programs, most often by human programmers. Thus,
a computer program is an embodiment of an algorithm; strictly speaking, an algorithm is
a mental concept that exists independently of any representation.

1.8.2.1 Computation Models

Another important tenet of an algorithm-level architecture is the computational model
it supports. A computational model conceptualizes computation in a particular way by
specifying the kinds of primitives, relationships, and events that can be described in an
algorithm. A computational model will generally have the following features:

e Primitives: They represent the simplest objects that can be expressed in the model.
Examples of primitives found in most of the computation models are constants and
variables.

e Methods of combination: They specify how the primitives can be combined with
one another to obtain compound expressions.

e Methods of abstraction: They specify how compound objects can be named and
manipulated as units.

The computational model determines the kind of computations that can be specified by
an algorithm. For example, if we consider a geometric computational model that supports
only ruler and compass construction primitives, then we can specify algorithms (rules)
for bisecting a line segment, bisecting an angle, and other similar problems. We cannot,
however, specify an algorithm to trisect an angle. For solving this problem, we require
additional primitives such as a protractor. For arithmetic computation we can use models
incorporating different primitives such as an abacus, a slide rule, or even a calculator. With
each of these computation models, the type of arithmetic problems that can be solved is
different. The algorithms for solving a specific problem would also be different.

Algorithm development is always done for a specific algorithm-level architecture having
an underlying computational model. Three basic computational models are currently in
use, some of them being more popular than the others: imperative, functional, and logic.
These models of computation are equivalent in the sense that, in principle, any problem
that has a solution in one model is solvable in every one of the other models also.

Imperative Model: The imperative model of computation is based on the execution
of a sequence of instructions that modify storage called state. The basic concept is the
notion of a machine state (comprising variables in the high-level architecture, or registers
and memory locations in the assembly-level architecture). Program development consists
of specifying a sequence of state changes to arrive at the solution. An imperative program

36 Chapter 1. Introduction

would therefore consist of a sequence of statements or instructions and side-effect-prone
functions; the execution of each statement (or instruction) would cause the machine to
change the value of one or more elements of its state, thereby taking the machine to a new
state. A side-effect-prone function is one whose execution can result in a change in the
machine state. Historically, the imperative model has been the most widely used model;
most computer programmers start their programming career with this computational model.
It is the closest to modeling the computer hardware. This tends to make it the most efficient
model in terms of execution speed. Commonly used programming languages such as C,
C++, FORTRAN, and COBOL are based on this computational model.

Applicative (Functional) Model: The functional model has its foundation in mathe-
matical logic. In this model, computing is based on recursive function theory (RFT), an
alternative (and equivalent) model of effective computability. As with the Turing machine
model, RFT can express anything that is computable. Two of the prominent computer
scientists who pioneered this computational model are Stephen Kleene and Alonso Church.
The functional model consists of a set of values, functions, and the application of side-effect-
free functions. A side-effect-free function is one in which the entire result of computation is
produced by the return value(s) of the function. Side-effect-free functions can only access
explicit input parameters; there are no global variables in a fully functional model. And, in
the purest functional models, there are no assignment statements either. Functions may be
named and may be composed with other functions. Functions can take other functions as
arguments and return functions as results. Programs consist of definitions of functions, and
computations are application of functions to values. A classic example of a programming
language that is built on this model is LISP.

Rule-based (Logic) Model: The logic model of computation is a formalization of the
logical reasoning process. It is based on relations and logical inference. An algorithm in
this model involves a collection of rules, in no particular order. Each rule consists of an
enabling condition and an action. The execution order is determined by the order in which
the enabling conditions are satisfied. The logic model is related to relational data bases and
expert systems. A programming language designed with this model in mind is Prolog.

Computational Model Extensions: Apart from the three popular computational mod-
els described above, many other computational models have been proposed. Many exten-
sions have also been proposed to computational models to improve programmer efficiency or
hardware efficiency. Two important such extensions are the object-oriented programming
model and the concurrent programming model.

e Object-Oriented Model: In this model, an algorithm consists of a set of objects
that compute by exchanging messages. Each object is bound up with a value and
a set of operations that determine the messages to which it can respond. Functions

1.8. Virtual Machines: The Abstraction Tower 37

are thus designed to operate on objects. Objects are organized hierarchically. That
is, complex objects are designed as extensions of simple objects; the complex object
will “inherit” the properties of the simple object. The object-oriented model may be
implemented within any of the other computational models. Imperative programming
languages that use the object-oriented approach are C++ and Java.

e Concurrent Model: In this model, an algorithm consists of multiple processes or
tasks that may exchange information. The computations may occur concurrently or
in any order. The model is primarily concerned with methods for synchronization and
communication between processes. The concurrent model may also be implemented
within any of the other computational models. Concurrency in the imperative model
can be viewed as a generalization of control. Concurrency is particularly attractive
within the functional and logic models, as subexpression evaluation and inferences
may then be performed concurrently. Hardware description languages (HDLs) such
as Verilog and VHDL use the concurrency model, as they model hardware components,
which tend to operate concurrently.

1.8.3 High-Level Architecture

The abstraction level below the algorithm-level architecture is the high-level architecture.
This is the highest level that we study in this book, and is defined by different high-level
languages, such as C, C++, FORTRAN, Java, LISP, Prolog, and Visual Basic. This level
is used by application programmers and systems programmers who take algorithms and
formally express them in a high-level language. HLL programmers who develop their own
algorithms often perform both these steps concurrently. That is, the algorithm development
is done side by side with HLL program development.

To the HLL programmer the computer is a machine that can directly accept programs
written in a high-level language that uses alphabets as well as symbols like +, —, etc. It
is definitely possible to construct a computer hardware that directly executes a high-level
language; several LISP machines were developed in the 1970s and 1980s by different vendors
to directly execute LISP programs. Directly running high-level programs on hardware is not
commonplace, however, as the hardware can run only programs written in one specific high-
level language. More commonly, programs written in high-level languages are translated to
a lower level by translators known as compilers. We shall see more details of the high-level
architecture in Chapter 2.

For a computer to solve a problem, the algorithm must be expressed in an unambiguous
manner, so that computers can faithfully follow it. This implies espressing the algorithm
as a program as per the syntax and semantics of a programming language.

38 Chapter 1. Introduction

1.8.4 Assembly-Level Architecture

The next lower level, called the assembly-level architecture, implements the high-level ar-
chitecture. The architecture at this level has a notion of storage locations such as registers
and memory. Its instructions are also more primitive than HLL statements. An instruction
may, for instance, add two registers, move data from one memory location to another, or
determine if a data value is greater than zero. Primitive instructions such as these are
sufficient to implement high-level language programs. The language used to write programs
at this level is called an assembly language. In reality, an assembly language is a symbolic
form for the language used in the immediately lower level, namely the instruction set ar-
chitecture. Often, the assembly-level architecture also includes some instructions that are
not present in the instruction set architecture.

The assembly-level architecture and the instruction set architecture are usually hybrid
levels in that each of these architectures typically includes at least two modes—the User
mode and the Kernel mode. Both modes have many common instructions; however, each
mode also has a few instructions of its own. The extra instructions in the Kernel mode
include, for instance, those for reading or writing to IO addresses, managing memory al-
location, and creating multiple processes. The extra instructions in the User mode are
called system call instructions. In the microarchitecture, these instructions are interpreted
by executing an interpreter program in the Kernel mode at the ISA level. This interpreter
program is called the operating system kernel. Notice that the operating system itself may
have been originally written in a high-level language, and later translated to the lower
levels. The instructions that are common to both modes are interpreted directly by the
microarchitecture, and not by the OS. Thus, the system call instructions of the User mode
are interpreted by the OS and the rest are interpreted directly by the microarchitecture.

1.8.5 Instruction Set Architecture (ISA)

The next lower level is called instruction set architecture (ISA). The language used to
specify programs at this level is called a machine language. The memory model, IO model,
and register model in the ISA are virtually identical to the ones in the assembly-level
architecture. However, when specifying register and memory addresses in machine language,
they are specified in binary encoding. The instructions in the ISA are also mainly binary
encodings of the instructions present in the assembly-level architecture. There may be a
few minor differences in the instruction set. Usually, the assembly-level architecture has
more instructions than what is available in the ISA. Moreover, most assembly languages
permit programmers to define their own macros. These enhancements make it much easier
to program in an assembly language, compared to a machine language. Programs written in
an assembly language are translated to machine language using a program called assembler.

The instruction set architecture is sometimes loosely called architecture. Different ISAs

1.8. Virtual Machines: The Abstraction Tower 39

differ in the number of operations, data types, and addressing modes they specify. ISAs that
include fewer operations and addressing modes are often called RISC (Reduced Instruction
Set Computer) ISAs. Those with a large repertoire of operations and addressing modes are
often called CISC (Complex Instruction Set Computer) ISAs. The most commonly found
ISA is the IA-32 ISA—more often known by its colloquial name, x86—introduced by Intel
Corporation in 1979. Other ISAs that are in use today are IA-64, MIPS, Alpha, PowerPC,
SPARC, and PA-RISC.

1.8.6 Microarchitecture

The microarchitecture is the abstraction level immediately below the ISA; it serves as a
platform for interpreting machine language instructions. A microarchitecture specification
includes the resources and techniques used to realize the ISA specification, along with the
way the resources are organized to realize the intended cost and performance goals. At this
level the viewer sees hardware objects such as instruction fetch unit, register files, ALUs,
latches, cache memory, memory systems, 10 interfaces, and interconnections. A register file
is a collection of registers from which a single register can be read or written by specifying
a register number. An ALU (Arithmetic Logic Unit) is a combinational logic circuit that is
capable of performing simple arithmetic and logical operations that are specified in machine
language instructions. The register file, the ALU, and the other components are connected
together using bus-type or point-to-point interconnections to form a data path. The basic
operation of the data path consists of fetching an instruction from main memory, decoding
its bit pattern to determine what it specifies, and to carry out its execution by fetching the
required operands, using the ALU to operate on the operand values, and storing back the
result in the specified register or memory location.

The actual interpretation of the machine language instructions is done by a control unit,
which controls and coordinates activities of the data path. It issues commands to the data
path to fetch, decode, and execute machine language instructions one by one. There is a
fundamental break at the instruction set architecture. Whereas the architectures above it
are usually implemented by translation, the ISA and the architectures below it are always
implemented by interpretation.

1.8.7 Logic-Level Architecture

Descending one level lower into the hardware, we get to the logic-level architecture. This
architecture is an abstraction of the electronic circuitry of a computer, and refers to the
actual digital logic and circuit designs used to realize the computer microarchitecture. The
designer of this architecture uses gates, which accept one or more digital inputs and produce
as output some logical function of the inputs. Several gates can be connected to form a mul-
tiplexer, decoder, PLA, or other combinational logic circuits such as an adder. The outputs
of an adder, subtractor, and other functional units can be passed through a multiplexer

40 Chapter 1. Introduction

to obtain an ALU. Similarly, a few gates can be connected together with some feedback
arrangement to form a flip-flop or 1-bit memory, which can be used to store a 0 or a 1.
Several flip-flops can be organized to form a register, and several registers can be organized
to form a register file. Memory systems are built in a similar manner, but on a much larger
scale. Thus, we use a hierarchical approach for implementing the individual blocks of the
microarchitecture in the logic-level architecture. We will examine gates and the logic-level
architecture in detail in Chapter 9 of the book. This is the lowest architecture abstraction
that we will study in detail in this book.

Synchronous vs Asynchronous (self-timed): Currently digital computers are typi-
cally designed as synchronous or clocked sequential circuits, meaning that they use clock
signals to co-ordinate and synchronize the different activities in the computer. Changes in
the machine state occur only at discrete times that are co-ordinated by the clock signals.
Thus, the basic speed of a computer is determined by the time of one clock period. The
clock speed of the processor used in the original IBM PC was 4.77 MHz. The clock speeds
in current state-of-the-art computers range from 1 to 3.8 GHz. If all other specifications
are identical, higher clock speeds mean faster processing. An alternative approach is to use
asynchronous or self-timed sequential circuits.

1.8.8 Device-Level Architecture

For the sake of completeness, we mention the existence of a machine level below the logic-
level architecture, called device-level architecture. The primitive objects at this level are
devices and wires. The prevalent devices in today’s technologies are transistors. The de-
signer of this architecture uses individual transistors and wires to implement the digital
logic circuits specified in the logic-level architecture. The designer also specifies how the
transistors and wires should be laid out. With today’s technology, millions and millions of
transistors can be integrated in a single chip; such a design is called VLSI (Very Large Scale
Integration). Accordingly, device-level architecture is also called VLSI architecture.

One possible way of designing a device-level architecture involves taking the logic-level
architecture and implementing it as follows: connect a few transistors together to form
device-level circuitry that implement logic gates such as inverter, AND, OR, NAND, and
NOR. Then, implement each logic gate in the logic-level architecture by the equivalent
device-level cicuitry. In current practice, a different approach is taken. Instead of attempting
to implement the logic-level architecture, the VLSI designer takes the microarchitecture, and
implements the functional blocks in the microarchitecture with device-level circuitry. By
bypassing the logic-level architecture, this approach leads to a more efficient design.

Different types of transistor devices are available: BJT (Bipolar Junction Transistor),
MOSFET (Metal Oxide Semiconductor Field Effect Transistor), etc. Digital computer
applications invariably use MOSFETs. Again, different design styles are available with
MOSFETs. The most prevalent style is the CMOS (Complementary Metal Oxide Semicon-

1.9. Concluding Remarks 41

ductor) approach, which uses a PMOS network and a complementary NMOS network.

If we want to study the design of transistors, that leads us into solid-state physics, which
deals with low-level issues such as electrons, holes, tunneling, and quantum effects. At this
low abstraction level the machine looks more analog than digitall This level is clearly
outside the scope of this book.

1.9 Concluding Remarks

We have barely scratched the surface of computing, but we have laid a solid foundation
for computing and computers. This chapter began with the general topic of computing
and the role of computers in computing applications. Perhaps now we can answer the
question: what exactly is a computer? To a large extent, the answer depends on the level
at which we view the computer. At the high-level view, it is a machine that accepts high-
level language programs, and directly executes them. At the logic-level view, computers are
digital electronic circuits consisting of different types of gates that process 0s and 1s. Viewed
in the above light, we arrive at a definition of computer architecture as being concerned
with the design and application of a series of virtual machines, starting from high-level
architecture to logic-level architecture.

Besides the abstractions described in the previous section, a computer can have addi-
tional abstractions, such as user interfaces and data communication facilities. The key thing
to remember is that computers are generally designed as a series of architectural abstrac-
tions, each one implementing the one immediately above it. Each architecture represents
a distinct abstraction, with its own unique objects and operations. By focusing on one
architecture at a time, we are able to suppress irrelevant details, thereby making it easier
to master this complex subject. All of the architectures are important for mastery of the
subject; this textbook studies four architectures in detail: the assembly-level architecture,
the instruction set architecture, the microarchitecture, and the logic-level architecture. A
synthesis of these four architectures will give a depth and richness of understanding that
will serve well, irrespective of whether your main interest is in computer science, computer
engineering, or electrical engineering.

1.10 Exercises

1. Explain the role played by the operating system in a computer.
2. What is meant by a wirtual machine in the context of computers?

3. Explain what is meant by the stored program concept.

42
|
Problem—-Level Architecture CID
Problem
5 1
AlgorithmyDeveloper g
Algorithm-Level Architecture D
Algorithm
| _HEL Programmer g
High-Level Architecture D D D
mai n() { b
int a, b; icati i
a = read(0, &épp%:e;ltlon Program (HLL) [Library Program (HLL) OS Program (HLL)
| ;gomﬁiler (Translator); g
Assembly-Level Architecture User/l@odeCD D Ker%l Mode
mai n: ,I&\S/D sil o Rz%zl User Program (AL) OS Program (AL)
SYSCALL

yAssembler (Translator} g

Machine-Level Architecture
(Instruction Set Architecture)

UserodeCD

D Kerpél Mode

User Program (ML)

Interpretation

by O% code OS Program (ML)

______ | P ———

~ -

| ContrBI\Url'ggntefﬁretor)

ﬂ

Microarchitecture

PC — MAR

Microarchitecty#al
(RFs, Caches @B

Data Path
ALUs, Buses)

Microinstruction

| Microsequencér (Interpretor) \j

Logic-Level Architecture
PC out, MAR in

Logic-Leve Data Path
Gatee oty

Xes, ROMs)

Control Signals

|Device Control Inp;uts (Implementor)\j

Device-Level Architecture

Device-Level
(Transistors W

Data Path
ffes, Layouts)

|

Chapter 1. Introduction

Designed by Instruction Set Architect

Designed by Microarchitect

Designed by Logic Designer

Designed by VLSI Designer

Figure 1.10: Machine Abstractions relevant to Program Development and Execution, along
with the Major Components of each Abstract Machine.

Part 1

PROGRAM DEVELOPMENT —
SOFTWARE LEVELS

Finish your outdoor work and get your fields ready; after that, build your house.

Proverbs 24: 27

This part deals with the software levels of computers. In particular, it discusses the
high-level language (HLL)-level architecture, the assembly-level architecture, and the in-
struction set architecture (ISA). Chapter 2 gives a brief overview of program development.
This discussion is focused primarily on the high-level architecture. The detailed discus-
sion of computer architecture begins in this chapter with background information on the
high-level architecture, which is usually covered in a pre-requisite course to computer
architecture. This material is included in the book for completeness and to highlight
some of the software issues that are especially critical to the design of computer systems.
Chapter 3 provides a detailed treatment of the assembly-level architecture. In particular,
it describes the memory model, the register model, instruction types, and data types. It
also discusses programming at this level. Chapter 4 covers the Kernel mode, and differ-
ent ways of carrying out IO operations. Chapter 5 discusses ISA. It covers instruction
encoding, data encoding, translation from assembly language to machine language, and
different approaches to instruction set design.

44

Chapter 2

Program Development Basics

Let the wise listen and add to their learning, and let the discerning get guidance

Proverbs 1: 5

Software development is a fundamental aspect in computing; without software, comput-
ing would be limited to a few fixed algorithms that have been hardwired into the hardware
system. The phenominal power of computers is due to their ability to execute different
programs at different times or even concurrently. Most of today’s program development
— programming — is done in one of the high-level languages. Therefore, much of the
discussion in this chapter is focused on high-level languages. These languages languages
abstract away the hardware details, making it possible to develop portable programs, i.e.,
programs that are not tied to any specific hardware platform and can therefore be made
to execute on different hardware platforms. It is this high degree of abstraction that gives
them the name “high-level languages.” Programming at a high level allows programmers
not to be concerned with the detailed machine-level specifications, which in turn improves
their efficiency (if not the efficiency of the code!).

Many high-level languages are popular today: C, C++, Java, FORTRAN, VisualBA-
SIC, etc. Our objective in this chapter is not to teach programming; we assume that you
are already familiar with at least one high-level language, and have done some entry-level
programming. Our intent is to review important concepts that are common to program
development — irrespective of the language — and to lay a foundation for the material
presented in the subsequent chapter, which deals with the assembly-level architecture and
translation of programs from high-level languages to assembly languages. In that vein,
we touch upon basic issues in software engineering as well; however, advanced software
engineering concepts are clearly out of the scope of this book.

45

46 Chapter 2. Program Development Basics

2.1 Overview of Program Development

“Programs should be written for people to read, and only incidentally for machines to
execute.”

— Structure and Interpretation of Computer Programs by Harold Abelson and Gerald
Jay Sussman

There is no single way to develop computer programs; programmers differ quite a bit
when it comes to how they develop programs. A software engineering approach to pro-
Eramming We shall start with an overview of the important aspects in program
development. Below we highlight these aspects.

e Problem modeling: The model is created by understanding the complete problem
to be solved, and making a formal representation of the system being designed.

e Algorithm development: Once a formal model of the problem is developed, the
next step is to develop an appropriate algorithm for solving the problem. Algorithm
development involves defining the following:

— Data structures: the format and type of data the program will represent and
manipulate.

Inputs: the kind of data the program will accept.

Outputs: the kind of data the program will output.

— User interface: the design of the screen the end user will see and use to enter
and view data.

Algorithm: the methods of manipulating the inputs and determining the outputs.

Algorithm development includes a lion’s share of the problem solving effort. It is a
creative process, and has not yet been automated! The reason for this, of course, is
that for automating something, an algorithm has to be developed for performing it,
which means that we would require an algorithm for writing algorithms! Therein lies
the difficulty. An array of guidelines have been developed, however, to make it easier
for an algorithm developer to come up with an algorithm for a new problem. Some
of these guidelines are given below:

— See if any standard techniques (or “tricks”) can be used to solve the problem.

— See if the problem is a slight variation of a problem for which an algorithm has
already been developed. If so, try to adapt that algorithm.

— Divide-and-conquer approach: See if the problem can be broken into subprob-
lems.

— Develop a simplified version of the problem, and develop an algorithm for the
simplified problem. Then adapt the algorithm to fit the original problem.

2.1. Overview of Program Development 47

A problem can often be solved by more than one functionally correct algorithm.
Choosing between two algorithms often depends on the requirements of a particular
application. For instance, one algorithm may be good for small data sets, whereas
the other may be good for large data sets.

e Programming:

e Debugging: Virtually all programs have defects in them called bugs, and these need
to be eliminated. Bugs can arise from errors in the logic of the program specification
or errors in the programming code created by a programmer. Special programming
tools assist the programmer in finding and correcting bugs. Some bugs are difficult
to locate and fixing them is like solving a complex puzzle.

e Testing: Alpha and beta testing. Alpha testing is a small scale trial of the program.
The application is given to a few expert users to assess whether it is going to meet their
needs and that the user interface is suitable. Bugs and missing features due to the
application being unfinished will be found. Any errors in the code and specification
will be corrected at this stage. Beta testing is a more wide-ranging trial where the
application is given to a selection of users with different levels of experience. This
is where the bulk of the remaining bugs are found; some may remain undetected or
unfixed.

e Software delivery: The completed software is packaged with full documentation
and delivered to the end users. When they use the software, bugs that were not found
during testing may appear. As these new bugs are reported an updated version of the
software with the reported bugs corrected is shipped as a replacement.

Program development, as we saw in Chapter 1,

2.1.1 Programming Languages

Programming languages are the vehicle we use to express the tasks a computer must per-
form. It serves as a framework within which we organize our ideas about computer processes.

What makes a programming language powerful? A powerful programming language is
more than just a means for instructing a computer to perform various tasks. The power
of the language depends on the means it provides for combining simple ideas to form more
complex ideas. Every powerful language has three mechanisms for accomplishing this:

* primitive expressions, which represent the simplest entities the language is concerned
with,
* means of combination, by which compound elements are built from simpler ones, and

* means of abstraction, by which compound elements can be named and manipulated
as units.

48 Chapter 2. Program Development Basics

In programming, we deal with two kinds of primitives: instructions and data. Informally,
data is “stuff” that we want to manipulate, and instructions are descriptions of the rules
for manipulating the data. Thus, any powerful programming language should be able to
describe primitive data and primitive instructions, and should have methods for combining
and abstracting instructions and data.

A computer program is nothing but an algorithm expressed in the syntax of a program-
ming language. For executing an algorithm, it is imperative that it be first expressed in a
formal language. The familiar hello, world! program given below, when executed on a
computer, will display the words “hello, world!” on the display. This program uses the
syntax and semantics of the C programming language.

Program 1 The Hello World! program in C.

main() {
// Display the string
printf ("hello, world!");

The same program, when expressed in a different programming language, will have some
differences, but the underlying algorithm will be the same. For instance, when expressed in
Java, the same algorithm may look as follows:

Program 2 The Hello World! program in Java.

class helloworld {
public static void main(String[] args) {
// Display the string
System.out.println("hello, world!");

The features supported by a programming language form an important aspect of pro-
gramming, as the programmer expresses the entire algorithm by means of the programming
language chosen. In this section, we discuss features that are common to many high-level
programming languages.

e Alphabet: High-level languages generally use a rich alphabet, such as the ones used
in natural languages, along with many of the symbols used in mathematics. Common
languages such as C and Java use the English alphanumerical character set as the
alphabet.

Overview of Program Development 49

e Syntax: Syntax specifies the rules for the structure of programs. It specifies the
delimiters, keywords, etc, and the possible combinations of symbols. Programming
languages can be textual or graphical. Textual languages use sequences of text includ-
ing words, numbers, and punctuation, much like written natural languages. Graphical
languages use symbols and spatial relationships between symbols to specify programs.
A languages syntax can be formalized by a grammar or syntax chart.

e Semantics: While the syntax of a language refers to the appearance of programs
written in that language, semantics refers to the meanings of those programs. The
semantics of a language specify the meaning of different constructs in the language,
and therefore the behavior of the program when executed. The semantics of a lan-
guage draw upon linguistics and mathematical logic, and have a connection with the
computational model(s) supported by the language.

e Data types and data abstraction: All programming languages provide a set of
basic data types such as integers, floating-point numbers, and characters. A data
type specifies the set of values a variable of that type can have. It also defines how
operations such as 4+ and — will be carried out on variables of that type. In Pascal, for
instance, the expression i + j indicates integer addition if i and j are defined to be
integers, and floating-point addition if they are defined to be reals. Type checking
is supported by Pascal to ensure that such operations are applied to data of the same
type; more weakly typed languages such as C relax this restriction somewhat. Objects
are organized hierarchically

Most of the programming languages allow the programmer to define complex data
types out of simpler ones. Examples are the record data type in Pascal and the
struct data type in C. Object-oriented languages such as C++ and Java extend
this concept further, by allowing the programmer to define a set of operations for
each of the newly defined data type. The data type, along with the associated set of
operations, is called an object. Program statements are only allowed to manipulate
data objects according to the operations defined for that object.

Finally, most modern programming languages allow the programmer to define abstract
data types, thereby creating an extended language. An abstract data type is a data
type that is defined in terms of the operations that it supports and not in terms
of its structure or implementation. In the context of programming languages, data
abstraction means hiding the details concerning the implementation of data values
in computers. Data abstraction thus makes it possible to have a clear separation
between the properties of a data type (which are visible to the user interface) and its
implementation details. Thus, abstraction forms the basic platform for the creation
of user-defined objects.

If a programming language does not directly support data abstraction, the program-
mer may explicitly design and use abstract data types, by using appropriate coding.

e Control abstraction:

50 Chapter 2. Program Development Basics

e Library API:
e OS API:

In the discussion that follows, we will provide example code snippets in both C and
Java. We selected these two languages because of their popularity. The reader who is not
familiar with any of these languages should not be distracted by this choice; the syntax
and semantics of these languages are easy to understand and are similar to those of other
high-level languages. In any case, we will restrict our discussion to simple constructs in
these languages.

2.1.2 Application Programming Interface Provided by Library
2.1.3 Application Programming Interface Provided by OS
2.1.4 Compilation

2.1.5 Debugging

“If builders built houses the way programmers built programs, the first woodpecker
to come along would destroy civilization.”
— Gerald Weinberg

“Do not look where you fell, but where you slipped.” African proverb

2.2 Programming Language Specification

2.2.1 Syntax

The syntax of a language refers to It affects the readability of the program. It also
impacts the ease with which a compiler can parse the program.

2.2.2 Semantics
2.3 Data Abstraction

Declaration and manipulation of data values is at the heart of computer algorithms. The
data types and structures used by algorithms are somewhat abstract in nature. A major part
of the programming job involves implementing these abstractions using the more primitive
data types and features provided by the programming language. All programming languages
provide several primitive data types, and means to combine primitive data types into data
structures. Let us look at these primitive data types.

2.3. Data Abstraction 51

2.3.1 Constants

We shall start our discussion of data types with constants. Constants are objects whose
values do not change during program execution. Many calculations in real-world problems
involve the use of constants. Although a constant can be represented by declaring a variable
and initializing it to the appropriate value, this may not be the most efficient way from the
execution point of view. Most assembly languages do not treat constant and variable data in
the same manner. Assembly languages support a special immediate addressing mode that
lets a constant value to be directly specified as part of an instruction rather than storing that
constant’s value in a memory location and accessing it as a variable. By understanding how
constants are represented at the assembly language and machine language levels, constants
may be appropriately presented in the HLL source code to produce smaller and faster
executable programs.

2.3.1.1 Literal Constants and Program Efficiency

High-level programming languages and most modern assembly languages allow you to spec-
ify constant values just about anywhere you can legally read the value of a memory variable.

2.3.1.2 Manifest Constants

A manifest constant is a constant value associated with a symbolic name. During program
translation, the translator will directly substitute the value everywhere the name appears
within the source code. Manifest constants allow programmers to attach meaningful names
to constant values so as to create easy-to-read and easily maintained programs.

2.3.1.3 Read-Only Memory Objects

C++ programmers may have noticed that the previous section did not discuss the use of
C++ const declarations. This is because symbols you declare in a C4++ const statement
aren’t necessarily manifest constants. That is, C++ does not always substitute the value
for a symbol wherever it appears in a source file. Instead, C4++ compilers may store that
const value in memory and then reference the const object as it would a static variable.
The only difference, then, between that const object and a static variable is that the C++
compiler doesn’t allow you to assign a value to the const object at runtime.

C++ sometimes treats constants you declare in const statements as read-only variables
for a very good reasonit allows you to create local constants within a function that can
actually have a different value each time the function executes (although while the function
is executing, the value remains fixed). Therefore, you cannot always use such ”constants”
within constant expressions in C++ and expect the C++ compiler to precompute the
expression’s value.

52 Chapter 2. Program Development Basics

2.3.1.4 Enumerated Types

Well-written programs often use a set of names to represent real-world quantities that
don’t have an explicit numeric representation. An example of such a set of names might be
various car manufacturers, such as GM, Ford, and Chrysler. Even though the real world
does not associate numeric values with these manufacturers, they must be must encoded
with numerical values if they are to be represented in a computer system. (Of course, it
is possible to represent them as “text” by representing each character in the name using
ASCII, but that would slow down program execution.) The internal value associated with
each symbol can be arbitrary; the important point is that the same unique value is used
every time a particular symbol is used. Many programming languages provide a feature
known as the enumerated data type that will automatically associate a unique value with
each name in a list. The use of enumerated data types helps the programmer to specify the
data using meaningful names rather than “magic” numbers such as 0, 1, and 2.

2.3.1.5 Boolean Constants

Many high-level programming languages provide Boolean or logical constants that can rep-
resent the values True and False. Because there are only two possible Boolean values, their
representation requires only a single bit at the machine language. However, because most
machine languages do not permit storage allocation at the granularity of a single bit, most
programming languages use a whole byte or even a larger object to represent a Boolean
value. The behavior of the unused bits in a Boolean object depends on the programming
language. Many languages treat the Boolean data type as an enumerated type.

2.3.2 Variables

Irrespective of the specific high-level language used, the programmer sees an abstract ma-
chine that supports data structures and operations that can be performed on the data
structures. In most high-level languages, the data structures are declared a certain type.
The type indicates both the characteristics of objects that can be represented and the kinds
of operations that can be performed on the objects.

As mentioned earlier, manipulation of data values is at the heart of every computer pro-
gram. It is therefore of utmost importance that high-level languages provide programmers
an efficient and easy way of specifying data values that can be modified. Most HLLs allow
the programmer to refer to a data value symbolically by a name. Variables are used for a
variety of data values including input values, output values, loop counts, and intermediate
results of computation. Consider a simple program—one that counts the number of words
in a text file. This program would need to know the name of the file—information the
program end user would need to supply. The program would need a variable to keep track
of the number of words counted so far.

2.3. Data Abstraction 53

Declaring and manipulating variables is a central concept in HLL programming. The
HLL variables have some similarity to the variables used in algebra and other branches
of mathematics, although there are a few notable differences. In addition to specifying
the name of a variable, a variable declaration includes specifying the type, scope, and
storage class of the variable. The position of a variable declaration statement in a program
implicitly specifies the scope of the variable. The declaration is for the benefit of the
compiler, which must know how much space to allocate for each variable. Different variable
types require different amounts of space. For example, C permits different variable types
such as integers, characters, and floats. The declaration of a variable is accomplished by
specifying its name and type. For example, in C the declaration

int n;

declares an integer variable named n.

Most high-level languages allow a variable to be initialized at the time of declaration.
In C, the declaration

int n = 5;

declares an integer variable named n, and calls for initializing its value to 5. Once a variable
has been assigned a value, it retains that value until it is modified, either by a direct
assignment or an indirect assignment through a pointer.

2.3.2.1 Data Type

The data type of a variable defines the set of values that the variable may ever assume, and
the semantics of possible arithmetic/logical operations on those values. In other words, a
variable type is a formally specified set of values and operations. For example, a variable
of type boolean (or logical) can assume either the value true or the value false, but no
other value. Logical operations such as {and, or, not}, and the assignment operation can be
performed on it. In addition, the data type indirectly specifies the number of bytes occupied
by the variable, and the methodology to be used for carrying out arithmetic operations on
the variable. Some of the commonly used data types are discussed next.

Signed Integers and Unsigned Integers: These are fundamental data types; virtually
every HLL supports them. Most HLLs support different word sizes for integer variables.
For instance, C has short and int variable types for representing 16-bit integers and 32-bit
integers, which can take positive as well as negative values. C also lets the programmer
declare unsigned integer types by adding the prefix unsigned before short or int.

“Good things, when short, are twice as good” Baltasar Gracian, The Art of Worldly
Wisdom

54 Chapter 2. Program Development Basics

double value; /* or your money back! x/
short changed; /* so triple your money back! x*/

— Larry Wall (the Perl (

Floating Point Numbers (for Increased Range): The range of signed integers rep-
resentable in a 32-bit fixed-point format is approximately —2.15 x 102 to 2.15 x 10°. Many
computation problems require the ability to represent numbers that are of much greater
or smaller magnitude than the integers in this range. Examples are Avogadro’s number,
6.02 x 10%%; mass of a proton, 1.673 x 10~2* g; and the US National Debt a few years back,
$17,383,444,386,952.37. In order to represent very large integers and very small fractions,
most high-level languages support floating-point (FP) variable types, in which the effective
position of the radix point can be changed by adjusting an exponent. The radix point is
said to float, and the numbers are called floating-point numbers. This distinguishes them
from fixed-point numbers, whose radix point is always in the same position. An FP number
is written on paper as follows:

(Sign)SigDiﬁcand,x BaSeEXponmn

The base is the radix of the FP number, the significand identifies the significant digits of
the FP number, and the sign identifies the overall sign of the FP number. The exponent,
along with the base, determines the scale factor, i.e., the factor by which the significand is
multiplied to get the actual value. In C, floating-point variables can be declared as follows:

float f; /* single precision floating-point */
double d; /* double precision floating-point */

Character: Textual information has become one of the frequently utilized forms of infor-
mation for both storage and manipulation. This seems counterintuitive, given that comput-
ers have historically been used to “compute,” or perform calculations. However, when we
consider the facts that programs are input in text form, that compilers operate on strings
of characters, and that computation answers are generally provided via some type of tex-
tual information, then the amount of textual information processed by computers begins
to be appreciated. Furthermore, the preparation of letters, reports, and other documents
has become a major application of computers. The basic unit of textual information is a
character. Most high-level languages provide variable type(s) to represent character and/or
strings of characters. In C, a character variable can be declared as follows:

char «c;

If you lost wealth, you lost nothing
If you lost health, you lost something
If you lost character, you lost everything.

— An old proverb

2.3. Data Abstraction 55

Pointer: The last data type that we will discuss in this section is the pointer. A pointer
is a variable used to hold the (memory) address of another variable. In defining a pointer,
the high-level language assumes a limited knowledge of the memory model of the lower
level assembly-level architecture that implements it. Only some high-level languages sup-
port pointers. Example are Pascal and C. Pointers are helpful for building complex data
structures such as linked lists and trees. A pointer variable that points to a character can
be declared in C as follows:

char *cptr;

In this declaration, cptr is the pointer variable; the implicit assumption is that whatever
cptr is pointing to should be interpreted as a data item of type char.

Array: This is a data structure, i.e., a collection of variables.

Structure: This is a data structure, i.e., a collection of variables.

2.3.2.2 Scope

Another important piece of information specified in a variable declaration is the variable’s
scope, which defines where and when it is active and available in the program.

2.3.2.3 Static Scoping

With static scoping, a variable always refers to its nearest enclosing binding. Because
matching a variable to its binding only requires analysis of the program text, this type of
scoping is sometimes also called lexical scoping. Static scope allows the programmer to
reason as if variable bindings are carried out by substitution. Static scoping also makes it
much easier to make modular code and reason about it, since its binding structure can be
understood in isolation. Correct implementation of static scope in languages with first-class
nested functions can be subtle, as it requires each function value to carry with it a record
of the values of the variables that it depends on. When first-class nested functions are not
used or not available (such as in C), this overhead is of course not incurred. Variable lookup
is always very efficient with static scope, as the location of each value is known at compile
time.

Most high-level languages that have static scoping allow at least the following two scopes
for variables:

e global

e local

56 Chapter 2. Program Development Basics

A global variable can be accessed throughout the program (that is, by all modules or
functions in the program). Because of this, declaring too many global variables makes it
difficult to debug and track variable values.

A local variable can be accessed only within the block in which it is declared. When
a local variable has the same name as that of a global variable, the global variable is not
visible in the block where the local variable is visible.

In some high-level languages, the scope of a variable is not explicitly declared; instead,
it is implicitly defined by where exactly the variable is declared.

int i, j; /* global variables; static storage class */
main ()
int i, *iptr; /* local variables; automatic storage class */
static int s; /* local variable; static storage class */

iptr = (int *)malloc(40); /* dynamic storage class */

2.3.2.4 Dynamic Scoping

In dynamic scoping, each identifier has a global stack of bindings. Introducing a local
variable with name x pushes a binding onto the global x stack (which may have been
empty), which is popped off when the control flow leaves the scope. Evaluating x in any
context always yields the top binding. Note that this cannot be done at compile time
because the binding stack only exists at runtime, which is why this type of scoping is called
dynamic scoping.

ince a section of code can be called from many different locations and situations, it can
be difficult to determine at the outset what bindings will apply when a variable is used.
This can be beneficial; application of the principle of least knowledge suggests that code
avoid depending on the reasons for (or circumstances of) a variable’s value, but simply use
the value according to the variable’s definition. This narrow interpretation of shared data
can provide a very flexible system for adapting the behavior of a function to the current
state (or policy) of the system. However, this benefit relies on careful documentation of all
variables used this way as well as on careful avoidance of assumptions about a variable’s
behavior, and does not provide any mechanism to detect interference between different parts
of a program. As such, dynamic scoping can be dangerous and many modern languages do
not use it. Some languages, like Perl and Common Lisp, allow the programmer to choose
lexical or dynamic scoping when (re)defining a variable. [edit]

Implementation

Dynamic scoping is extremely simple to implement. To find an identifier’s value, the

2.3. Data Abstraction 57

program traverses the runtime stack, checking each activation record (each function’s stack
frame) for a value for the identifier. This is known as deep binding. An alternate strategy
that is usually more efficient is to maintain a stack of bindings for each identifier; the stack
is modified whenever the variable is bound or unbound, and a variable’s value is simply
that of the top binding on the stack. This is called shallow binding. Note that both of
these strategies assume a last-in-first-out (LIFO) ordering to bindings for any one variable;
in practice all bindings are so ordered. [edit]

Example
int x = 0; int f () return x; int g () int x = 1; return f();
With static scoping, calling g will return 0 since it has been determined at compile time

that the expression x in any invocation of f will yield the global x binding which is unaffected
by the introduction of a local variable of the same name in g.

With dynamic scoping, the binding stack for the x identifier will contain two items when
f is invoked: the global binding to 0, and the binding to 1 introduced in g (which is still
present on the stack since the control flow hasn’t left g yet). Since evaluating the identifier
expression by definition always yields the top binding, the result is 1.

2.3.2.5 Lifetime

A variable’s lifetime or storage class determines the period during which that variable exists.
Some variables exist briefly, some are repeatedly created and destroyed, and others exist for
the entire program execution. A variable’s storage class determines if the variable loses its
value when the block that contains it has completed execution. Most high-level languages
support the following three storage classes:

e automatic
e static
e dynamic

e persistent

Automatic variables begin to exist when control reaches their block, and lose their values
when execution of their block completes. Examples are the local variables declared within
subroutines®. Static variables, on the other hand, begin to exist when the program starts
running, and continue to retain their values till the termination of the program. Dynamic
variables are implicit variables pointed to by pointer variables, and do not exist when
the program starts running. They are created during the execution of the program, and
continue to exist and retain their values until they are explicitly destroyed by the program.
In C, a dynamic variable is created during program execution by calling the library function

1Some high-level languages permit a local variable to retain its value between invocations of the subroutine
by declaring the local variable as a static variable.

58 Chapter 2. Program Development Basics

malloc() or calloc(), which returns the starting address of the memory block assigned
to the variable. The allotted memory locations are explicitly freed by calling the library
routine free(). Once some memory locations are freed, those locations should no longer
be accessed. Doing so may cause a protection fault or, worse yet, corrupt other data in the
program without indicating an error. The following example code illustrates the creation
and destruction of a dynamic variable using malloc() and free(), respectively.

char *cptr;

/* allocate a dynamic char array having size elements */
cptr = (char *)malloc(size * sizeof(char));

free(cptr); /* free the block of memory pointed by cptr */

A persistent variable is one that keeps its value after program execution, and that has
an initial value before program execution. The most common persistent variables are files.

2.3.3 IO Streams and Files

The variable types that we saw so far manage data that originate within the program. If
a program operates only on internally generated data, then it is geared to solve only a
particular instance of a problem (i.e., solving a problem for a particular set of input values
only), and is not likely to be very useful. Instead, if the program accepts external inputs,
then it can solve different instances of a problem. Thus, it is important for programs to
have the ability to accept input data. On a similar note, the moment a program completes
its execution, its variables cease to exist, and the variable values disappear, without leaving
a trace of the computation results. For the purposes of performing input and output,
high-level languages provide data types that deal with IO streams and files.

In C, the stdio library supports IO streams and files. Each program can access a
collection of virtual 10 devices (stdin, stdout, and stderr) that may be controlled by
a simple set of library functions. The main reason for including IO routines in a library
is their complexity: rather than force every application programmer to write these com-
plex routines, simple economics suggest including them in the library software. Example
library functions in C that deal with IO streams are getchar (), putchar (), scanf (), and
printf (). getchar () allows application programs to read a single character from standard
input, and putchar () allows application programs to write a single character to standard
output; scanf() and printf () are useful for performing formatted IO operations with
standard input and standard output, respectively?.

2The behavior of these and other similar functions is precisely defined by the ANSI C standard. Standards
have been developed for high-level languages by national and international organizations such as ANSI
(American National Standards Institute), IEEE (Institute of Electrical and Electronic Engineers), and ISO

2.3. Data Abstraction 59

For clarification, we present below a simple C program to copy standard input to
standard output, one character at a time, using the C library routines getchar() and
putchar().

#include <stdio.h> /* contains definitions such as EOF *x/

main()

{

int c;

while ((c = getchar()) != EOQF)
putchar(c);

}

Although IO streams (standard input and standard output) can be used to supply
external input to programs and to obtain the results of computation, they are cumbersome
to handle large amounts of data. Inputting large amounts of data through a keyboard every
time a program is executed is impractical. Moreover, the results sent to the standard output
do not leave a “permanent” record. For these reasons, most high-level languages provide a
data type called file, which provides a permanent way of storing data. Unlike other data
structures provided by an HLL, files may be present before the execution of a program, and
do not vanish when a program terminates; in other words, they persist.

“The palest ink s better than the best memory.”
— Chinese proverb

The HLL application programmer is provided with an abstraction of a uniform space
of named files. Thus, HLL application programmers do not concern themselves with any
specific IO devices; instead they can rely on a single set of file-manipulation OS routines
for file management (and IO device management in an indirect manner). This is sometimes
referred to as device-independent IO. For example, a character may be printed on a
printer by writing the character to the “printer file”.

Application programs generally read (formatted) data from one or more files, process the
data, and then write the result to one or more other files. For example, an accounts payable
program reads a file containing invoices and another containing purchase orders, correlates
the data, and then prints a check and writes to a file to describe the expenditures. A
compiler reads an HLL source program file, translates the program into machine language,
and writes the machine language program into an executable file.

The actions that an HLL program is allowed to perform on a file are restricted in certain
ways. First of all, before accessing a file, it has to opened. Secondly, most of the HLLs permit

(International Standards Organization). Adherence to a standard facilitates the development of portable
programs, which can run in different computer systems with little or no change. Portability is particularly
important, given that software is a major investment for many computer users.

60 Chapter 2. Program Development Basics

only sequential access to the data present in a file. After completing all accesses to a file,
the file is closed. The activities of opening, closing, reading from, and writing to files are
done using special function calls, which are also typically implemented as part of the library
routines. Example library functions in C that deal with file accesses are fopen(), fclose(),
fscanf (), and fprintf ().

Instead of specifying a file’s name every time it is accessed, C provides a file pointer data
type. Unlike other pointer variables, which point to the starting address of a variable, a file
pointer does not point to the file, but rather to a data structure that contains information
about the file. The following C code illustrates how a file pointer is declared, initialized,
and used.

#include <stdio.h>

main()
{
FILE *fp; /* special data type for accessing a file */
int c;
fp = fopen("fname", "r"); /* open file "fname" in read mode */

c = getc(fp); /* read next character from file pointed by fp */
fclose(fp); /* close file pointed by fp */

HLLs such as C provide a uniform interface for both IO streams and files. The generic
functions used to interact with the IO streams are similar to those provided for the ma-
nipulation of files. In fact, if sequential access to files is assumed, there is practically no
difference between a virtual device and a file, and hence virtual devices may be manipulated
using the same library routines as those used to access files.

The library routines can be linked to the application program statically at link time or
dynamically at run time.

2.3.4 Data Structures
2.3.5 Modeling Real-World Data

As we saw in Chapter 1, problem solving using a computer involves executing an algorithm
with appropriate input data. For a digital computer to solve real-world problems, the
real-world data has to be converted to a digital form that can be easily represented and
manipulated inside the computer. To begin with, all of the analog data has to be converted
to digital data, possibly resulting in some loss of precision depending on the number of
bits used to represent the digital data. The digital data itself can be represented in many

2.3. Data Abstraction 61

different ways. In fact, one of the most important steps in developing a computer algorithm
is to carefully consider what real-world data the algorithm needs to process and then choose
an appropriate internal representation for that data. For some type of data, an internal
representation is fairly obvious; for other types of data, many alternatives exist.

Depending on the architectural level at which programming is done, the details of data
representation will differ. In this section, we concern ourselves only with how data is
represented at the algorithm development level, arguably the highest level that we can
think of.

2.3.5.1 Images

Images have become an important type of data these days, especially with the popularity
of the internet. Images form an important part of many documents and presentations.
Images vary greatly, based on size, color, textures, and shapes of objects. Different formats
are used to represent images, depending on these characteristics as well as processing and
performance requirements. There are two fundamentally different ways the computer stores
and manipulates images.

e Vector image — Draw-type: In this approach, an image is viewed as a collection of
lines, shapes, and objects. Lines and curves can be easily defined by mathematical
objects called vectors. Geometrically definable shapes can be easily represented as
mathematical objects by a small number of parameters. For example, a line can be
completely specified by noting the co-ordinates of its end points. A circle can similarly
be specified by noting the co-ordinates of its center and the length of its radius.

A draw-type image, often referred to as a vector or scalable image, contains a set
of objects whose characteristics are stored mathematically. Each individual object
within the image retains its own characteristics, such as the co-ordinates of its vertices
(corners), the thickness and colour of its outline, the color of its interior, etc. This
makes it possible to target editing actions at specific elements of an image. Vector
graphics are resolution independent and can be scaled to any size and printed at any
resolution without losing clarity. Vector graphics are best for type and graphics that
must retain crisp lines when scaled to various sizes. Examples of commonly used
software for producing vector images include: CorelDRAW!, Adobe Illustrator, Aldus
Freehand, Microsoft Draw, and AutoDesk AutoCAD.

e Raster image (pixelmap, bitmap) — Paint-type: In this approach, an image is viewed
as a rectangular grid of tiny squares called pizels. Each pixel has a specific location
and color value. When viewed in this manner, the viewer does not “see” objects or
shapes! As a result, a raster image can lose detail and appear jagged if viewed at
a high magnification or printed at too low a resolution. Raster images are best for
representing subtle gradations of shades and color such as in photographs. Raster
images can either be created entirely by computer, or can be sampled initially from

62 Chapter 2. Program Development Basics

other sources, for example, scanning a photograph or capturing a frame of video.
When displaying on computer monitors, all images — vector images and raster images
— are displayed as pixels on-screen.

Image Formats

Several different formats are used to represent images. Some of these are lossless in that
they retain all of the information that has been captured about an image. Others are lossy
and approximate some of the information so as to reduce the amount of data required to
store and manipulate the image.

Bitmap (BMP): It is the Microsoft Windows standard for image files. The bitmap
format stores the image in uncompressed form, and so it is lossless. As the image is not
compressed, it renders good images; however, the data file is likely to be quite large. What
you store is pretty much what you see! Although they do have the ability to support up to
16.7 million colors, there really is no reason why the average user should need to use this
format for image manipulation. Moreover, the bitmap format does not support animation,
transparency, and interlacing.

Graphics Interchange Format (GIF): The GIF is a lossless image format that is the
most common format found on the web. Due to having a 256 maximum color range this
format is ideal for making small icons, buttons, or other graphics that have large blocks of
the same color, but not for images that are required to be photographic quality. Therefore,
if you are working with images from a digital camera, do not use GIF as the file format.
This file format supports transparency, interlace, and can be animated, which makes it a
excellent format for putting images on a website. To reduce the data size, GIF does use a
non-lossy compression algorithm. This means that the compressed image can be converted
back to the original image with no loss of detail. The algorithm works by noting sections of
the image that are the same color, and works quite well for images that have large areas of
solid color with little to no texture. The GIF format is an excellent choice for images that
are cartoonlike in appearance such as banner ads, logos, and text on a solid background.
It is a poor choice for real-life depictions such as photographs of nature or people which
tend to have lots of detailed variations. CompuServe Graphics Interlaced Format. Designed
for transmission over modem links, GIF files are compact images that can be stored in an
interlaced format. This means that one line of pixels in every four will be decoded first,
allowing the user to see what the image will look like before the whole file is downloaded.
It has a maximum of 8-bit (256 colours). This type of image is used on the World Wide
Web.

Joint Photographic Experts Group (JPEG): The JPEG format was developed by
the Joint Photographic Experts Group committee. It is a lossy file format that was designed

2.3. Data Abstraction 63

with photographic images in mind. A JPEG is capable of storing millions of colors, making
it a great format for saving digital camera photographs and capturing the proper hues and
color that we see in real life. JPEG does support compression, but the more you compress
this type of image, the more loss of detail will occur. The predominant uses for JPEGs are
for photographic images on websites and for storing pictures from digital cameras. Though
the TIFF format is a higher quality format, the size of the resulting TIFF image, makes the
JPEG the more practical choice. This format does not support does not support animation
or transparency, but can be interlaced. It is a lossy compression meaning the compressed
image will not render in as much detail as the original from which it was created. The
JPEG format is an excellent choice for photograpic images which depict the real world such
as nature or people and also for complex backgrounds with lots of texture and detailed
variation.

MPEG: An MPEG file uses a complex algorithm like a JPEG file does — it tries to elim-
inate repetition between frames to significantly compress video information. In addition,
it allows a soundtrack (which animated GIFs do not). Because a typical sequence has
hundreds or thousands of frames, file sizes can still get quite large.

Shockwave: Shockwave provides a vector-based animation capability. Instead of speci-
fying the color of every pixel, a Shockwave file specifies the coordinates of shapes (objects
like lines, rectangles, circles, etc.) as well as the color of each shape. Shockwave files can be
extremely small. They allow animation and sound. The images are also scalable; because
they are vector-based, the image can be enlarged and it will still look great.

Tagged Image File Format (TIFF): The TIFF format is a lossless image format that
is the considered the best choice for photographic image quality. Most digital cameras give
the option of using TIFF as the format it saves files in. The main problem with this file
format is that most applications do not compress the TIFF files, and so they can be quite
large. This is not much of a problem for storing the pictures on a computer, but with
limited flash memory sizes for cameras it could limit the amount of pictures that can be
stored on one card. If you have the storage, then the TIFF format is highly recommended,
but if you do not have the space, then go with a JPEG as you most likely will not notice
a difference in image quality. This format does not support animation, transparency, and
can not be interlaced.

Encapsulated PostScript (EPS): Adobe PostScript is the industry standard page de-
scription language. EPS files can contain both paint and draw type information, and can
often become extremely large.

Name Extension Compressed Loss Animated Max Colors Transparency Interlaced

64 Chapter 2. Program Development Basics

Graphics Interchange Format .GIF Yes Lossless Yes 256 Yes Yes Joint Photographic
Experts Group .JPG Yes Lossy No 16.7 Million No Yes Portable Network Graphics .PNG
Yes Lossless Yes 256/16.7 Mil Yes Yes Bit-Map .BMP Rarely Lossless No 16.7 Million No
No Tagged Image File Format .TIFF or .TIF Yes Lossless No 16.7 Million No No

Figure 4: Graphic Formats and their Attributes

2.3.5.2 Video

Video data is a natural extension of graphical data. It is a sequence of still images that
depict how the scene changes with the passage of time. If these still images are displayed
at the rate of 30 or more images per second, then, to the human eye, they appear as a
continuous motion picture.

2.3.5.3 Audio

Another real-world entity that we often represent and process inside a computer is audio.
Although real-world audio is analog in nature, inside the computer it is stored in digital form,
called digital audio. Digitization is done by electronically sampling the analog waveform at
regular time intervals; the time intervals should be small enough to capture every nuance in
the analog signal. Each sample is then approximated to one of the allowable discrete values
using an analog-to-digital (A/D) converter. These discrete values are then represented in a
binary format.

2.4 Operators and Assignments

Apart from providing different data types, high-level languages also provide a set of arith-
metic operators and logical operators that allow the programmer to specify manipulation
of variables. Operators act on the values assigned to variables. Variables, along with the
operators, allow the HLL programmer to express the computation specified in the algorithm
to be implemented.

The assignment statement in C involves the evaluation of expressions composed of op-
erators, variables, and constants. In C, as in most HLLs, all operators are either monadic
or dyadic, i.e, involve one or two operands.

Another operator available in C and other languages that support pointers is the address-
of operator, “&”, to take the address of a static variable.

2.5. Control Abstraction 65

2.5 Control Abstraction

What distinguishes a computer from a simple calculator is its ability to make decisions:
based on the input data and the values created during the computation, different instruc-
tions are executed.

2.5.1 Conditional Statements

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I
I took the one less traveled by,

And that has made all the difference.

— The Road Not Taken by

Robert Frost

I have always known

That at last I would

Take this road, but yesterday

I did not know that it would be today.”

— Ise Monogatari (The Tales

of Ise) by Ariwara no Narihira (9th century Japan)

if-else: Often it is necessary to have the program execute some statements only if a
condition is satisfied. All high-level languages provide if constructs to program conditional
execution. The C if statement has the syntax

if (expr)
stmt;

The semantics of this statement is: if ezpr evaluates to true, execute stmt, otherwise skip
stmt. Sometimes, a program may need to choose one of two alternative flows of control,
depending on the value of a variable or expression. For this purpose, the C language provides
an if-else construct, which has the syntax

if (expr)
stmitl;
else
stmit2;

The semantics of this statement is: if expr evaluates to true, execute stmitl, otherwise
execute stmt2.

66 Chapter 2. Program Development Basics

switch: High-level languages also generally provide a construct for specifying multi-way
decisions. The C language provides a switch construct, which compares the value of an
expression against a list of supplied constant integer values, and depending on the match
selects a particular set of statements. Its syntax is given below.

switch (expr)
{
case const-exprl:
stmitl;
break;
case const-expr2:
stmit2;
break;
default:
stmit3;

}

The semantics of this switch statement is: if expr when evaluated matches the evaluated
value of const-exprl or const-expr2, then control branches to stmti or stmt2, respectively.
If there is no match, then control branches to stmt3, which follows the default label. After
executing the statements associated with the matching case, control falls through to the
next case unless control is explicitly taken out of the switch construct using statements
such as break, goto, return, or exit ().

2.5.2 Loops

while: Most programs require some action to be repeated a number of times, so long as
a particular condition is satisfied. Although it may be possible to include the same code
the required number of times, that would be quite tedious and result in longer programs.
Moreover, this may not be possible in cases where we do not know at programming time
the number of times the action needs to be repeated. High-level languages provide loop
constructs to express such code in a concise manner. The C while loop statement has the
syntax

while (expr)
stmt;

The semantics of this statement is: if expr evaluates to a non-zero value, execute stmt, and
repeat this process until expr evaluates to zero. stmt normally modifies a variable that is
contained in expr so that expr will eventually become false and therefore terminate the loop.

for: Although a while loop is sufficient for implementing any kind of loops, most HLLs
provide a for loop construct to express some loops in a more elegant manner. The C for

2.5. Control Abstraction 67

statement has the syntax

for (initial_expr; expr2; update_expr)
stmt;

The semantics of this for loop can be easily understood when considering its equivalent
while loop, given below:

nitial_expr;

while (expr2)

{
stmt;
update_expr;

}

In this loop, initial_expr is the initializing statement; expr2 calculates the terminating con-
dition; and update_expr implements the update of the loop variables.

2.5.3 Subroutines

The next topic that we like to discuss is the subroutine, procedure, function, or method
concept, an important innovation in the development of programming languages. In a
given program, it is often necessary to perform a specific task on different data values.
Such a repeated task is normally implemented as a subroutine, which can be called from
different places in a program. For example, a subroutine may evaluate the mathematical
sine function or sort a list of values into increasing or decreasing order. At any point in
the program the subroutine may be invoked or called. That is, at that point, the computer
is instructed to suspend the execution of the caller and execute the subroutine. Once the
subroutine’s execution is completed, control returns to the point from where the call was
made.

The two principal reasons for the use of subroutines are economy and modularity. A
subroutine allows the same piece of code to be called from different places in the program.
This is important for economy in programming effort, and for reducing the storage require-
ments of the program. Subroutines also allow large programming tasks to be subdivided into
smaller units. This use of modularity greatly eases the programming task. The following C
code illustrates the use of subroutines in constructing a modular program.

main()
{

float a, b, c, d;

b = bigger(a, b);

68 Chapter 2. Program Development Basics

d = bigger(c, d);

}

bigger(float p, float q)

{

if (p >= q)
return p;
else
return q;

}

In this code, the function bigger () is used to determine which of its two input pa-
rameters (p or q) is bigger. This function is called twice from the function main(). If
the language does not support subroutines/functions, then most of the body of function
bigger () will need to be repeated twice in main().

The subroutine concept thus permits control abstraction; the code fragment within the
subroutine can be referred by the subroutine name at the calling place, where it is thought in
terms of its function rather than its implementation. In structured programming languages,
subroutines (and macros) are the main mechanism for control abstraction.

2.5.3.1 Parameter Passing
2.5.4 Subroutine Nesting and Recursion

If a subroutine calls a subroutine (either itself or another subroutine), then that is called
subroutine nesting. Conceptually, subroutine nesting can be carried out to any depth. The
first subroutine to complete will be the one that was called last, causing control to return
to the one that called it.

If nesting involves calling the same subroutine itself, either directly or through other
subroutines, then we call that recursion. Recursion is an important concept in computer
science, analogous to the concept of induction in mathematics. Mathematical problems that
can be explained by induction invariably have an elegant recursive solution algorithm.

A rose is a rose is a rose

— Gertrude Stein

2.5.5 Re-entrant Subroutine

In a multitasked environment, many programs (or processes) can be simultaneously active
in a computer system. Many of the concurrently active processes may share a few routines,
especially those belonging to libraries and the OS. Consider the scenario where a context

2.6. Library API 69

switch happens when a process is in the middle of the execution of a subroutine. Before
the control is restored to this process, it is quite possible for another process to execute
the same subroutine. In order for a subroutine to be executed by another process in this
manner, the subroutine must be re-entrant, i.e., it must not update global variables.

2.5.6 Program Modules

We can let a subroutine to call subroutines that are physically present in other modules.
The caller and callee subroutines may be written by different programmers, at different
times! This calls for defining and using specific interfaces for each subroutine that is likely
to be called from other modules.

2.5.7 Software Interfaces: API and ABI

Application programs do not directly implement all of the functionality required. Instead,
they frequently invoke the services of library routines and OS routines.

2.5.7.1 Application Binary Interface (ABI)

An application binary interface (ABI) specifies the machine language interface provided by
an execution environment, which is usually a hardware platform along with the operating
system running on it (e.g., Linux ABI for the ARM Architecture). Thus, the ABI refers to
the specifications to which an executable should conform in order to execute in a specific
execution environment. The ABI includes the user mode instruction set architecture (the
memory address space, the number, sizes and reserved uses of registers, and the instruction
set), the ISA-level system call interface supported by the operating system (including the
system call numbers and how an application should make system calls to the operating
system), and the binary format of executable files. ABIs also cover other details of system
calls, such as the calling convention, which tells how functions’ arguments are passed and
return values retrieved. ABIs deal with run-time compatibility; a program binary targeted
to an ABI can run (without relinking or recompilation) on any system that supports the
same ABI. Application binary interfaces are also known as Abstract Machine Interface.

2.6 Library API

A practical extension of the above modularization concept is the use of library modules. A
library is a group of commonly used subroutines or functions bundled into a single module.
The basic libraries contain routines that read and write data, allocate and deallocate mem-
ory, and perform complex operations such as square root calculation and sorting. Other
libraries contain routines to access a database or manipulate terminal windows. Apart from

70 Chapter 2. Program Development Basics

language-dependent library such as the C stdio which provides IO routines, we also have
language-independent but OS-dependent libraries such as the Solaris thread library which
provides support functions for multithreading, and language- and platform-independent li-
braries such as the MPI (which supports the message-passing model of parallel processing)
and the OpenGL (which supports advanced graphics functions).

2.7 Operating System API

A hardware system, augmented by an operating system, cannot do much unless application
programs are loaded in it. Application programs are what the end users run when
In modern computers, application programs never run in a “vacuum” either. They rely
heavily on support from pre-written software such as library routines and the operating
system. When the application program wants to carry out a functionality that has already
been implemented in a library routine or in the OS, it simply invokes the functionality and
does not directly code the functionality.

An application programming interface (API) specifies a language and message format
used by an application program to communicate with a systems program (library, OS) that
provides services to it. Three commonly used OS APIs are the POSIX API for UNIX,
Linux, and MAC OS X systems; the Win32 API for Windows systems; and the Java API
for the Java virtual machine. It is the interface by which an application gains access to
operating systems.

The application program interface (API) defines the calls that can be made from an
application to the operating system. Notice that adherence to an API does not ensure
runtime compatibility.

An API specifies a set of calling conventions that defines how a service is invoked through
a software package. The calls, subroutines, interrupts, and returns that comprise a doc-
umented interface so that a higher-level program such as an application can make use of
the services of another application, operating system, network operating system, driver, or
other lower-level software program.

In the software field, APIs are structured abstraction layers that conceal the gory details
of an individual application, operating system or hardware item and the world outside that
software or hardware.

All programs using a common API will have similar interfaces. This makes it easier to
port programs across multiple systems and for users to learn new programs.

An application program interface or application programming interface (API) is the
specific method prescribed by a computer operating system or by an application program
by which a programmer writing an application program can make requests of the operating
system or another application.

We just saw the use of library routines in supporting 10 streams and files. The library

2.7. Operating System API 71

routines do not directly access the IO devices, however. As we saw in Section 1.2.2, access to
and control of many of the hardware resources are regulated through the operating system.
This is because the low-level details of the system’s operation are often of no interest to
the computation at hand, and it is better to free the application programmer and the
library developer from dealing with the low-level details. The problem is further aggravated
because the program must be able to deal with a multitude of different IO interfaces, not
only for different device types but also for different models within the same class of devices.
It would not be practical to require each programmer to know the operational details of
every device that will be accessed by a program. Moreover, the number and type of devices
may change in course of time. It is important that such changes remain transparent to
application programs.

To satisfy the preceding requirements of device independence, the operating system pro-
vides an abstract interface to the application programmer. This interface, called application
programming interface (API) of the OS, presents a greatly simplified view of the hardware
resources of the computing environment. The OS’ API is simply a set of commands that
can be issued by the application program to the operating system. If the OS performs these
jobs, it simplifies the job of the application programmer, who need not get involved with
the details of hardware devices. Further, when an application program uses the API, it is
shielded from changes in the computer hardware as new computers are developed. To be
specific, the operating system and its device drivers can be changed to support new com-
puter hardware while preserving the API unchanged and allowing application programs to
run unchanged on the new computer. The API provided by the OS is formally defined by
a set of human readable function call definitions, including call and return parameters.

Application Programs ‘

‘ Library Routines ‘

APl mm o e e e e oo __j=—SystemCalls— A ___________.

System Call Interface ‘

|

Operating System Routines

Figure 2.1: Illustration of API

Applications programs written with a particular API in mind can be run only on systems
that implement the same APIL. The APIs defined by most operating systems are very similar,
and differ only in some minor aspects. This makes it easy to port application programs
developed for one OS to another. Examples of APIs are the Portable Operating System

72 Chapter 2. Program Development Basics

Interface (POSIX) and the Win32 API. The POSIX standard is based on early UNIX
systems and is widely used in UNIX-based operating systems such as FreeBSD and Linux.
Many non-UNIX systems also support POSIX. The Win32 API is the one implemented in
a Microsoft Windows environment. It supports many more functions (about 2000) than
POSIX, as it includes functions dealing with the desktop window system also.

2.7.1 What Should be Done by the OS?

e Simple vs Complex Function
e Specific vs Generic Function

e Security

The commands supported by an OS’ API can be classified into 3 classes:

e Input/Output management
e Memory management

e Process management

2.7.2 Input/Output Management

The most commonly used part of the OS’ API is the part that deals with input/output.
The basic abstraction provided for application programmers and library programmers to
perform input and output operations is called a file. The file abstraction supported by the
API is more basic than the one supported by library routines in that it is simply a sequence
of bytes (with no formatting) in an IO device. This definition of the file as a stream
of bytes imposes little structure on a file; any further structure is up to the application
programs, which may interpret the byte stream as they wish. The interpretation has no
bearing on how the OS stores the data. Thus, the syntax for accessing the data in a file is
defined by the API, and is identical for all application programs, but the semantics of the
data are imposed by the application program. For instance, the text formatting program
LaTeX expects to find “new-line” characters at the end of each line of text, and the system
accounting program acctcom expects to find fixed-length records in the file. Both programs
use the same API commands to access the data in the file as a byte stream, and internally,
they parse the stream into the appropriate format.

The file abstraction provided by the API is also device-independent like the one pro-
vided by the standard library. That is, it hides all device-specific aspects of file manipulation
from HLL application and library programmers, and provides instead an abstraction of a
simple, uniform space of named files.

2.7. Operating System API 73

2.7.2.1 Example

For illustration, let us consider the UNIX API. In this API, all input and output operations
are done by reading or writing files, because all IO devices—including the user program’s
terminal—are considered as files. This means that a single, homogeneous interface handles
all communication between a program and peripheral devices.

The lowest level of 10 in the UNIX API provides no buffering or any other services. All
input and output operations are done by two API functions called read and write, which
specify a file descriptor and the number of bytes to be transferred. The second argument
is a buffer in the application program’s memory space where the data is to come from or
go to. The third argument is the number of bytes to be transferred. The calls are done as
follows:

numbytes read = read(fd, buf, numbytes);
numbytes written = write(fd, buf, numbytes);

Each of these system calls returns a byte count indicating the number of bytes actually
transferred. When reading, the number of bytes returned may be less than the number

asked for. A return value of zero indicates end of file, and a —1 indicates an error?.

2.7.2.2 A Trace of a System Call

When an application program executes a read() system call to read data from a file, a
set of OS functions are called, which may eventually result in calling an appropriate device
driver. Figure 2.2 illustrates a situation in which an application program calls the OS twice
for reading from standard input. During the first time, it calls the scanf () library function,
which calls the read () system call defined in the API. During the second time, it directly
calls the read() system call. In both cases, the read() routine calls the keybd read ()
device driver to perform the actual read operation.

If a different keyboard is used in the future, only the keyboard device drivers need to be
changed; the application program, the library routines, and the device-independent part of
the OS require no change.

2.7.3 Memory Management

High-level languages that support pointers naturally allow dynamic allocation (and deal-
location) of memory. Applications programmers typically do allocation and deallocation
using library functions such as malloc() and free(), as we already saw in Section 2.1.
The malloc(n) function, for instance, returns a pointer to an unused block of n bytes.

3More details of read and write system calls can be obtained in a UNIX/Linux system by typing man 2
read and man 2 write, respectively.

74 Chapter 2. Program Development Basics

Library AP
Interface
mai n() ' |scanf ()
{ / {
scanf (); 3 read();
: read() ' [keybd_read()
{ R
keybd_read(); 3
} \')
read();
}
Application Program Library Routines OS Kernel Device Drivers

(Device-Independent IO) (Device-Dependent 10)

Figure 2.2: A Trace of Routines Executed when Calling API Function read ()

obtains large chunks of memory address space from the OS using the sbrk() system call
provided by the API, and manages them. The system call sbrk(b) returns a pointer to b
more bytes of memory.

2.7.4 Process Management

process creation
context switch

process control block

2.8 Operating System Organization

In modern computers, the operating system is the only software component that runs in the
Kernel mode. It behooves us therefore to consider the structure and implementation of an
operating system. In particular, it is important to see how the system calls specified in the
application programming interface (API) (provided to user programs and library functions)

2.8. Operating System Organization 75

are implemented by operating systems?. The exact internal details of an operating system
vary considerably from one system to another. It is beyond the scope of this book to discuss
different possibilities. Figure 4.7 gives a possible block diagram, which is somewhat similar
to that of a standard UNIX kernel. In the figure, the kernel mode software blocks are
shown shaded. The main components of the OS software include a system call interface,
file system, process control system, and the device management system (device drivers).
This organization uses a layered approach, which makes it easier to develop the OS and to
introduce modifications at a later time. This also makes it easier to debug the OS code,
because the effect of bugs may be restricted to a single layer. The figure also shows the
relationship of the OS to user programs, library routines, and the hardware.

HCI
Application Programs and Shell
L1 1
I
Ugefr Mode ‘ Dynamically Linked Libraries ‘ |
oftware |«—System Calls\.‘ T | |
I I
" 7] |
| |
OS Interface 0))
I I
[[] .
‘ System Call Layer }- i |
I I
| i i | |
i Y I) i P !
Device- | File System P !
Independent: Y Process Control System : :User Mode !
i i lInstructions Q
H r e 'Og:magtememN e Inter—process —— Memory ; 3 3 <
Kernel Mode lock— aracter— | Network— o cheduler S
Software : Oriented | | Oriented | | Oriented | [+ o) MBS i 3 3 w
1 L ! g
N £
i Os Kernel . I B
T I I o
i I I I g
Device- Device Drivers | | | w
Dependent ! ! !
o . » I I
| | I I
| L | |
ISA i Kernel Made i . "User Mode
v v v L] v
) 10 Registers —) Privileged Registers and Memory |User Mode Registers and Memory
Device Controllers N -
10 Control Logic |———— Control Unit, ALU, and Memory Controllers
Device Interrupts

Hardware

|0 Devices —— > Program Control Transfers Initiated by Software

» Program Control Transfers Initiated by Hardware

77777777 - Hardware Accessed/Controlled

{—————> Hardware Buses

Hardware Connections

Figure 2.3: Block Diagram Showing How a UNIX-like Kernel Implements the API

4Operating systems typically play two roles—controlling the environment provided to the end user and
controlling the environment provided to application programs. The former involves tasks such as maintaining
a file structure and supporting a graphical user interface. The latter involves taks such as reading a specified
number of bytes from a file on behalf of an application program. In this book, we are concerned only with
the latter role, as it is closer to computer architecture.

device-

76 Chapter 2. Program Development Basics

2.8.1 System Call Interface

The system call interface provides one or more entry points for servicing system call instruc-
tions and exceptions, and in some cases device interrupts also. The system call interface
code copies the arguments of the system call and saves the user process’ context. It then
uses the system call type to look up a system call dispatch vector to determine the ker-
nel function to be called to implement that particular system call, interrupt, or exception.
When this kernel function completes, the system call interface restores the user process’
context, and switches to User Mode, transferring control back to the user process. It also
sends the return values and error status to the user program.

We can summarize the functions performed by the system call interface:

e Determine type of syscall

e Save process context

Call appropriate hander

Restore process context

Return to user program

2.8.2 File System

The API provided to application programs by the operating system, as we saw earlier, in-
cludes device-independent I10. That is, the interface is the same, irrespective of the physical
device that is involved in the IO operation. The file abstraction part of the API is sup-
posed to hide all device-specific aspects of file manipulation from application programmers,
and provide them with an abstraction of a simple, uniform space of named files. Thus,
application programmers can rely on a single set of file-manipulation OS routines for file
management (and IO device management in an indirect manner). This is sometimes referred

independent as device-independent 10.

10

As we saw in Section 3.4.7, application programs access 10 (i.e., files) through read and
write system call instructions. The read and write system call instructions (of the User
mode) are implemented in the Kernel mode by the file system part of the OS, possibly with
the help of appropriate device drivers.

Files of a computer installation may be stored on a number of physical devices, such as
disk drives, CD-ROM drives, and magnetic tapes, each of which can store many files. If the
10 device is a storage device, such as a disk, the file can be read back later; if the device is
a non-storage device such as a printer or monitor, the file cannot be read back. Different
files may store different kinds of data, for example, a picture, a spreadsheet, or the text of
a book chapter. As far as the OS is concerned, a file is simply a sequence of bytes written
to an IO device.

2.8. Operating System Organization 77

The OS partitions each file into blocks of fixed size. Each block in a file has an address
that uniquely tells where within the physical device the block is located. Data is moved
between main memory and secondary storage in units of a single block, so as to take
advantage of the physical characteristics of storage devices such as magnetic disks and
optical disks.

File management related system calls invoked by application programs are interpreted
by the file system part of the OS, and transformed into device-specific commands. The
process of implementing the open system call thus involves locating the file on disk, and
bringing into main memory all of the information necessary to access it. The OS also
reserves for the file a buffer space in its memory space, of size equal to that of a block.
When an application program invokes a system call to write some bytes to a file, the file
system part of the OS writes the bytes in the buffer allotted for the file. When the buffer
becomes full, the file system copies it into a block in a storage device (by invoking the
device’s device driver); this block becomes the next block of the file. When the application
process invokes the close system call for closing a file, the file system writes the file’s buffer
as the final block of the file, irrespective of whether the buffer is full or not, prior to closing
the file. Closing a file involves freeing up the table space used to hold information about
the file, and reclaiming the buffer space allotted for the file.

2.8.3 Device Management: Device Drivers

The device management part of the OS is implemented as a collection of device drivers.
Most computers have input/output devices such as terminals and printers, and storage
devices such as disks. Each of these devices requires specific device driver software, which
acts as an interface between the device controller and the file system part of the OS kernel.
A device driver is needed because each device has its own specific commands instead of
generic commands. A printer device driver, for instance, contains all the software that is
specific to a prticular type of printer such as a Postscript printer. Thus, the device drivers
form the device-dependent part of the 10 software. By partitioning the kernel mode software
into device-independent and device-dependent components, the task of adding a new device
to the computer is greatly simplified.

The device drivers form a major portion of the kernel mode software. Each device driver
itself is a collection of routines, and can have multiple entry points. The device driver
receives generic commands from the OS file system and converts them into the specialized
commands for the device, and vice versa. To the maximum extent possible the driver
software hides the unique characteristics of a device from the OS file system.

Device drivers can be fairly complex. Many parameters may need to be set prior to
starting a device controller, and many status bits may need to be checked after the comple-
tion of each device operation. Many device drivers such as the keyboard driver are supplied
as part of the pre-installed system software. Device drivers for other devices need to be
installed as and when these devices are installed.

78 Chapter 2. Program Development Basics

The routines in a device driver can be grouped into three kinds, based on functionality:

Autoconfiguration and initialization routines

IO initiation routines

IO continuation routines (interrupt service routinestem Autoconfiguration and initial-
ization routines

IO initiation routines

IO continuation routines (interrupt service routines)

The autoconfiguration routines are called at system reboot time, to check if the corre-
sponding device controller is present, and to perform the required initialization. The IO
initiation routines are called by the OS file system or process control system in response to
system call requests from application programs. These routines check the device status, and
initiate IO requests by sending commands to the device controller. If program-controlled
10 transfer is used for the device, then the IO initiation routines perform the 10 transfers
also. By contrast, if interrupt-driven IO transfer is used for the device, then the actual 10
transfer is done by the interrupt service routines when the device becomes ready and issues
an interrupt.

2.8.4 Hardware Abstraction Layer (HAL)

The hardware abstraction layer provides a slightly abstract view of the hardware to the
OS kernel and the device drivers. By hiding the hardware details, it provides a consistent
hardware platform for the OS. This makes it easy to port an OS across a family of hardware
platforms that have the same user mode ISA, but differ in the kernel mode ISA (such as
different MMU architectures).

2.8.5 Process Control System
2.8.5.1 Multi-Tasking

When a computer system supports multi-tasking, each process sees a separate virtual ma-
chine, although the concurrent processes are sharing the same physical resources. Therefore,
some means must be provided to separate the virtual machines from each other at the phys-
ical level. The physical resources that are typically shared by the virtual machines are the
processor (including the registers, ALU, etc), the physical memory, and the IO interfaces.
Of these, the processor and the IO interfaces are typically time-shared between the pro-
cesses (temporal separation), and the physical memory is partitioned between the processes

2.8. Operating System Organization 79

(spatial separation)®. To perform a context switch of the virtual machines, the time-shared
resources must be switched from one virtual machine to the next. This switching must be
managed in such a way that the virtual machines do not interact through any state infor-
mation that may be present in the physically shared resources. For example, the ISA-visible
registers must be saved and restored during a context switch so that the new context cannot
access the old context’s register state.

Decisions regarding time-sharing and space-sharing are taken in the Kernel mode by the
operating system, which is responsible for allocating the physical resources to the virtual
machines. If a user process is allowed to make this decision, then it could possibly encroach
into another process’ resources, and tamper with its execution. The operating system’s
decisions, however, need to be enforced when the system is in the User mode. This enforce-
ment is done using special hardware (microarchitectural) support so that the enforcement
activity does not reduce performance.

2.8.5.2 Multi-Programming

Some applications can be most conveniently programmed for two or more cooperating pro-
cesses running in parallel rather than for a single process. In order for several processes to
work together in parallel, certain new Kernel mode instructions are needed. Most modern
operating systems allow processes to be created and terminated dynamically. To take full
advantage of this feature to achieve parallel processing, a system call to create a new pro-
cess is needed. This system call may just make a clone of the caller, or it may allow the
creating process to specify the initial state of the new process, including its program, data,
and starting address. In some cases, the creating (parent) process maintains partial or even
complete control over the created (child) processes. To this end, Kernel mode instructions
are added for a parent to stop, restart, examine, and terminate its children.

5Time-sharing the entire physical memory is not feasible, because it necessitates saving the physical
memory contents during each context switch.

80 Chapter 2. Program Development Basics

2.9 Major Issues in Program Development

2.9.1 Portability
2.9.2 Reusability

2.9.3 Concurrency

2.10 Concluding Remarks

2.11 Exercises

Chapter 3

Assembly-Level Architecture —
User Mode

He who scorns instruction will pay for it, but he who respects a command is rewarded.

Proverbs 13: 13

This is the first of several chapters that address core issues in computer architecture.
The previous chapter discussed high-level architectures. This chapter is concerned with the
immediately lower-level architecture that is present in essentially all modern computers: the
assembly-level architecture. This architecture deals with the way programs are executed
in a computer from the assembly language programmer’s viewpoint. We describe ways in
which sequences of instructions are executed to implement high-level language statements.
We also discuss commonly used techniques for addressing memory locations and registers.
A proper understanding of these concepts is an essential part of the study of computer
architecture, organization, and design. We introduce new concepts in machine-independent
terms to emphasize that they apply to all computers.

The vast majority of today’s programs are written in a high-level language such as C,
FORTRAN, C++, and Java. Before the introduction of high-level languages, early pro-
grammers and computer architects were using languages of a different type, called assembly
languages. The main purpose of discussing assembly-level architectures in this book is
to provide an adequate link to instruction set architectures and microarchitectures, which
provide a closer view on how computers are built and how they operate. To execute any
high-level program, it must first be translated into a lower level program (most often by a
compiler and occasionally by assembly language programmers). Knowledge of the assembly-
level architecture is a must, both for compiler writers and for assembly language program-
mers. The relationship between high-level, assembly, and machine language features is a key

81

82 Chapter 3. Assembly-Level Architecture — User Mode

consideration in computer architecture. Much of the discussion in this chapter is applicable
to both the assembly-level architecture and the instruction set architecture, as the former
is a symbolic representation of the latter.

The objective of this chapter on assembly-level architecture is not to make you proficient
in assembly language programming, but rather to help you understand what this virtual
machine does, and how high-level language programs are converted to assembly language
programs. We include a number of code fragments that are short and useful for clarification.
These code fragments are meant to be conceptual, rather than to be cut and pasted into
your application programs. If you like to write intricate assembly language programs, it is
better to follow up this material with a good book on assembly language programming.

3.1 Overview of User Mode Assembly-Level Architecture

We shall first present an overview of the basic traits of an assembly language machine. You
will notice that these basic traits closely resemble those of the generic computer organization
described in Section 1.2. An assembly language machine is designed to support a variety of
high-level languages, and is not tailored to a particular high-level language. Thus, programs
written in different high-level languages can be translated to the same assembly language.

It is also interesting to note that many of the popular assembly-level architectures are
quite similar to each other, just like the case of many popular high-level architectures.
Therefore once you master one, it is easy to learn others. This similarity occurs because
any given assembly-level architecture closely follows an instruction set architecture (ISA),
and ISA design is driven by hardware technology and application requirements. Different
ISAs have many things in common, because they target similar application domain, and
are interpreted by hardware machines built using similar hardware technologies.

“Real programmers can write assembly code in any language. :-)”
— Larry Wall (the Perl guy)

“All people smile in the same language.”
— Author Unknown

As mentioned in Section 1.8, an architecture specifies what data can be named by a
program written for that architecture, what operations can be performed on the named
data, and what ordering exists among the operations. When writing an assembly language
program, the locations that can be named are the (virtual) memory address space, and
the registers. The value returned by a read to an address is the last value written to that
address. In most languages, sequential order is implied among the instructions. That is,
instructions are to be executed one after the other, in the order in which they are specified
in the program.

3.1. Overview of User Mode Assembly-Level Architecture 83

3.1.1 Assembly Language Alphabet and Syntax

The programmer must tell the computer, through the statements/instructions in the pro-
gramming language used, everything that the computer must do. We shall look at the
different facets of an assembly language.

3.1.1.1 Alphabet

High-level languages, as we saw in Chapter 2, are somewhat close to natural languages,
and are substantially removed from the underlying hardware levels. An assembly language
also uses symbols and words from natural languages such as English, but is closer to the
underlying hardware!. Formally speaking, an assembly language consists of a set of symbolic
names and a set of rules for their use. The symbolic names are called mnemonics (which
mean “aid to memory” in the Greek language).

3.1.1.2 Syntax

The syntax of a language is the set of rules for putting together different tokens to produce
a sequence of valid statements or instrucions. In the case of assembly languages, this deals
with the rules of using the mnemonics in the specification of complete instructions and
assembly language programs. The syntax followed by assembly languages is quite different
from that followed by high-level languages. Instructions are generally specified in a single
line by an opcode mnemonic followed by zero or more operand mnemonics. The opcode field
may be preceded by a label, and the instruction may be followed by a comment, which starts
with a character such as “” or “#”. Most of the assembly languages require the label to
start in the first column of the line, and instructions to start only from the second column
or later. You might wonder why the syntax of an assembly language is so restrictive. The
reason is to simplify the assembler, which was traditionally written in assembly language to
occupy very little space in memory. Apart from instructions, an assembly language program
also contains assembler directives, which separate data values from instructions and specify
information regarding data values.

3.1.2 Memory Model

An assembly-level architecture defines a memory model consisting of a large number of
locations, each of which is a fixed-size group of storage cells. Each cell can store a single bit

1Specifically, an assembly language is a symbolic representation of the machine language—which uses
only bit patterns (1s and 0s) to specify information. It uses a richer set of symbols (including the English
alphabet) instead of bits, and gives symbolic names to commonly occurring bit patterns, such as opcodes
and register specifiers, which make it easier for humans to read and comprehend them. For example,
in assembly language, we use instructions such as add $at, $v0, $vl in place of bit patterns such as
000000000010001000011000000000000.

84 Chapter 3. Assembly-Level Architecture — User Mode

of information—a 0 or a 1. Most assembly languages consider a location to store 8 bits, or
a byte. Because a single bit represents a very small amount of information, bits are seldom
handled individually; the usual approach is to read or write one or more locations at a time.
Most assembly languages provide instructions for manipulating data items of different sizes,
such as 8 bits, 16 bits, 32 bits, and 64 bits.

For the purpose of reading or writing memory locations, each memory location is given a
unique address. The collection of all memory locations is often called the memory address
space. Although assembly languages have provision to deal with numerical addresses, it is
customary to use labels to refer to memory locations. As labels can be constructed using
alphabetical letters (in addition to numerical digits if required), they are easier for the
programmer to keep track of.

The instructions and data of an assembly language program are strongly tied to the
memory address space. Each instruction or data item is viewed as occupying one location
(or a contiguous set of locations) in the memory address space. Although the assembly
language programmer can assign instructions and data items to memory locations in a
random manner, for functional reasons it is better to organize the locations into a few
sections, much like how the maitre d’hotel organizes a restaurant dining area into smoking
and non-smoking sections. Each section holds a chunk of code or data that logically belongs
together. Some of the sections commonly used by assembly language programs are text
(code), data, heap, and stack, as illustrated in Figure 3.1.

Memory Address Space

Addresses
0x00000000

Text

Data

.

Direction of growth
at run—-time

T
/
|

Stack

Figure 3.1: Organizing the Memory Address Space as Multiple Sections

3.1. Overview of User Mode Assembly-Level Architecture 85

The text section, as its name implies, is used to allocate instructions, and is read-
only from the application program’s point of view. The operating system can still write
to that section, and uses this ability when loading an application program into memory.
Another point to note is that in machines that allow self-modifying code, the text section
is read-write.

The data section is generally used to store data items that are required throughout the
activation of the program. Such items include, for instance, statically allocated global data
items and dynamically allocated data items. This section is allowed to grow at run-time as
and when allocating new data items dynamically.

The stack section is generally used to store data items that are required only during
the activation of a subroutine; such items include local variables and parameters to be
passed to other subroutines. The stack section is therefore empty at programming time. At
program run-time, it starts empty, and then grows and shrinks as subroutines are called and
exited. Every time a subroutine is called, the stack section grows by an amount called stack
frame or activation record. The stack frame thus constitutes a private work space for the
subroutine, created at the time the subroutine is called and freed up when the subroutine
returns. Historically, most machines assume the stack frames to grow in the direction of
decreasing memory addresses, although a few machines assume the opposite.

3.1.3 Register Model

Most assembly-level architectures include a few registers to store information that needs
to be accessed frequently. In the lower-level hardware implementations, these registers are
implemented in a manner that permits faster access to them compared to accessing the
main memory. This is because of the following reasons, which stem from having only a few
registers:

e In a microarchitecture, the decoder or selector used to select a register will be much
smaller than the one used to select a memory location.

e In a microarchitecture, the registers are typically implemented inside the processor
chip, and so no off-chip access is required to access a register.

e In a device-level architecture, the technology used to implement registers (flip-flops
or SRAMs) is faster than the one used to implement memories (DRAMSs), which are
typically designed for achieving high density.

Apart from these access time advantages, there is yet another advantage at the lower level:
a register can be specified with just a few bits in a machine language. This is much less than
the 32 or 64 bits required to specify a memory location. For example, in an instruction
set architecture that specifies 32 registers, only log,32 = 5 bits are needed to specify a
register. Notice that all of these advantages of registers would be lost, if too many registers
are specified.

86 Chapter 3. Assembly-Level Architecture — User Mode

Registers are used for a variety of applications, and generally have names that denote
their function. Below, we give the names of commonly used registers and a brief description
of their function. Notice that not all machines may have every one of these registers.

e Program Counter (PC): This register is specified in virtually every machine, and is
used to store the address of the memory location that contains the next instruction
to be executed.

e Accumulator (ACC): Many of the early machines specified a special register called the
accumulator to store the result of all arithmetic and logical operations.

e Stack Pointer (SP): This register is used to store the address of the topmost location
of the stack section of the memory.

e Link Register: This register is used to store the return address when calling a sub-
routine.

e General-Purpose Registers (GPRs): Modern architectures invariably specify a number
of GPRs to store key local variables and the intermediate results of computation.
Examples are the AX, BX, CX, and DX registers in the [A-32 architecture, and registers $0
through $31 in the MIPS-I architecture. Most architectures specify separate registers
for holding integer numbers and floating-point numbers. On some architectures, the
GPRs are completely symmetric and interchangeable. That is, to hold a temporary
result, the compiler can equally use any of the GPRs; the choice of register does not
matter. On other architectures some of the GPRs may have some special functions
too. For example, in the [A-32 architecture, there is a register called EDX, which can
be used as a GPR, but which also receives half the product in a multiplication and
half the dividend in a division. Similarly, in the MIPS-I architecture, register $31
is a GPR, but is used to store the return address when executing a subroutine call
instruction.

e Flags Register: If specified, this register stores various miscellaneous bits of informa-
tion (called flags or condition codes), which reflect different properties of the result
of the most recent arithmetic or logical operation, and are likely to be needed by
subsequent instructions. Typical condition code bits include:

N — set if the previous result was negative
Z — set if the previous result was zero
V — set if the previous result caused an overflow?

20verflow occurs in a computer because of using a fixed number of bits to represent numbers. When
the result of an arithmetic operation cannot be represented by the fixed number of bits allotted for the
result, then an overflow occurs. The overflow event can be handled in 3 ways: (i) the semantics of the
instruction that generated the overflow may include specifications on how the overflow is treated. (ii) the
overflow triggers an exception event, transferring control to the operating system, which then handles the
exception event. (iii) the V flag is set to 1 so as to permit subsequent instructions of the application program
to monitor the V flag and take appropriate action.

3.1. Overview of User Mode Assembly-Level Architecture 87

C — set if the previous result caused a carry out of the most significant bit (MSB)

A — set if the previous result caused a carry out of bit 3 (auxiliary carry)

P — set when the previous result had even parity.

Flags are set implicitly by certain arithmetic and logical instructions. For example,
after a compare instruction is executed, the Z flag is used to indicate if the two num-
bers are equal, and the N flag is used to indicate if the second number is bigger than
the first number. A subsequent instruction can test the value of these flags, and take
appropriate action. Similarly, the C flag is useful in performing multiple-precision
arithmetic. The required multiple-precision addition is done in several steps, with
each step doing a single-precision addition. The C flag generated in one step serves
as a carry input for the next step. The A flag is useful for performing arithmetic
operations on packed decimal numbers.

3.1.4 Data Types

In Chapter 2 we saw that declaring and manipulating variables were key concepts in high-
level languages; each variable has a type associated with it. By contrast, the assembly-
level architecture does not have a notion of variables! Instead, the assembly language
programmer considers the contents of a register, a memory location, or a contiguous set of
memory locations as a data item, and manipulates the contents of these storage locations
using instructions.

When a compiler translates an HLL program into an assembly language program, it
maps HLL variables to memory locations in the assembly-level architecture. The number of
memory locations allocated depends on the variable’s type. The memory section or region
in which locations are allocated depends on the variable’s storage class.

Assembly-level architectures support a variety of data types, such as characters, signed
integers, unsigned integers, and floating-point numbers. Support for a particular data type
comes primarily in the form of instruction opcodes that interpret a bit pattern as per
the definitions of that data type. For example, an assembly language may provide two
different ADD instructions—add and fadd—one that interprets bit patterns as integers, and
one that interprets them as floating-point numbers. Remember that in an assembly-level
architecture, the data in a particular storage location is not self-identifying. That is, the
bits at that storage location do not specify a data type, and therefore have no inherent
meaning. The meaning is determined by how an instruction uses them. It is up to the
assembly language programmer (or compiler) to use the appropriate opcodes to interpret
the bit patterns correctly. Thus, it is the job of the assembly language programmer (or
the compiler) to ensure that bit patterns representing integer variables are added together
using an integer ADD instruction.

To illustrate this further, we shall use an example. Figure 3.2 shows how two different
ADD instructions can produce two different results when adding the same two bit patterns
01010110 and 00010100. In the first case, an integer add instruction treats the two patterns

88 Chapter 3. Assembly-Level Architecture — User Mode

as (binary encoded) integers 86 and 20, and obtains the result pattern 01101010, which has
a decimal value 106 when interpreted as an integer. In the second case, a BCD? add instruc-
tion treats the two patterns as (BCD encoded) numbers 56 and 14, and obtains a different
result pattern of 01110000, which represents the decimal number 70 when interpreted as a
BCD number.

Binary Number System Binary Coded Decimal System
(Unsigned Integers) (BCD Integers)
1
A
01010110 (86) 01010110 (56)
+ 00010100 (20) + 00010100 (14)
01101010 (106) 01110000 (70)
Decimal Decimal

Figure 3.2: An Example Illustrating how the same two Bit Patterns can be added differently
to yield Different Results

Below, we highlight the data types that are typically supported in assembly-level archi-
tectures.

e Unsigned Integer and Signed Integer: Integers are among the most basic data
types, and all machines support them. Some machines provide support for unsigned
integers as well as signed integers. This support comes primarily in the way of in-
structions that have a different semantic for recognizing arithmetic overflows.

¢ Floating-Point Number: Most machines support floating-point data type by in-

cluding specific instructions for performing floating-point arithmetic. Many machines

also have separate registers for holding integer values and floating-point values. As

mentioned in Chapter 2, an FP number is written on paper as follows:
(Sign)Significand x Basefzponent
The base in the above equation is the radix of the system, which is a constant for a
particular assembly-level architecture, and is usually chosen as 2. The significand is
used to identify the significant digits of the FP number; the number of bits allotted
for the significand determines the precision.

e Decimal Number: Some HLLs, notably COBOL, allow decimal numbers as a data
type. Assembly-level architectures that were designed to be COBOL-friendly often
directly support decimal numbers, typically by encoding a decimal digit in 4 bits
and then packing two decimal digits per byte (BCD format). However, instead of

3A BCD number is a binary coded decimal number. The BCD format is explained later in this section.

3.1. Overview of User Mode Assembly-Level Architecture 89

providing arithmetic opcodes that work correctly on these packed decimal numbers,
they typically provide special decimal-arithmetic-correction opcodes that can be used
after an integer addition to obtain the correct BCD answer! These opcodes use the
carry out of bit 3, which is available in the A (auxiliary carry) flag.

e Character: Most assembly-level architectures support non-numeric data types such
as characters. It is not uncommon for an assembly-level architecture to have special
opcodes that are intended for handling character strings, that is, consecutive runs
of characters. These opcodes can perform copy, search, edit, and other functions on
strings.

If an architecture does not support a particular data type, and an arithmetic operation
needs to be performed for that data type, the assembly language programmer (or compiler)
may have to synthesize that operation using the available instructions. For example, if an
architecture does not support the floating-point data type, and there is a need to add two
bit patterns as if they are stored in the floating-point format, then the programmer needs
to write a routine that separates the exponents and significands, equalizes the exponents by
modifying the significands, and then performs the addition and re-normalization operations.
Similarly, if the architecture does not support the BCD (binary coded decimal) data type,
and if BCD arithmetic needs to be performed on a bit pattern, then the assembly language
programmer (or compiler) needs to synthesize that arithmetic operation using sequences of
existing instructions.

3.1.5 Assembler Directives

An assembly language program instructs the assembly-level machine two things: (i) how to
initialize its storage locations (registers and memory), and (ii) how to manipulate the values
in its storage locations. The first part is conveyed by means of statements called assembler
directives, and the second part is conveyed by means of assembly-level instructions. (Apart
from directives that are used to initialize storage locations, there are some other directives
that are executed by the assembler and are not assembled. There are also some directives
that serve as programming tools, to simplify the process of writing the program.) We shall
discuss directives in this section. Instructions will be discussed in the next section.

Without initialization, the values in registers and memory locations would be undefined.
The bulk of the initialization done by the directives involves the memory space and those
registers that point to different sections in the memory space, such as the program counter,
the global pointer, and the stack pointer. Specifically, they indicate which static sections
the program will use (.text, .rdata, .data, etc*), how big these sections are, where their
boundaries are, and what goes into the different data sections.

4Dynamic sections such as heap and stack are created during execution, and are therefore not specified
by directives.

90 Chapter 3. Assembly-Level Architecture — User Mode

For example, to place the subsequent statements of the program in the .data section of
memory, we can use a directive such as:
.data
And, to initialize the next 4 bytes to 58, we can use a directive such as:
.word 58

When an assembly language program is translated to machine language, the directives
are translated to form the machine language program’s header, section headers, and various
data sections. A directive therefore does not translate to machine language instructions. At
the execution time of a machine language program, the initialization task is performed by
the loader part of the OS, which reads the program’s header, section headers, and sections
to do so.

3.1.6 Instruction Types and Instruction Set

Apart from assembler directives, an assembly language program includes assembly-level
instructions also. In fact, the instructions form the crux of the program; a program without
instructions would only be initializing the registers and memory! As mentioned before,
instructions manipulate the values present in registers and memory locations. For example,
to copy the contents of memory location A to register $t0, we can use an instruction such
as:
lw $t0, A
Here, the mnemonic 1w is an abbreviation for load word. Similarly, to add the contents of
registers $t1 and $t2 and to place the result in register $t3, we can use an instruction such
as:
add $t3, $t1, $t2

A typical program involves performing a number of functionally different steps, such
as adding two numbers, testing for a particular condition, reading a character from the
keyboard, or sending a character to be displayed on a video screen. Each assembly-level
architecture has its own set of instructions, called its instruction set. In practice, many
of the instruction sets are quite similar. The instructions in an instruction set can be
functionally classified into four categories:

e Data transfer

e Data manipulation

e Program sequencing and control
e Trap or syscall

Data Transfer: Data transfer instructions copy data from one storage location to an-
other, without changing the data stored in the source location. Typical transfers of data

3.1. Overview of User Mode Assembly-Level Architecture 91

are between registers and main memory locations; between registers and stack locations; or
or between registers themselves. Variables declared in a high-level language are generally
allocated locations in main memory (some are allocated in general-purpose registers), and
so most of the data reside initially in main memory. From the main memory, data is often
copied to general-purpose registers or the stack, prior to operating on them. Data transfer
instructions are quite useful in this endeavor. Some of the commonly used data transfer
instructions in different assembly languages and their semantics are given in Table 3.1.

Mnemonic || Semantics |

MoV Copy data from one register/memory location to another
LOAD Copy data from a memory location to a register

STORE Copy data from a register to a memory location

PUSH Copy data from a register/memory location to top of stack
POP Copy data from top of stack to a register/memory location
XCH Exchange the contents of two register/memory locations

Table 3.1: Common Data Transfer Instructions in Different Assembly Languages

Data Manipulation: Data manipulation instructions perform a variety of operations
on data and modify them. These are instrumental for implementing the operators and
assignments of HLL programs. There are three types of data manipulation instructions:
arithmetic, logical, and shift. Some of the commonly used data manipulation instructions
in different assembly languages and their semantics are given in Table 3.2. The input
operands for these instructions are specified as part of the instruction, or are available in
storage locations such as memory locations, registers, or stack. The result of the instruction
is also stored in a storage location. Recently, many assembly languages have included
instructions that are geared for speeding up multimedia applications.

Program Sequencing and Control: Normally, the instructions of a program are exe-
cuted one after the other, in a straightline manner. Control-changing instructions are used
to deviate from this straightline sequencing. A conditional branch instruction is an instruc-
tion that causes a control flow deviation, if and only if a specific condition is satisfied. If
the condition is not satisfied, instruction sequencing proceeds in the normal way, and the
next instruction in sequential address order is fetched and executed. The condition can
be the value stored in a condition code flag, or the result of a comparison. Conditional
branch instructions are useful for implementing if statements and loops. Besides condi-
tional branches, instruction sets also generally provide unconditional branch instructions.
When an unconditional branch is encountered, the sequencing is changed irrespective of any
condition. Finally, assembly languages also include call instructions. and return instructions

92 Chapter 3. Assembly-Level Architecture — User Mode

Mnemonic || Semantics |

ADD Add two operand values and store the result value
SUB Subtract one operand value from another and store the result value
MULT Multiply two operand values and store the result value
DIV Divide an operand value by another and store the quotient
remainder values
INC Increment an operand value and store the result value
in the same location
DEC Decrement an operand value and store the result value
in the same location
ABS Find the absolute value of the operand value and store the result
AND And two operand values and store the result value
OR Or two operand values and store the result value
X0R Exor two operand values and store the result value
LSHIFT Left shift one operand value by another and store the result value
RSHIFT Right shift one operand value by another and store the result value
LROT Left rotate one operand value by another and store the result value
RROT Right rotate one operand value by another and store the result value

Table 3.2: Common Data Manipulation Instructions in Different Assembly Languages

to implement subroutine calls and returns. Some of the commonly used program control
and sequencing instructions in different assembly languages and their semantics are given
in Table 3.3. The first group of instructions in the table are conditional branch instructions;
the second group are unconditional branches, and the third group deal with subroutine calls
and returns.

Trap or Syscall Instructions: The instructions we saw so far cannot do IO operations
or terminate a program. For performing such operations, an application program needs
to call the services of the operating system (OS). Trap or syscall instructions are used
to transfer control to the OS, in order for the OS to perform some task on behalf of the
application program. That is, this instruction is used to invoke an OS service. Once the OS
completes the requested service, it can return control back to the interrupted application
program by executing an appropriate Kernel mode instruction. If a single trap instruction
is provided for specifying different types of services, then the required service is specified as
an operand of the instruction.

3.1. Overview of User Mode Assembly-Level Architecture

| Mnemonic || Semantics
JZ Jump if Z flag is set
JNZ Jump if Z flag is not set
JC Jump if C flag is set
JNC Jump if C flag is not set
BEQ Branch if both operand values are equal
BNE Branch if both operand values are not equal
BLT Branch if one operand value is less than the other
JMP Jump unconditionally
B Branch unconditionally
JR Jump to address in specified register
CALL Call specified subroutine
JAL Jump and link to specified subroutine
RETURN Return from subroutine

93

Table 3.3: Some of the Common Program Sequencing and Control Instructions in Different

Assembly Languages

3.1.7 Program Execution

Consider a simple assembly language program to add the contents of memory locations 1000
and 1004, and store the result in memory location 1008.

.text

__start: lw $t0, 1000
1w $t1, 1004
add $t1, $t1, $tO
swW $t1, 1008
sys_halt

The programmer’s view is that when this program is being executed, it is present in the
computer’s main memory. The first line in the program, namely .text, is a directive
indicating that the program be placed in the .text section of main memory. This line
is called an assembler directive, and is not part of the executed program. The next line,
which contains the first instruction, begins with the label __start. This label indicates the
memory address of the first instruction. Figure 3.3 shows how this small program might be
loaded in the .text section of the memory space, when it is about to be executed. The five
instructions of the program have been placed in successive memory locations, in the same
order as that in the program, starting at location __start. Notice that the label __start
does not explicitly appear in the program stored in memory, nor does the directive .text
in the first line. The comment portions of the statements also do not appear in memory.

94 Chapter 3. Assembly-Level Architecture — User Mode

Main Memory
Address

0

__start [Iw $t0, 1000
lw $t1, 1004
add $t1, st1, stg | - text
pc | __start){sw $t1, 1008 section
Address sys_hal t

$t0
$t1
52 1000
3 1004
$t4 1008 .data
$t5 section
M-1
Data

Figure 3.3: A Possible Placement of the Sample Program in Memory

Let us consider how this program is executed. To begin executing the program, the
address of its first instruction (P) is placed into pc. This instruction is executed and the
contents of pc are advanced to point to the next instruction. Then the second instruction
is executed, and the process is continued until the computer encounters and executes the
sys_halt instruction. The last instruction transfers control to the OS, and tells it to
terminate this program. As you can see, instructions are executed in the order of increasing
addresses in memory. This type of sequencing is called straight-line sequencing.

3.1.8 Challenges of Assembly Language Programming

Because an assembly language is less abstract than a high-level language, programming in
assembly is considerably more difficult than programming in a high-level language. The
lack of abstraction manifests itself in different ways:

e First, the storage resources are more concrete at the assembly level, which has the
notion of registers and memory locations, as opposed to variables. The programmer
must manage the registers and memory locations at every step of the way. In machines
with condition codes, the programmer must keep track of the status of condition codes
and know what instructions affect them before executing any conditional branches.
This sounds tedious, if not difficult.

3.1. Overview of User Mode Assembly-Level Architecture 95

e Another important difference is that the data items in an assembly language program
are not typed, meaning they are not inherently specified as belonging to a particular
type such as integer or floating-point number. Assembly languages provide different
instructions for manipulating a data item as an integer or another data type. Thus,
it is the responsibility of the programmer to use the appropriate instructions when
manipulating data items. Even then, the number of data types supported in an
assembly-level architecture is fewer than that in the high-level architecture; only a
few simple data types such as integers, floating-point numbers, and characters are
supported. Thus, all of the complex data types and structures supported at the
HLL level must be implemented by the assembly language programmer using simple
primitives.

e In assembly language programs, most of the control flow changes must be imple-
mented with branch instructions whose semantics are similar to those of the “go to”
statements used in HLLs.

e The amount of work specified by an assembly language instruction is generally smaller
than that specified by an HLL statement®. This means that several assembly language
instructions are usually needed to implement the equivalent of a typical HLL state-
ment.

e Assembly language programs take much longer to debug, and are much harder to
maintain.

e Finally, it is difficult for assembly language novices, particularly those with high-level
language experience, to think at a low enough level.

All of these factors make it difficult to program in assembly language. Apart from these
difficulties, there is a practical consideration: an assembly language program is inherently
tied to a specific instruction set, and must be completely rewritten to run on a machine
having a different instruction set. Because of these reasons, most of the programming done
today is in a high-level language.

3.1.9 The Rationale for Assembly Language Programming

Under the above circumstances, why would anyone want to program in assembly language
today? There are at least two reasons:

1. Speed and code size

2. Access to the hardware

XT]W

SExceptions to this general case are the vector instructions and the MM instructions.

96 Chapter 3. Assembly-Level Architecture — User Mode

First of all, an expert assembly language programmer can often produce code that is much
smaller and much faster than the code obtained by compiling an equivalent HLL program.
For some applications, speed and code size are critical. Many embedded applications, such
as the code in a smart card, the code in a cellular telephone, the code in an anti-lock brake
control, device drivers, and the inner loops of performance-critical applications fall in this
category. Second, some functions need complete access to the hardware features, something
usually impossible to specify in high-level languages. Some hardware features have no ana-
logues in high-level languages. The low-level interrupt and trap handlers in an operating
system, and the device drivers in many embedded real-time systems fall into this category.
Similarly, an assembly language programmer may be able to make better use of special in-
structions, such as string copy instructions, pattern-matching instructions, and multimedia
instructions such as the MMX”Minstructions. Many of these special instructions do not
have a direct equivalent in high-level languages, thereby forcing the HLL programmer to
use loops. Compilers, in most cases, cannot determine that such a loop can be replaced by
a single instruction, whereas the assembly language programmer can easily determine this.

3.2 Assembly-Level Interfaces

The assembly-level architecture attributes that we saw so far pertain to the assembly lan-
guage specification part of the architecture. In many contexts, by assembly-level archi-
tecture, we just mean this assembly language specification. For serious programming in
assembly, we need to enhance the architecture by the following two additional parts:

e assembly-level interface provided by libraries

e assembly-level interface provided by the OS

Assembly Language
Programmer

7

Assembly Language Assembly-Level Assembly-Level
Specification Interface Interface
(User Mode) (Library) (0S)

Figure 3.4: Three Different Parts of Assembly-Level Architecture

3.3. Example Assembly-Level Architecture: MIPS-1 97

3.2.1 Assembly-Level Interface Provided by Library

3.2.2 Assembly-Level Interface Provided by OS

3.3 Example Assembly-Level Architecture: MIPS-I

We shall next take a more detailed look at assembly-level architectures. It is easier to do
so using an example architecture. The example architecture that we use is the well-known
MIPS-I assembly-level architecture [ref]. We use the MIPS-I architecture because it is one
of the simplest architectures that has had good commercial success, both in the general-
purpose computing world and in the embedded systems world. The MIPS instruction set
architecture had its beginnings in 1984, and was first implemented in 1985. By the late
1980s, this architecture had been adopted by several workstation and server companies,
including Digital Equipment Corporation and Silicon Graphics. Today MIPS processors are
widely used in Sony and Nintendo game machines, palmtops, laser printers, Cisco routers,
and SGI high-performance graphics engines. Although it is not popular anymore in the
desktop computing world, the availability of sophisticated MIPS-I simulators such as SPIM
makes it possible for us to develop MIPS-I assembly language programs and simulate their
execution. All of these features makes MIPS-I an excellent architecture for use in Computer
Architecture courses. Below, we look at some of the important aspects of the MIPS-I
architecture; interested readers may refer to [refs] for a more detailed treatment.

3.3.1 Assembly Language Alphabet and Syntax

The MIPS-I assembly language format is line oriented; the end of a line delimits an in-
struction. Each line can consist of up to four fields, as shown in Figure 3.5: a label field,
an opcode field, an operand field, and a comment field. The language is free format in the
sense that any field can begin in any column, but the relative left-to-right ordering of the
fields must be maintained. For the sake of clarity, we will align the fields in each of our
code snippets.

Destination Source
Label Opcode Operand Operands Comment

o AN

abell: add $t3, $tl, $t2 # add contents of $tl and $t2, and put result in $t3

abel2: -word 20 # call next loc as label2, initialize 4—byte word to 20

T

Assembler Directive

Figure 3.5: Format of a MIPS-I Assembly Language Statement

98 Chapter 3. Assembly-Level Architecture — User Mode

A label is a symbolic name used to identify a memory location that is explicitly referred
to in the assembly language program. A label consists of any sequence of alphanumerical
characters, underscores (), dollar signs ($), or periods (.), as long as the first character is
not a digit. A label must be followed by a colon. Labels are particularly useful for speci-
fying the target of a control-changing instruction and for specifying the memory location
corresponding to a variable.

After the optional label field, the next field specifies an opcode or an assembler directive.
An opcode specifies the operation to be done by the instruction.

The operand field in an assembly language statement specifies the destination operand
and source operand(s) of the instruction. Operands are separated by commas, and the
destination operand (if present) appears in the leftmost position in the operand field, except
for store instructions. For instance, in the assembly language instruction “add $t3, $ti1,
$t2,” the source operands are registers $t1 and $t2, and the destination operand is register
$t3. Numbers are interpreted as decimal, unless preceded by 0x or succeeded by H, either
of which denotes a hexadecimal number. Multiple instructions can be written in a single
line, separated by semicolons.

The comment field, which comes last, begins with a sharp sign (#), and terminates at
the end of the line. Thus, all text from a # to the end of the line is a comment®. Just
as in high-level languages, the comments are only intended for human comprehension, and
are ignored by the assembler. A good comment helps explain a non-intuitive aspect of one
or more instructions. By providing additional insight, such a comment provides important
information to a future programmer who wants to modify the program.

3.3.2 Register Model

The MIPS-T assembly-level architecture models 32 general-purpose 32-bit integer registers
named $0 - $31, 32 general-purpose 32-bit floating-point registers named f0 - £31, and
three special integer registers named pc, hi, and lo. Two of the general-purpose integer
registers ($0 and $31) are also somewhat special. Register $0 always contains the value
0, and can never be changed. If an instruction specifies $0 as the destination register, the
register contents will not change when the instruction is executed. Register $31 can be used
as a general-purpose register, but it has an additional use as a link register for storing a
subroutine return address, as we will see in Section 3.4.6.

The floating-point arithmetic instructions use the FP registers as the source as well
as the destination. However, they can specify only the 16 even-numbered FP registers,
$£0, $£2, $£4,, $£30. When specifying an even-numbered FP register, if the operand
is a double-precision FP number, the remaining 32 bits of the number are present in the
subsequent odd-numbered FP register. For instance, when $£0 is specified for indicating a

SAlthough a line can contain nothing other than a comment, starting a comment from the very first
column of a line is not a good idea. This is because most assemblers invoke the C preprocessor cpp, which
treat them as preprocessor commands.

3.3. Example Assembly-Level Architecture: MIPS-1 99

31 0
S
R]| —
¥ e M o
o & f0 bl
" e f b
a b fe2 b
5 o 3 1
o b f20 b
7 bop fat s
o ot fa ity
s2 $18 5 $f18
s3 $19 $f19
- e 0 o1
o e o1 o5
o e 2 a5
o bos 3 i
- 325 fos i
o bot 5 21
S E— Fpcond []
o

Figure 3.6: MIPS-I User Mode Register Name Space

double-precision operand, the 64-bit number is present in the register pair {$£0, $f1}.
Explain HI and LO registers

MIPS-1I Assembly Language Conventions for Registers

The MIPS-I assembly language follows some conventions regarding the usage of registers.
These conventions are not part of the assembly-level architecture specifications. This means
that if you write stand-alone assembly language programs that do not adhere to these
conventions, they are still guaranteed to be assembled and executed correctly. However,
if you do not adhere to these conventions, you cannot use the standard libraries and the
standard operating system, because they have been already compiled with the MIPS-I
compiler, which follows these conventions. Some of the important conventions are given
below:

100

Chapter 3. Assembly-Level Architecture — User Mode

Register $at ($1) is reserved for use by the assembler for computing certain memory
addresses.

Register $sp ($29) is reserved for use as the stack pointer.

The first four integer parameters of a subroutine are passed through registers $a0-$a3
($4-$7). Thus, the subroutines in the standard libraries and operating system have
been developed with the assumption that their first 4 parameters will be present in
these registers. Similarly, the first two floating-point parameters are passed through
FP registers $fa0 and $fal ($£12 and $£14). The remaining parameters are passed
through the stack frame.

The integer return values of a subroutine are passed through registers $v0 and $v1
($2 and $3).

Register $v0 ($2) is used to specify the exact action required from the operating
system (OS) when executing a syscall instruction.

Registers $k0 and $k1 ($26 and $27) are reserved for use by the operating system.

Table 3.4 gives the names by which the MIPS registers are usually known. These names
are based on the conventional uses for the different registers, as explained above.

Register Register .
Nu%nber Ngame Typical Use
$0 $zero Zero constant, destination of nop instruction
$1 $at Assembler temporary; reserved for assembler
$2-$3 $v0-$vi Values returned by subroutines
$4-$7 $a0-$a3 Arguments to be passed to subroutines
$8-$15 $t0-$t7 Temporaries used by subroutines without saving
$16-$23 $s0-$s7 Saved by subroutines prior to use
$24-3$25 $t8-$t9 Temporaries used by subroutines without saving
$26-3$27 $k0-$k1 Kernel uses for interrupt/trap handler
$28 $gp Global pointer
$29 $sp Stack pointer
$30 $s8/$fp | Saved by subroutines, frame pointer
$31 $ra Return address for subroutines
$f0, $£2 fvo-fvi Values returned by subroutines
$£4, $£6, $£8, $£10 f£t0-ft3 Temporaries used by subroutines without saving
$£12, $£14 fa0-fal Arguments to be passed to subroutines
$f16, $£18 ft4-ftb Temporaries used by subroutines without saving
$£20, $£22, $£24, $£26, $£28, $£30 | £s0-fsb Saved by subroutines prior to use

Table 3.4: Conventional Names and Uses of MIPS-I User Mode Registers

3.3. Example Assembly-Level Architecture: MIPS-1 101

3.3.3 Memory Model

The MIPS-I assembly-level architecture models a linear memory address space (i.e., a flat
address space) of 23! memory locations that are accessible to user programs. These locations
have addresses ranging from 0 to 0x7f£fffff, as indicated in Figure 3.7. Each address refers
to a byte, and so a total of 2 Gbytes of memory can be addressed. Although each address
refers to a single byte, MIPS-I provides instructions that simultaneously access one, two,
three, or four contiguous bytes in memory. The most common access size is 4 bytes, which
is equal to the width of the registers. Although a location can be specified by its address,
the common form of specification in assembly language is by a label or by an index register
along with an offset. In the latter case, the memory address is given by the sum of the
register contents and the offset.

Memory Address Space

Addresses
x00000000
Reserved

x00400000

text
x10000000

.data

Heap

-

Direction of growth
at run—time

.
/
[]

Stack

X7TEffffff

Figure 3.7: Organization of MIPS-I User Memory Address Space

MIPS-1I Assembly Language Conventions for Memory

Like the case with registers, there are MIPS-I assembly language conventions for the memory
address space also. Again, these conventions are not part of the assembly-level architecture
specifications. Figure 3.7 indicates the conventional organization of the MIPS-I memory
address space, in terms of where the different sections of the memory start. The conventional
starting points for the . text and .data sections are at addresses 0x400000 and 0x10000000,

102 Chapter 3. Assembly-Level Architecture — User Mode

respectively. The user run-time stack starts at address 0x7fffffff, and grows towards the
lower memory addresses. General-purpose register $sp is generally used as the stack pointer;
stack operands are accessed by specifying an offset value that is to be added to the stack
pointer. Thus, operands that are buried within the stack can also be accessed. Local
variables of a subroutine are allocated on the stack. If a subroutine needs the stack to grow,
for allocating local variables and temporaries, it decrements $sp by the appropriate amount
at the beginning, and increments $sp by the same amount at the end.

3.3.4 Assembler Directives

The MIPS-I assembly-level architecture supports several assembler directives, all of which
are written with a dot as their first character. Below, we describe some of the commonly
used directives.

e .rdata: indicates that the subsequent items are to be stored in the read-only data
section.

e .data: indicates that the subsequent items are to be stored in the .data section.
e .text: indicates that the subsequent items are to be stored in the .text section.

e .comm, .Ilcomm: are used to declare uninitialized, global data items. These direc-
tives are commonly used when the initial value of a variable is not known at program-
ming time. An item declared with the .comm directive can be accessed by all modules
that declare it. (The linker allocates memory locations for such an item in the .bss
or .sbss section.) An item declared with the .lcomm directive is a global variable
that is accessible within a single module. (The assembler allocates memory locations
for such an item in the .bss section or in the .sbss section.)

e .byte, .half, .word: These directives are used to set up data items that are 1, 2,
and 4 bytes, respectively. In contrast to the .comm directive, these directives provide
the ability to initialize the data items. Example declarations using these directives
are given below. The last two declarations correspond to arrays, and are extensions
of the one used for specifying a single item.

b: .byte 5 # Allocate an 1-byte item with initial value 5

at next memory location, and name it b
h: .half 5 # Label next memory location as h;

allocate next 2 bytes for a 2-byte item with initial value 5
Ww: .word 5 # Label next memory location as w;

allocate next 4 bytes for a 4-byte item with initial value 5
ba: .byte 0:5 # Label next memory location as ba;

allocate next 5 bytes to 5 1-byte items with initial value 0
wa: .word 1:2, 4 # Label next memory location as wa;

allocate next 12 bytes to 3 4-byte items with initial values 1, 1, 4

3.3. Example Assembly-Level Architecture: MIPS-1 103

In these directives, if no integer value is specified after .byte, .half, .word, then the
item is initialized to zero.

e .float: is used to specify a 4-byte data item that is initialized to a single-precision
floating-point number.

.ascii and .asciiz: are used to declare ASCII strings, without and with a terminating
null character, respectively. In the following example, both directives define the same
string.

a: .ascii "good\0" # Place string “good” in memory at location a
z: .asciiz"good" # Place string “good” in memory at location z

.space: is used to increment the current section’s location counter by a stipulated number of
bytes. This directive is useful to set aside a specified number of bytes in the current section.

s: .space 40 # Label current section’s location counter as s
and increment it by 40 bytes

.globl: indicates that the subsequent variable name or label is globally accessible,
and can be referenced in other files. For example,

.data # Subsequent items are stored in the data section
.globl g # Label g (in this case, a variable) is global
g: .word O # Declare a 4-byte item named g with initial value 0
.text # Subsequent items are stored in the text section
.globl f # Label £ (in this case, the beginning of a function) is global

f: subu $sp, 24 # Decrement stack pointer register by 24

e .align: is used to specify an alignment. The alignment is specified as a power of 2.

3.3.5 Assembly-Level Instructions

We have already seen some of the instructions and addressing modes of the MIPS-I assembly-
level architecture. The MIPS-I architecture supports the following addressing modes: reg-
ister direct, memory direct, register-relative, immediate, and implicit. Let us now examine
the MIPS-I instruction set in a more comprehensive manner’.

The MIPS-I architecture is a load-store architecture, which means that only load
instructions and store instructions can access main memory. The commonly used 1w (load
word) instruction fetches a 32-bit word from memory. The MIPS-I architecture also provides

"The assembly language examples in this book use only a subset of the MIPS-I assembly-level instruction
set. A complete description of the MIPS-I assembly-level instruction set is available in Appendix *.

104 Chapter 3. Assembly-Level Architecture — User Mode

separate load instructions for loading a single-byte (1b opcode) and a 2-byte half-word (1h
opcode).

As we saw earlier, conventional MIPS assembly language designates a portion of the
memory address space as a stack section. Special stack support such as push and pop
instructions are not provided, however. Locations within the stack section of the memory
space are accessed just like the remaining parts of memory.

Arithmetic and Logical Instructions: MIPS-I provides many instructions for per-
forming arithmetic and logical operations on 32-bit operands. All arithmetic instructions
and logical instructions operate on register values or immediate values. While the register
operands are always 32 bits wide, the immediate operands can be shorter. These instruc-
tions explicitly specify a destination register, and two source operands, of which one is a
register and the other is a register or immediate value.

Control-changing Instructions: The MIPS-I architecture includes several conditional
as well as unconditional branch instructions. The conditional branch instructions base their
decisions on the contents of one or two registers.

System Call Instructions: The MIPS-I architecture provides a syscall instruction for
user programs to request a variety of services from the operating system (OS). The specific
service requested is indicated by a code value stored in register $v0. The list of services
supported and the specific code for each service varies from one OS to another®.

SPIM’s ABI — System Calls Supported by SPIM: The SPIM simulation tool
includes a very simple operating system that supports a small set of system calls. These
system calls are listed in Table 3.5. If you are familiar with the standard calls supported
by different UNIX-style and Windows-style operating systems, you will notice that these
system calls are somewhat different. Apart from the much smaller set of calls supported,
the functionality provided by the SPIM calls is not very primitive and is more at the level
of library routines.

3.3.6 An Example MIPS-I AL Program

We are now familiar with the syntax of the MIPS-I assembly language. Next, we shall put
together some of the concepts we learned by writing a simple MIPS-I assembly language

8The differences in the range of services and system call codes between different OSes imply that if a user
program uses syscall instructions to directly request the OS for services—instead of going through library
functions—then the program may not be portable across different OSes. Thus, a syscall-laden assembly
language program targeted specifically for the SPIM OS will most likely not run correctly on an ULTRIX
OS host machine.

3.3. Example Assembly-Level Architecture: MIPS-1 105

| OS Service | Code in $v0 | Arguments | Return Value |

print_int 1 $a0: integer to be printed

print float 2 $£a0: float to be printed

print_double 3 $£a0: double to be printed

print_string 4 $a0: address of string to be printed

read int 5 $v0: integer read

read float 6 $£v0: float read

read _double 7 $£v0: double read
. $a0: address for placing read string;

read-string 8 $al: number of bytes

sbrk 9 $a0: amount $v0: address

exit 10

Table 3.5: System Calls Supported by SPIM

program. Let us write an assembly language program that prints the familiar “hello,
world\n” string, whose C code and Java code are given below.

Program 4 The Hello World! program in Java.

main() {
// Display the string
printf("hello, world!");

class helloworld {
public static void main(String[] args) {
// Display the string
System.out.println("hello, world!");

For writing the MIPS AL program, we use the ABI (application binary interface) sup-
ported by SPIM. This will help motivated students to ‘execute’ this program using any of
the {spim, xspim, PCSpim} tool set. Omne point to note when using these tools to ‘execute’
assembly language programs is that prior to execution, the tools assemble the program into
the equivalent machine language program. Thus, the tools directly simulate the execution
of machine language instructions, and not the assembly language instructions. The mem-

106 Chapter 3. Assembly-Level Architecture — User Mode

ory map displayed by these tools therefore indicates machine language instructions, and not
assembly language instructions.

B B S R B E i B B
data section
HHFHFHHFHF R R R R R R

.data # Store subsequent items in the .data section
stringl: # Label next location as stringl
.asciiz "hello, world\n" # Allocate subsequent bytes and store string ”hello, world\n”

HHH S
text section
HHHHEH R R

.text # Store subsequent items in the .text section
.globl __start #

__start: # Program execution begins here
la $a0, stringl # Place the memory address labeled stringl in $a0
1i $vo, 4 # Place code for print_string system call in $v0
syscall # Call OS to print the string
1i $v0, 10 # Place code for exit system call in $vO0
syscall # Call OS to terminate the program

This MIPS-I AL program contains only 2 sections: .data and .text. The .data section
has a single declaration—that of the “hello, world\n” string, which is declared using the
.asciiz directive, and given the label stringl. The string therefore starts at label stringl.

The .text directive tells the assembler to place the subsequent items in the .text
section. The __start label indicates that execution of the program should begin at that
point. Although we have placed the __start label just before the very first instruction in
this program, this is not a rule; the __start label can be placed anywhere within the .text
section. In order to print the string, we have to use the services of the operating system
via a syscall instruction. In this example code, we have used the syscall convention
followed by SPIM, a simulator for the MIPS-I architecture. The address of the string (i.e.,
label stringl) is placed in register $a0, and the code for the print_string system call in
SPIM (which is 4) is placed in register $v0, prior to the syscall instruction. Notice that
this program will not run on a standard MIPS host, because standard OSes use a different
ABI. The standard ABI does not support the print string system call, and instead uses
the code 4 for the write system call.

Finally, after printing “hello, world\n”, the program should terminate. It does so, via
another syscall instruction, after placing in register $v0 the value 10, which is the code
for the exit system call in SPIM. (The standard ABI defines a code value of 1 for the exit
system call, in contrast to the value of 10 used by SPIM’s ABI.)

3.4. Translating HLL Programs to AL Programs 107

3.3.7 SPIM: A Simulator for the MIPS-I Architecture

Let us elaborate on the SPIM simulator, as it is a very useful tool for learning MIPS-I
assembly language programming. This simulator was developed by Prof. James Larus at
University of Wisconsin-Madison, and is available to the public from an ftp site at that
University. The simulator comes in 3 different flavors: spim, xspim, and PCSpim. Among
these, spim is the most basic one, providing a terminal-style interface on Unix/Linux hosts,
and a DOS interface or console interface on Windows hosts. The xspim and PCSpim tools
are fancier and provide graphical user interfaces (GUI). xspim runs on Unix/Linux hosts
and provides an X window interface, whereas PCSpim runs on Windows hosts and provides
a Windows interface.

To execute the above program with xspim in a Unix/Linux host, type the command:
xspim -notrap &. The -notrap option tells SPIM not to add its own start-up code, and
to begin execution at the __start label. An xspim window pops up, as shown in Figure 3.8.
You can use the load button in this window to read and assemble your MIPS-I assembly
language program. If any errors are generated during assembly, they are indicated in the
bottom portion of the xspim window. After fixing the bugs in the AL program file, you can
reload the program file into xspim by first clearing the memory and register contents—using
the memory & registers option in the clear button—and then using the load button to
reload the program.

If SPIM has successfully assembled your program, then you can use the run or step
buttons in the xspim window to execute your program. In this case, a console window
will be automatically opened to display hello world. xspim provides many other useful
features such as breakpoints and a debugger, which make it even more attractive than a
real MIPS host for developing MIPS-I assembly language programs. You are encouraged to
consult the SPIM manual for learning and using these features.

3.4 Translating HLL Programs to AL Programs

We just saw the rudiments of writing a complete program in MIPS-I assembly language, and
‘executing’ it on the SPIM simulator. We shall next take a look at how a high-level language
program is translated to assembly language. After all, most of today’s programming is done
in a high-level language. We shall revisit direct programming in assembly language when
we discuss device drivers and exception handlers in the next chapter.

The translation of a program from a high-level language to the assembly language is
typically done by a program called a compiler. A detailed treatment of the algorithms
used by a compiler is beyond the scope of this book; therefore we restrict our discussion
to a sketch of the important ideas. For illustrating the translation process, we again use
the MIPS-I assembly language. We illustrate the utility of various instruction types with
practical examples of translation from C language to MIPS-I assembly language.

108 Chapter 3. Assembly-Level Architecture — User Mode

BadVAddr= 000000

I 2c 00400000 EPC 0o

n0ooogona Cause = 00000000

Status = 00000000 HI 0ooooooo L0 00000000
General Registers

RO {c0j = 00000000 R8 (t0) = DOOOODODOD R16 (s0) = 00000000 RE4 (£8) = O00OO00O0
Rl ({at} = 00000000 RY (tl) = 0OOOOOOO R1T (=1} = 0O0O0OO0 RE2S (t9) = 00000000
R2 (v0j = 00000000 RIO (t2) = 0OD0OODOOD R18 (s2) = 00000000 REZ6 (kO) = 0O0OO0OO
R3 (vl) = 00000000 R11 (t2) = 0QO0ODODOD R19 (s3) = 00000000 R2T (k1) = 000000ODD
R4 (aly = 00000000 R1Z (td) = OOOOOOOOD R20 (sd) = 00000000 RES (gp) = 10008000
RS ({al; = 00000000 R13 (t5) = 00000000 RE1 (s5) = 00000000 REY (sp) = Tfffeffc
RE (aZ) = 00000000 EI14 (te) = 00000000 R2Z (s6) = 00000000 R30 (s8) = 00000000
E7 (ad; = 00000000 RIS {tT) = 0000OD0OD RE23 (sV) = 00000000 R3IL (ra) = 00000000

Dowble Floating Point Registers
FPO =10 FEE =10 FP16 = 0 FP24 = 0
FPZ =10 FP10 = 0 FP18 = 0 FP26 = 0
Fpd =10 FP1Z = 1 FE2O = 0 Fp2g = 0
FPE =0 FPld = 0 FP2Z = D FP30 = 0

Single Floating Point Registers
FpO =10 Fpa =10 FBPle = 0 Fp24 = 0

B
| guit | | load | | reload | | run | | step | | clear |
[setvawe || print | [breakpoints | [hew || temiral || mode |
u—

Text Segments

1 00 7
[O0x00400004] 0z27250004 addiuw 35, 520, 4 5 103 addiu $al, $=p, 4
[0x00400008] Ox24a60004 addiu 36, &5, 4 ; 104: addiu $aZ, $al, 4
[O0x0040000c] O=00041080 =11 82, &4, 2 5 105: 511 $w0, $ab, 2
[0x00400010] 0x00c23021 addo &6, 36, $2 ; 106: addu $aZ, $a2, &wl
[0x00400014] Ox0c000000 jal 0x00000000 [main] ; 107: jal main
[O0x00400018] 0x3402000a ori £2, #0, 10 ;108 L1 g 10
[Ox0040001c] O=x0000000c syscall 5 109: syscall
EERNEL
-

Data Segmenis

DATE
[Ox100000007. .. [0=10020000] 000000000
STACK
[DxTEEfeffc] 0=00000000
FERNEL DATA
[0x90000000] 0=20204578 0x63657074 Ox696f6e20 Ox00206£63
[0x90000010] 0=e3757272 Oxe5642061 Oxbeb42069 Ox6T6eEfT2

SPIM Version 6.1 of Jarmary 16, 1993

Copyright 1990-1997 by James R. Larus (larusBcs wisc. edu).
&11 Rights Reserwved.

See the file README for a full copyright notice.

Loaded: Jfafs/glue.wmd. edussoftware/spim/6. 1/lib/trap. handler

Figure 3.8: A Sample xspim Window

3.4.1 Translating Constant Declarations

Constants are objects whose values do not change during program execution. Translating a
constant declaration typically involves assigning memory location(s) for the constant. The
number of locations required for a constant depends on its size. The memory location(s)
will hold the constant’s value (a pattern of Os and 1s) during the execution of the program.
Notice that in machines that support only aligned words, integers and floating-point con-

3.4. Translating HLL Programs to AL Programs 109

stants need to start on a word boundary. The standard practice is to allocate them in the
.rdata section of memory.

#define const 32000

Sample Constant Declaration

One way of translating this HLL constant declaration to assembly language is given
below. In this translation, we have used a label to specify a memory address that will store
the value of the constant. For clarity, we have named this label with the same name as
the HLL constant name. The .rdata directive tells that the subsequent items need to be
placed in the .rdata (read-only data) section”. The HLL constant const is allocated space
in memory with the .word directive, which allocates 4 bytes. Subsequent instructions that
use this constant value will read it from memory.

Assign memory locations for the constants and initialize them
.rdata # Subsequent items are stored in the .rdata section
const:word 32000 # Label next memory location as const;
allocate next 4 bytes for constant const

It is important to note here that a compiler may not always translate constants in this
manner. Small constants are often not often allocated to memory locations or registers.
Instead, the compiler explicitly specifies the value of the constant in instructions that use
that constant. Consider the following code snippet.

#define small 2
main()

{
var i, j;
i = small;
j = small * small;

Declaration and Uses of a Small Constant

This code can be re-written as follows:

main()

var i, j;
i=2;
j=2x2;

9Certain run-time tables are also allocated in the same section of memory as the constants. Such an
example is available in page 122, where we discuss jump tables for translating switch statements.

110 Chapter 3. Assembly-Level Architecture — User Mode

Substituting Occurrences of a Small Constant by its Value

References to small constants can often be directly specified in an instruction itself as
immediate operands. This is discussed in Section 3.7.1.

Floating-Point Constants: Floating-point constants take up many bits even if the value
they represent is small. In modern architectures, the minimum number of bits required to
represent a floating-point number is 32 bits. Therefore, floating-point constants are seldom
explicitly specified within instructions as immediate values. Instead, they are allocated to
memory locations just like what is done for large integer constants. Consider, for example,
the following C program:

#include <stdlib.h>
#include <stdio.h >
int main(int argc, char **argv, char **envp)
{
static int j;
static double i = 1.0;
static double a[8] = {0,1,2,3,4,5,6,7};

3.4.2 Translating Variable Declarations

High-level language programs typically have a number of variable declarations, both global
and local. Global variables are visible throughout the program, whereas local variables are
visible only when the block in which they are declared are active. Translation of a vari-
able declaration typically involves assigning memory location(s) for the variable; optimizing
compilers may allocate some variables to registers in order to speed up the program’s exe-
cution. The number of locations required for a variable depends on its type. The memory
location(s) or register(s) will hold the variable’s value (a pattern of 0s and 1s) during the
execution of the program. Notice that in machines that support only aligned words, integers
and floating-point numbers need to start on a word boundary.

3.4. Translating HLL Programs to AL Programs 111

Variables declared in a high-level language are generally allocated locations in one of
three sections in memory: the .data section, the run-time stack section, and the heap
section. Variables that persist across function invocations, such as global variables and
static variables, are allocated memory locations in the .data section. Variables that do not
persist across function invocations, such as local variables, are generally allocated locations
in the stack section. Dynamic variables created at execution time and accessed through
pointers are allocated memory locations in the heap section.

3.4.2.1 Global Variables

Consider the following global variable declarations in C.

int i = 0;

int a = 12;

struct {
char name[6];
int length;

} record;

float £ = 0.5;
char *cptr;

Sample Global Variable Declarations

One way of translating these HLL variable declarations to assembly language is given
below. Again, we use labels to specify memory addresses that correspond to variables. For
clarity, in our examples, the label assigned to the memory location corresponding to an
HLL variable generally has the same name as the HLL variable name. The .data directive
tells that the subsequent items need to be placed in the .data section. We have allocated a
contiguous space in memory for HLL variables i, a, record, £, and cptr. Variables i and
a require four bytes each, and are allocated memory using the .word directive. The struct
variable record has 2 fields: name and length. The field name, an array of six characters,
requires one byte per character. The field record.length is an integer, and therefore starts
at the next word boundary. Thus, a total of 12 bytes are allocated for the HLL variable
record. The HLL variable £ of type float is allocated with the .float directive, and
occupies 4 bytes in memory. Finally, the HLL pointer variable cptr is allocated space
in memory with the .word directive. Notice that in an assembly language program, the
memory location assigned to an HLL variable does not identify the data type. Here, the
same directive is used, for instance, for allocating integers as well as pointers.

Assign memory locations for the global variables and initialize them
.data # Subsequent items are stored in the .data section
i: .word O # Label next memory location as i;
allocate next 4 bytes for int variable i

112 Chapter 3. Assembly-Level Architecture — User Mode

a: .word 12 # Label next memory location as a;
allocate next 4 bytes for int variable a

record: # Label next memory location as record
.byte 0:6 # Allocate next 6 bytes for record.name
.word O # Allocate next 4 bytes for record.length
f: .float 0.5 # Label next memory location as f;

allocate next 4 bytes for float variable £

cptr: .word NULL # Label next memory location as cptr;
allocate next 4 bytes for pointer variable cptr

For the HLL variables, we have allocated memory locations in sequential order in the
.data section, but the exact addresses are not specified. When this program is translated
to machine language by the assembler, specific addresses will be assigned. You can verify
this by loading the above code in SPIM, and looking at the DATA display of the xspim
window. Figure 3.9 gives one such memory allocation assuming these data items to start at
location 0x10010000. The assembler has allocated a contiguous space in memory for all of
the items declared in the .data portion of the assembly code given above. Thus, variables
i and a, which require four bytes each, are mapped to locations 0x10010000-0x10010003
and 0x10010004-0x10010007, respectively. The locations corresponding to struct variable
record begin at address 0x10010008, with the first 6 locations corresponding to the 6
characters in record.name. Because of the automatic alignment of the .word directive on
a word boundary, the memory locations corresponding to record.length start at the next
word boundary, 0x10010010. Locations 0x1001000e and 0x1001000f are therefore unused.
Had we placed the .align O directive after the .data directive in the above code, then
record.length would have been mapped to locations 0x1001000e-0x10010011. However,
all accesses to record.length then become complicated, as we will see later.

In the above assignment in a machine language, all of the initialized variables (i, a, and
f) and the uninitialized variables (record and cptr) were allocated together in the same
section of memory. When a machine language program is shipped, the .text section as well
as the initialized .data section need to be shipped. The assembly language programmer
can help to reduce the size of the shipped program by allocating uninitialized data items
using the .comm or .lcomm directives instead of the .word directive. The assembler and
linker would then allocate memory locations for such data items in a separate data section,
called .bss. This uninitialized data section need not be included in the shipped program.
Notice that the .comm directive is not supported by SPIM; so, you cannot try this with
SPIM.

3.4. Translating HLL Programs to AL Programs 113

AL Sections AL Labels Memory Address Space HLL Variables

i 0 i
a: 12 a
record: 0 0 0 0
.data 0 0 0 0 hame record
0 | ength
f: 0.5 f
cptr: NULI cptr

Figure 3.9: A Memory Map View of the Assembly Language Program Snippet Implementing
Global Variables

3.4.2.2 Local Variables

Next let us turn our attention to local variables (or automatic variables), which are defined
inside a subroutine, and are active only when the subroutine is active. Two tpes of allocation
are possible for local variables: static allocation and global allocation.

Static Allocation: In this type of allocation, the local variables are assigned memory
locations in the .data section, just like the globals. This avoids the overhead of creation
and destruction of a work space for every subroutine instance. However, this is possible
only if the subroutine is non-recursive and non-reentrant, such as in Fortran 77 (an earlier
version of Fortran). In these languages only one instance of a given subroutine can be active
at a time.

Dynamic Allocation: Although we can assign them memory locations along with the
globals, such an approach has some drawbacks:

e The local variables of all subroutines will be occupying memory space throughout the
entire execution of the program, irrespective of whether they are active or not.

e More importantly, if a subroutine is recursive, then multiple instances of a local vari-
able defined in that subroutine will map to the same memory location. The newer

114 Chapter 3. Assembly-Level Architecture — User Mode

instances of the subroutine may therefore overwrite the values stored by the earlier,
but still active, instances of the subroutine.

In the ensuing discussion, we only consider dynamic allocation. Conceptually, the local
variables of a subroutine instance should be “created” only when the subroutine instance
comes into existence, and should be “destroyed” when the instance finishes. To do this, the
allocation of these variables should happen at run-time as opposed to during translation.
Thus, when a subroutine calls another, a new set of local variables are created for the callee,
although the caller’s local variables are still active. The first subroutine to complete will
be the one that is called last, and the local variables to be destroyed first are the ones that
were created last in the nested call sequence. That is, the local variables are created and
destroyed in a last-in first-out (LIFO) order. This suggests that the local variables could
be allocated at run-time in a stack-like structure; the LIFO nature of stack-like structures
fits naturally with the LIFO nature of subroutine calls and returns.

A natural place to allocate the local variables, then, is in the stack section discussed
in Section 3.1.2. A convenient way of doing this allocation is to designate for each active
subroutine a contiguous set of locations in the stack section called a stack frame or
activation record. The stack frame constitutes a private work space for the subroutine,
created when entering the subroutine and freed up when returning from the subroutine. If
the subroutine requires more space for its local variables, it can obtain the space it needs
by raising the top of stack.

We shall illustrate the use of stack frames using an example code. Consider the following
C code. We have included only the main() function for simplicity. This function declares
two local variables, x and y.

int i = 0;
int a = 12;
main()
int x = b;
int y;

Example Global Variable and Local Variable Declarations

One way of translating these variable declarations to assembly language is given below. A
stack frame of 12 bytes is created for the main subroutine by the subu $sp, 12 instruction,
which forms the subroutine prologue code. The local variables x and y are allocated 4 bytes

3.4. Translating HLL Programs to AL Programs 115

each in the stack section. Unlike the global variables, the exact addresses assigned to
these local variables are not determined when generating the equivalent machine language
program. These addresses will be determined only at run-time, based on where the stack
frame for main() gets allocated. Figure 3.10 illustrates this memory allocation. Part
(a) of the figure shows the memory map prior to entering main(), and part (b) shows
the same after entering main() and executing the subu $sp, 12 instruction. The newly
created stack frame for main() is deleted prior to leaving main() by executing the addu
$sp, 12 instruction, which forms the subroutine epilogue code. You can load this assembly
language program in xspim and ‘execute’ it to see the allocation of local variables. When
running programs having a main label, it is better to run xspim without the -notrap option,
allowing SPIM to append a start-up code at the beginning of the program. The start-up
code performs some initialization, and then calls the main subroutine.

Assign memory locations for the global variables
Initialize memory locations if necessary

.data # Store subsequent items in the data section
i: .word O # Allocate a 4-byte item with initial value 0
at next memory location, and label it i
a: .word 12 # Allocate a 4-byte item

at next memory location, and label it a

.text
.align 2
.globl main
.ent main # Entry point of subroutine main (optional)
main:
Assign memory locations for the local variables of main()
subu $sp, 12 # Decrement $sp to allocate a 12-byte stack frame
.frame $sp, 12, $ra # Stack frame is accessed with $sp; frame size is 12 bytes;
return address is in $ra

1i $t1, 5

sW $t1, 8($sp) # Initialize local variable x to 5

addu $sp, 12 # Increment $sp to delete the current stack frame
jr $ra # Return from subroutine main

.end main # End point of subroutine main (optional)

3.4.2.3 Dynamic Variables

A global variable is assigned a fixed memory location (or set of neighboring locations) at
compile time, and remains fixed throughout the execution of the program. Such variables
are assigned memory locations within the .data section. A local variable, on the other
hand, begins to exist from the time the corresponding subroutine is called. It is disposed

116

AL Sections AL Labels Memory Address Space HLL Variables

Chapter 3. Assembly-Level Architecture — User Mode

AL Sections AL Labels Memory Address Space HLL Variables

L] L]
L] L]
L] L]
.data [102 .data [102 %;}global variables
L] L]
L] L]
L] L]
Stack frame local variabl
. y variables
for mai n() %x}ofmain()
stack
stack
Register Register
s | sp |

(a) Memory Map Before Entering mai n() (b) Memory Map After Entering mai n()

Figure 3.10: A Memory Map View of the Assembly Language Program Snippet Implement-
ing Local Variables

of when control is passed back to the calling routine. A convenient place to allocate such a
variable is in the stack frame that will be created when the subroutine is called.

Finally, a dynamic variable (pointed to by a pointer) is created during program execution
(by calling a library function such as malloc() or calloc() in C, which returns the memory
address assigned to the variable). Such a variable continues to exist until the allotted
memory locations are explicitly freed (by calling a library routine such as free()). Like
local variables, dynamic variables are also not assigned memory locations at compile time,
and are instead assigned memory locations at run-time as and when they are created. Unlike
local variables, however, the run-time allocation is done not in the stack section, but in the
heap section. This is because these data items need to be active even after the subroutines
in which they were created finish execution.

We shall illustrate the allocation of dynamic variables using an example code. Consider
the following C code. We have included only the main() function for simplicity. This
function declares two local variables, x and y.

int i = 0;

3.4. Translating HLL Programs to AL Programs 117

main()
{

int x, *y;

y = (int *)malloc(8);

Example Global Variable, Local Variable, and Dynamic Variable Declarations

Assign memory locations for the global variables
Initialize memory locations if necessary

.data # Store subsequent items in the data section
i: .word O # Allocate a 4-byte item with initial value 0
at next memory location, and label it i
a: .word 12 # Allocate a 4-byte item

at next memory location, and label it a

.text
.align 2
.globl main
.ent main # Entry point of subroutine main
main:
Assign memory locations for the local variables of main()
subu $sp, 12 # Decrement $sp to allocate a 12-byte stack frame

for storing $ra and for variables x and y
.frame $sp, 12, $ra # Stack frame is accessed with $sp; frame size is 12 bytes
return address is in $ra

sW $ra, 0($sp) # Save register $ra’s contents on stack

1i $a0, 8

jal malloc # Call subroutine malloc to allocate a 4-byte item

swW $v0, 4($sp) +# Update variable y with the address of dynamic variable
1w $ra, 0($sp) # Load register $rawith previously saved value

addu $sp, 12 # Increment $sp to delete the current stack frame

jr $ra

.end main # End point of subroutine main

3.4.2.4 Symbol Table

Keeping track of the mapping between the HLL variables and memory locations can be quite
tedious for an assembly language programmer, but not for the compiler. Most assembly

stack

118

AL Sections AL Labels Memory Address Space HLL Variables

Chapter 3. Assembly-Level Architecture — User Mode

AL Sections AL Labels Memory Address Space HLL Variables

i 0 0 %i '
.data .data lobal variables
[12 12 a)d
heap dynamic variable
. .
Stack frame Stack frame local variabl
. . ocal variables
for mai n() %x for mai n() %i}ofmai nQ)
stack
Register Register
sp | sp |

(a) Memory Map After Entering mai n() (b) Memory Map After Executing mal | oc()

Figure 3.11: A Memory Map View of the Assembly Language Program Snippet Implement-
ing a Dynamic Variable

languages provide the ability to symbolically specify memory locations by labels. Each
symbolic name in the assembly language program is eventually replaced by the appropriate
memory address during the assembly process. The compiler typically keeps track of variable
allocations through a data structure called symbol table. Each entry of the symbol table
corresponds to one variable, and has enough information for the compiler to remember
the memory locations or registers allocated for the variable. As and when the compiler
encounters a variable declaration, it creates a new entry for the variable in the symbol
table. The symbol table information is useful for displaying the addresses of symbols during
debugging or analyzing a program.

3.4.3 Translating Variable References

The compiler (or assembly language programmer) needs to generate the proper sequence of
data movement operations whenever an HLL variable is referenced. For doing this, it has
to remember where in memory (or register) the variable has been allocated. For variables
encompassed in complex data structures such as array elements and structure elements,
accessing the variable also involves calculating the correct address of the variable. Consider

3.4. Translating HLL Programs to AL Programs 119

the following assignment statements involving the previously declared global variables.

record.length = i;
cptr = &(record.name[3]);
record.name[5] = *cptr;

Some machines provide instructions to perform memory-to-memory arithmetic. In such
machines we may be able to translate arithmetic expressions without copying the variable
values to registers. However, in load-store machines such as the MIPS-I, we must first
load the variable values into registers from their corresponding memory locations. Let us
translate the above assignment statements to MIPS-I assembly code. Notice that these
statements cannot be executed in SPIM without including the appropriate .data declara-
tions.

.text # Store subsequent items in the text section

1w $t1, i # Copy the value in memory location named i into $t1

la $t2, record # Copy the memory address named record into $t2

swW $t1, 8($t2) +# Copy $t1 into memory location allocated to record.length
addu $t3, $t2, 3 # Calculate address of record.name [3]

sw $t3, cptr # Store the address into memory location named cptr

1w $t3, cptr # Copy the value in memory location cptr to $t3

1w $t4, 0($t3) +# Copy the value in mem location pointed to by cptr to $t4
swW $t4, 5($t2) +# Store $t4 into memory location allocated to record.name[5]

3.4.4 Translating Conditional Statements

All high-level languages support if statements, which cause some statements to be executed
only if a condition is satisfied. Consider the following C code:

if (4 < a)
cptr = record.name;

else

cptr = &(record.name[1]);

To translate this if statement to assembly language, it is easier to first rewrite this code
using goto statements, because assembly languages usually do not provide if-else con-
structs. The above code can be rewritten as follows:

if (i >= a)
goto elsel;
cptr = record.name;
goto done;
elsel: cptr = &(record.name[1]);
done:

120 Chapter 3. Assembly-Level Architecture — User Mode

We can implement this modified C code in assembly language with the use of condi-
tional branch (or conditional jump) instructions, which permit the skipping of one or more
instructions. The exact manner in which a conditional branch checks conditions depends
on the machine. Some machines provide condition codes that are set by arithmetic instruc-
tions and can be tested by conditional branch instructions. Some others like MIPS-I do not
provide condition codes, and instead let conditional branches check the value in a register.

A translation for the above C code to MIPS-I assembly code is given below. In this code,
the 4f condition evaluation is done using a bge instruction. Notice that in the high-level
language, when an if condition is satisfied, the statement(s) following the if statement is
(are) executed. In the assembly language, by contrast, when a branch condition is satisfied,
the instruction(s) following the branch instruction is (are) skipped. Therefore, we need to
use the complement of the if condition as the branch condition. In this example, the C code
checks for the condition if (i < a); the assembly code checks for the branch condition
bge (branch if greater or equal). Also notice that in the high-level language, once execution
goes to the then portion, the else portion is automatically skipped. However, the assembly
language does not provide such a support, and so an unconditional branch instruction is
used just before the else portion to skip the else portion whenever control goes to the then
portion.

.text
1w $t1, i # Copy the value in memory location i into $t1
1w $t2, a # Copy the value in memory location a into $t2
bge $t1, $t2, else # Branch to label else if $t1 (i) > $t2 (a)
la $t1, record # Copy the memory address named record into $t1
swW $t1, cptr # Copy the value in $t1 into memory location named cptr
b done # Branch to label done (to skip the else portion)
else: la $t1, record # Copy the memory address named record into $t1
addu $t1, 1 # Increment $t1 so as to obtain address of record.name[1]
swW $t1, cptr # Copy the value in $t1 into memory location named cptr

done: ...

A series of if-else statements based on a single variable can be expressed as a multi-
way branching statement using the C switch statement. Consider the following C code. It
contains a switch statement, with 5 different cases including the default case.

switch (record.length)

{

case 0O:

case 1:
*record.name = ’L’;
break;

case 2:

case 3:

3.4. Translating HLL Programs to AL Programs 121

*record.name = 'M’;
break;

default:
*record.name = ’H’;

A trivial way of translating this switch statement is to first express it as a series of if-
else statements, and then translate them as we just did. However, such an approach may
be very inefficient, especially if there are many cases to consider. A more efficient translation
can be performed by incorporating a software structure called jump table. A jump table
is an array that stores the starting addresses of the code segments corresponding to the
different cases of a switch statement. It is indexed by the value of the switch statement’s
control variable.

In the next page we show an assembly language translation of the switch statement
given above. This code begins with the jump table declaration, which is stored in the read-
only data section. The jump table starts at label JT, and contains 4 entries, corresponding
to values 0-3 for record.length. These 4 entries are initialized to 4 labels that are declared
in the .text section.

The .text portion first reads the value of record.length from memory. Then the
default case is handled by checking if the value of this variable is greater than or equal
to 4. If this condition is satisfied, then control is transferred to label default. If the
condition is not satisfied, then we need to index into the jump table. The jump table index
is calculated by scaling the value of record.length by 4, as each table entry occupies 4
bytes. For instance, if record.length has a value of 3, then the mul instruction scales it by
4 to obtain an index of 12. The subsequent 1w instruction adds this offset to the jump table
starting address JT, and loads the target address into $t6. The next instruction performs
an unconditional jump to the target address stored in $t6.

.rdata # Store subsequent items in the read only data section
HHHHHAHBHBHHAHBHHAH RS H R HAHHAH B HBHHAHHEHBHH AR EH B R B R R AR RS H RS
JT: # Begin jump table here, and initialize it with target addresses

.word case0
.word casel
.word case2
.word case3
HHH S A

.text # Store subsequent items in the text section

.align 2 # Align next item on a 22 byte (32-bit word) boundary

la $t1, record # Load starting address of variable record in $t1

1w $t6, 8($t1) # Copy contents of memory location record.length to $t6

bge $t6, 4, default+# Branch to label default if record.length (in $t6) > 4

122 Chapter 3. Assembly-Level Architecture — User Mode

mul $t6, $t6, 4 # Scale by 4 to obtain the jump table index

1w $t6, JT($t6) # Copy jump target address from jump table to $t6
h| $t6
case0: # case 0
casel: # case 1
1i $t15, ’L’
sb $t15, 0($t1) # *record.name = 'L’
b done # break
case2: # case 2
case3: # case 3
1i $t15, M’
sb $t15, 0($t1) # *record.name = M’
b done # break
default: # default
1i $t15, ’H’
sb $t15, 0($t1) # *record.name = ’H’

done:

3.4.5 Translating Loops

Loops form a major portion of most programs. Therefore, it is important to translate
them in an efficient manner. Consider the following C code that adds the elements of
record.name, and stores the result in the memory location pointed by variable cptr. This
code uses the for loop construct.

*cptr = 0;
for (i = 0; i < record.length; i++)
*cptr += record.name[i];

Most assembly languages do not provide a single instruction that can directly implement
complex HLL constructs such as for loops. We can, however, rewrite the above loop in
terms of an if statement with an embedded goto, as follows:

*cptr = 0;
i=0;
loop: if (i < record.length)
{
*cptr += record.name[i];
it++;

3.4. Translating HLL Programs to AL Programs 123

goto loop;

}

One possible translation for this rewritten loop is given below. In this assembly language
program, register $t2 is used to store the current value of memory word pointed by cptr,
and register $t3 is used to store the latest value of i.

.text # Store subsequent items in the text section
.align 2 # Align next item on a 22 byte (32-bit word) boundary
la $t1, record # Load starting address of variable record in $t1
1i $t2, 0 # Initialize copy of *cptr in $t2
1i $t3, 0 # Initialize copy of i in $t3
1w $t4, 8($t1) # Copy contents of memory location record.length to $t4
loop: bge $t3, $t4, done# Branch to label done if i (in $t3) > copy of record.length
1w $t5, 0($t1) # Copy record.name[i] (pointed by $t1) from memory to $t5
add $t2, $t2, $t5 # Add copy of record.name[i] in $t5 to running total in $t2
addu $ti1, 4 # Increment $t1 to point to next element of record.name[]
add $t3, 1 # i++; do this on copy of i in $t3
b loop # Branch to label loop
done: sw $t3, i # Store copy of i in $t3 to memory location named i
1w $t4, cptr # Copy pointer value stored in mem addr cptr to $t4
sw $t2, 0($t4) # Store calculated sum ($t2) to memory location pointed by cptr

This loop causes a straight-line sequence of instructions to be executed repeatedly, as
many times as needed (record.length in this case). The loop starts at location loop and
ends at the instruction b loop. During each pass through this loop, record.name[i]’s
address is first determined by adding 4 to $t1, and then record.name[i] is fetched and
added to the running total present in $t2. Thus, conditional branch instructions are very
useful in implementing the if statements and loops present in high-level programs.

In the above loop, a form of indirect addressing (indexed addressing, to be precise) is
used in the loop to access record.name[i]. Indirect addressing permits a different memory
address to be specified during each iteration of the loop, by varying the contents of the index
register ($t1 in this case). If an assembly language does not support any form of indirect
addressing, then the only way to change the memory address during each iteration is to use
self-modifying code, i.e., the program considers portions of itself as data, and modifies itself
during execution.

3.4.6 Translating Subroutine Calls and Returns

We just saw how control flow changes introduced by if statements and loops can be im-
plemented in assembly language. Next we discuss a more complicated type of control flow
change, the one involving subroutine calls and returns. To implement the special type of
branching required to implement subroutines, two basic instructions are used: a call instruc-
tion that transfers control from the calling program to the subroutine’s starting location,

124 Chapter 3. Assembly-Level Architecture — User Mode

and a return instruction that returns control from the subroutine to the place from which
it was called, as illustrated in Figure 3.12. In MIPS-I AL, these two instructions are called
jal and jr $ra, respectively. Implementing subroutines in an assembly language is more
complicated because of the following reasons:

Calling Called

Program Subroutine
P:
jal P
7
\~
jalP
~jr.$ra

Figure 3.12: Transfer of Control during Subroutine Linkage

e The HLL subroutine may have local variables declared within it, for which storage
space needs to be allocated by the assembly language program. Because of the possi-
bility of recursion, each instance of a subroutine requires a new set of storage locations
for its local variables.

e Temporary values created within an assembly language subroutine may need to be
stored in memory locations and registers. We cannot specify a fixed set of memory
locations for a subroutine, again because of recursion. Conceptually, each run-time
instance of a subroutine requires a few “fresh” memory locations and registers.

e A subroutine may be called from different places in a program. When the subroutine
finishes execution, control must return to the instruction that immediately follows the
call instruction that passed control to the subroutine.

e Most subroutines need the calling program to pass parameters to them at the time
they are called. Also, often, a subroutine may need to pass a return value to the
calling program.

We shall take a detailed look at each of these issues and the solutions developed to
handle them. One important aspect that guides these solutions is that the development of
an assembly language subroutine—be it by a programmer or a compiler—is often done in
isolation to the development of its calling routine(s). This means that the calling routines as
well as the subroutines must adhere to a set of well-defined specifications or conventions. If
the calling routine was developed with a particular convention in mind, and the subroutine
was developed with another, then the program as a whole may not guarantee correct results.

3.4. Translating HLL Programs to AL Programs 125

The crux of the first two problems mentioned above is that each invocation of a subrou-
tine needs a separate working environment. This environment consists of a set of registers
and memory locations that can be used for allocating local variables, and storing temporary
values. To solve the last two problems, we need to provide a well-defined communication
mechanism between the working environments of the caller and the callee.

We already saw in Section 3.4.2 how local variables of a HLL program are allocated
storage space in the corresponding assembly language program. The conventional method
is to build a new stack frame every time a subroutine is called, and to allocate specific
locations within the stack frame for each local variable. The stack frames are created within
the stack section of the memory address space, and are organized as a LIFO structure. The
provision of an independent stack frame for each active subroutine enables each subroutine
instance to have its own set of storage locations for allocating its local variables. In the
following subsections, we will see how the stack frame concept has become the backbone
for solving all of the above mentioned problems associated with implementing subroutines.
Frame layouts vary between assembly languages and compilers. If a frame pointer is used,
then the frame pointer of the previous frame is stored in the current frame, and restored
when returning from a subroutine.

Return Address Storing

Because a subroutine may be called from different places in a program, provision must be
made for returning to the appropriate location in the program after the subroutine completes
execution. To do this, the return address must be saved somewhere before transferring
control to the subroutine. The MIPS-I assembly-level architecture has earmarked register
$ra for storing the return address. The semantics of a call instruction (named jal for jump
and link) specify that the return address is automatically stored in general-purpose register
$ra. If a subroutine needs to call another, then the assembly language programmer (or
compiler) writing the caller routine should include instructions to save the contents of $ra
on the stack frame (before performing the call) and to restore the contents of $ra (after
returning from the callee). Typically, these instructions are placed at the beginning and
end, respectively, of the calling subroutine.

Consider the MIPS-I AL program that we saw in page 115. In this program, the routine
main() calls subroutine malloc(). Prior to the jal malloc instruction, the return address
of main() is saved in main()’s stack frame using the instruction sw $ra, 8($sp). When
executing the jal malloc instruction, the contents of $ra will be overwritten with the
return address of malloc(). Therefore, prior to returning from main(), the correct return
address of main() is restored into $ra using the instruction 1w $ra, 8($sp).

126 Chapter 3. Assembly-Level Architecture — User Mode

Parameter Passing and Return Value Passing

When calling a subroutine, the calling routine must provide to the callee the parameters,
that is, the operands or their addresses, to be used in the computation. Later, the sub-
routine may return the results of the computation to the calling routine. This exchange of
information between a calling routine and a subroutine is referred to as parameter passing.
The MIPS-I AL convention stipulates the programmer to place the parameters in registers
$a0 through $a3, where they can be accessed by the instructions of the subroutine. Simi-
larly, the programmer should place the return values in registers $v0 and $v1. If more than
4 parameters are present, the rest of the parameters are passed through the stack frame.
Figure 3.18 shows a parameter being passed to subroutine P through register $a0. The
return value is passed by the subroutine back to the calling program through register $vo0.

Calling Called
Rou‘tlne Subroutine
P:
7 # use parameter stored in $a0

li $a0, 1 # place argument in $a0
jal P # call subroutine P

use return value stored in $v0 # place return value in $v0

“ljr S$ra #return

Y

Figure 3.13: Passing Parameters and Return Value through Registers

Register Saving and Restoring

As discussed, the development of an assembly language subroutine—whether by a program-
mer or a compiler—is often done in isolation to the development of the calling program.
This means that at the time of subroutine development, it is difficult to identify the registers
that are not used in the calling environment, and are therefore available for its use. If the
subroutine developer blindly uses an arbitrary register for storing a temporary value, there
is a possibility of overwriting useful information belonging to the calling environment.

The approach followed in MIPS-I is to let the programmer temporarily save the values
pertaining to the caller, prior to the callee using them. Once the callee has completed its
usage of a register set, the programmer restores their original values. Again, a convenient
place to temporarily save the register values is the stack frame. Figure 3.17 shows the layout
of a stack frame in which space has been set apart for saving general-purpose registers as
well as floating-point registers. This is the approach followed in the MIPS-I ALA.

Performing the saving (and restoring) of the register values at the proper times is the
responsibility of the assembly language programmer. This saving (and restoring) can be
done by the caller (caller save), by the callee (callee save), or by a combination of the two.

3.4. Translating HLL Programs to AL Programs 127

It is important to note that it is not necessary to save the entire set of registers in the name
space. The MIPS-I AL earmarks some of the registers for caller save, and some others for
callee save.

Lower Addresses

$sp —»=

Space for storing
callee arguments

Space for storing
FPRs

Space for storing
GPRs

Current Stack Frame

Space for storing
Temporary Values

Space for allocating
Local Variables

Higher Addresses

Figure 3.14: Layout of a Typical Stack Frame

Notice that the need for saving and restoring or memory locations, the MIPS-I
compiler avoids this problem by utilizing a separate stack frame for each active subroutine.

3.4.7 Translating System Calls

Consider the C program given in page 53 (and reproduced below), for copying characters
from standard input to standard output. This program directly calls the operating system
services using the read() and write() system calls, instead of going through library rou-
tines. These system calls can be implemented in an assembly language with the use of trap
or syscall instructions. The syscall instruction is quite different from a library function call,
although from the assembly language programmer’s point of view there may not be a big
difference. Consider the following C code which uses the system calls read() and write ()
to read a sequence of characters from stdin and write them to stdout.

main()

128 Chapter 3. Assembly-Level Architecture — User Mode

char c;

while (read(0, &c, 1) > 0) /* read one char from stdin */
write(1l, &c, 1); /* write one char to stdout */

A MIPS-T AL translation of the above C code is given below. This code uses the syscall
instruction to request the OS to perform the read() and write() system calls. Most
commercial operating systems use the same set of values for read_code and write_code
(3 and 4, respectively). Notice that this AL program cannot be ‘executed’ on a SPIM
simulator, because SPIM does not support these system calls.

.text
.globl main

main: add $al, $sp, 4 # Place the address of ¢ in $al

1i $a2, 1 # Place the number of bytes to be read (i.e., 1) in $a2
loop: 1i $a0, 0 # Place the file descriptor (0) in $a0
1i $vo, 3 # Place the code for read () system call in $v0
syscall # Call OS routine to perform the read
blez $vO, done # Break out of while loop if syscall returned zero
1i $a0, 1 # Place the file descriptor (1) in $a0
1i $vo, 4 # Place the code for write () system call in $vO
syscall # Call OS routine to perform the write
b loop # Go back to while loop
done: jr $ra # Return from main() function

3.4.8 Overview of a Compiler

[This section needs to be written.]

The compilation process involves a series of phases.

e Lexical analyzer (or lexer)
e Syntax analyzer (or parser)
e Intermediate code generator

e Code optimizer: Code optimization is an important phase because for most of the
applications, once a program is developed, the same program is executed thousands
or millions of times.

3.5. Memory Models: Design Choices 129

e Code generator

3.4.8.1 Just-In-Time (JIT) Compiler

The oldest implementation of Java is the interpreter. Every Java command is interpreted
to an equivalent sequence of host machine instructions, and is run in the order in which it
arrives. This is a really slow way of doing things.

Then came the JIT (just in time) compiler. Every time the Java execution runtime
environment would run into a new class—classes are functional groups within the Java
program—the JIT compiler would compile it right there. Once something is compiled, it
runs with native commands, and it is fast. Spending a little bit of time up front can save
a lot of execution time later. That did improve matters, but it still did not get the top
performance, because some things that would only run once could take longer to compile
than it would take to run them with the interpreter. This means you could wind up with
a net loss.

With that observation came the dynamic compiler, which compiles only those things
that matter and leaves the rest alone. The dynamic compiler decides whether to compile
each class. It has two weapons in its arsenal: an interpreter and a JIT, and it makes an
intelligent decision on a class-by-class basis whether to use the one weapon or the other.
The dynamic compiler makes that decision by ”profiling,” or letting the code run a few
internal loops before deciding whether or not to compile that section of code. The decision
may be wrong, but statistically the dynamic compiler is right much more often than not;
in fact, the longer you run the code, the more likely it is to get it right.

3.5 Memory Models: Design Choices

We have seen the basics of translating high-level language programs to assembly language
programs. Much of this discussion was centered around the MIPS-1 AL A, a somewhat simple
architecture. A wide variety of architectures have been in use over the last several decades.
They differ in terms of the register model, the memory model, and/or the instruction set.
In this section, we shall focus on the memory model. In particular, we shall investigate
different options for various facets of the memory model, such as the address space, the
endian-ness, and the support for word alignment.

3.5.1 Address Space: Linear vs Segmented

We have already seen that the memory address space is a collection of unique addresses,
each of which corresponds to a location that can store a single word of information. The
address space can be organized in more than one way. The organization we saw so far
is the linear (one-dimensional array) organization, in which consecutive numbers ranging

130 Chapter 3. Assembly-Level Architecture — User Mode

from 0 to M — 1 (where M is the number of memory locations) form the addresses of
successive memory locations. The M addresses (0 — M —1) thus constitute a linear address
space (a.k.a. flat address space) for the computer. Thus, the memory model adopted by
conventional assembly language (and machine language) architectures is a linear memory
model. To specify a memory address in this model, logyM bits are required. For example,
if the address space of an assembly-level architecture includes 232 memory locations, then
32 bits are required to specify a memory address in that machine. For this model, we will
use the notation (X) to denote the contents of memory location X.

In some architectures, this memory is organized in a 2-dimensional manner as a collection
of segments, each of which is a linear address space for storing logically related words. The
segments are typically of different sizes. One segment may hold the program, another may
hold the data, and so on. In this memory model, a memory location is referred to by
specifying a segment address and a displacement within the segment.

Expand, saying the adv and disadv of segmented memory model

3.5.2 Word Alignment: Aligned vs Unaligned

Many assembly-level architectures require words to be aligned to their natural boundaries;
that is, an N-bit word may fit within a memory location, but not across two locations. A
sketch of the linear memory model, along with an illustration of aligned words and unaligned
words is given in Figure 3.15.

[<— N bits ——

Aligned N -bit word

Unaligned N —bit word

Address

IogzM

g

Data

Figure 3.15: Linear Memory Model and Alignment of Words in Memory. Some Assembly-
Level Architectures specify words to be aligned in Memory

3.6. Operand Locations: Design Choices 131

3.5.3 Byte Ordering: Little Endian vs Big Endian

In an assembly-level architecture specifying a byte-addressable memory address space, a
word typically spans multiple (adjacent) locations in memory. Each byte within such a
word will then have a distinct memory address, although the word is usually referenced by
a single address (either the lowest address or the highest address in the range). Two options
are available for placing the bytes within the word in memory. In the first option, called
little-endian organization, the least significant byte of the word is assigned the lowest (byte)
address. In the second option, called big-endian organization, the most significant byte is
assigned the lowest address.

3.6 Operand Locations: Design Choices

In this section we will study the different options that exist for holding the operands of
an instruction. The MIPS-I architecture limited itself to using the main memory, the
general-purpose registers, a few special registers, and even part of the instruction for holding
the operands; for data manipulation instructions, operand storage was limited to general-
purpose registers. Many other machines specify additional locations for operand storage,
such as accumulator and operand stack. We will see each of these options in detail.

3.6.1 Instruction

Small constants are frequently used as instruction operands. A convenient place for storing
these operands is within the instruction itself. Such operands are called immediate operands
because they are available for use immediately after the instruction has been fetched from
memory. Many small constants such as 0, 1, —1, 2, and 4 occur frequently in programs, and
the immediate operand approach offers a convenient way to store such an operand within
the instruction itself. A MIPS-I instruction using an immediate operand is given below.

1li $t1, 5 # 5 is an immediate operand

3.6.2 Main Memory

Main memory is the default location for maintaining the values of the variables declared in
a program. For example, when a C compiler encounters the variable declaration

int c;
it assigns a memory location for variable c. The values of the variables are initialized /updated
by writing values to the relevant memory locations. Before manipulating a data item, it is
often copied to other storage locations such as registers and operand stack.

132 Chapter 3. Assembly-Level Architecture — User Mode

3.6.3 General-Purpose Registers

Besides memory locations, registers are another common place for storing operands. In
load-store architectures such as MIPS-I, operands have to be copied to registers before they
can be used in arithmetic and logical operations. Registers are also commonly used for
storing temporary values and frequently used values. The more the number of registers
defined in the architecture, the easier it is to keep the frequently used values in registers.

Modern computers invariably support a number of general-purpose registers at the as-
sembly language and ISA levels—typically 8 to 64—which can be used to temporarily store
frequently used operands. When operands are present in registers, it is possible to specify
multiple operands explicitly in an instruction, because a register can be specified by just a
few bits. Therefore, we can have instructions such as

add BX, CX # an x86 AL add instruction
add $t0, $t1, $t24 a MIPS-I AL add instruction

Because of these multiple operand or address instructions, machines that use general-
purpose registers are often called multiple address machines. Among the multiple ad-
dress machines, some permit data manipulation only on register operands (as well as im-
mediate operands). In such machines, all memory operands must be copied to registers
using explicit LOAD instructions prior to using them for data manipulation. Similarly, the
results of data manipulation instructions are also stored only in registers, from where they
are copied to memory locations (if needed) using explicit STORE instructions. Machines of
this kind are called load-store architectures (to reflect the fact that only LOAD and STORE
instructions can access memory) or register-register architectures (to reflect the fact
that all data manipulation instructions use only register operands (immediate operands as
well) and store the result in a register). Examples of load-store architectures are MIPS-I
and Alpha.

Machines that permit data manipulation instructions to access register operands as well
as memory operands are called register-memory architectures. An example is the TA-
32 machine. Notice that a register-memory machine can have instructions that use only
register operands.

3.6.4 Accumulator

The early computers made very judicious use of registers, because registers required a non-
trivial amount of hardware. In these machines, one of the registers, called the Accumulator,
was designated as the one that would be utilized in all arithmetic and logic operations.
On machines that operate in this manner, instructions requiring a single operand, such
as COMPLEMENT and INCR, find the operand in the Accumulator. The result is also writ-
ten to the Accumulator. Instructions requiring two operands also use the value in the
Accumulator as one of the operands. The other operand is identified by a single address in

3.6. Operand Locations: Design Choices 133

the instruction; hence machines that always use the Accumulator are often called single-
address machines. For example, the single-address instruction

add X; # Add the contents of mem loc X to ACC

means: “Add the contents of memory location X to the contents of accumulator and place
the sum into accumulator.” To move the contents of memory location X into accumulator,
we can specify a single address instruction as follows:

1w X; # Copy the contents of mem loc X to ACC

Similarly, to move the contents of Accumulator to memory location Y, we can specify a
single address instruction as follows:

sw Y; # Copy the contents of ACC to mem loc Y
Using only single address instructions, we can add the contents of memory locations X

and Y, and place the result in memory location Z by executing the following sequence of
instructions:

1w X
add Y
sw Z

Note that the operand specified in the operand field may be a source or a destination,
depending on the opcode of the instruction. The 1w instruction explicitly specifies the source
operand, memory address X, and implicitly specifies the destination, the Accumulator. On
the other hand, the sw instruction explicitly specifies the destination, memory location Z,
and implicitly specifies the source, the Accumulator. A single address machine built in
the mid-1960s that enjoyed wide popularity was the PDP-8, made by Digital Equipment
Corporation.

3.6.5 Operand Stack

The approaches we saw so far use some type of registers—general-purpose registers or an
accumulator—in addition to memory locations to hold instruction operands. A radically
different approach is to use an operand stack to hold the operands. An operand stack
is different from the stack frames that we saw earlier. It is a storage structure in which
accesses are allowed only to the top location of the stack (sometimes to the topmost two
locations)!?. Only two types of accesses are permitted to the top of the stack: push and

10T computer science and engineering fields, this type of storage mechanisms are also known by the term
last-in first-out (LIFO); at any time the first data item that will be taken out of the stack will be the
last one that was placed in the stack.

134 Chapter 3. Assembly-Level Architecture — User Mode

pop. These operations are analogous, respectively, to the store and load operations defined
on the memory address space. The push operation places a new data item to the top of
stack, causing the stack to “grow”. The pop operation removes the top item from the stack,
causing the stack to “shrink”. Thus, the push and pop operations cause a change in the size
of the operand stack structure. This is unlike the memory address space, which permits the
usual load and store operations, which cause no change to the size of the structure. This
peculiar nature of the operand stack can be clarified with a real-world example. Consider
a pile of trays in a cafeteria: clean trays are added (pushed) to the pile at the top, causing
it to grow; and customers pick up (pop) trays from the top of the pile, causing it to shrink.

Example push and pop instructions are given below:

push X # Copy contents of mem loc X to top of operand stack
pop X # Copy contents of top of operand stack to mem loc X

Apart from these push and pop operations, a machine that supports an operand stack typi-
cally provides many arithmetic and logical instructions that operate on operands stored in
the operand stack. One such instruction could be

add

which means pop the contents of the two topmost locations of the operand stack, add them

together, and push the result to the new top of the operand stack. This instruction is
interesting in that it does not explicitly specify any operands, but the operands are implied
to be on the top of the operand stack. Because only the topmost item(s) of the operand
stack are accessible, it is important to push data items to the operand stack in the proper
order; otherwise it becomes difficult to use instructions that manipulate data stored in the
operand stack.

Only a few architectures support an operand stack. By contrast, almost all architectures
support stack frames for allocating the local variables of subroutines. Some of the architec-
tures that support an operand stack define it as a separate address space (as illustrated in
Figure 3.16(i)), whereas others define it as part of the memory address space. In the latter
case, the operand stack of a subroutine is usually implemented on top of the subroutine’s
stack frame, as illustrated in Figure 3.16(ii). The FP register points to the bottom of the
current stack frame, and the SP register points to the top of the operand stack, which is
implemented on top of the current stack frame. The Java Virtual Machine (JVM) defines
an operand stack in this manner.

A pure stack machine takes the operand stack approach to the extreme. It does not
define any general-purpose registers, and performs arithmetic and logical operations only
with operands present in (the top one or two locations of) the operand stack. It does specify
a memory model, along with push and pop instructions to move data between the operand
stack and memory locations. None of the data manipulation instructions in such a machine
specifies operands in an explicit manner. Because of these “zero address instructions”,
machines that perform data manipulation solely on the operand stack are often called zero

3.6. Operand Locations: Design Choices 135

Stack Space Memory Space
Direction of
stack growth
Operand SP (TOS)
Direction of Stack
stack growth
ﬁ Stack Frame
TOS FP
BOS BOS

(®

(i)

Figure 3.16: Different Ways of Implementing an Operand Stack: (i) Separate Stack Address
Space; (ii) Within Memory Address Space, on Top of Current Stack Frame

address machines.

Ezample: Write an assembly language program to evaluate the following C language expres-
sion in a zero address machine.

.data
.word
.word
.word
.word
.text
push
push
add
push
add
push
push
add
mult

pop

O W=

10

W =

=

D

D=(A+B+C)x(A+ B)
Assume that variables A, B, C, and D have been declared as int.

Copy contents of mem location A to TOS
Copy contents of mem location B to TOS

Copy contents of mem location C to TOS

Copy contents of mem location A to TOS
Copy contents of mem location B to TOS

The pure stack approach does have some drawbacks:

e If the operand stack is implemented in a memory structure outside the processor,
all instructions that access the operand stack require off-chip access to fetch/store

136 Chapter 3. Assembly-Level Architecture — User Mode

operands, and this results in poor performance. The solution often adopted in hard-
ware implementations of stack-based instruction sets is to incorporate the top portion
of the operand stack as microarchitectural registers inside the processor; the rest of
the operand stack is incorporated in memory outside the processor chip. The hard-
ware registers that incorporate the top of the stack can be accessed in a single cycle.
As more and more data items are pushed onto the operand stack, these hardware
registers get filled up, necessitating the transfer of its bottom portion to the stack
in memory. The microarchitecture (and not the assembly language programmer) is
responsible for performing this transfer. The assembly language programmer is not
even aware of these hardware registers.

e A second drawback of using an operand stack is the inability to reuse temporary val-
ues created during computations. Consider the expression that you evaluated just
now:

F=(A+B+C)x(A+B)
The A + B portion of this expression needs to be computed only once if the result is
stored in a general-purpose register, whereas it needs to be computed twice if operands
are stored only on the operand stack, unless the calculated value of A + B is popped
into a memory location, and pushed back to the top of stack when needed again.

e Lastly, when all instructions use a common resource such as the top of the operand
stack, it becomes difficult to execute multiple instructions in parallel in a high-
performance processor implementation.

The proponents of pure stack machines counter these arguments. Their main claims are
that the stack machine approach is clean, simple, elegant! These features make it an easy
target for compilers. Thus, in the last decade, Sun Microsystems introduced a stack-based
machine called Java Virtual Machine (JVM), which has become popular in the world wide
web and embedded computing applications.

3.7 Operand Addressing Modes: Design Choices

An assembly language instruction specifies the assembly-level machine to do a specific op-
eration on one or more operands. The operands can be present in general-purpose registers,
memory, accumulator, stack, or the instruction itself. The exact location of the operands
depends on the addressing modes specified in the instruction. An addressing mode specifies
a rule for interpreting or modifying an operand address field to obtain the operand. For
instance, the operand or its location can be assumed, as in the CLA (clear accumulator)
instruction, or the operand location can be identified in the instruction itself, as in the “add
$t1, $t2, $t3” instruction.

We have already used several addressing modes when writing MIPS-I assembly-level
programs. Some instruction sets are equipped with even more powerful addressing modes,

3.7. Operand Addressing Modes: Design Choices 137

which give more flexibility to the assembly language programmer. These addressing modes
include capabilities such as pointers to memory, counters for loop control, indexing of data,
and relocation of programs. In this section we will examine the common addressing modes
for specifying operands in assembly languages. It is important to note that many of these
addressing modes are not present in the instruction set architecture. Additional addressing
modes are provided in the assembly-level architecture to make it easier to program at the
assembly level. Fewer addressing modes are supported by the instruction set architecture
so as to make it easier to implement the architecture in hardware. Addressing modes that
are unsupported by the instruction set architecture are synthesized using the supported
addressing modes.

3.7.1 Instruction-Residing Operands: Immediate Operands

We shall start with addressing mode(s) for operands specified within the instruction (im-
mediate operands). In the MIPS-I instruction

1li $t1, 5 # 5 is an immediate operand

the operand 5 is specified using the immediate addressing mode. Almost all machines pro-
vide the immediate addressing mode, for specifying small integer constants. If an instruction
set does not support the immediate addressing mode, it would be difficult to specify such
constants. One option would be to hardwire a few memory locations or registers with fre-
quently required constants. The rest of the constants will then need to be synthesized from
the hardwired constants. Many of the newer machines use such a hardwired register for
storing the constant zero, and use the immediate addressing mode for specifying the re-
maining constants. We have already seen that the MIPS-I architecture has such a register,
called $zero.

3.7.2 Register Operands

In register-based architectures such as MIPS-I, many of the operands reside in registers. The
common method for specifying register operands is to employ the register addressing
mode, which is perhaps the most frequently used addressing mode in a register-based
machine. In this addressing mode, the name or address of the register is specified in the
instruction. We have already used this addressing mode several times in this chapter. For
example, the following MIPS-I instruction uses the register addressing mode to specify 2
operands—a source operand and a destination operand.

move $t1, $t2 # The operand addresses are registers $t1 and $t2

In some architectures such as the IA-32, some of the registers are special. Often, when
using such as Apart from the register addressing mode,

138 Chapter 3. Assembly-Level Architecture — User Mode

3.7.3 Memory Operands

Memory operands have the largest variety of addressing modes, including ones with indi-
rection. We shall look at the commonly used ones here.

Memory Direct Addressing: In this addressing mode, the entire address of the memory
operand is given explicitly as part of the instruction. Example instructions that use the
memory direct addressing mode to fetch a memory operand are given below:

1w $t1, labell # Source operand is in memory location labell
1w $t1, 0x10000000# Source operand is in memory location 0x10000000

In the second instruction, the source operand is present in memory location whose address
is 0x10000000. This address is explicitly specified in the instruction. Memory direct ad-
dressing has two limitations: (i) At the ISA level, the entire address of the memory operand
has to be encoded in the instruction, which makes the instruction long. (ii) The address
must be determined and fixed at the time of programming or the assembly process. Once
fixed, this address cannot be changed when the program is being run, unless the architecture
permits self-modifying code'. Therefore, memory direct addressing is limited to accessing
global variables whose addresses are known at the time of programming or the assembly
process.

Register Indirect Addressing: In this addressing mode, the instruction specifies a
register as in register direct addressing, but the specified register contains the address of
the memory location where the operand is present. Thus, the effective address of the
memory operand is in the register whose name or number appears in the instruction. This
addressing mode is useful for implementing the pointer data type of high-level languages.
For example,

1w $t1, ($t2) # Memory address of source operand is in register $t2

The big advantage of register indirect addressing is that it can reference memory without
paying the price of specifying a full memory address in the instruction. Second, by modifying
the contents of the specified register, it is possible to access different memory words on
different executions of the instruction. The utility of indirect addressing was demonstrated
in the example loop code in Section 3.4.5, which involved finding the sum of the elements
of an array. In that program, the add $t1, 4 instruction (which uses register addressing)
causes the address specified by the 1w instruction (which uses a form of indirect addressing)

"1n an architecture that permits self-modifying code, the program is allowed to use the .text section as
data as well. The program can thus modify some of its instructions at run time, by writing to the memory
locations allotted to those instructions. Self-modifying code was common in the early days of computer
programming, but is not in vogue any more because of debugging difficulties.

3.7. Operand Addressing Modes: Design Choices 139

to point to the next element of the array. What is interesting to note is that the loop body
does not explicitly specify any memory addresses.

Autoincrement Addressing: This is an extension of register indirect addressing. When
this mode is specified, the specified register is incremented by a fixed amount (usually 1),
after using the current value of the register for determining the effective address of the
operand. For example,

1w $t1, ($t2)+ # 1w $t1, ($t2)
addu $t2, 1

When this instruction is executed, the current value of $t2 is used for determining the
memory address of the operand, and then $t2 is incremented. This addressing mode is not
specified in the MIPS-I assembly language. It was common in earlier assembly languages,
particularly for use inside loops.

Indexed or Register Relative Addressing: This is an extension of register indirect
addressing. The effective address of the memory operand is given by the sum of an index
register value and an offset value specified in the instruction. For example,

add $t1, 100($t2) # Mem addr of operand is 100 + contents of $t2
add $t1, label ($t2)} Mem addr of operand is addr of label + contents of $t2
add $t1, $t3($t2) # Mem addr is contents of $t2 + contents of $t3

The first instruction uses a single index register ($t2) and an offset, which are added
together to obtain the memory address of the operand. Notice that the value of the index
register does not change. The second instruction specifies a label as the offset. This mode is
particularly useful for accessing arrays; the index register serves as an index into the array
starting at labell. The third instruction uses two index registers, the contents of which
are added together to obtain the memory address of the operand; this indexed addressing
mode is not supported in the MIPS-I assembly language. Some assembly languages even
permit the index register to be a special register, such as the PC. When register PC is used as
an index register, it is often called PC-relative addressing. Some machines dedicate one
register to function solely as an index register. This register is addressed implicitly when
an index mode is specified. In other machines, other special registers or GPRs can be used
as an index register. In such a situation, the index register must be explicitly specified in
the instruction.

Memory Indirect Addressing: In this addressing mode, the instruction specifies the
memory address where the effective address of the memory operand is present. This ad-
dressing mode is not supported in the MIPS-I assembly language. An example MIPS-like
instruction that uses the memory indirect addressing mode is given below.

140 Chapter 3. Assembly-Level Architecture — User Mode

1w $t1, (labell) # Mem addr of operand is in mem location labell

3.7.4 Stack Operands

Finally, let us look at stack operands. In the “pure” stack machines that we saw in Section
3.6.5, a stack operand can be accessed only if it is currently at the top of the stack. In
such machines, the location of stack operands need not be specified explicitly, and instead
can be specified implicitly. This type of addressing is called implicit addressing mode. The
operand or its effective address is implicitly specified by the opcode. An example of such
an instruction is given below.

add # Both operands are on top of stack

Most of the register-based machines provide a stack model to the programmer, but use
a less strict access mechanism for stack operands. They have a program-managed stack
pointer register, which can be used as an index register to access stack operands that are
not necessarily at the top of the stack.

Main
Addr | Memory
200 50
Registers
$t0
$t1 300 500
$t2 200
$t3 200
$sp[__ 300 400 1000
pc 500
500 200

Ezxample: Consider the register map and memory gap given. Each of the memory locations
explicitly shown represents 4 bytes. What is the value of the operand that is written to $t1
in each of the following MIPS-like instructions?

1. move $t1, $t2
This is register direct addressing, and the operand value is 200.

2. 1w $t1, 300
This is memory direct addressing, and the operand value is 500.

3. 1i $t1, 300
This is immediate addressing, and the operand value is 300.

3.8. Subroutine Implementation 141

4. 1w $t1, ($t2)
This is register indirect addressing, and the operand value is the contents of memory
location 200, which is 50.

5. 1w $t1, $t2($t3)
This is register indexed addressing, and the operand value is the contents of memory
location 400 (obtained by adding the contents of $t2 and $t3), which is 1000.

6. 1w $t1, (500)
This is memory indirect addressing; the effective address of the operand is the contents
of memory location 500, and the operand value is 50.

3.8 Subroutine Implementation

In structured programming languages, subroutines (and macros) are the main mechanism
for control abstraction, which permits associating a name with a potentially complex code
fragment that can be thought in terms of its function rather than its implementation. In
Section *** we saw how a subroutine is implemented in the MIPS-I assembly language.
In this section, we take a broader look at this topic, which is at the core of structured
programming. The two things that (i) a subroutine can be called from different places
in the program, and (ii) after the completion of the subroutine, control returns to the
calling place. For the proper functioning of a subroutine, at the assembly language level, a
subroutine requires its own storage space for storing the following: its return address of the
subroutine, its local variables, links to variables in non-local scopes'?, and temporary values
it produces. In addition, it may require register space to store frequently used values.

Specifically, we discussed three sub-topics there: return address saving, parameter pass-
ing, and saving (and restoring) of registers. In this section, we shall look at some design
choices in these areas. Important issues to consider in implementing subroutines in an
assembly language are:

e The HLL subroutine may have local variables declared within it, for which storage
space needs to be allocated by the assembly language program. Because of the possi-
bility of recursion, each instance of a subroutine requires a new set of storage locations
for its local variables.

e Temporary values created within an assembly language subroutine may need to be
stored in memory locations and registers. We cannot specify a fixed set of memory
locations for a subroutine, again because of recursion. Conceptually, each run-time
instance of a subroutine requires a few “fresh” memory locations and registers.

12Some high-level languages such as

142 Chapter 3. Assembly-Level Architecture — User Mode

e A subroutine may be called from different places in a program. When the subroutine
finishes execution, control must return to the instruction that immediately follows the
call instruction that passed control to the subroutine.

e Most subroutines need the calling program to pass parameters to them at the time
they are called. Also, often, a subroutine may need to pass a return value to the
calling program.

We shall take a detailed look at each of these issues and the solutions developed to
handle them. One important aspect that guides these solutions is that the development of
an assembly language subroutine—be it by a programmer or a compiler—is often done in
isolation to the development of its calling routine(s). This means that the calling routines as
well as the subroutines must adhere to a set of well-defined specifications or conventions. If
the calling routine was developed with a particular convention in mind, and the subroutine
was developed with another, then the program as a whole may not guarantee correct results.

The crux of the first two problems mentioned above is that each invocation of a subrou-
tine needs a separate working environment. This environment consists of a set of registers
and memory locations that can be used for allocating local variables, and storing temporary
values. To solve the last two problems, we need to provide a well-defined communication
mechanism between the working environments of the caller and the callee.

We already saw in Section 3.4.2 how local variables of a HLL program are allocated
storage space in the corresponding assembly language program. The conventional method
is to build a new stack frame every time a subroutine is called, and to allocate specific
locations within the stack frame for each local variable. The stack frames are created within
the stack section of the memory address space, and are organized as a LIFO structure. The
provision of an independent stack frame for each active subroutine enables each subroutine
instance to have its own set of storage locations for allocating its local variables. In the
following subsections, we will see how the stack frame concept has become the backbone
for solving all of the above mentioned problems associated with implementing subroutines.

3.8.1 Register Saving and Restoring

As discussed, the development of an assembly language subroutine—whether by a program-
mer or a compiler—is often done in isolation to the development of the calling program.
This means that at the time of subroutine development, it is difficult to identify the regis-
ters that are not used in the calling environment, and are therefore available for its use. If
the subroutine developer blindly uses an arbitrary register for storing a temporary value,
there is a possibility of overwriting useful information belonging to the calling environment.
Notice that a similar problem is avoided for memory values by utilizing a separate stack
frame for each active subroutine. One possibility is to provide a similar arrangement for
registers. Sun Microsystems’ SPARC architecture does precisely that. It uses the concept
of multiple register windows. Each active subroutine has its own private register name

3.8. Subroutine Implementation 143

space called register window. Every time a subroutine is called, a new register window is
made available to the newly activated subroutine. When the subroutine finishes execution,
its register window ceases to exist.

A more conventional approach for furnishing registers to a subroutine is to let both the
caller and the callee use the same register set, but provide a means to temporarily save the
values pertaining to the caller, prior to the callee using them. Once the callee has completed
its usage of a register set, their original values are restored. Again, a convenient place to
temporarily save the register values is the stack frame. Figure 3.17 shows the layout of a
stack frame in which space has been set apart for saving general-purpose registers as well
as floating-point registers. This is the approach followed in the MIPS-I ALA.

Performing the saving (and restoring) of the register values at the proper times is the
responsibility of the assembly language programmer. This saving (and restoring) can be
done by the caller (caller save), by the callee (callee save), or by a combination of the two.

It is important to note that it is not necessary to save the entire set of registers in the
name space. Strictly speaking, in order to ensure program correctness, we need to save only
those registers that contain useful values (such registers are called live registers) and are
about to be overwritten. However, it is difficult for either the caller or the callee to verify
both of these requirements: liveness of a register as well as the definiteness of overwriting it.
The caller knows about the liveness of a register, but not its probability to be overwritten
by the callee. The callee, on the other hand, knows when the register will be overwritten,
but it does not know if the register is livel Thus, whether we use caller save or callee
save, some inefficiency is bound to occur. Assembly languages like MIPS-I AL incorporate
some conventions about register usage to trim this inefficiency: some of the registers are
earmarked for caller save, and some others are earmarked for callee save.

3.8.2 Return Address Storing

Because a subroutine may be called from different places in a program, provision must be
made for returning to the appropriate location in the program after the subroutine completes
execution. To do this, the return address must be saved somewhere before transferring
control to the subroutine. This saving can be done either by inserting extra instruction(s)
before the call instruction, or by specifying it as part of the call instruction’s semantics.
Most of the machines follow the latter approach. The way in which a computer supports
control flow changes to and from subroutines is referred to as its subroutine linkage
method.

What would be a good place to store the return address? A commonly used method
is to store it in a special register, called a link register. This provides a fast mechanism to
store and retrieve the return address. However, it does not allow subroutine nesting; i.e.,
one subroutine calling another. When a nested subroutine call is made, the return address
of the second call also gets stored in the link register, overwriting its previous contents
(the return address of the first call). Hence it is essential to save the link register contents

144 Chapter 3. Assembly-Level Architecture — User Mode

Lower Addresses

$sp —»

Space for storing
callee arguments

Space for storing
FPRs

Space for storing
GPRs

Current Stack Frame

Space for storing
Temporary Values

Space for allocating
Local Variables

Higher Addresses

Figure 3.17: Layout of a Typical Stack Frame

somewhere else before calling another subroutine.

Conceptually, subroutine nesting can be carried out to any depth. At any point in time,
the first subroutine to complete will be the last one to be called. Its return address is the
last one generated by the nested call sequence. That is, the return addresses are generated
and used in a last-in first-out (LIFO) order. This suggests that it would be ideal to save
the return addresses in a stack-like structure; the LIFO nature of stack pushes and pops
fits naturally with the LIFO nature of subroutine calls and returns. Instead of defining a
separate stack structure for storing the return addresses, however, we can conveniently store
a subroutine’s return address in its stack frame itself, as we saw for the MIPS-I assembly
language.

If a subroutine needs to call another, then the assembly language programmer (or com-
piler) writing the caller routine includes instructions to save the contents of $ra on the stack
frame (before performing the call) and to restore the contents of $ra (after returning from
the callee). Typically, these instructions are placed at the beginning and end, respectively,
of the calling subroutine.

3.8. Subroutine Implementation 145

3.8.3 Parameter Passing and Return Value Passing

Finally, when calling a subroutine, the calling routine must provide to the callee the pa-
rameters, that is, the operands or their addresses, to be used in the computation. Later,
the subroutine may return the results of the computation to the calling routine. This ex-
change of information between a calling routine and a subroutine is referred to as parameter
passing. Parameter passing may occur in several ways. The parameters may be placed in
registers or in the stack, where they can be accessed by the subroutine. Figure 3.18 shows
a parameter being passed to subroutine P through register $a0. The return value is passed
by the subroutine back to the calling program through register $vo0.

Calling Called
Rou‘tlne Subroutine
P:
7 # use parameter stored in $a0

li $a0, 1 # place argument in $a0
jal P # call subroutine P

use return value stored in $v0 . # place return value in $v0
‘ “ljr S$ra #return

Y

Figure 3.18: Passing Parameters and Return Value through Registers

Many assembly languages have conventions about which registers are used for passing
parameters and return values. For instance, the MIPS-I1 AL, as we saw, designates 4 regis-
ters, $a0-$a3 for passing parameters and 2 registers, $v0 and $v1, for passing return values.
When one subroutine wants to call another, it may need to save the incoming parameters
(present in registers $a0-$a3) in the stack frame, and copy the outgoing parameters (for
the callee) onto the same registers. Assembly languages with register windows avoid this
overhead by overlapping a portion of two adjacent register windows.

Passing parameters through general-purpose registers is straightforward and efficient.
However, if many parameters are involved, there may not be enough general-purpose reg-
isters available for this purpose. In such a situation, the parameters may be placed on the
caller subroutine’s stack frame, from where the callee subroutine can access them. This is
depicted in the stack frame layout given in Figure 3.17. The stack frame provides a very
flexible alternative, because it can handle a large number of parameters. Before calling the
subroutine, the calling program copies all of the parameters to the stack frame. The called
subroutine can access the parameters from the stack frame. Before returning to the calling
program, the return values can also be placed on the stack frame.

146 Chapter 3. Assembly-Level Architecture — User Mode

3.9 Defining Assembly Languages for Programmability

When assembly languages were first introduced, they were very similar to the lower-level
machine language (ML) they corresponded to, except that they used alphanumeric symbols
instead of binary codes. Thus, instead of coding in a machine language the bit pattern
10001100010000010101010110000010, the programmer could code the same instruction
in an assembly language as 1w R1, 0x5582(R2). The assembler would translate each AL
instruction into precisely one ML instruction. With improvements in assembler technology,
this strict correspondence to machine language became relaxed. We now have powerful
assembly languages that provide several additional features. We shall discuss some of these
features below.

3.9.1 Labels

In order to do this, the assembly language programmer has to keep track of the memory
locations that correspond to different variables. Keeping track of the memory locations
assigned to variables can be quite tedious for an assembly language programmer. Most
assembly languages therefore provide the ability to symbolically specify the memory location
corresponding to an HLL variable. Each symbolic name in the assembly language program
is eventually replaced by the appropriate memory address during the assembly process.

3.9.2 Pseudoinstructions

Pseudoinstructions are instructions that are present in the assembly-level architecture, but
not in the instruction set architecture. Such instructions are not implemented in the hard-
ware, but are synthesized by the assembler using sequences of instructions present in the
machine language. Modern assembly languages often support different types of pseudoin-
structions. For example, the assembly-level architecture may support addressing modes that
are not really present at the ISA level. By extending the instruction set in this manner, the
assembly language makes it easier to program at the assembly level, without adding any
complexity to the hardware. During assembly, each pseudoinstruction is synthesized using
one or more ML instructions.

3.9.3 Macros

Macros go one step beyond pseudoinstructions by allowing the programmer to define (or use
predefined) parameterized sequences of instructions that will be expanded during assembly.
Macros are very helpful in reducing the source code size as well as in making it more
readable, without incurring the overhead of subroutine calls and returns. It is often the case
that a sequence of instructions is repeated several times within a program. An example
of a sequence of instructions might be the operation that pushes data onto the stack, or

3.10. Concluding Remarks 147

the operation that pops data off the stack. A mechanism that lets the assembly language
programmer define sequences of instructions, and associate these instructions with a key
word or phrase is called a macro. Macros allow the assembly language programmer to define
a level of abstraction.

Simple text-substitution macros can be easily incorporated into an assembly language
by using the C language’s #define construct. The assembler can invoke the C preprocessor
cpp to do the required text substitution prior to carrying out the assembly process. An
example for such a macro definition and use is given below.

#define LEAF(fname) \

.text; \
.globl fname; \
.ent fname; \
fname:
LEAF (foo)

3.10 Concluding Remarks

3.11 Exercises

1. Explain the major differences between high-level languages and assembly languages.

2. Explain why local variables (the ones declared inside subroutines) are typically as-
signed memory locations in the stack, and not in the .data section of memory.

3. Explain why the memory direct addressing mode cannot be used for accessing data
from the stack and heap sections of memory.

4. An assembly-level architecture defines directives, non-branch instructions, branch in-
structions, subroutine calls and returns, registers, memory address space, macros,
operand stack, and AL-specific instructions. Which of these are non-essential from a
strictly functional point of view? Explain.

5. Explain why, during compilation, dynamically allocated variables of a HLL program
are typically assigned memory locations in the heap section of memory and not in the
stack, even if the dynamic allocation takes place inside a subroutine?

6. Consider the following variable declaration and assignment involving pointers in C.
Translate this C code into MIPS-I assembly language code.

148

Chapter 3. Assembly-Level Architecture — User Mode

int **ppn, n;

*ppn =

&n;

Example Assignment Statement Involving Pointers

7. Consider the following C code snippet:

.data
i: .word 24
j: .word 22
k: .word O
.text
__start:la $t0, i
1w $a0, 0($t0)
jal foo
sw $v0, k
foo: 1w $t1, j
1i $v0, O
loop: addi $vO, $vO, 2
addi $t1, $t1, 1
bne $t1, $a0, loop
jr $ra
1i $v0, 10
syscall

Code for exit system call
Call 0S to exit

(a) Trace the execution of this MIPS-I program for 12 instructions. Tracing of an in-
struction involves showing what value that instruction writes to a register or memory
location. The 12 instructions that you trace must be written in the order in which
they are executed.

(b) How many memory data references will be made during the execution of these 12
instructions? That is, how many values will be transferred from the memory to the

processor?

(¢) (2 points) Will this program exit by calling the OS, or will it stay in an infinite

loop? Explain.

Chapter 4

Assembly-Level Architecture —
Kernel Mode

Give instruction to a wise man, and he will be still wiser;
Teach a just man, and he will increase in learning.

Proverbs 9: 9

The previous chapter discussed at length the assembly-level architecture machine seen
by application programmers. We also saw the basics of translating high-level language
application programs to equivalent assembly language programs. As discussed in the last
part of chapter 2, high-level languages provide application programmers with an application
programming interface (API) for specifying system-specific functions such as input/output
and memory management. The API is implemented by the operating system kernel that
resides in computer systems. When an application program invokes one of the system
call functions specified in the API, the control of the computer system is transferred from
the application program to the operating system (OS), which performs the function, and
transfers control back to the application program.

In order to perform the system functions in an adequate and efficient manner, the
machine needs to include special resources to support the OS. Such resources are generally
restricted to the OS, and typically include a few registers, a notable portion of the memory
address space, a few instructions, and direct access to all of the IO device controllers.
Application programs are not allowed to access these restricted resources. In order to enforce
the distinction between application programs (which can only access limited resources) and
OS programs (which can access all resources), computers can operate in at least two different
execution modes—the User mode and the Kernel mode, which is also called Supervisor
mode or Privileged mode; in this book we use the term Kernel mode. The Kernel mode is

149

150 Chapter 4. Assembly-Level Architecture — Kernel Mode

intended to execute instructions belonging to the OS, and the User mode is intended to
execute instructions belonging to application programs.

“Fvery mode of life has its conveniences.”
— Samuel Johnson. The Idler

It is important to note that many of the routines in the OS kernel are executed on behalf
of user programs. For example, the shell program executes in the User mode and invokes
a system call (syscall) instruction to obtain the characters entered by the computer user
on the terminal keyboard. This syscall instruction is implemented by the OS kernel, which
executes in the Kernel mode on behalf of the shell program, reads the characters typed on
the keyboard, and returns the characters to the shell. The shell then executes in User mode,
interprets the character stream typed by the user, and performs the set of actions specified
by the user, which might involve invoking other syscall instructions.

Thus, Computer operating systems are another classic example of event-driven programs
on at least two levels. At the lowest level, interrupt handlers act as direct event handlers
for hardware events, with the CPU hardware performing the role of the dispatcher. Op-
erating systems also typically act as dispatchers for software processes, passing data and
software interrupts to user processes that in many cases are programmed as event handlers
themselves.

The discussion so far might suggest that systems spend very little time in the kernel
mode, and that most of the time is spent in the user mode. The truth is just the opposite!
Many embedded systems never leave the kernel mode. A significant amount of code is
therefore developed for the kernel mode.

4.1 Overview of Kernel Mode Assembly-Level Architecture

In this chapter, we will study the Kernel mode aspects of the assembly-level architecture of
modern computers. The Kernel mode part is similar in many ways to the User mode part
that we saw in detail in Chapter 3. In particular, the register model, the memory model,
the data types, and the instruction types available to the Kernel mode assembly language
programmer are all quite similar to those available to the User mode assembly language
programmer. Therefore, it is more instructive to consider the differences between the two
modes, the details of which, unfortunately, vary somewhat from one machine to another.
The main differences are given below:

e In addition to the register set available in the User mode, an additional set of registers
called privileged registers is available in the Kernel mode. One such register is the
processor status register, for instance. The register set available in the Kernel
mode is a superset of what is available in the User mode.

e Like the case with the register set, an extended memory address space is usually

4.1. Overview of Kernel Mode Assembly-Level Architecture 151

available in the Kernel mode. The overall Kernel mode memory address space may be
divided between addresses that are accessible only in the Kernel mode and addresses
that are accessible in both modes. User mode programs can access only User mode
addresses. Kernel mode programs can access both Kernel mode and User mode ad-
dresses. For instance, in the MIPS-I assembly-level architecture, memory addresses
from 0x80000000 to Oxffffffff can be accessed only by the OS.

e In the Kernel mode, the assembly language programmer is provided a set of 10 ports.
These ports are either provided as a set of IO registers or as part of the privileged
memory address space.

e In the Kernel mode, the program has access to special hardware structures for perform-
ing resource management functions. One such hardware structure is TLB (Translation
Lookaside Buffer), which is used to implement the virtual memory concept.

e In addition to the instruction set available in the User mode, an additional set of in-
structions called privileged instructions is available in the Kernel mode. The privileged
instructions cannot be executed while in User mode. For example, a machine may
have an instruction that manipulates the processor status register. If a User program
uses this instruction, the computer will not execute it, and instead will signal an error.

4.1.1 Privileged Registers

In addition to the register set available in the User mode, an additional set of registers
called privileged registers is available in the Kernel mode. Table 4.1 lists the privileged
registers defined in the MIPS-I kernel mode architecture, along with their names and uses.
The first eight registers in the table are used for implementing memory management, and
are explained in Chapter 7. The next 3 privileged registers—sr, cause, and epc—are used
for processor management. sr contains bits that specify the current operating mode and
conditions of the processor, such as the current interrupt priority level. epc is used to
store the memory address of the interrupted instruction, and is useful for returning to the
interrupted program after handling the interrupt/exception. Its contents can be copied
to a general-purpose register rt by executing the privileged instruction “mfcO rt, epc”.
Finally, the PRIA register is used for storing the processor’s generic type number.

Some architectures include a privileged register to point to the current process’ process
control block, the block of memory in the privileged address space where the OS stores
information about the process. Some architectures provide a page table pointer for speeding
up translations of virtual memory addresses to physical memory addresses. In machines
using vectored interrupts, an interrupt vector register may be provided.

152 Chapter 4. Assembly-Level Architecture — Kernel Mode

Register | Register Use
Number Name
0 Index
1 Random
2 EntryLo
4 Context
5 PageMask
6 Wired
8 BadVaddr
10 EntryHi
12 SR Status register
13 Cause Store the cause of the most recent exceptional event
14 EPC Exception PC; store PC value of interrupted instruction
15 PRId Processor ID register; store this processor’s generic type number

Table 4.1: Names and Uses of MIPS-I Privileged Registers

4.1.2 Privileged Memory Address Space
4.1.3 10 Addresses

The IO models supported by the User mode assembly-level architecture and the Kernel
mode assembly-level architecture are quite different. As discussed in Chapters 2 and 3,
the 10 model presented to application program developers is at the level of files, and is
somewhat abstract. Any operation on a file is accomplished by calling the operating system.
The IO model presented to operating system developers is more concrete, and involves a
collection of IO addresses, which are accessed by 10O instructions. In other words, the 10
primitives provided by the kernel mode machine consist of an IO address space and a set
of (privileged) IO instructions. The exact nature of the IO address space depends on the
type of IO addressing used, and is discussed in Section 4.3.

4.1.4 Privileged Instructions

The Kernel mode architecture includes additional address spaces and registers, as we just
saw. In order to provide exclusive access to these, an additional set of instructions are
also included in the Kernel mode ISA. These instructions are called privileged instructions.
Examples include instructions to access 10 addresses, instructions to manage memory, and
instructions to manage processes. The Kernel mode instruction set is thus a superset of the
User mode instruction set, as pictorially depicted in Figure 4.1. The User mode instruction
set contains a set of syscall instructions, as well as non-syscall instructions for performing

4.2. Switching from User Mode to Kernel Mode 153

data transfer operations between registers and memory, arithmetic/logic operations, and
control flow change operations. At the microarchitecture level (which is two levels below
the assembly level), a non-syscall instruction is directly interpreted for execution, whereas
a syscall instruction is interpreted by invoking a predefined OS service. That is, a syscall
instruction is interpreted by executing a sequence of instructions in the Kernel mode (some
of which will be privileged instructions), which are then directly interpreted for execution
in the underlying kernel mode microarchitecture.

User Mode
System Call Non-system Call Privileged
Instructions Instructions Instructions
Kernel Mode

Figure 4.1: Relation between the User Mode and Kernel Mode Instruction Sets

The privileged instructions—which are not available in the User mode—consist of 10
instructions, inter-process synchronization instructions, memory management instructions,
and instructions to enable and disable interrupts. IO instructions include instructions that
read from or write to 10 registers. The reason for keeping the 10O instructions privileged is
straightforward: if an application program is permitted to execute a privileged instruction,
then it could read confidential data stored anywhere in the system, write on other users’
data, erase all of the information on a disk, and, in general, become a threat to the security
of the system itself. So, what will happen if a programmer includes a privileged instruction
in an application program? When the program is being executed, an attempt to execute
that instruction will generate an exception', which causes control to be transferred to the
OS. The OS will most likely terminate that application program.

4.2 Switching from User Mode to Kernel Mode

We can think of three events that cause the execution mode to switch from User mode to
Kernel mode, causing control to transfer from user code to kernel code. They are: syscall
instructions, device interrupts, and exceptions. These three events are illustrated in Figure
4.2, and are discussed in detail in this section. When any of these events happen, the kernel
gets the control and performs the required action. Among these three events, only the
action to be done for syscall instructions is defined in the API (Application Programming
Interface).

The first thing the kernel does after getting the control is to disable all interrupts (i.e.,
set the processor state to not accept any more interrupts), and save the essential state of

"Most assemblers will flag this as an error during the assembly process.

154 Chapter 4. Assembly-Level Architecture — Kernel Mode

the interrupted process on the kernel stack?. This state includes the contents of the process’
general-purpose registers, program counter, and process status word. Afterwards, the kernel
determines the cause of the interrupt, and calls the appropriate low-level handler routine
by looking up a dispatch table containing the addresses of these routines. This low-level
routine performs the functions for which the OS was specifically called at that time. When
this low-level routine completes, the kernel restores the state of the process, and sets the
execution mode back to the previous value.

Device Interrupts

User
Mode

RFE - Returns

Figure 4.2: Events Causing Switching Between User Mode and Kernel Mode

4.2.1 Syscall Instructions: Switching Initiated by User Programs

When an application program is being executed, the program can voluntarily hand over the
machine’s control to the OS by executing a syscall instruction (sometimes called software
interrupt or programmed interrupt). Execution of a syscall instruction is a synchronous
event, because it occurs at the same point of execution when a program is run multiple
times. To the application programmer, a syscall instruction seems very much like a function
call; however, this control flow change causes the processor to switch to the Kernel mode
and to begin executing kernel code. The exact semantics of each system call are defined
in the API, and can be different, at least theoretically, in different APIs. For producing
portable code, however, the semantics of each system call are kept more or less the same
across APIs. To be on the safe side, it is prudent for application programs not to directly
call the OS, but instead call an appropriate library routine. When porting to a platform
with a different API, all that is required then is to use a different set of library routines
that suit the new APL

When a syscall instruction is executed, the computer temporarily stops execution of the
current program, switches to Kernel mode, and transfers control to a special OS routine
called system call layer. Figure 4.3 illustrates how transfer of control takes place when
a syscall instruction is executed. As shown, the syscall instruction is treated very similar

2Some operating systems save the state in the interrupted process’ user stack. Some others save the state
in a global interrupt stack that stores the frames for those interrupt handlers that are guaranteed to return
without switching context.

4.2. Switching from User Mode to Kernel Mode 155

to a jal 8 (jump and link) instruction, where § is the address of the first instruction of
the system call layer routine. Thereafter the machine executes the instructions of this part
of the OS. After executing this routine, the eret instruction at the end of the routine
causes control to return to the instruction that immediately follows the syscall instruction
in the application program. The system call layer routine is very much like a subroutine;
an important difference, however, is that it executes in Kernel mode.

User Mode Kernel Mode
A'gplication System Call
rogram nterface
Routine
S: ”

#enable interrupts

j“)

eret

syscall

Similar to ‘jal S’ instruction

Figure 4.3: Transfer of Control while Executing a System Call Instruction

It is important to see the major actions specified by a syscall instruction. These functions
are described below:

e Switch to kernel mode

e Disable interrupts: One of the first actions to be performed by the system call layer
when control transfers to it is to save the current register state and perform other
book-keeping functions. If another interrupt is accepted during this period, there
is a potential to loose useful data. Therefore, it is prudent to temporarily disable
interrupts. After performing the book-keeping functions, the handler may enable
interrupts of higher priority.

e Save return address: The syscall instruction is similar to a subroutine call in many
ways. One of the striking similarities is in the manner of control flow return. When
control returns to the program that contains the syscall instruction, execution contin-
ues from the next instruction onwards. In order to effect such a control flow transfer,
the return address (the address of the instruction immediately after the syscall in-
struction in the static program) needs to be recorded. The MIPS-I architecture, for
instance, specifies a privileged register called epc (exception program counter) for
storing this return address. B

e Record the cause for this exceptional event: Once the syscall instruction is executed
and control is transfered to a handler, the system has no way of remembering the

interrupt
service
routine,
interrupt
handler

156 Chapter 4. Assembly-Level Architecture — Kernel Mode

reason for activating the handler. This is especially the case if multiple exceptional
events transfer control to the same entry point, i.e., the same handler. For instance,
the MIPS-I architecture specifies the same entry point (0x80000080) for all but two of
the exceptional events. To identify the reason for transferring control to this memory
location, the MIPS-I architecture provides a privileged register called cause.

e Update pc to point to the entry point associated with syscall instructions. For the
MIPS-I architecture, this entry point is 0x80000080.

4.2.2 Device Interrupts: Switching Initiated by IO Interfaces

The syscall instruction is useful when an application program needs some service from the
OS. Sometimes, the currently executing application program may not need any service from
the OS, but an IO device needs attention, requiring the OS to be executed. This requirement
has led to the provision of device interrupts (also called hardware interrupts) by which an
10 device can notify the computer when it requires attention. Unlike a system call, a device
interrupt is an asynchronous event, because it may not occur at the same point of execution
when a program is run multiple times.

In order to run the OS, the currently running program has to be temporarily stopped.
Therefore, when an interrupt is received, the computer temporarily stops execution of the
current program and transfers control to a special OS routine called interrupt service
routine (ISR) or interrupt handler. If the machine was in the User mode at the
time of the interrupt, then it is switched to the Kernel mode, giving the operating system
privileged access to the machine’s resources. An ISR is very much like the subroutines that
we saw earlier; an important difference, however, is that a subroutine performs a function
required by the program from which it is called, whereas the ISR may have nothing in
common with the program being executed at the time the interrupt request is received.
The exact manner in which the interrupting device is identified and the appropriate ISR is
called varies from one machine to another.

Figure 4.4 illustrates one way of transfering control to the ISR when an interrupt is
raised. Assume that an interrupt request arrives during the execution of instruction ¢. The
computer first completes the execution of ¢. Then it transfers control to an OS routine called
interrupt hander interface. This routine identifies the interrupting device, and determines
the starting address of the appropriate ISR, namely P in the figure. It then transfers
control to the ISR by means of a CALL instruction. Thereafter the machine executes the
instructions of the ISR. After executing the ISR, control is returned to the interrupt hander
interface. The interface routine is terminated by an ERET instruction, which causes control
to return to instruction ¢ + 1 in the interrupted program. Along with this, the computer
also switches back to the User mode.

Because an interrupt is an unscheduled event, the ISR must save and restore any registers
that it modifies. A convenient place to save the registers is the kernel stack.

4.2. Switching from User Mode to Kernel Mode 157

Kernel Mode
Interrupted Interrupt Interrupt
Progrgm Handler Service
Interface Routine
S: ‘ P: -
Interrupt occurs — | i
i+1 \ “
eret jr $ra

Equivalent to ‘jal S’ instruction

Figure 4.4: Transfer of Control while Servicing an Interrupt

In a multi-tasking environment, whenever the machine switches to the Kernel mode,
handing control over to the OS, it also performs process scheduling. That is, the OS decides
which application process should run next. For the OS to do this process scheduling, it
must run periodically. However, extended periods of time may elapse with the computer
being in the User mode and no syscall instructions or device interrupts. In order to perform
process scheduling in an adequate manner, the OS needs to gain control of the machine on
a periodic basis. Multi-tasking computers typically implement this by including as an IO
device a hardware timer, which issues a hardware interrupt at regular intervals fixed by the
OS.

4.2.3 Exceptions: Switching Initiated by Rare Events

“The young man knows the rules, but the old man knows the exceptions”.
— Oliver Wendell Holmes, Sr (American Physician, Poet, Writer, Humorist and
Professor at Harvard, 1809-1894) in The Young Practitioner

An exception is an unexpected event generated from the program being executed. Ex-
amples are attempt to execute an undefined instruction, arithmetic overflow, and divide
by zero. When an exception occurs, the machine switches to Kernel mode and generates
an exception vector depending on the type of exception. The exception vector indicates
the memory address from which the machine should start execution (in Kernel mode) after
it detected the exceptional event. In other words, after an exceptional event occurs, the
machine starts executing in Kernel mode from the address specified in the exception vector.
The machine may also record the cause of the exception, usually in a privileged register.
The rest of exception handling is similar to that of interrupt handling. That is, the return
address is saved, and control is transfered to an exception handler routine in the OS.

The exception handler routine at the exception vector performs the appropriate actions.
If that vector is used for different exception types, then the routine inspects the recorded
cause of the exception, and other relevant state information, and branches to an appropri-

158 Chapter 4. Assembly-Level Architecture — Kernel Mode

ate exception handler routine to handle the exception. After taking the necessary steps,
control may be returned to the application program that caused the exception, switching
the mode back to the User mode. Sometimes, exception handling may involve terminating
the application program that generated the exception, in which case the OS gives control
to another application program.

4.3 10 Registers

We saw in Section 4.1 that the IO model supported in the kernel mode consists of a set of
10 registers and a set of instructions to access them. The nature of these 10 registers vary
considerably, depending on the addressing method used. Two types of addressing methods
are used for IO registers: memory mapped IO and independent 10 (or IO mapped 10). We
shall discuss these two schemes in detail.

4.3.1 Memory Mapped IO Address Space

In memory mapped IO, each 10 address refers to an IO register, an entity similar to a
memory location that can be read/written. Because of this similarity, the 10 registers are
assigned locations within the memory address space itself. Thus, there is a single address
space for both memory locations and IO registers. Some portions of the memory address
space are assigned to IO registers; loads and stores to those addresses are interpreted as reads
and writes to IO registers. The main advantage with this approach is that no extensions are
required to the instruction set to support IO operations®. Another advantage is that it allows
for wider compatibility among IO specifications across different computer families. The
MIPS-I architecture uses this approach; memory addresses from 0xa0000000 to Oxbfffffff
are available to the OS for use as 1O registers. An example 1O read instruction for the MIPS-
I architecture is
1w $t1, keyboard status

which copies the contents of IO register labeled keyboard status to general-purpose register
$t1. At execution time, this label will refer to an address in the range 0xa0000000 -
Oxbfffffff. This mapping is done either at assembly time by the assembler or at IO port
configuration time by the OS.

4.3.2 Independent 10 Address Space

In this type of IO addressing, a separate IO address space is provided independent of the
memory address space. Thus, like the register space and the memory address space, there
is an IO address space also. When accessing an address in the IO address space, an 10

3 At the microarchitectural level, the hardware has to distinguish IO operations from memory operations,
and treat them accordingly.

4.3. 10 Registers 159

address can be specified either by a new addressing mode, or by a new set of opcodes. It is
customary to use the latter approach — providing a separate set of opcodes specifically for
manipulating IO addresses. An example IO read instruction for a MIPS-I-like architecture
would be

in $t1, keyboard_status

What do we gain by providing a separate address space for the IO (and a separate set
of opcodes as well)? On first glance, there seems to be no apparent gain. Now consider this
scenario. When we have a separate 10 address space, instead of organizing it as a linear
address space, we have the flexibility of organizing it as a set of 10 ports or 10 programming
interfaces, entities that are more complex than IO registers and memory locations. That
is, each IO address refers to an IO port. Several instruction opcodes can be provided to
perform complex operations on an 10 port. An example IO instruction that tests the status
of a port used for connecting a keyboard is

test keyboard_port

FExamples of machines with independent 10 are the Intel x86 and the IBM 370 computers.
Figure 4.5 illustrates the two types of 10 address mapping. It is important to note that
the two types of IO addressing are not mutually exclusive. In a machine that supports
independent 10, some of the memory addresses can still be mapped to IO registers. For
instance, a graphics display port is usually memory-mapped, to permit device drivers to
easily modify bit patterns in memory, which are then displayed on the screen.

Memory address Memory address
—) space —) space
Memory Memory
address address
Hard diskax Hard diska
Terminal> Terminal>
Printer™ Printer”” 10 address
10 address space space
10

address
Data ! Data ! Data !

(0) (ii)

Figure 4.5: Different 10 Address Mappings: (i) Memory Mapped 10; (ii) Independent 10

160 Chapter 4. Assembly-Level Architecture — Kernel Mode

4.3.3 Operating System’s Use of IO Addresses

Irrespective of the type of 10 addressing used, the OS views the IO address space as a
collection of IO ports or IO programming interfaces. The specifications of different 1O
ports can be different, and are determined based on the type of 10 devices that are meant
to be connected to them. Most of the ports adhere to one standard or other, as we will see
in Chapter 8.

In an ISA that specifies IO registers, each 10 port then encompasses several consecutive
10 registers. Depending on the characteristics of the port, some of its registers are used to
record status information related to the port (O status registers); individual bits of a status
register may correspond to a different attribute of the port for example, the least significant
bit may specify whether a new character has been typed on the keyboard, the next bit may
specify whether an error has occurred, etc.). Other registers may be used to store data
to be transferred between 10 ports and general-purpose registers or main memory. These
registers are called IO data registers. Some of the registers in a port may be viewed as
read-only, some may be write-only, and the rest may be read-write. The OS decides which
IO port needs to be accessed to access a particular file.

Notice that all that the OS program “sees” of an 10 device is its port, which includes a
set of 10 registers and specifications for the operation of these registers. When an IO write
instruction writes a value to a status/control register in an IO port, the device controller
interprets it as a command to a particular IO device. When an OS routine wants to know
the status of an 10 device, it uses an 10O read instruction to read the status register of its 10
port. Similarly, an IO write instruction can be executed by an OS routine to send data to
the data register or status register of the IO port pertaining to an IO device. An example
1O write instruction for the MIPS-I architecture is

sW $t1, keyboard status

where keyboard_status is the address assigned to the status register of the IO port per-
taining to the keyboard.

The astute reader would have realized by now that the IO model presented to OS
programmers, although more concrete than the one presented to applications programmers,
still does not provide direct access to the 10 devices. That is, the instructions in the OS
program do not directly access the IO device hardware. There are a variety of reasons for
this:

e The IO devices are incredibly diverse. It would be impractical for the OS device
drivers to incorporate the necessary functionality to directly control a wide range of
IO devices. For example, if the OS directly accesses a hard disk, to get a data item
from the disk, the device driver would need to execute many instructions that deal
with the intricate details of how exactly that disk works. In the future, if this disk is
replaced by a slightly different hard disk, then the device driver (to access the disk)
may also need to be changed.

4.3. 10 Registers 161

inrerconnecr

‘Status/Control Register‘ ‘Status/Control Register‘ ‘Status/Control Register‘
. Main
Registers Memory ‘ Data Register ‘ ‘ Data Register ‘ ‘ Data Register ‘
10 Port 10 Port 10 Port

/
’
! /
! ’
i /
/
| ’
\ /
h ’
|

Figure 4.6: Abstraction of IO Devices Presented to the OS

e 10 devices are often electromechanical devices whose manner of operation is different
from that of the rest of the machine, which are implemented using electronic devices.
Therefore, a conversion of signal values may be required.

e The data transfer rate of IO devices is often much lower than that of the rest of the
system, necessitating special synchronization operations for correct transfer of data.

e IO devices often use data formats and word lengths that are different from those
specified in the kernel mode.

Because 10 ports are modeling electromechanical 10 devices, the behavior of 10 registers
can be quite different from that of ordinary registers and memory locations. An assembly
language systems programmer needs to be aware of these differences. The following differ-
ences may come as surprises:

e 10O registers may be active elements, and not just passive storage elements. A write
to an IO register often has side effects, such as initiating an activity by the 10 device
connected to the port. A read to an IO register may also have side effects, such as
clearing an interrupt request or clearing an error condition.

e [0 registers may have timing characteristics that are different from ordinary memory.
If a write to an IO register is expected to produce a visible change in that or some other
register, the device driver programmer may need to introduce a pause, for example
by executing nops, to give the device time to respond.

162 Chapter 4. Assembly-Level Architecture — Kernel Mode

e A read to an 10 register may not necessarily return the value that was last written
to it. This is because some bits do not exist (always zero or meaningless), and some
others do not store a value, but are only sensitive to the value conveyed to them
during a write operation. Sometimes the contents or meaning of a bit varies, based
on the contents of other 10 registers. In some cases, a single 10O register may serve
the dual purpose of being a command register as well as a status register. The device
driver writes to this IO register to send commands to the interface, and reads from
the same register to obtain status information. Depending on whether the register is
being read or written, the contents associated with the register are different! Finally,
an IO register may be updated by the IO device connected to the port.

The behavior of an IO register depends on the specifics of the IO port to which it belongs.
The specifications of an IO port include the characteristics of its IO registers. Often, it
is possible to program the behavior of IO registers by writing specific commands in the
control/status registers of the same IO port. All of this depends on the port specifications.
It is therefore important to study the device’s manual, and learn how it functions, before
writing device drivers that control that IO device.

Although the above discussion seems to imply that the grouping of 1O registers into 10
ports is done at the time of OS development, that is rarely the case. The behavior of a
port is very much dependent on the IO device it models. At the time of writing an OS,
it is difficult to know which devices will be eventually connected to a particular computer
system that uses that OS. Therefore, in practice, the OS is split into two parts—the kernel
and the device drivers (or device handlers, or IO handlers, or software drivers). The kernel
consists of the parts that do not change from system to system. The device drivers are
specific to each computer system, and are usually added on when each 10 device is hooked
to the system.

Standard IO Ports: We will see later how this IO model is used for writing assem-
bly language device driver routines that can do specific IO operations, such as reading a
character from a keyboard.

4.4 Operating System Organization

In modern computers, the operating system is the only software component that runs in the
Kernel mode. It behooves us therefore to consider the structure and implementation of an
operating system. In particular, it is important to see how the system calls specified in the
application programming interface (API) (provided to user programs and library functions)

4At the microarchitectural level, the IO interface module typically implements such a register by two
separate registers. It is reasonable to ask why the assembly-level architecture and the ISA define a single 10
register for dual functions. The reason is to conserve the IO address space, which was once a scare resource.

4.4. Operating System Organization 163

are implemented by operating systems. The exact internal details of an operating system
vary considerably from one system to another. It is beyond the scope of this book to
discuss different possibilities. Figure 4.7 gives a possible block diagram, which is somewhat
similar to that of a standard UNIX kernel. In the figure, the kernel mode software blocks
are shown shaded. The main components of the OS software include a system call layer,
file system, process control system, and the device management system (device drivers).
This organization uses a layered approach, which makes it easier to develop the OS and to
introduce modifications at a later time. This also makes it easier to debug the OS code,
because the effect of bugs may be restricted to a single layer. The figure also shows the
relationship of the OS to user programs, library routines, and the hardware.

HCI
Application Programs and Shell
User Mode ‘ Dynamically Linked Libraries
Software
|.—System CaIIH T
ABI i

[]
! Il

OS Interface

|
|
|
|
|
|
|
|
T
T
|
|
|
|
|
|
1
|
|
|
|
|
|
|

I
|
I
|
|
|
‘ System Call Layer }< .
I
|
S — T I E—)
. i ' i
Device- File System Process Control System o
Independent: i 'User Mode !
i 1 Instructions: %)
: it IOCMhanagtementN — Inter—process o Memory | ! ! S
Kernel Mode | ocke | [FhaTaciery |ECAWOre Communication | >"€%W€"| Imana Lo ! T
’ . : gement o
Software | Oriented | | Oriented | | Oriented Lo ! =
‘ L | S
N I o OSKemel P ! 3
T | | @
. | | | Q
Device- Device Drivers | | | w
Dependent ! ! !
L o » | |
I L I I
| i | |
ISA : Kernel Mode : ; User Mode |
v v v v v
] 10 Registers ——————————| Privileged Registers and Memory | User Mode Registers and Memory
Device Controllers B K
10 Control Logic ~————1> Control Unit, ALU, and Memory Controllers
Device Interrupts
Hardware @
|0 Devices —— > Program Control Transfers Initiated by Software
» Program Control Transfers Initiated by Hardware

———————— -+ Hardware Accessed/Controlled

{—————) Hardware Buses

—— = Hardware Connections

Figure 4.7: Block Diagram Showing the Structure of a UNIX-like Operating System

device-

164 Chapter 4. Assembly-Level Architecture — Kernel Mode

4.4.1 System Call Layer

The system call layer provides one or more entry points for servicing syscall instructions and
exceptions, and in some cases device interrupts also. The user program conveys the system
call type by placing the system call number on the user stack or in a register; the MIPS-I
assembly language convention is to use register $2 for this purpose. The system call layer
copies the arguments of the system call from the user stack (or registers) and saves the user
process’ context, possibly on the kernel stack. It then uses the system call number to look up
a system call dispatch vector to determine the kernel function to be called to implement that
particular system call, interrupt, or exception. It then calls that kernel function, sometimes
mapping or converting the arguments. When this kernel function completes, the system
call layer sets the return values and error status in the user stack (or registers), restores
the user process’ context, and switches to User Mode, transferring control back to the user
process.

We can summarize the functions performed by the system call layer:

e Determine type of syscall

e Save registers

Call appropriate hander

Restore registers

Return to user program

4.4.2 File System

The API provided to application programs by the operating system, as we saw earlier,
includes device-independent 10. That is, the interface is the same, irrespective of the
physical device that is involved in the IO operation. The file abstraction part of the API
is supposed to hide all device-specific aspects of file manipulation from HLL application
programmers, and provide them with an abstraction of a simple, uniform space of named
files. Thus, HLL application programmers can rely on a single set of file-manipulation OS
routines for file management (and IO device management in an indirect manner). This is

independenbmetimes referred to as device-independent 10.

10

As we saw in Section 3.4.7, application programs access 10 (i.e., files) through read and
write system calls. The read and write system calls (of the User mode) are implemented
in the Kernel mode by the file system part of the OS, possibly with the help of appropriate
device drivers.

Files of a computer installation may be stored on a number of physical devices, such as

disk drives, CD-ROM drives, and magnetic tapes, each of which can store many files. If the
10 device is a storage device, such as a disk, the file can be read back later; if the device is

4.4. Operating System Organization 165

a non-storage device such as a printer or monitor, the file cannot be read back. Different
files may store different kinds of data, for example, a picture, a spreadsheet, or the text of
a book chapter. As far as the OS is concerned, a file is simply a sequence of bytes written
to an IO device.

The OS partitions each file into blocks of fixed size. Each block in a file has an address
that uniquely tells where within the physical device the block is located. Data is moved
between main memory and secondary storage in units of a single block, so as to take
advantage of the physical characteristics of storage devices such as magnetic disks and
optical disks.

File management related system calls invoked by application programs are interpreted
by the file system part of the OS, and transformed into device-specific commands. The
process of implementing the open system call thus involves locating the file on disk, and
bringing into main memory all of the information necessary to access it. The OS also
reserves for the file a buffer space in its memory space, of size equal to that of a block.
When an application program invokes a system call to write some bytes to a file, the file
system part of the OS writes the bytes in the buffer allotted for the file. When the buffer
becomes full, the file system copies it into a block in a storage device (by invoking the
device’s device driver); this block becomes the next block of the file. When the application
process invokes the close system call for closing a file, the file system writes the file’s buffer
as the final block of the file, irrespective of whether the buffer is full or not, prior to closing
the file. Closing a file involves freeing up the table space used to hold information about
the file, and reclaiming the buffer space allotted for the file.

4.4.3 Device Management: Device Drivers

The device management part of the OS is usually implemented separate from the kernel,
to facilitate easy adding or removal of devices. It is actually a collection of device drivers.
Most computers have input/output devices and storage devices such as disks, terminals,
and printers. Each of these devices requires specific device driver software, which acts
as an interface between the device controller and the file system part of the OS kernel.
A specific device driver is important, because each device has its own specific commands
instead of generic commands. Each device driver itself is a collection of routines, and can
have multiple entry points. The device driver receives generic commands from the OS file
system and converts them into the specialized commands for the device, and vice versa. To
the extent possible, the driver software hides the unique characteristics of a device from OS
file system.

A device driver, or a software driver is a specific type of computer software, developed
to interact with hardware devices. This usually constitutes an interface for communicating
with the device, through the specific computer bus or communications subsystem that the
hardware is connected to, providing commands to and /or receiving data from the device, and
on the other end, the requisite interfaces to the operating system and software applications.

166 Chapter 4. Assembly-Level Architecture — Kernel Mode

Because of its interfacing nature, it is specific to the hardware device as well as to the
operating system.

The key design goal of device drivers is abstraction. Every model of hardware (even
within the same class of device) is different. Newer models also are released by manufac-
turers that provide more reliable or better performance and these newer models are often
controlled differently.

The operating system cannot be expected to know how to control every device, both now
and in the future. To solve this problem, operating systems essentially dictate how every
type of device should be controlled. The function of the device driver is then to translate
these OS mandated function calls into device specific calls. In theory a new device, which
is controlled in a new manner, should function correctly if a suitable driver is available.
This new driver will ensure that the device appears to operate as usual from the operating
systems’ point of view.

Device drivers can be fairly complex. Many parameters may need to be set prior to
starting a device controller, and many status bits may need to be checked after the comple-
tion of each device operation. Many device drivers such as the keyboard driver are supplied
as part of the pre-installed system software. Device drivers for other devices need to be
installed as and when these devices are installed.

The routines in a device driver can be grouped into three kinds, based on functionality:

Autoconfiguration and initialization routines

IO initiation routines

IO continuation routines (interrupt service routinestem Autoconfiguration and initial-
ization routines

IO initiation routines

IO continuation routines (interrupt service routines)

The autoconfiguration routines are called at system reboot time, to check if the corre-
sponding device controller is present, and to perform the required initialization. The IO
initiation routines are called by the OS file system or process control system in response to
system call requests from application programs. These routines check the device status, and
initiate IO requests by sending commands to the device controller. If program-controlled
IO transfer is used for the device, then the IO initiation routines perform the IO transfers
also. By contrast, if interrupt-driven IO transfer is used for the device, then the actual 10
transfer is done by the interrupt service routines when the device becomes ready and issues
an interrupt.

4.4. Operating System Organization 167

4.4.4 Process Control System
4.4.4.1 Multi-Tasking

When a computer system supports multi-tasking, each process sees a separate virtual ma-
chine, although the concurrent processes are sharing the same physical resources. Therefore,
some means must be provided to separate the virtual machines from each other at the phys-
ical level. The physical resources that are typically shared by the virtual machines are the
processor (including the registers, ALU, etc), the physical memory, and the IO interfaces.
Of these, the processor and the IO interfaces are typically time-shared between the pro-
cesses (temporal separation), and the physical memory is partitioned between the processes
(spatial separation)®. To perform a context switch of the virtual machines, the time-shared
resources must be switched from one virtual machine to the next. This switching must be
managed in such a way that the virtual machines do not interact through any state infor-
mation that may be present in the physically shared resources. For example, the ISA-visible
registers must be saved and restored during a context switch so that the new context cannot
access the old context’s register state.

Decisions regarding time-sharing and space-sharing are taken in the Kernel mode by the
operating system, which is responsible for allocating the physical resources to the virtual
machines. If a user process is allowed to make this decision, then it could possibly encroach
into another process’ resources, and tamper with its execution. The operating system’s
decisions, however, need to be enforced when the system is in the User mode. This enforce-
ment is done using special hardware (microarchitectural) support so that the enforcement
activity does not reduce performance.

4.4.4.2 Multi-Programming

Some applications can be most conveniently programmed for two or more cooperating pro-
cesses running in parallel rather than for a single process. In order for several processes to
work together in parallel, certain new Kernel mode instructions are needed. Most modern
operating systems allow processes to be created and terminated dynamically. To take full
advantage of this feature to achieve parallel processing, a system call to create a new pro-
cess is needed. This system call may just make a clone of the caller, or it may allow the
creating process to specify the initial state of the new process, including its program, data,
and starting address. In some cases, the creating (parent) process maintains partial or even
complete control over the created (child) processes. To this end, Kernel mode instructions
are added for a parent to stop, restart, examine, and terminate its children.

5Time-sharing the entire physical memory is not feasible, because it necessitates saving the physical
memory contents during each context switch.

168 Chapter 4. Assembly-Level Architecture — Kernel Mode

4.5 System Call Layer for a MIPS-I OS

We just saw a functional organization of an operating system, and the important functions
performed by each major block. To get a better appreciation of what the OS code looks
like, let us get our feet wet with a detailed real-life example. In this section, we discuss the
barebones of the system call layer of an OS for a MIPS-I machine. The system call layer
implements the interface for system calls, device interrupts, and exceptions. We restrict
ourselves to the system call layer for two reasons: (i) It is perhaps the smallest major block
in an OS (and therefore manageable to be discussed in a book of this scope), but is detailed
enough reflect many of the idiosyncrasies that make OS routines different from application
programs. (ii) It is the block that directly interacts with application programs, which is
what many of the programmers care about.

4.5.1 MIPS-1I Machine Specifications for Exceptions

Software is always written for a specific (abstract) machine specification. Before writing
assembly-level systems software for the system call layer of a MIPS-I OS, we need to know
how the MIPS-I machine specifies information regarding the occurrence of system calls,
device interrupts, and exceptions. Interestingly, MIPS-I does not make a big distiction
between the 3 categories—system calls, device interrupts, and exceptions—when reporting
their occurrence. It treats them all as exceptions! To be specific, it does 3 things when an
exceptional event occurs:

e It modifies privileged register sr (status register) to disable device interrupts and
to reflect Kernel mode of operation.

e [t stores the restart instruction’s address in privileged register epc.

e Generates an exception vector depending on the type of exception.

The MIPS-I architecture provides only 3 exception vectors, in contrast to many others that
provide a much larger set of exception vectors. These 3 vectors are stated below:

e 0xbfc00000: This exception vector is specified at computer reset. Thus, after a reset,
the computer starts executing in the Kernel mode the program starting at memory
address 0xbfc00000.

e 0x80000000: This exception vector is specified when a User TLB miss exception
occurs; Chapter 7 discusses this case in detail.

e 0x80000080: This exception vector is specified when any other exceptional event
occurs.

4.5. System Call Layer for a MIPS-I OS

169

| ExcCode | Mnemonic | Expansion | Description |

0 Int Interrupt Device interrupt

1 Mod TLB Modification Exception Attempt to write to an address
marked as read-only

2 TLBL TLB Load Exception TLB miss for load
or instruction fetch

3 TLBS TLB Store Exception TLB miss for store

4 AdEL Address Error Load Exception Address error for load
or instruction fetch

5 AdES Address Error Store Exception Address error for store

6 IBE Instruction Bus Error Exception Bus error for
instruction fetch

7 DBE Data Bus Error Exception Bus error for data reference

8 Sys Syscall syscall instruction

9 Bp Breakpoint break instruction

10 RI Reserved Instruction Exception Illegal instruction

11 CpU Co-processor Unusable Exception | Software can emulate the
offending instruction

12 Ovf Overflow Exception Arithmetic overflow

13-15 - Reserved

Table 4.2: Exceptions Corresponding to Different Values of ExcCode Field of Cause register
in a MIPS-I Architecture

The third exception vector (0x80000080) corresponds to different types of exceptional
events, and so there must be some provision for the OS to know the exact cause of the
exceptional event whenever this exception vector is generated. The MIPS-I architecture
defines a privileged register called Cause for recording the cause of the most recent excep-
tional event. This register has a 4-bit ExcCode field, which holds an encoded bit pattern
corresponding to the exception cause. Thus, a maximum of 16 different exception types
can be uniquely specified by the machine in this field. Table 4.2 shows the ExcCode values
for different types of exceptional events. Interestingly, a single value (0) corresponds to all
types of device interrupts; however, there is an IP (interrupt pending) field in Cause which
helps to do some differentiation between the interrupt sources. The OS can thus perform
selective polling (of appropriate 10 registers) to determine the exact cause for the interrupt.
Similarly, a single value (8) corresponds to all types of syscall instructions; the OS can
determine the type of syscall by inspecting the contents of register $2.

170 Chapter 4. Assembly-Level Architecture — Kernel Mode

4.5.2 OS Usage of MIPS-I Architecture Specifications

With the above background on the features provided in the MIPS-I architecture to support
exceptional events, let us turn our attention to the barebones of a typical system call layer
used in MIPS-I OSes. This interface code provides 3 entry points, corresponding to the 3
exception vectors: Oxbfc00000, 0x80000000, and 0x80000080. Figure 4.8 shows these 3
entry points and the placement of the exception handler code in the MIPS-I kernel address
space. The third entry point is common for a number of exceptional events, and so the
routine at that entry point checks the Cause register to determine what caused the event.
Depending on the contents of the ExcCode field of Cause, an appropriate handler is called.
This checking is similar to that of implementing the C switch statement, and the standard
way for making this selection is by means of a jump table that contains the starting addresses
of the handler routines.

Kernel Address Space

Addresses
0000 0000
2GB
UTLB Miss Handler 0x8000 0000
User programs,
data General Handler 0x8000 0080
8000 0000

f
Boot Program Oxbf c0 0000

2GB

ffff fffc

Figure 4.8: Placement of the Exception Handler Code in the MIPS-I Kernel Address Space

In the skeleton code given below, the jump table containing handler addresses is called
handler_table. It is placed in the kernel’s data section, and is initialized statically (i.e., at
assembly time as opposed to run time).

Let us take a closer look at the handlers themseleves, which are placed in the kernel’s
text section. The first handler given here—the one starting at address 0x80000000—deals

4.5. System Call Layer for a MIPS-1 OS 171

with user TLB miss exceptions, and is discussed in detail in Chapter 8. It is included here
just for the sake of completeness. The second handler, which starts at address 0x80000080,
deals with general exceptional events. The first thing it does is to save the register values
of the interrupted process. In particular, registers s0-s7, k0, k1, sp, and epc need to be
saved. A good place to save them is the kernel stack®.

At the end of the handler code, we have a pair of instructions, jr $k1 and rfe, which
merit further discussion. The jr $k1 instruction specifies the transfer of control back to
the interrupted program. The rfe (restore from exception) instruction tells the machine to
restore the system’s mode and interrupt status to what it was prior to taking this exception;
thus, it puts the system back in the condition in which the interrupted program was running.
What is a good place to include the rfe instruction in the exception handler? If the rfe
instruction is placed before the jr instruction, then the machine may try to execute in user
mode the jr instruction, which is in the kernel code space. If, on the other hand, the rfe
instruction is placed after the jr instruction, then control is transfered to the interrupted
program, preventing the execution of the rfe instruction. What we really require is that
these two instructions must be executed atomically, meaning this two-instruction sequence

should be done together, without any interruptions”.

HH S R
Handler Table
HHHHEH R R

.kdata # Store subsequent items in kernel data section
.align 2

handler_table:
.word IntHandler # Initialize to interrupt handler address
.word ModHandler # Initialize to modification exception handler address
.word TLBLHandler # Initialize to TLB load miss exception handler address
.word TLBSHandler # Initialize to TLB store miss exception handler address
.word AdELHandler # Initialize to load address error exception handler address
.word AdESHandler # Initialize to store address error exception handler address
.word IBEHandler # Initialize to instruction bus error exception handler address
.word DBEHandler # Initialize to data bus error exception handler address
.word SysHandler # Initialize to syscall handler address

SAs with the user stack, most of the RISC machines do not provide direct support for a kernel stack
either. The kernel stack is therefore implemented within part of the memory address space. Like the user
stack, it is accessed by using the register-displacement addressing along with one of the general-purpose
registers (which serves as the kernel stack pointer). Therefore, the kernel cannot save onto the kernel stack
the value stored in this register by the interrupted program. If the interrupted program was using this
register for its purposes, this presents a problem. The MIPS-I assembly language convention to solve this
dilemma is to reserve registers $k0 and $k1 (i.e., $26 and $27) for use by the OS.

"At the ISA level, the MIPS-I jr instruction uses the concept of delayed branching; i.e., the transfer of
control induced by the jr instruction takes effect only after executing the immediately following instruction,
which in this case is the rfe instruction. The later versions of MIPS have a kernel mode eret (exception
return) instruction, which performs both actions in a single instruction.

172 Chapter 4. Assembly-Level Architecture — Kernel Mode

.word BpHandler # Initialize to breakpoint handler address

.word RIHandler # Initialize to reserved instruction exception handler address
.word CpUHandler # Initialize to co-processor unusable exception handler address
.word OvHandler # Initialize to arithmetic overflow exception handler address

B B B S e B E i B B
User TLB Miss Handler
HHSHFHHFHF R R R R R R

.ktext 0x80000000 # Store subsequent items in kernel text section
UTLBMiss Handler: # starting at address 0x80000000
mfcO $k0, $context # Copy context register contents (i.e., kseg2 virtual
address of required user PTE) into GPR k0
mfcO $k1, $epc # Copy epc contents (address of faulting instruction)
into GPR k1
1w $k0, 0($k0) # Load user PTE from kseg2 addr to GPR k0

This load can cause a TLBMISS exception!
mtcO $k0, $EntryLo # Copy the loaded PTE into EntryLo register

tlbwr # Write the PTE in EntryLo register into TLB
at slot number specified in Random register

jr $k1 # Jump to address of faulting instruction

rfe # Switch to user mode

HHHHHAHBH B HAHBHHHHHEH B R HAH B HBHHAHHAH B HBGH AR ARG H R H R AH RS H SRR R R R R

General Handler

HEHHAHHHHHHBHHH AR HH BB HH B R FH BB H B R RS HRR S H AR R R R R
.ktext 0x80000080 # Store subsequent items in kernel text section

General Handler: # starting at address 0x80000080

HEHHAFH R R R R R R

Save interrupted process’ sO - s7 registers, kO, kl, sp, and epc on kernel stack

B s s s
Determine cause for coming here, and jump to appropriate handler

mfcO $k0, $cause # Copy Cause register to R26

andi $k0, $k0, O0x3c # Take out the ExcCode value

1w $k0, handler table($k03# Get starting address of appropriate handler
jalr $kO # Call appropriate handler

B g g g s s
Returned from handler

Restore interrupted process’ sO - s7 registers, kO, k1, sp, and epc

from kernel stack

HHHHHAHBH B HAHBHHAHHEH B R AHHAH B HBEHBHHAH B HBGH R AR RS H R H R RS H A SH R R R R R
Return to interrupted program
mfcO $kO0, $epc # Copy epc register to R26

4.6. 10 Schemes Employed by Device Management System 173

jr $k0 # Return to interrupted program
rfe # Restore from exception

4.6 10 Schemes Employed by Device Management System

This section gives an overview of the device management part of a typical OS. A complete
treatment of the internal operation of the device management system of even a single OS
is beyond the scope of this book.

As can be imagined, there is a wide disparity in the nature of the various abstract 10
devices. Different schemes are available to accommodate this disparaging differences in
speed and behavior. They are:

o sampling

e program-controlled 10

interrupt-driven 10

direct memory access (DMA)

10 co-processing

As we go from the first scheme to the last, more functionality is shifted from the device
driver to the IO interface. The scheme used by a device driver to perform IO transfers is,
of course, transparent to the user program, because it is not specified in the API. We shall
discuss each of these schemes in detail.

Central to all these schemes is the need to do appropriate synchronization between the
device driver and the device. 10 devices tend to be significantly slower than the processor.
Moreover, their response times tend to have a wide variance. Because of these reasons, no
assumptions can be made about the response times of IO devices. The different 10 transfer
schemes also differ in how synchronization is done between the device driver and the device.

4.6.1 Sampling-Based 10

This is the simplest of the IO data transfer methods. In this scheme, the IO device is
treated like main memory; that is, the device is always ready to accept or to provide data,
as appropriate. No checking of device status is required. The programming interface is
extremely simple, consisting of just one or more data registers. Example IO devices that
can be communicated in this manner are simple devices such as digital input port and motor
port.

174 Chapter 4. Assembly-Level Architecture — Kernel Mode

4.6.2 Program-Controlled 10

With program-controlled 10, the device driver being executed on the machine has direct
control of the IO operation, including sensing the device status, sending a read or write
command, and transferring the data. Sensing the device status may involve executing
an IO read instruction to read the device controller’s status register into a general purpose
register (GPR), and then checking the appropriate bits of the GPR. This process of checking
the status by continuous interrogation of the status register associated with the device is
performed until the IO device becomes ready®. For example, the status register of the DEC
LP11 line printer interface contains a done bit, which is set by the printer controller when
it has printed a character, and an error bit, which indicates if the printer is jammed or out
of paper. The bytes to be printed are copied from a general-purpose register to the data
register of the printer interface (by means of IO write instructions), one at a time. Each
byte is copied only after ensuring that the done bit has been set. The error bit is also
checked every time to determine if a problem has occurred in the printer.

A flowchart of the device driver that carries out program-controlled IO is shown in
Figure 4.9. The flowchart assumes that a sequence of words has to be read from an 10O
device and stored in main memory. The device driver continually examines the status of
the device interface until the appropriate flag becomes 1. A word is then brought into a
GPR, and transferred to main memory. The entire process is repeated until all of the data
have been transferred.

Ezample: To review the basic concepts of program-controlled 10, consider the IO operations
involved in reading a character from the keyboard and copying it to a memory location. For
an application program, the convenient way to read a character is by invoking the operating
system (by means of a syscall instruction). A MIPS-I assembly language application pro-
gram for doing this IO operation is given below. Notice that the execution of the syscall
instruction causes the system to switch to kernel mode, and execute many instructions in
the kernel mode before returning to the user program.

.text

1i $a0, 0 # Place the file descriptor for keyboard (0) in $a0

la $al, buffer # Place the starting address of buffer in $al

1i $a2, 1 # Place the number of bytes to be read (i.e., 1) in $a2
1i $v0, read_code# Place the code for read in $v0

syscall # Call OS routine to perform the read

Now, assume that the keyboard’s interface sets the LSB of its 8-bit status register to 1
whenever a new character is typed by the user. The device driver resets it to 0 after reading
that character. The display’s interface resets the next-to-LSB of its 8-bit status register to

8Because 10 devices are slow, it is important to check their status prior to issuing a new command. For
instance, when a new command is sent to a device, the device may not be ready to accept it because it is
still working on the previous command. This situation can be recognized by checking its status.

4.6. 10 Schemes Employed by Device Management System 175

Read status register
into a GPR

Busy wait Check relevant status bit
in GPR

Is device ready?
Yes

Read data register
into a GPR

Copy data from GPR
to Memory

More

transfer?

No

Figure 4.9: A Flowchart Depicting the Working of a Device Driver that Reads Data from
an IO Device using Program-Controlled I0 Transfer

0 whenever the display is ready to accept a new character. The device driver sets it to 1
when it writes a character to the display interface’s data register. Figure 4.10 illustrates
the interface provided by the 10 devices, along with the specific addresses given to the 10
registers.

Let us write an assembly language device driver routine that will be called when the
above syscall instruction is executed. First of all, when the syscall instruction is exe-
cuted, the execution mode switches to Kernel mode, and control passes over to the system
call layer part of the operating system. This routine saves the User process’ registers
and other relevant state on the Kernel stack. It then calls the SysHandler routine, which
subsequently calls the keyboard device driver. Below, we present an example code for a
keyboard device driver that reads from the keyboard up to as many characters as speci-
fied in register $a2. If $a2 contains zero or a negative number, then no character is read.
Similarly, reading stops when the end of line is reached, which is detected by checking the
read character against \’. The number of characters actually read is placed in register $vo0.
The read characters are placed in consecutive memory locations, starting from the address

176

Chapter 4. Assembly-Level Architecture — Kernel Mode

inrerconencr

Keyboard Status Monitor Status
0xA0000000 0xA0000002 0xA0000002
CcrU MM 0xA0000001 0xA0000003 0xA0000003
Keyboard Interface Graphics Interface Disk Interface

DoooOoOoooOoooOOooOo0
0O000O00ODOOO00OOoOO
ODoooO0OO0DOo00O00oO00
OC———— o

Figure 4.10: A Flowchart for an Assembly Language Device Driver to Read Data from an
IO Device using Program-Controlled IO Transfer

originally specified in register $al. Notice that this simple device driver does not check for
error conditions, one of the tasks a real device driver must do.

HHHH S
Keyboard Read Device Driver: Called by 0S File System

$al contains address of buffer; $a2 contains number of bytes to read

HHH

.ktext
keybd_read:
1i
blez
read_loop:
1b
andi
beqz
1b
sb
andi
sb
addu
beq
addu
subu
bnez
read_done:
jr

$vo,
$a2,

Store subsequent items in kernel text section

0 # Initialize number of bytes read ($v0) to 0
read_done # Go to label read_done if no byte is to be read

$9, keybd_status # Read keyboard status register into R9

$10,
$10,
$11,
$11,
$12,
$12,
$vo,
$11,
$al,
$a2,
$a2,

$ra

$9, 1 # Isolate the status bit for keyboard input

read_loop # Branch back to label read loop if status bit is not set
keybd_data # Read the byte from keyboard data register

0($al) # Store the byte in the buffer

$9, OxFE # Reset keyboard input status bit (LSB) to 0

keybd_status # Update keyboard status register

1 # Increment number of bytes read

’\n’, read_done# Go to label read_done if end of line

1 # Increment address of buffer to store next byte

1 # Decrement number of bytes to be read

read_loop # Go to read_loop if there are more bytes to be read

Return control to OS file system

4.6. 10 Schemes Employed by Device Management System 177

The read_loop in the above device driver constantly checks the keyboard status until the
next character has been typed. This type of continuous checking of the device status bits
to see if it is ready for the next IO operation is a hallmark of program-controlled I0. The
device controller places the information in one of its status registers, and the device driver
gets this information by reading this register. The device driver is in complete control of
the IO transfer.

The disadvantage of program-controlled IO is that it can waste a lot of time executing
the driver because the IO devices are generally slower compared to the other parts of the
system. The driver code may read the device status register millions of times only to find
that the IO device is still working on a previous command, or that no new character has
been typed on the keyboard since the last time it was polled. For output devices, it has to
do this status checking until the output operation is completed to ensure that the operation
was successful. Ideally, it is preferable to execute a device driver only when a device is ready
for a new transfer and a transfer is required. For instance, the keyboard driver needs to be
executed only when a character is available in the input buffer of the keyboard interface.
Similarly, the printer driver needs to be executed only when the printer has completed
a previous print command, or is ready to accept a new command and a print request is
pending.

4.6.3 Interrupt-Driven 10

The overhead in program-controlled IO transfer was recognized long ago, leading to the use
of interrupt-driven IO for at least some of the peripheral devices. An interrupt is generated
by an 10 port to signal that a status change has occurred. With interrupt-driven IO,
device driver routines need not be continuously executed to check the status of IO ports;
instead other useful programs can be executed until the IO device becomes ready. Indeed,
by using interrupts, such waiting periods can almost be eliminated, provided the system
has a sufficient degree of multiprogramming.

When an interrupt is generated, the system acknowledges it when it is ready to pro-
cess the interrupt. At that time, the system enters the Kernel execution mode, and the
appropriate interrupt service routine (ISR) or interrupt handler is called with one or more
parameters that uniquely identify the interrupting device. The parameters are important,
because a single ISR may handle multiple devices of the same type. If the identity of the in-
terrupting device is not supplied, the ISR may need to poll all potential IO ports to identify
the interrupting one.

Data transfer by means of interrupts is illustrated in Figure 4.11 as a time line. Time
is depicted along the horizontal direction. Process A executes a read system call at time
T1. Control is then transferred to the syscall interface routine of the OS, from where
control is transfered to the file system, and then to the appropriate device driver. After the
device driver updates the relevant status information, control is transferred to the process
control system, which then allows process B to run (at time T2). The device becomes

178 Chapter 4. Assembly-Level Architecture — Kernel Mode

ready at time T3, and generates an interrupt. Control is transfered to the OS, which then
calls the ISR for the device. After the ISR completes, the process control system allows
process A to continue. Notice that during the time taken by the device to become ready
(T2 to T3), the system is utilized by executing process B.

read system call
device interrupt

ProcessA —— ﬁ

1
! 1
1
Process B I) !
1 A | :
: 1 ! 1
1 ! 1
1 1
OS Kernel v] ‘ ! L\ ﬁ
o i .
1 1
Device Driver v—' v—'
(ISR)
T T T T > Time
T1 T2 T3 T4

Figure 4.11: A Timeline Depicting an Interrupt-driven 10 Transfer on behalf of Process A

Ezample: The keyboard interface raises an interrupt when a character is typed on the
keyboard. When the interrupt is accepted, control goes to the system call layer of the OS,
which saves the interrupted process’ state and registers. It then calls the interrupt handler
routine, which subsequently calls the ISR part of the keyboard device driver. Below, we
present the ISR part of the keyboard device driver to read in a character from the keyboard
interface to memory location buffer. Again, we assume that the status register address is
named keybd_status and the data register address is named keybd data.

.ktext # Store subsequent items in kernel text section
keybd_isr: subu $sp, 12 # Update stack pointer ($sp)

sw $8, 0($sp) # Save value of R8 in stack before overwriting it

mfcO $8, C12 # Copy processor status register to R8

and $8, $8, OxFFFFXXFF # Code to disable lower priority interrupts

mtcO C12, $8 # Copy R8 to processor status register

sw $9, 4($sp) # Save value of R9 in stack before overwriting it

sW $10, 8($sp) # Save value of R10 in stack

1b $9, keybd_data # Read keyboard interface’s data register

sb $9, buffer # Store the byte in the buffer

4.6. 10 Schemes Employed by Device Management System 179

1b
and
sb
1w
1w
mfcO
or
mtcO
1w
addu

jr

$9, keybd_status
$9, $9, OxFE

$9, keybd_status
$9, 4($sp)

$10, 8($sp)

$8, C12

$8, $8, 0xXX00
Cc12, $8

$8, 0($sp)
$sp, 12
$ra

Read keyboard interface’s status register
Reset keyboard’s status bit (LSB) to 0
Update keyboard interface’s status register
Restore value of R9 from stack

Restore value of R10 from stack

Copy processor status register to R8

Code to enable lower priority interrupts
Copy R8 to processor status register

Restore value of R8 from stack

Restore stack pointer ($sp)

Return control to calling routine

A number of actions are involved in processing an interrupt. Figure 4.12 clearly depicts

these actions.

Figure 4.12: A Flowchart Depicting the Steps Involved in Processing an Interrupt

Hardware

I/O interface module|
issues interrupt

Software

Finish execution of
current instruction

Acknowledge
interrupt

Save
return address

Execute a CALL

to appropriate ISR

L]

Handling Multiple Interrupts

!

Disable lower priorit
interrupts;
Save registers

Service 1/O device

Restore registers;
Enable lower priorit
interrupts

RETURN

We now consider a computer system in which several interfaces are capable of raising
interrupts. Because these interfaces operate independently, there may not be a specific
order in which they generate interrupts. For example, the keyboard interface may generate
an interrupt while an interrupt caused by a printer interface is being serviced, or all device
interfaces may generate interrupts at exactly the same time, in a pathological situation!

180 Chapter 4. Assembly-Level Architecture — Kernel Mode

The presence of multiple interrupt-raising device interfaces raises several questions:

1. How can the system identify the IO port that generated an interrupt?

2. Because different devices probably require different ISRs, how to obtain the starting
address of the appropriate ISR?

3. Should an ISR for one device be allowed to be interrupted (by another IO port)?

4. What should be done if multiple device interfaces generate interrupts at the same
time?

The ways in which these problems are resolved vary considerably from one machine to
another. The approach taken in any machine is an important consideration in determining
the machine’s suitability for specific real-time applications. We shall discuss some of the
common techniques here.

Device Identification: Consider the case in which a device interface requests an in-
terrupt by activating an Interrupt Request line that is common to all device interfaces.
When a request is received over the common Interrupt Request line, additional infor-
mation is needed to identify the particular device that needs attention. One option is to
set appropriate bits in the status register of the interrupting device interface, so that the
interrupting device can be identified by polling. A better option is to use a scheme called
vectored interrupts, in which the interrupting device’s identification is sent as a special code
along with the interrupt.

Prioritizing Interrupts: Now let us consider the situation in which several interrupts
occur simultaneously. In this case, the system must decide which device to service first.
A priority interrupt system establishes a priority over the various interrupt sources to de-
termine which interrupt request to service first when two or more arrive simultaneously.
The system may also determine which interrupts are permitted to interrupt an ISR. Higher
levels of priority are assigned to requests that, if delayed or interrupted, could have serious
consequences. Devices with high-speed transfers such as magnetic disks are given high pri-
ority, and slow devices such as keyboards receive the lowest priority. When two devices raise
interrupt at the same time, the computer services the device with the higher priority first.
Establishing the priority of simultaneous interrupts can be done by software or hardware.
Software uses a polling procedure to identify the interrupt source of higher priority. In this
method, there is one common routine to which the control is transferred upon receiving
an interrupt. This routine performs the polling of the interrupt sources in the order of
their priority. In the hardware priority scheme, the priority is implemented by some kind
of hardware.

4.6. 10 Schemes Employed by Device Management System 181

4.6.4 Direct Memory Access (DMA)

Both program-controlled 10 and interrupt-driven IO are particularly suited for interacting
with low-bandwidth IO devices. Both schemes place the burden of moving data and manag-
ing the transfer on a device driver or OS ISR, which does so with the help of 10 read/write
instructions such as
1w R1, data register

Of course, an instruction to transfer input or output data is executed only after executing
other instructions that confirm that the IO interface is indeed ready for the transfer. In
either case, considerable overhead is incurred, because several instructions must be exe-
cuted to transfer each data word. The reason is that instructions are needed for performing
tasks such as incrementing the memory address and keeping track of the word count. This
overhead becomes intolerable for performing high-bandwidth transfers such as disk IO. For
such high-bandwidth devices, most of the transfers involve large blocks of data (hundreds to
thousands of bytes). So computer architects invented a mechanism for off-loading the device
driver, and letting the IO interface directly transfer data to or from main memory with-
out involving the device driver. This kind of transfer is called direct memory access (DMA).

Steps Involved in Setting Up a DMA Transfer:

Although the DMA mode of data transfer happens without interrupting the program
being executed, its operation is still initiated by a device driver routine. To initiate the
transfer of a block of words, instructions are executed by the device driver routine to convey
the following information to the DMA interface (10 interface capable of performing DMA
transfers):

e the address or identity of the 10 device

the starting address in the main memory

the number of words to be transferred

the direction of transfer (read/write)

the command to initiate the DMA operation

Once this information is conveyed to the DMA interface, the device driver stops execution,
and another program is executed. When the entire block has been transferred, the DMA
interface raises an interrupt. An interrupt service routine is then executed to interrogate
the DMA interface to verify that the entire operation indeed completed successfully. Figure
4.13 depicts the actions involved in a DMA transfer as a flowchart.

182 Chapter 4. Assembly-Level Architecture — Kernel Mode

Send information to Device
DMA Interface Driver
Is 10 device ready?
Transfer next word
to/from memory
¢ DMA
Interface
Increment memory address
Raise interrupt to indicate
end of transfer
Execute ISR to check Device
if transfer was successful Driver

Figure 4.13: A Flowchart Depicting the Steps Involved in a DMA Transfer

4.6.5 10 Co-processing

The DMA scheme offers significant performance improvements over interrupt-driven 10
whenever large blocks of data are to be transferred. Is it possible to do even better? To
answer this question, we must first look at the limitations of the DMA scheme. First, each
DMA operation has to be initiated by a device driver, by executing several instructions.
Second, a DMA interface can handle only a single DMA operation at a time. To overcome
these limitations, we can use a scheme called 1O co-processing, in which (complex) IO func-
tions are implemented by 10 routines, which are executed (by IO processors or IO channels
or peripheral processing units (PPUs)Y) in parallel with normal execution of programs (by
the main processor). The IO routines are also typically placed in the memory address space.
The execution of an IO routine is triggered by the device driver as in the case of a DMA

9An IO channel is itself a computer, albeit simple, which is capable of executing a small set of general-
purpose instructions along with many special-purpose 10 instructions such as “read a track from the disk”
or “skip forward two blocks on the tape.” More sophisticated 1O processors such as a peripheral processing
unit (PPU) can do even more sophisticated IO functions. Similarly, a modern graphics processing unit
(GPU) does complex graphics functions such as rendering, and hidden surface calculation.

4.7. Concluding Remarks 183

operation.

4.6.5.1 Graphics Co-Processing
4.6.6 Wrap Up

As we can see, there is a trade-off between 10 interface complexity and performance. When
we use a simple, inexpensive device interface, most of the functionality is implemented
in software (its device driver), and hence its performance will be low. A more expensive
interface, on the other hand, performs more functions in hardware, and is therefore faster.

4.7 Concluding Remarks

“Anybody who really knows computers spends a certain amount of time helping out
friends who have loaded up their computers with trash, viruses, and spyware.”
— Howard Gilbert in Introduction to PC Hardware

4.8 Exercises

1. Consider a situation in which an OS routine calls a user mode library routine. What
mode — user mode or kernel mode — will the library routine execute?

2. Explain the role played by the system call layer in a MIPS-I operating system.
3. Explain why interrupts are disabled when handling an exception.

4. Consider a simple embedded computer with two IO devices—a transmitter and a
receiver. Describe the protocol Write a MIPS-I assembly language program (kernel
mode) to accept data from the receiver and send them to the transmitter.

5. Consider a computer system that supports only a single mode of operation, i.e., it does
not provide a separate user mode and a kernel mode. What would be the shortcomings
of such a computer system?

6. For the computer system mentioned in the previous problem, explain how the hard-
ware can provide some minimal functions traditionally carried out by the operating
system, such as resource allocation among the processes.

7. What does a computer system do when two 10 devices simultaneously raise interrupts?
How does the computer recognize the identity of the devices?

184 Chapter 4. Assembly-Level Architecture — Kernel Mode

8. Explain the differences between hardware interrupts, software interrupts, and excep-
tions. What do they have in common? Give an example of each.

9. A device driver programmer uses the following flow-chart for performing program-
controlled reads from a keyboard. Explain what could go wrong with this scheme.

Give the correct flow-chart.
—

| Read status register |

!

| Read data register |

!

| Transfer data to memory |

More
transfer?

Chapter 5

Instruction Set Architecture (ISA)

Whoever loves instruction loves knowledge.

Proverbs 12: 1

The central theme of this book is to view a modern computer as a series of architectural
abstractions, each one implementing the one above it. We have already seen the high-level
architecture and the two distinct modes of the assembly-level architecture. This chapter
discusses the architectural abstraction immediately below the assembly-level architecture,
called the instruction set architecture (ISA). In principle, this architecture is defined by how
the computer appears to a machine language programmer. We can also view it as a set of
rules that describe the logical function of a computer as observable by a (machine language)
program running on that machine. Historically, this architecture came into existence before
any of the other architectures we saw so far. The ISA has a special significance that makes it
important for system architects: it is the interface between the software and the hardware.
This architecture serves as the boundary between the hardware and the software in modern
computer systems, and thus provides a functional specification for the hardware part of a
computer system.

In the early days of computers, all of the programming used to be done in machine lan-
guage! This was found to be so tedious that computer scientists quickly invented assembly
languages, which used symbols and notations that were closer to the way people think and
communicate. Once assembly languages were introduced as a symbolic representation for
machine languages, programmers virtually stopped using machine languages to program.
And, in theory, we can build hardware units that directly interpret assembly language pro-
grams. It is reasonable to ask why we still maintain a separate virtual machine level at the
ISA level. The reason is that hardware that directly interprets assembly language programs
will be significantly more complex than one that directly interprets machine language pro-
grams. The main difficulty arises from the use of labels and macros in assembly languages.

185

186 Chapter 5. Instruction Set Architecture (ISA)

By defining a lower-level abstraction at the ISA level, software in the form of assemblers
can be used to translate assembly language programs to machine language programs, which
can be more easily interpreted by hardware circuits.

The ISA does not specify the details of exactly how the hardware performs its functions;
it only specifies the hardware’s functionality. Thus, an ISA specifies general-purpose regis-
ters, special registers, a memory address space, and an instruction set!. The ISA provides a
level of abstraction that allows the same (machine language) program to be run on a family
of computers having different implementations (i.e., microarchitectures). An example is the
x86 ISA which is implemented in the 80386, 80486, Pentium, Pentium II, Pentium III, and
Pentium 4 processors by Intel Corporation, and in the K6 and Athlon processors by AMD.

5.1 Overview of Instruction Set Architecture

We shall begin this chapter with an overview of the basic traits of an instruction set archi-
tecture. The assembly-level architecture that we covered in the last two chapters is nothing
but a symbolic representation of the ISA. Many aspects of the ISA are therefore very similar
to that of the assembly-level architecture. In fact, both have very similar memory models,
register models, and IO models. The main differences between the two abstraction levels
are in the two areas of language and instruction set. Let us take a detailed look into both
of these issues.

5.1.1 Machine Language

The language used to specify programs that are targeted to an ISA has been historically
called the machine language. The most notable feature of machine languages is their alpha-
bet, which is restricted to just two symbols (0 and 1). Apart from allowing only an extremely
frugal set of symbols for the language (as opposed to the richer set of alphanumeric charac-
ters available for an assembly language), the ISA also bans many of the luxuries permitted
by the assembly-level architecture, such as labels, macros, AL-specific instructions, and
AL-specific addressing modes.

5.1.1.1 Language Alphabet

“There are 10 types of people in this world —
those who understand binary, and those who don’t.”
— J. Kincaid and P. Lewis

Issues related to implementation of the ISA (such as cache memory, ALUs, and the type of internal
connections) do not form part of the ISA. The entire point of defining an ISA is to insulate the machine-
level programmer (and the assembler) from those details.

5.1. Overview of Instruction Set Architecture 187

A machine language alphabet has only two symbols: {0, 1}. This means that all of
the information in a machine language program—instructions as well as data—have to be
expressed using sequences of just Os and 1s! The earliest programmers, who programmed
computers at the ISA level, did precisely this. Thus, opcodes (such as add and and) and
operands (such as $t0 and $sp) are all specified in bit patterns rather than in a natural
language-oriented symbolic form. A machine language program is therefore far less read-
able than an equivalent assembly language program. In addition, assembly languages permit
programmers to use labels to identify specific memory addresses that hold data or form the
target of branch instructions. Assembly languages also provide a variety of other conve-
nience features that make programs at this level shorter and easier to write. For example,
data layout directives allow a programmer to describe data in a more concise and natural
manner than its binary representation. Similarly, macros and pseudoinstructions enable a
sequence of instructions to be represented concisely by a single macro or pseudoinstruction.

Under these circumstances, why would anyone other than ISA designers want to study
machine language? Certainly, not for writing application programs! The compelling reason
is that besides application programs, there are a lot of support programs such as compilers,
assemblers, disassemblers, and debuggers. The writers of these programs need to know the
ISA details. Microarchitecture designers also need to know the machine language to design
the hardware for executing machine language programs.

Information Representation with Bit Patterns: A machine language needs to rep-
resent two kinds of information: instructions and data. An assembly language had a large
set of symbols—alphanumeric characters and punctuation marks—to represent information.
By contrast, the alphabet used by a machine language for representing information has only
2 symbols—0 and 1. Thus, any kind of information can be represented at this abstraction
level only by bit patterns obtained by concatenating bits. The same sequence of bits can
have different meanings; the correct meaning depends on:

e the instruction being executed and

e the number systems and coding schemes adopted by the ISA designers

For example, consider the bit pattern 0100 1110 0111 0010 0000 0000 0000 0000 (i.e.,
4E320000H). If this is interpreted as an integer, the value is 2.106 x 1019 If it is interpreted
as an ANSI/IEEE 754 floating-point number, the value is 1.015 x 10%. If it is interpreted
as part of an ASCII character string, then it indicates the 4 characters N, r, Null, Null. If
it is interpreted as a Motorola 68000 instruction, then it indicates the STOP instruction if
the system is in the Kernel mode, and a syscall instruction, otherwise. What this shows
is that a bit pattern does not have an inherent meaning; we must know the context as
well as the rules concerning the interpretation of those bits. The rules for interpretating a
bit pattern are established at ISA design time, and will be effective throughout the life of
the system. The assumptions about bit meaning will impact the design of the lower-level

188 Chapter 5. Instruction Set Architecture (ISA)

hardware that manipulates the bits. The choice of a number system is based on available
hardware technology, desired range of values, and other system goals.

The ISA specifies exactly how different instruction types and data types are encoded as
bit patterns?.

“A word aptly spoken is like apples of gold in settings of silver”
— Proverbs 25: 11

5.1.1.2 Syntax

A machine language program starts with a header, which provides a description of the
various sections that are present in the program and are mapped to various portions of
the memory address space. This description includes the name of the section, its size, its
location within the program file, the portion of memory address space it maps to, etc.
Table 5.1 lists the commonly found sections in machine language programs. Some of these
sections—.rdata, .text, .sdata, and .data—are defined in the assembly language also,
as we already saw in the previous two chapters. The rest—.bss, .sbss, .1it8, .1it4, and
.comments—are limited to machine languages, and are created by the assemblers.

| Section Name | Explanation |

.rdata Read-only data

.text Code

.bss Uninitialized writable data
.sbss Uninitialized writable small data
.1it8 64-bit floating-point constants
.1lit4d 32-bit floating-point constants
.sdata Writable small data

.data Writable data

.comment Comments

Table 5.1: Typical Sections in a Machine Language Program

Unlike the case with assembly languages, each of the sections that are present appears
exactly once. Within each section, the bit patterns corresponding to contiguous memory
locations are stored contiguously. This is pictorially depicted in Figure 5.1. The order of
the sections within the machine language program is not critical.

2Some of this encoding information—in particular, the encoding of data types—is known to the assembly
language programmer too.

5.1. Overview of Instruction Set Architecture 189

Header |rdata .text .data lit8 [lit4 |sdata |sbss | comment

Figure 5.1: Organization of Header and Various Sections in a Machine Language Program

5.1.1.3 ELF Format
5.1.1.4 Portable Executable File Format
5.1.2 Register, Memory, and 10 Models

To produce machine language code, machine language programmers and the developers of
assemblers and disassemblers need to know the specifications of the instruction set archi-
tecture. These attributes include the memory model, the register model, the IO model, the
data types, and the instruction types. The collection of all this information is what defines
the instruction set architecture.

The register model supported by an ISA is the same as that supported by the assembly-
level architecture for that computer. On a similar note, the ISA’s memory model is also
virtually the same as that supported by the assembly-level architecture. The only difference
is that the ISA does not permit labels to be used to specify memory locations.

5.1.3 Data Types and Formats

A picture is worth 1,000 words, especially in memory requirements. And a video is worth
a million words!

5.1.4 Instruction Types and Formats

Perhaps the biggest difference in the two architectures is in the area of the instruction set.
The instruction set supported by the ISA is generally a subset of that supported by the
assembly-level architecture. While the assembly-level instruction set is designed to facilitate
assembly language programming, the machine-level instruction set is designed to facilitate
lower-level implementations. Thus, there is a noticeable semantic gap between an assembly-
level architecture and its corresponding ISA. This is especially the case for RISC (reduced
instruction set computer) ISAs, as we will see later in this chapter.

In the case of the MIPS-I, the assembly-level instruction set has several opcodes that
permit 32-bit immediate operands. Examples are 1i and 1lw. In order to encode these
instructions using bit patterns, we need more than 32 bits. However, the MIPS-I ISA
designers wanted fixed length instruction formats in which all instructions are encoded
with 32 bits. Therefore, 1i is not included in the MIPS-I ISA and 1w is allowed to have

190 Chapter 5. Instruction Set Architecture (ISA)

only a 16-bit immediate operand. This begs the question of how we get a 32-bit data value
into a register, at the ISA level. The standard method is to split the 32-bit data value into
2 parts—a 16-bit upper half and a 16-bit lower half—and use a lui-ori sequence to load
the two halves.

Like the load instructions, the branch instructions are also limited to specifying a 16-bit
immediate value at the ISA level. As 16 bits are not sufficient by themselves to specify
the branch target address, the solution adopted is to consider the 16-bit immediate value
as the instruction offset from the branch instruction. Thus, when executing the ISA-level
instruction represented symbolically as

beq $1, $2, 8
8 instructions will be skipped if the contents of registers $1 and $2 are equal.

5.2 Example Instruction Set Architecture: MIPS-I

5.2.1 Register, Memory, and 10 Models
5.2.2 Data Types and Formats
5.2.3 Imstruction Types and Formats

The designers of the MIPS-I ISA decided to use a fixed length instruction format, so as
to make it easier for the lower level machine (microarchitecture) to quickly determine in-
struction boundaries to facilitate the overlapped execution of multiple instructions. Every
instruction is encoded in exactly 32 bits. In the MIPS-I ISA, the opcode implicitly specifies
the addressing modes for each of the operands, and therefore no addressing mode infor-
mation is explicitly recorded in the instruction bits. Considering all of the instructions
in the MIPS-I ISA, we have the following fields: opcode, rs, rt, rd, offset/immediate,
and target. Based on the fields used, we can classify the MIPS-I ISA instructions into 3
categories:

e Instructions that specify an immediate/offset: Examples are: (i) addi rt, rs,
immediate, (ii) 1w rt, offset(rs), and (iii) beq rs, rt, offset. These instruc-
tions are called I format instructions.

e Instructions that specify 3 registers: An example is add rd, rs, rt. These instruc-
tions are called R format instructions.

e Instructions that specify a target. An example is jal target. These instructions
are called J format instructions.

Among the different fields, the rs, rt, and rd fields require 5 bits each, in order to specify
one of 32 general-purpose registers. Based on an analysis of existing programs, the MIPS-I

5.3. Translating Assembly Language Programs to Machine Language Programs 191

ISA designers decided to use 16 bits to specify the offset/immediate field. For the first
category of instructions, this leaves 6 bits for the opcode. With 6-bit opcodes, the maximum
number of opcodes that can be supported by the ISA is 64. Incidentally, the MIPS-I ISA has
more than 64 opcodes. To accommodate more than 64 opcodes with a fixed opcode field,
we need to either reduce the number of bits for the offset/immediate field, or use longer
instruction formats, both of which have undesired consequences. The solution adopted by
the MIPS-I ISA designers was to use variable length opcodes or expanding opcodes within a
fixed-length instruction format. Instructions that cannot afford to support a longer opcode
field—the ones in the first and third categories—are given a 6-bit opcode field. Instructions
in the second category have to specify only 3 register addresses, requiring a total of 15 bits,
besides the opcode. Therefore, these instructions are given a longer opcode field. For these
instructions, the standard opcode field is set to the bit pattern 000000, and a separate 6-bit
func field is used to specify the desired operation. The three main formats of the MIPS-I
ISA are given in Figure 5.2.

addi rt, rs, immediate
| format ’ opcode ‘ rs ‘ rt ‘ offset ‘ Iw rt, offset(rs)
beq rs, rt, offset
6 5 5 16
R format ’0 0000 O‘ rs ‘ rt ‘ rd ‘ ‘ opcode ‘ add rd, rs, rt
5 5 5 6
j target
Jformat’ opcode ‘ target ‘ i al tar get
6 26

Figure 5.2: Instruction Formats Used in the MIPS-T ISA

5.2.4 An Example MIPS-I ML Program

5.3 Translating Assembly Language Programs to Machine
Language Programs

Programs written in an assembly language are translated into machine language programs
by a special program called an assembler. An assembly language program is usually
entered into the computer through a terminal and stored either in the main memory or
on a magnetic disk. At this point, the program is simply a set of lines of alphanumeric
characters, which are stored as patterns of Os and 1s, most likely as per the ASCII chart.
When the assembler program is executed, it reads this assembly language program, and
generates the desired machine language program (object code file), which also consists of
patterns of Os and 1s (but in a tightly encoded form). The object code is a combination

192 Chapter 5. Instruction Set Architecture (ISA)

of machine language instructions, data, and information related to placing the instructions
properly in memory. It cannot be executed directly. Prior to execution, it undergoes the
steps of linking and relocation, which transform it into a binary executable file.

Because the assembly language program is just a symbolic representation of a machine
language program, on first appearance it might seem that an assembler is a simple software
program that reads one statement at a time, and translates it to machine language. In fact,
for the most part, there is a one-to-one correspondence between instructions in an assem-
bly language program and the corresponding machine language program. The assembler’s
complexity arises from the additional features that are supported in the assembly-level ar-
chitecture. For instance, most assembly languages support AL-specific instructions and
macros. In addition, all assembly languages support the use of labels.

5.3.1 MIPS-I Assembler Conventions

Like the MIPS-I compiler, the MIPS-I assembler also follows some conventions. These
conventions deal with the addresses allocated for different sections in memory, for instance.
Again, these conventions are not part of the machine language specifications. Some of the
important conventions are given below:

e The .text section starts at memory address 0x400000, and grows in the direction of
increasing memory addresses.

e The .data section starts at memory address 0x10000000; it also grows in the direction
of increasing memory addresses.

e The stack section starts at memory address Ox7f££ff£f£ff, but grows in the direction
of decreasing memory addresses.

5.3.2 Translating Decimal Numbers
5.3.3 Translating AL-specific Instructions and Macros

Many assembly languages provide AlL-specific instructions, which are not present in the
corresponding ISA level. The availability of these additional instructions makes it eas-

5.3. Translating Assembly Language Programs to Machine Language Programs 193

ier to program for the assembly-level architecture. The assembler translates AL-specific
instructions by using short sequences of instructions that are present in the ISA. For in-
stance, the MIPS-I assembly-level architecture provides the opcode 1i, which is not present
in the MIPS-I ISA. A MIPS-I sequence for translating the AL-specific instruction 1i R1,
0x11001010 is given below.

lui R1, 0x1100 # Enter upper 16 bits of address in R1; clear lower 16 bits
ori R1, R1, 0x1010 # Bitwise OR the lower 16 bits of address to R1

A few other examples are given in Table 5.2. In the table, the AL-specific instruction
1i is synthesized with an addiu instruction or lui-ori instruction sequence, depending on
whether the immediate value lies between +32K or not. The AL-specific instruction la is
also synthesized with a lui-ori pair. The AlL-specific instruction 1w has a slightly different
format than the ISA-level 1w instruction in that it uses memory direct addressing whereas
the latter uses register-relative addressing. This conversion is also done by using the lui
instruction to load the upper 16 bits of the memory address to a register, and then using
the ML 1w instruction with the lower 16 bits as the displacement. Notice that when the
displacement value is negative, a 1 needs to be added to the upper 16 bits.

| MIPS-I AL Pseudoinstruction || Equivalent MIPS-I AL Sequence
1i R2, -10 addiu R2, RO, -10

1i R2, 0x8000 ori R2, RO, 0x8000

lui R2, 0x55

ori R2, R2, Oxffff

lui R2, 0x1000

ori R2, R2, Oxffff

lui R4, 0x1000

1i R2, Oxbbffff

la R2, 0x1000ffff

lw R4, 0x10001010

1w R4, 0x1010(R4)
lui R5, 0x1001

1w R5, Ox1000ffff ;

v x 1w R5, Oxffff(R5)

Table 5.2: Some MIPS-I AL-specific Instructions and Their Equivalent Sequence
Translation of the macros can be done using text substitution in a similar manner.

For example, the assembler can invoke the C preprocessor cpp to do the required text
substitution prior to doing the assembly process.

5.3.4 Translating Labels

Another feature that assembly languages have incorporated for improving programmabil-
ity is the use of labels. A label is a symbolic representation for a memory location that

194 Chapter 5. Instruction Set Architecture (ISA)

corresponds to an instruction or data. For example, in the following code, the label vari
corresponds to a memory address allocated for data, and the label L1 corresponds to a
memory address allocated for an instruction.

.data

varl: .word 6 # Allocate a 4-byte item at memory location named vari
.text
beq R1, R2, L1 # Branch to label L1 if the contents of R1 and R2 are same
ori R1, R1, 0x1010

Li: 1w R2, varl # Load from memory location named varl into R2

Translating a label involves substituting all occurrences of the label with the correspond-
ing memory address. Although this is a straightforward substitution process, the situation
is complicated by the fact that most assembly languages permit a label to be used prior to
declaring it. This is illustrated in the above example code, where label L1 is used by the
beq instruction before its declaration two instructions later. Thus, the assembler cannot
perform the substitution for varl when it first encounters the beq instruction. In order to
translate such labels, the assembler needs to go through a program in two passes. The first
pass scans the assembly language program for symbol declarations, and builds a symbol
table, which contains the addresses associated with each symbol. The second pass scans
the program, and substitutes each occurrence of a symbol with the corresponding address.
This pass also translates each instruction to machine language, and generates the machine
language program, possibly along with the assembly listing.

5.3.4.1 First Pass: Creating the Symbol Table

The purpose of the symbol table is to store the mapping between the symbolic names
(labels) and their memory addresses. As noted earlier, the objective of the first pass is
to scan the assembly language program, and expand the AL-specific instructions as well as
build the symbol table. For each symbol defined in a module, a memory address is assigned,
and an entry is created in the symbol table. The symbol table is a data structure, on which
two operations can be performed: insertion and search. The first pass of the assembler
performs only insertions. An efficient organization of the symbol table is important for fast
assembly, as the symbol table may be referenced a large number of times during the second
pass.

5.3.4.2 Second Pass: Substituting Symbols with Addresses

In the second pass through the program, the assembler substitutes symbols with the re-
spective addresses stored in the symbol table created in the first pass. For each symbol
encountered, it looks up in the symbol table to obtain the address. Undefined symbols, if
any, are marked as external references. A list of unresolved references is made available at
the end of this pass.

5.3. Translating Assembly Language Programs to Machine Language Programs 195

5.3.5 Code Generation

Code generation involves translating each instruction to its corresponding bit pattern as
per the ISA definition. THis step can be done in the second pass, and mostly involves table
lookups.

5.3.5.1 Example Object File Format

To clarify the assembly process, we shall use a detailed example. For convenience, we shall
use the assembly language code that we saw earlier in pages 112 and 123. This code is
reproduced below. For the global variables, we shall use the same memory allocation given
in Figure 3.5. In the code given below, the left hand side shows the assembly language code.
The right hand side shows the memory map of the translated machine language code, along
with deassembled code (in assembly language format). This example shows how AL-specific
instructions (such as 1a and bge) are translated using 2-instruction sequences. The example
also shows how various symbols (variable names as well as labels) are translated. After the
translation, references to variables are specified using the appropriate memory addresses.
Notice that in the MIPS-I ISA, a branch instruction specifies a branch offset instead of an
absolute target address.

Assign memory locations for the global variables
Initialize memory locations if necessary

.data
a: .word O 0x10001000: 0x0
b: .word 12 0x10001004: Oxc
record: .word 0:3 0x10001008: 0x0
0x1000100c: 0x0
0x10001010: 0x0
f: .word 0x10001014:
cptr: .word 0x10001018:
.text
.align 2
la R1, record 0x400000: # lui R1, 0x1000
0x400004: # ori R1, R1, 0x1008
1i R2, O 0x400008: # add R2, RO, RO
1i R3, O 0x40000c: # add R3, RO, RO
1w R4, 8(R1) 0x400010: # 1w R4, 8(R1)
loop: bge R3, R4, done 0x400014: # slt R6, R3, R4
0x400018: # beq R6, RO, 6
1w R5, 0(R1) 0x40001c: # 1w R5, 0(R1)
add R2, R2, R5 0x400020: # add R2, R2, R5
addi R1, R1, 4 0x400024: # addi R1, R1, 4
addi R3, R3, 1 0x400028: # addi R3, R3, 1

b loop 0x40002c: # beq RO, RO, —6

196 Chapter 5. Instruction Set Architecture (ISA)

done: sw R3, a 0x400030: # lui R6, 0x1000
0x400034: # sw R3, 0x1000(R6)
1w R4, cptr 0x400038: # 1w R4, 0x1018(R6)
sW R2, 0(R4) 0x40003c: # sw R2, 0(R4)

One important aspect to note is that the target of the assembled code is the machine
language seen by the linker.

5.3.6 Overview of an Assembler

Summary

AL Program ML Program

Macro Expanded (by a pre-processor)
Directive Do not appear explicitly
Comment Ignored, or placed in the .comments section

Label declaration || Assigned memory address(es) in the appropriate section
Label reference Substituted by the address assigned to the label
Instruction Synthesized by an instruction or a sequence of instructions

Table 5.3: Translation of AL features to ML

5.3.7 Cross Assemblers

We just saw how an assembler translates assembly language programs to machine language.
As the assembler is implemented in software, it has to be executed on a host computer
for it to perform the translation. Normally when we execute an assembler on a particular
host computer, the assembler translates the program to the machine language of the host
computer itself. We can say that the assembler’s target ML is the same as that of the host
ML. Sometimes we may want to translate a program to an ML that is different from the
host ML. A cross assembler is used to do such a translation. There are several reasons why
such a cross assembly is required: (i) The target computer may not have enough memory
to run the assembler. This is often the case in embedded systems. (ii) When a new ML is
being developed, no host computer exists for that ML. To analyze different trade-offs, the
designer often builds a software simulator for the target computer. In order to “execute”
programs on the simulator, programs need to be translated to the new ML on a different
host computer.

5.4. Linking 197

5.4 Linking

Many computer programs are very large, and may even have millions of lines of instructions
and data. In order to make it easier to develop such large programs, a single program is
often developed as a collection of modules (i.e., a logically related collection of subroutines).
Different modules may even be developed by different programmers, possibly at different
times. For instance, the library routines are written as a common set of routines before
the development of application programs, and rarely undergo changes after development.
Several programs may even share modules other than the libraries.

When an assembly language program is developed as a collection of several modules,
how should it be assembled? If all of the source modules are combined into a single AL
program, and then the assembly is performed, that entails re-assembling the entire AL
program every time a change is made to one of the modules. This might require a long
time to perform the assembly, besides wasting computing resources. An alternative is to
assemble each module independently of other modules, and store the translated output as
an object module file (on the disk). A change in a single source module would then require
re-assembling only that module. On Microsoft systems such as DOS, Windows 95/98, and
Windows NT, an object module is named with a .obj extension, and an executable ML
program is given the extension .exe. On UNIX systems, object files have extension .o,
whereas executable ML programs have no extension.

An object module cannot be directly executed as a ML program, because it is likely
to contain unresolved references. An object module contains an unresolved reference to a
label, if its source module does not contain a definition for that label. For instance, the
module may have a call instruction to label foo, and foo may be defined in another module.
In order to generate an executable ML program, we need to combine all of the component
object modules into a single program. This process of combining — called linking — is is
customarily done using a program called link editor or linker. The linking process has to
be repeated whenever one or more of the component modules is re-assembled.

The linker performs four important tasks:

Resolve references among multiple object modules, i.e., patch the external references.

Search the program libraries to find library routines used by the program.

Determine the memory locations that will be occupied by the instructions and data
belonging to each module, and relocate its instructions by adjusting absolute refer-
ences.

Append a start-up routine at the beginning of the program.

198 Chapter 5. Instruction Set Architecture (ISA)

5.4.1 Resolving External References

A linker’s first task is to resolve external references in the object modules. The linker
does this by matching the unresolved references of each object module and the external
symbols of every other object module. Information about external symbols and unresolved
references is generated in the second pass of the assembly process, and stored as part of the
object module. An external symbol in one object module resolves a reference from another
object module if both have the same name. An unmatched reference means that a symbol
was used, but not defined in any of the object modules. Unresolved references at this stage
in the linking process do not necessarily mean that there is a bug in the program. The
program could have referenced a library routine (such as printf) whose code was not in
the object modules passed to the linker.

After attempting to resolve external references in the object modules, the linker searches
the system library archives such as /1ib/libc.a to find predefined subroutines referenced
by the object modules. When the program uses a library routine, the linker extracts the
routine’s code from the library and incorporates it into the program text section. This new
routine, in turn, may call other library routines, so the linker continues to fetch other library
routines until no external references remain to be resolved, or a routine cannot be found.
A program that references an unresolved symbol that is not in any library is erroneous and
cannot be linked.

5.4.2 Relocating the Memory Addresses

If all external references are resolved, then the linker determines the memory locations that
each module will occupy. Because the modules were assembled in isolation, the assembler did
not know where a module’s instructions and data will be placed relative to other modules.
When the linker places a module in memory, all absolute references must be relocated to
reflect its true location. Because the linker is provided with relocation information that
identifies all relocatable references, it can efficiently find and backpatch these references.

5.4.3 Program Start-Up Routine

Finally, the linker appends a start-up routine at the beginning of the program. The start-
up routine performs several book-keeping functions. One of the book-keeping functions
performed by MIPS-I start-up routines involves copying from the stack to the argument
registers ($a0-$a3) the first four parameters (to be passed to the function main). After
performing the required initializing jobs, the start-up code calls the main routine of the
program. When the main routine completes execution, control returns to the start-up
routine, which then terminates the program with an exit system call.

.text

5.5. Instruction Formats: Design Choices 199

.globl __start

__start: # Program execution begins here
1w $a0, 0($sp) # Copy argc from stack to R4
addiu $al, $sp, 4 # Place stack address corresponding to argv in R5
addiu $a2, $ai, 4 # Start calculating stack address of envp
mul $v0, $a0, 2 # Stack addr of envp = stack addr of argv + argc x 4 + 4
addu $a2, $a2, $vO # Place stack address corresponding to envp in R6
jal main # Call subroutine main
ori $v0, $0, exit_cod# Place code for exit system call in R2
syscall # Call OS to terminate the program
main: add $al, $sp, 4 # Place the address of ¢ in $a1
1i $a2, 1 # Place the number of bytes to be read (i.e., 1) in $a2
loop: 1i $a0, 0 # Place the file descriptor (0) in $a0
1i $v0, read_code # Place the code for read in $v0
syscall # Call OS routine to perform the read
blez $v0, done # break out of while loop if syscall returned zero
1i $20, 1 # Place the file descriptor (1) in R4
1i $v0, write_code # Place the code for write in $vO0
syscall # Call OS routine to perform the write
b loop # go back to while loop
done: jr $ra # return from subroutine main to start-up code

The linker produces an executable file that can directly run on a computer system (that
has an appropriate loader). Typically, this file has the same format as an object file, except
that it contains no unresolved references. Its target is the instruction set architecture
seen by the loader. Notice that, unlike the assembly process, the linking process does not
represent a change of level in the virtual machine abstraction tower, because the linker’s
input and output are programs for the same virtual machine, and use the same language.
Some linkers also produce an ASCII representation of the symbol table. This can be used
during debugging for displaying the addresses of symbols used in both object and executable
files.

5.5 Instruction Formats: Design Choices

Like an assembly language program, a machine language program also consists of a sequence
of instructions, each one instructing the machine to do a specific operation. However, the
machine language alphabet has only two symbols, {0, 1}. Therefore bit patterns are the
sole means of specifying each instruction. For instance, the MIPS-I AL instruction
add $v0, $al, $a2
is represented in machine language as:
00000000100001010001000000100000

200 Chapter 5. Instruction Set Architecture (ISA)

Never mind how we get this bit pattern—we will show that a little later. This bit pattern
encodes all of the information needed to correctly interpret the instruction, including the
opcode and all 3 explicit operands. In the general case, the encoded information includes:

e opcode — operation to be performed
e address/value of each explicit operand

e addressing mode for each operand (optional)

The addressing mode part is treated as optional because the opcode often implies the
addressing mode; i.e., the addressing mode of the operand is unambiguous, and need not
be explicitly specified. How about labels and comments? Are they also encoded in the
machine language? Consider the same add instruction, with a label and comment added as
shown below:

done: add $v0, $al, $a2 # calculate return value
It turns out that the encoding for this AL instruction is same as that given above for the
instruction without the label and the comment! The label field is indeed translated to
a memory address, but this address is not endoded along with the instruction; instead,
arrangements are made to ensure that the encoded ML instruction will be placed in that
memory addrress when the program is loaded. The comment field is ignored altogether,
and is not represented in machine language programs.

A key issue to consider in deciding an encoding for the instructions is the number of
bits to be used for encoding each instruction type. If too many bits are used to encode
an instruction, then the code size increases unnecessarily, resulting in increased memory
storage requirement® as well as increased instruction fetch bandwidth requirements. If too
few bits are used, it might become difficult to add new instructions to the ISA in the future.
Some ISAs use a fixed number of bits to encode all of the instructions in the ISA, and the
rest use a variable number of bits to encode all of the instructions. Newer ISAs such as
MIPS-I, SPARC, Alpha, and PowerPC use fixed length instruction encoding, whereas older
ISAs such as TA-32 and VAX use variable length instruction encoding. There are good
reasons why the older ISAs went for variable length instructions. When computers were
first introduced, memory address space was at a premium, and it was important to reduce
the size of programs. The use of variable length instructions, coupled with an encoding
technique called Huffman encoding?, enabled these ISAs to promote the development of
machine language programs that required the minimum amount of memory.

When an ISA design team has to choose instruction formats for a new ISA, a number
of factors must be considered. If a particular computer becomes commercially successful,

3Memory storage requirement was a major concern when memory was expensive. With memory prices
falling steadily, this has become less of a concern, especially for general-purpose computers. In the embedded
computing world, it is still a concern.

4In this encoding, the most frequent instructions are encoded with the fewest bits and the least frequent
ones are encoded with the maximum number of bits. The words in the English language follow such an
encoding to a large extent.

5.5. Instruction Formats: Design Choices 201

its ISA may survive for 20 years or more, like the Intel TA-32. The ability to add new
instructions and exploit other opportunities that arise over an extended period is of great
importance, if the ISA survives long enough for it to be a success.

Field-based Encoding: Apart from the number of bits used for instruction encoding,
there is another major difference in how information in the different fields are encoded. One
approach starts by listing all of the unique combinations of opcodes, operand specifiers, and
addressing modes. Once this listing is done, a unique binary value is assigned to each
unique combination. Such an encoding is called total encoding. An alternate approach
is to encode each field—the opcodes, the operand specifiers, and the addressing modes—
separately. This approach is called field-based encoding. Such an encoding makes it easier
for the lower level machine to decode instructions during execution. A related feature that
makes it even easier to decode instructions is fixed field encoding. In such an encoding,
a particular set of bits are devoted for specifying a particular part of an instruction, such
as its opcode or operands. This type of encoding helps to determine the operands or their
addresses even before figuring out the opcode of the instruction.

5.5.1 Fixed Length Instruction Encoding

In this type of encoding, all instructions are encoded with the same number of bits, and
therefore have the same length. Using a fixed number of bits for instruction encoding makes
it easier to determine where each instruction starts and ends. Although this might waste
some space because all instructions are as long as the longest one, it makes instruction
decoding easier for the lower-level microarchitecture, which interprets ML instructions.
The customary method is to divide the bits in an instruction word into groups called fields.
Consider the instruction add rd, rs, rt. When the assembler converts this assembly-
language instruction into a machine-language instruction, it produces a bit pattern that
encodes the information contained in add rd, rs, rt. Consider the format given in Figure
5.3.

Opcode Opergndl Opergndz Opcode specifiers Addr Mode specifiers Register specifiers

0000 : COPY 000 : Register direct 000 : AX

’0001‘000001‘000010‘ 0001:ADD 001 :Memory direct 001 : BX
: : : : 0010 : SUB 010 : Register indirect 010:CX

Addr Addr/ Addr Addr/ 0011 : AND 011 : Memory indirect 011:DX

Mode Value Mode Value 100 : Immediate

Figure 5.3: A Sample 16-bit Format to Represent the Instruction add rd, rs, rt

In this format, 4 bits are allocated to specify the opcode, thereby allowing up to 16
unique opcodes in the instruction set. The opcode ADD is encoded by the bit pattern 0001.
The register names are also given specific 3-bit patterns. For instance, the bit pattern 001

202 Chapter 5. Instruction Set Architecture (ISA)

has been used to represent BX, and the bit pattern 010 has been used to represent CX. Three
bits are used to specify an addressing mode. For instance, the bit pattern 000 is used to
denote register direct addressing.

Example: What is the bit pattern for ADD AX, BX in the sample encoding of Figure 5.37

The bit pattern for the opcode, ADD, is 0001. The bit patterns for registers AX and BX are
000 and 001, respectively. The bit pattern for register direct addressing is 000. Therefore,
the bit pattern corresponding to the instruction ADD AX, BX is 0001000000000001.

What would be the bit pattern for COPY AX, M[32]7 We can see that it is not possible
to represent the bit pattern for memory address 32 in the 3 bits allotted for specifying an
address. To accommodate long addresses in a fixed length format, instruction sets use a
technique called expanding opcodes or variable length opcodes.

Let us illustrate the idea of expanding opcodes using the instruction encoding done in
PDP-8, a popular single-address machine of the 1960s. It was a 12-bit machine made by
DEC. Of the 12 bits allotted to an instruction, 3 bits were used for specifying the opcode.
The PDP-8 used 3 different instruction formats, as shown in Figure 5.4. Let us calculate
the maximum number of unique opcodes that PDP-8 can have, and the maximum number
of memory locations that it can specify directly.

Addr

Single address instructions ’ Opcode Mode ‘ Address ‘
3 2 7
I/O instructions ’ 1 1 0 ‘ 1/0 Address ‘I/O Opcode‘
6 3
Zero address instructions ’ 1 1 1 ‘ Opcode ‘
9

Figure 5.4: Instruction Formats Used in the PDP-8 ISA

Consider the first format, namely the one for single-address instructions. 3 bits have been
allocated for encoding the opcode, and therefore, 22 = 8 unique bit patterns are possible.
Out of the 8, two are used for identifying 1O instructions and zero-address instructions.
Thus, a maximum of 6 single-address instruction opcodes are possible. In the IO instruction
format, 3 bits are allocated for encoding the opcode, and therefore, a maximum of 8 10
instruction opcodes are possible. In the zero-address format, 9 bits are allocated for the
opcode, allowing a maximum of 22 = 512 unique opcodes. Thus, a total of 6 + 8 + 512 =
526 unique opcodes are possible for the PDP-8.

The maximum number of bits allocated for directly encoding memory addresses in any
of the three formats is 7. Thus, a maximum of 27 = 128 memory locations can be specified.

5.6. Data Formats: Design Choices and Standards 203

5.5.2 Variable Length Instruction Encoding

Some instruction sets have a large number of instructions, with many different addressing
modes. With such instruction sets, it may be impractical to encode all of the instructions
within a fixed length of reasonable size. To encode such an instruction set, many instruction
sets use variable length instructions.

In the TA-32 ISA, instruction lengths may vary from 1 byte up to 17 bytes. Figure 5.*
shows the instruction formats for some of the commonly used TA-32 instructions. The 1
byte format is typically used for instructions that have no opcodes and those that involve
specifying a single register operand. The opcode byte usually contains a bit indicating
if the operands are 8 bits or 32 bits. For some opcodes, the addressing mode and the
register are fixed, and therefore need not be explicitly specified. This is especially the
case for instructions of the form opcode register, immediate. Other instructions use
a post-byte or extra opcode byte, labeled mod, reg, r/m, which contains the addressing
mode information. This is the format for many of the instructions that specify a memory
operand. The base plus scaled index mode uses a second post-byte labeled sc, index,
base.

5.6 Data Formats: Design Choices and Standards

We have seen how instructions are represented in a machine language using bit patterns.
Next, we will see how data values are represented in an ISA. The encoding used to repre-
sent data values has a significant effect on the complexity of the lower-level hardware that
performs various arithmetic/logical operations on the values. The hardware for performing
an arithmetic operation on two numbers can be simple or complex, depending on the repre-
sentation chosen for the numbers! Therefore, it is important to choose representations that
enable commonly used arithmetic/logical operations to be performed in a speedy manner.

When using N bits to represent numbers, 2%V distinct bit patterns are possible. The
following table summarizes the number of representable values for popular word sizes.

Machine language programs often need to represent different kinds of information—
instructions, integers, floating-point numbers, and characters. All of these are represented
by bit patterns. An important aspect regarding the typical usage of bit patterns is that:

Bit patterns have no inherent meaning

Stating this differently, a particular bit pattern may represent different information in
different contexts. Thus, the same bit pattern may be the representation for an integer as
well as a floating-point number. We shall illustrate this concept with an example from the
English language. The word pen has several meanings in English: (i) a small enclosure for
animals, (ii) an instrument used for writing, or (iii) to write. Depending on the context,

204 Chapter 5. Instruction Set Architecture (ISA)

Word Size Number of ISAs/Machines
(in bits) | Representable Values

4 16 Intel 4004
8 256 Intel 8080, Motorola 6800
16 65,536 DEC PDP 11, Intel 8086, Motorola?? 32020
32 4.29 x10° IBM 370, Motorola 68020, VAX 11/780
48 1.41 x10' Unisys
64 1.84 x101 Cray, DEC Alpha

Table 5.4: Number of Representable Values for Different Word Sizes

we are able to figure out the intended meaning of the word pen. Similarly, based on the
context, the computer correctly figures out the information type and the intended meaning
of a bit pattern. It is important to note that the information type could also be encoded in
the bit pattern using additional bits, but that is rarely done.

“Time flies 1ike an arrow, but fruit flies like an orange.”

5.6.1 Unsigned Integers: Binary Number System

First, consider the encoding of unsigned integers, which only have a magnitude and no
sign. The standard encoding used to represent unsigned integers at the ISA level is to use
the binary number system. This is a positional number system, and the value of an N-bit
pattern, by_1bny_o...b1bg, if interpreted as an unsigned integer, is given by

Vunsigned =by_1 X oN-1 + by_9 X N2 + by_3 X oN=3 + + by x 20

Ezample: The value of bit pattern 10001101, if interpreted as an unsigned binary integer,
is given by
27 4+23 422420 =128 + 8 + 4 + 1 = 141.

To convert the representation of an N-bit unsigned integer to a 2/N-bit number system,
all that needs to be done is to append N zeroes to the left of the most significant bit (MSB).

Range of an N-bit Unsigned Number System.:

0 — 2V—1
Figure 5.5 depicts this range for a 32-bit number system.

5.6. Data Formats: Design Choices and Standards 205

’o oo o‘ 1 cee 1‘

Figure 5.5: Range of Unsigned Integers Represented in a 32-bit Binary Number System

5.6.2 Signed Integers: 2’s Complement Number System

The most widely used number system for representing signed integers at the ISA level is the
2’s complement number system. In the 2’s complement number system, positive numbers
are represented in their binary form as before, but negative numbers are represented in 2’s
complement form. The 2’s complement number system is also a positional number system,

and the value of a bit pattern, by_1by_2...b1bg, if interpreted as a signed integer, is given
by

Vsigned = —by_1 X oN—1 +by_o X oN—2 +by_3 X oN-—3 + .. + by % 20

This expression is similar to the one for usigned integers, except for the negative sign in
front of the by_1 term.

To convert the representation of an N-bit signed integer to a 2/N-bit number system, all
that needs to be done is to append N copies of the sign bit to the left of the MSB.

Example: The integer —12 is represented in the 8-bit 2’s complement number system as
11110100. Its representationj in the 16-bit 2’s complement number system is 1111111111110100,
obtained by appending 8 copies of the sign bit (1) to the left of the most significant bit.

Range of an N-bit 2’s Complement Number System.:

_2N—1 N 2]\/—1 _1‘

Figure 5.6 depicts this range for a 32-bit number system. Roughly half of the range is
on the positive side and the other half is on the negative side. On comparing this range
with the one given earlier for unsigned integers, we can see that the upper half of the range
of unsigned integers have been replaced by negative integers.

Table 5.5 gives the bit pattern for some positive and negative numbers in the 8-bit 2’s
complement number system.

The main advantages of using the 2’s complement number system are:

e Only one representation for zero—allows an extra (negative) number to be represented.

206 Chapter 5. Instruction Set Architecture (ISA)

Negative Numbers Positive Numbers

o

| 1 Any bit pattern Any bit pattern |

T -4-3-2-101 2 3 4 T
31 T 31
-2 +2 -1
|1 1 coe 1| |o coe o| |o 1 cee 1

Figure 5.6: Range of Signed Integers Represented in a 32-bit 2’s Complement Number
System

| Bit pattern | Decimal value | Remarks |

10000000 —128 Most negative representable integer
10000001 —127

11111111 -1

00000000 0 Unique representation for zero
00000001 1

00000010 2

01111110 126

01111111 127 Largest representable integer

Table 5.5: Decimal Equivalents of 8-bit Patterns in 2’s Complement Number System

e The same adder can be used for adding unsigned integers as well as signed integers,
thereby simplifying the design of the ALU at the digital logic level.

For instance, if two signed integers (e.g., 45 and —62), expressed in the Sign-Magnitude
number system, are added as if they are unsigned integers, then the result will be incorrect
(—107), as shown below. On the other hand, if the same two numbers are expressed in the
2’s complement number system and added as unsigned integers, the result (—17) will be
correct.

5.6.3 Floating Point Numbers: ANSI/TEEE Floating Point Standard

Our next objective is to come up with suitable representations for floating-point numbers.
We already saw in Section 3.1.4 that a floating-point number has 4 parts: the sign, the
significand, the base, and the exponent. Among these, the base is fixed for a given ISA,

5.6. Data Formats: Design Choices and Standards 207

Sign-Magnitude System 2's Complement System
00101101 (45 00101101 (45
10111110 (62 11000010 (62
11101011 (-107) 11101111 (17)
Incorrect Correct

Figure 5.7: Adding Two Signed Integers in Sign-Magnitude Number System and 2’s Com-
plement Number System

and need not be explicitly encoded or represented in the bit pattern for a floating-point
number. The remaining parts (the sign, the significand, and the exponent) need to be
explicitly stored in the bit pattern. In designing a format for floating-point numbers, the
obvious choice is to use field-based encoding, i.e., partition the available bit positions into
fields, and pack the different parts of the FP number into different fields. Thus the items
to be decided at ISA design time are:

e the base
e the signing convention for the significand and the exponent
e the number of bits for specifying the significand and the exponent

e the ordering of the sign, significand, and exponent fields

Until about 1980, almost every ISA used a unique FP format. There was no consensus
for even the base; different powers of 2 such as 2, 4, 8, or 16 have been used as the base.
The lack of a standard made it difficult to exchange FP data among different computers.
Worse yet, some computers occasionally did floating-point arithmetic incorrectly because
of some subtleties in floating-point arithmetic. To rectify this situation, the IEEE set up
a committee in the late 1970s to standardize FP representation and arithmetic. The goal
was not only to permit FP data to be exchanged among different computers but also to
provide hardware designers with a model known to be correct. The resulting work led
to IEEE Standard 754. Almost all of the present day ISAs (including the TA-32, Alpha,
SPARC, and JVM) use the IEEE FP standard and have FP instructions that conform to
this standard.

The IEEE standard defines three formats: single precision (32 bits), double precision
(64 bits), and extended precision (80 bits). The extended precision format is intended to
reduce roundoff errors while performing arithmetic operations. It is primarily used inside
FP arithmetic units, and so we will not discuss it further. Both the single- and double-
precision formats use base 2, and excess code for exponents. These two formats are shown
below.

208 Chapter 5. Instruction Set Architecture (ISA)

“The most valuable of all talents is that of never using two words when one will do”
Thomas Jefferson

1= 8 | 23 | = 11 | 52 |

Sign Exponent Significand Sign Exponent Significand

@i (i)

Figure 5.8: IEEE Floating-Point Formats: (i) Single Precision (ii) Double Precision

Single-Precision.:

Base of the FP number system is 2

Number of bits allotted for representing the significand is 23
Significand’s precision, m is 24 (because the MSB is not explicitly stored)
Number of bits allotted for representing the exponent, e is 8

Format of the exponent: excess 127 code

Double-Precision:

e Base of the FP number system is 2
e Number of bits allotted for representing the significand is 52

e Significand’s precision, m is 53 (because the MSB is not explicitly stored)

e Number of bits allotted for representing the exponent, e is 11

e Format of the exponent: excess 1023 code

Notice that the value used for the base is not encoded in the bit pattern, but forms part
of the definition of the number system. In the single-precision format, the exponent is
represented in 8 bits. With 8 bits, the exponent can take values ran